CA2379754A1 - Method for making emulsions and implementing device - Google Patents

Method for making emulsions and implementing device Download PDF

Info

Publication number
CA2379754A1
CA2379754A1 CA002379754A CA2379754A CA2379754A1 CA 2379754 A1 CA2379754 A1 CA 2379754A1 CA 002379754 A CA002379754 A CA 002379754A CA 2379754 A CA2379754 A CA 2379754A CA 2379754 A1 CA2379754 A1 CA 2379754A1
Authority
CA
Canada
Prior art keywords
jet
coherent
emulsion
phase
emulsifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002379754A
Other languages
French (fr)
Inventor
Isabelle De Lamarliere
Elisabeth Lustrat
Eric Ferret
Patrick Gervais
Philippe Marie
Jean-Marie Perrier-Cornet
Pierre-Andre Marechal
Gilles Franch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Bourgogne
Amora Maille Societe Industrielle SAS
Original Assignee
Isabelle De Lamarliere
Elisabeth Lustrat
Eric Ferret
Patrick Gervais
Philippe Marie
Jean-Marie Perrier-Cornet
Pierre-Andre Marechal
Gilles Franch
Amora Maille
Universite De Bourgogne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isabelle De Lamarliere, Elisabeth Lustrat, Eric Ferret, Patrick Gervais, Philippe Marie, Jean-Marie Perrier-Cornet, Pierre-Andre Marechal, Gilles Franch, Amora Maille, Universite De Bourgogne filed Critical Isabelle De Lamarliere
Publication of CA2379754A1 publication Critical patent/CA2379754A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/4105Methods of emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/451Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/834Mixing in several steps, e.g. successive steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/715Feeding the components in several steps, e.g. successive steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/06Mixing of food ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/22Mixing of ingredients for pharmaceutical or medical compositions

Abstract

The invention concerns a method and an implementing device, for making a mixture or and emulsion from at least an emulsifier and at least two fluids known to be immiscible, said fluids defining a dispersed phase and a continuous phase. The method is characterised in that the dispersed phase being either contained in an adapted tank, or continuously supplied, it comprises a first step which consists in pressurising the dispersed phase; then in suddenly depressurising said dispersed phase using means generating a coherent jet (5). Then an appropriate emulsifier is introduced into said coherent jet (5) with means for mixing the dispersed phase with said emulsifier thereby providing a resulting coherent jet (9) which is finally contacted with the continuous phase to obtain the mixture or the emulsion.

Description

PROCEDE DE FABRICATION D'EMULSIONS ET SON DISPOSITIF
La présente invention concerne un procédé de fabrication d'émulsions ainsi qu'un émulseur mettant en oeuvre ce procédé. Un tel procédé trouvera de nombreuses applications, notamment dans les domaines de la cosmétologie, de l'industrie alimentaire pour la fabrication de vinaigrette par exemple, de la pharmacie, de la pétrochimie, etc...
D'une manière générale, la fabrication d'une émulsion consiste dans le mélange de deux fluides, c'est-à-dire de deux liquides, déterminant deux phases, par hypothèses non miscibles, l'une étant appelée phase dispersée et l'autre phase dispersante, et dont l'une forme des gouttelettes microscopiques dans l'autre. Ce mélange ou émulsion, et plus particulièrement la taille des gouttelettes de la phase dispersée dans la phase dispersante, dépend notamment de l'énergie fournie sous forme d'agitation au milieu qui provoque un cisaillement du fluide et permet ainsi la réduction de la taille des gouttelettes de l'émulsion.
Par ailleurs, il est souvent nécessaire d'ajouter un émulsifiant pour stabiliser l'émulsion dans le temps en évitant la coalescence de la phase dispersée et permettre ainsi le stockage de l'émulsion. En effet, dans une émulsion du type huile dans eau où l'eau correspond à la phase dispersante et l'huile à la phase dispersée, l'huile et l'eau n'étant pas miscibles, les gouttelettes d'huile auront tendance à se regrouper entre elles pour former des gouttelettes plus grosses créant ainsi un phénomène de coalescence.
On connaît bien, notamment dans le domaine de l'industrie alimentaire, des émulseurs tels que des homogénéisateurs haute pression ou bien encore des "microfluidizers" produisant des émulsions comprenant un émulsifiant, par exemple une émulsion du type huile dans eau.
Les homogénéisateurs sont classiquement constitués d'une tête d'homogénéisation et d'une pompe haute pression pour mettre sous pression un fluide contenu dans un
PROCESS FOR PRODUCING EMULSIONS AND DEVICE THEREOF
The present invention relates to a method of manufacture of emulsions as well as an emulsifier this process. Such a process will find many applications, especially in the fields of cosmetology, food industry for the making salad dressings for example, pharmacy, petrochemicals, etc.
In general, the manufacture of an emulsion consists of the mixture of two fluids, i.e.
two liquids, determining two phases, by hypotheses not miscible, one being called dispersed phase and the other dispersing phase, one of which forms droplets microscopic in the other. This mixture or emulsion, and more particularly the size of the droplets of the dispersed phase in the dispersing phase, depends in particular of energy supplied in the form of agitation to the medium which shears the fluid and thus allows the reduction in the size of the emulsion droplets.
In addition, it is often necessary to add a emulsifier to stabilize the emulsion over time while avoiding the coalescence of the dispersed phase and allowing thus storing the emulsion. Indeed, in a oil in water type emulsion where the water corresponds to the dispersing phase and the dispersed phase oil, the oil and water is immiscible, the oil droplets will tend to group together to form larger droplets creating a phenomenon of coalescence.
We know well, especially in the field of the food industry, foam concentrates such as high pressure homogenizers or even "microfluidizers" producing emulsions comprising a emulsifier, for example an oil-type emulsion in water.
Homogenizers are conventionally made up a homogenization head and a high pressure pump to pressurize a fluid contained in a

- 2 -réservoir. Le fluide sous pression est habituellement une pré émulsion, c'est-à-dire qu'il s'agit d'un mélange partiel de la phase dispersée, de la phase dispersante et de l'émulsifiant ; ce fluide est ensuite envoyé à travers la tête d'homogénéisation principalement constituée d'une base, d'un clapet et de plaques d'impact. Le fluide est brutalement détendu à travers une ouverture appropriée, pour atteindre une vitesse de l'ordre de plusieurs centaines de mètres par seconde, puis entre en contact avec le clapet qui scinde le fluide et le projette sur les plaques d'impact fournissant ainsi l'énergie nécessaire, sous forme d'agitation au milieu, pour la fabrication de l'émulsion. Ces homogénéisateurs, bénéficiant des technologies actuelles, fonctionnent à des pressions pouvant atteindre 200 MPa.
Ces homogénéisateurs présentent comme principaux inconvénients une usure de la tête d'homogénéisation due aux frottements importants du fluide sur le clapet et les plaques d'impact ainsi qu'un échauffement de l'émulsion.
Par ailleurs, pour ces dispositifs fonctionnant à partir d'une préémulsion, un procédé de préémulsion est nécessaire en amont des homogénéisateurs, augmentant ainsi les coûts de production.
A cet égard, on a conçu des têtes d'homogénéisation réduisant significativement leur usure ; c'est par exemple le cas du brevet français FR 2748954 concernant un module homogénéisateur-émulsionneur. Ce module est principalement constitué d'un corps cylindrique présentant à chacune de ses extrémités respectivement un bloc d'entrée directe et un bloc de sortie. Le corps cylindrique renferme une succession de cartouches cylindriques creuses et ouvertes sur une de leur face transversale et elles sont reliées entre elles par des ressorts. Ces cartouches contiennent une pluralité de disques vibrants qui peuvent coulisser le long de l'axe creux central du corps cylindrique du module.
Lorsqu'un fluide sous pression est introduit par le bloc d'entrée directe dans le corps cylindrique, l'ensemble des disques vibrants se mettent en mouvement créant ainsi un WO 01/0549
- 2 -tank. The pressurized fluid is usually a pre-emulsion, i.e. it is a mixture partial of the dispersed phase, the dispersing phase and emulsifier; this fluid is then sent through the homogenization head mainly consisting of a base, a valve and impact plates. The fluid is brutally relaxed through an appropriate opening, to reach a speed of the order of several hundreds of meters per second and then comes into contact with the valve which splits the fluid and projects it on the impact plates thus providing the necessary energy, in the form of agitation in the middle, for the manufacture of the emulsion. These homogenizers, benefiting from current technologies operate at pressures up to 200 MPa.
These homogenizers have as main disadvantages wear of the homogenization head due high friction of the fluid on the valve and the impact plates and heating of the emulsion.
Furthermore, for these devices operating from of a pre-emulsion, a pre-emulsion process is necessary upstream of homogenizers, thereby increasing costs of production.
In this regard, we have designed homogenization heads significantly reducing their wear; it's for example the case of French patent FR 2748954 concerning a module homogenizer-emulsifier. This module is mainly consisting of a cylindrical body each having its ends respectively a direct input block and an output block. The cylindrical body contains a succession of hollow and open cylindrical cartridges on one of their transverse faces and they are connected between them by springs. These cartridges contain a plurality of vibrating discs which can slide the along the central hollow axis of the cylindrical body of the module.
When a pressurized fluid is introduced through the block direct entry into the cylindrical body, all of the vibrating discs set in motion thus creating a WO 01/0549

3 PCT/FR00/02106 effet de cisaillement du fluide qui permet la réduction de la taille des gouttes de l'émulsion.
Il existe également des "microfluidizers"
classiquement constitués d'une chambre d'interactions et d'une pompe haute pression pour mettre sous pression un fluide contenu dans un réservoir approprié. Le fluide sous pression est habituellement une pré émulsion qui est envoyée dans la chambre d'interaction dans laquelle cette dernière est bombardée par elle-même avec une énergie importante apportée par la mise sous pression du fluide, ce qui permet la fabrication de l'émulsion.
Un inconvénient de tous ces dispositifs est de procurer une émulsion dont les gouttelettes présentent un diamètre moyen de l'ordre du micromètre, ce qui n'est pas pleinement satisfaisant pour des applications dans les domaines de l'alimentaire et de la cosmétologie, par exemple.
Un autre inconvénient de ces dispositifs est l'importante quantité d'émulsifiant nécessaire pour stabiliser une telle émulsion. Cet apport élevé
d'émulsifiant se traduit alors par un excès dudit émulsifiant dans la phase dispersante de l'émulsion après sa fabrication, ce qui affecte notamment les qualités organoleptiques de l'émulsion et augmente les coûts de production.
L'un des buts de l'invention est donc de palier ces inconvénients en proposant un procédé de fabrication d'un mélange ou d'une émulsion, par exemple du type huile dans eau, pour obtenir une plus grande finesse des gouttelettes en utilisant une quantité minimale d'émulsifiant pour stabiliser ladite émulsion dans le temps.
A cet égard et conformément à l'invention, le procédé
pour la fabrication en continu ou en discontinu d'un mélange ou d'une émulsion à partir d'au moins un émulsifiant et au moins deux fluides réputés non miscibles, par exemple un corps liquide gras mélangé à de l'eau et à
un émulsifiant approprié, lesdits fluides définissant une phase dispersée et une phase dispersante, est remarquable
3 PCT / FR00 / 02106 fluid shear effect which allows reduction of the size of the emulsion drops.
There are also "microfluidizers"
conventionally made up of an interaction chamber and a high pressure pump to pressurize a fluid contained in a suitable reservoir. The fluid under pressure is usually a pre emulsion which is sent to the interaction room in which this last one is bombarded by itself with energy important contribution by the pressurization of the fluid, this which allows the manufacture of the emulsion.
A disadvantage of all these devices is that provide an emulsion whose droplets have a average diameter of the order of a micrometer, which is not fully satisfactory for applications in food and cosmetology, by example.
Another disadvantage of these devices is the large amount of emulsifier needed to stabilize such an emulsion. This high intake emulsifier then results in an excess of said emulsifier in the dispersing phase of the emulsion after its manufacture, which notably affects the qualities of the emulsion and increases the costs of production.
One of the aims of the invention is therefore to overcome these disadvantages by proposing a method of manufacturing a mixture or emulsion, for example of the oil type in water, to obtain greater fineness of the droplets using a minimum amount of emulsifier for stabilize said emulsion over time.
In this regard and in accordance with the invention, the method for the continuous or batch production of a mixture or emulsion from at least one emulsifier and at least two fluids known to be immiscible, for example a fatty liquid body mixed with water and an appropriate emulsifier, said fluids defining a dispersed phase and a dispersing phase, is remarkable

- 4 -en ce que, la phase dispersée étant soit contenue dans un réservoir adapté, soit délivrée en continu, il comporte une première étape de mise sous pression de la phase dispersée par de classiques moyens de pompage haute pression puis, on effectue une dépressurisation brutale de ladite phase dispersée grâce à des moyens permettant de créer un jet aiguille, c'est-à-dire un jet de section étroite, ou jet cohérent dans lequel la phase dispersée peut atteindre une vitesse d'environ 900 m.s-'. Il est alors envisageable d'introduire le jet cohérent de la phase dispersée dans une phase dispersante dans laquelle a été dissout un émulsifiant approprié pour obtenir l'émulsion.
Un tel procédé ne permet pas d'obtenir une taille moyenne des gouttelettes suffisamment petite, c'est pourquoi, on préfère introduire l'émulsifiant approprié
dans ledit jet cohérent grâce à des moyens assurant le mélange de la phase dispersée avec ledit émulsifiant. On obtient alors un jet cohérent résultant qui comprend la phase dispersée et l'émulsifiant. Ce jet cohérent résultant est finalement mis en contact avec la phase dispersante pour obtenir le mélange ou l'émulsion.
On obtient ainsi une émulsion dont les gouttelettes présentent un diamètre moyen compris entre quelques dizaines et quelques centaines de nanomètres, suivant les fluides utilisés, tout en nécessitant un apport réduit d'émulsifiant contrairement à l'art antérieur où le diamètre des gouttelettes diminuant, c'est-à-dire leur surface totale augmentant, une plus grande quantité
d'additif aurait été nécessaire.
Par ailleurs, la mise en contact du jet cohérent résultant avec la phase dispersante, selon une première variante du procédé, est obtenue en positionnant ledit jet cohérent résultant en immersion dans la phase dispersante en position statique ou quasi statique dans des moyens de soutirage.
Selon une seconde variante du procédé, la mise en contact du jet cohérent résultant avec la phase dispersante est obtenue grâce à des moyens assurant l'introduction de la phase dispersante dans ledit jet cohérent résultant et simultanément leur émulsion qui constitue alors un jet cohérent final.
Lors de la dépressurisation brutale de la phase dispersée, cette dernière subit un échauffement pouvant notamment modifier ses caractéristiques hydrodynamiques et organoleptiques, c'est pourquoi la température de la phase dispersée sous pression est régulée selon une gamme de température comprise entre -20°C et +80°C pour que la fabrication de l'émulsion soit plus homogène dans le temps.
De plus, la phase dispersée est pressurisée à une pression supérieure ou égale à 200 MPa.
Un autre but de l'invention concerne un dispositif émulseur pour la fabrication en continu ou en discontinu d'un mélange ou d'une émulsion à partir d'au moins un émulsifiant et au moins deux fluides réputés non miscibles, par exemple un produit liquide gras mélangé à de l'eau et un émulsifiant, lesdits fluides définissant une phase dispersée et une phase dispersante, et ledit dispositif comportant une pompe à haute pression dont l'entrée est connectée à une source de fluide telle qu'un réservoir contenant une phase dispersée ; ce dispositif est remarquable en ce que la sortie de la pompe à haute pression est reliée, par des moyens de raccordement, à des moyens de projection de la phase dispersée sous la forme d'un jet cohérent coopérant avec des moyens d'introduction, utilisant l'effet Venturi, d'un émulsifiant dans ledit jet cohérent débouchant, en immersion, dans la phase dispersante contenue dans un réservoir muni de moyens de soutirage, en continu ou en discontinu, de l'émulsion.
Selon une variante d'exécution du dispositif comportant une pompe à haute pression dont l'entrée est connectée à une source de fluide telle qu'un réservoir contenant une phase dispersée, la sortie de la pompe à
haute pression est reliée, par des moyens de raccordement, à des moyens de projection de la phase dispersée sous la forme d'un jet cohérent, munis à leur sortie d'au moins deux moyens d'introduction qui sont montés en série et utilisant l'effet Venturi, respectivement au moins de l'émulsifiant dans ledit jet cohérent et de la phase dispersante dans le jet cohérent résultant, pour procurer l'émulsion qui est avantageusement récupérée en continu à
la sortie desdits moyens d'introduction.
Selon une caractéristique secondaire des dispositifs selon l'invention, les moyens de raccordement, entre la pompe à haute pression et les moyens de projection, sont munis de moyens de régulation de la température sur tout ou l0 partie de leur longueur.
D'autres avantages et caractéristiques ressortiront mieux de la description qui va suivre de plusieurs variantes d'exécution, données à titre d'exemples non limitatifs, du procédé et du dispositif émulseur le mettant en ouvre conformément à l'invention en référence aux dessins annexés sur lesquels .
- la figure 1 est une représentation schématique du dispositif émulseur selon l'invention, - la figure 2 est un schéma partiel en légère perspective du dispositif émulseur selon l'invention comportant le réservoir de phase dispersée, la pompe à
haute pression, les moyens de raccordement et les moyens de régulation de la température, - la figure 3 est un schéma partiel de la première variante d'exécution du dispositif émulseur selon l'invention comportant les moyens de projection de la phase dispersée, les moyens d'introduction de l'émulsifiant dans le jet et les moyens de soutirage, - la figure 4 est un schéma partiel de la seconde variante d'exécution du dispositif émulseur selon l'invention comportant les moyens de projection de la phase dispersée, deux moyens d'introduction respectivement de l'émulsifiant et de la phase dispersante montés en série et les moyens de soutirage, - la figure 5 est un graphique représentant le pourcentage (%) des gouttelettes en fonction de leur diamètre exprimé en nanomètre (nm) pour un exemple d'émulsion du type huile dans eau, comprenant 10% d'huile de tournesol, 89% d'eau et 1% d'émulsifiant Tween 20 (marque déposée), et obtenue en projetant un jet d'huile de tournesol, pressurisée à 200 MPa, dans de 1°eau dans laquelle a été préalablement dissout le Tween 20 (marque déposée), - la figure 6 est un graphique représentant le pourcentage (%) des gouttelettes en fonction de leur diamètre exprimé en nanomètre (nm) pour une émulsion du type huile dans eau, comprenant 10% d'huile de tournesol, l0 89.5% d'eau et 0.5% d'émulsifiant Tween 20 (marque déposée) et obtenue selon le procédé.
- la figure 7 est un graphique représentant l'influence du rapport émulsifiant/phase dispersante sur la stabilité d'une émulsion du type eau dans huile.
Pour des raisons de clarté, on désignera ci-après par émulsion tous les mélanges et émulsions obtenus suivant l'invention et par émulseur tous les dispositifs mélangeur, homogénéisateur, "microfluidizer", émulseur et homogénéisateur-émulseur.
Le dispositif pour la fabrication en continu ou en discontinu d'une émulsion qui est représenté sur les figures 1 à 4, comprend un réservoir 1 contenant une phase dispersée et dont la sortie est connectée à une pompe à
haute pression 2. Une pompe de gavage, non représentée sur les figures, sera avantageusement positionnée entre le réservoir 1 et la pompe à haute pression 2 pour amorcer cette dernière d'une manière classique. La sortie de la pompe à haute pression 2 est reliée, en référence à la figure 1, par des moyens de raccordement 3, à des moyens de projection 4 de la phase dispersante sous la forme d'un jet aiguille ou jet cohérent 5. Par ailleurs, les moyens de raccordement 3, entre la pompe à haute pression 2 et les moyens de projection 4, sont munis de moyens de régulation 6 de la température de la phase dispersée, sous pression dans lesdits moyens de raccordement 3, sur tout ou partie de leur longueur. La sortie des moyens de projection 4 est munie de moyens d'introduction 7 dans le jet cohérent 5 d'un émulsifiant contenu dans un second _ g _ réservoir 8 relié aux dits moyens d'introduction 7 de telle sorte qu'à leur sortie jaillisse un jet cohérent résultant 9 constitué de la phase dispersée et de l'émulsifiant. Le jet cohérent résultant 9 est alors mis en contact avec la phase dispersante contenue dans des moyens de soutirage 10 en continu ou en discontinu comme on le verra plus loin. Le jet cohérent résultant 9 est de préférence positionné en immersion dans ladite phase dispersante pour bénéficier de l'énergie optimale, dudit l0 jet cohérent résultant, nécessaire à l'obtention d'une émulsion fine.
Selon une variante d'exécution du dispositif émulseur selon l'invention, la sortie des moyens d'introduction 7 est munie de seconds moyens d'introduction 11, représentés en traits pointillés sur la figure 1, dans le jet cohérent résultant d'une phase dispersante contenue dans un troisième réservoir 12, également représenté en traits pointillés sur la figure 1, relié auxdits moyens d'introduction 11 de telle sorte qu'à leur sortie jaillisse un jet cohérent final 13 constitué de l'émulsion. Le jet cohérent final 13, c'est-à-dire l'émulsion, est ensuite recueilli en continu ou en discontinu dans les moyens de soutirage 10.
En référence à la figure 2, le réservoir 1, contenant la phase dispersée, est relié à la pompe à haute pression 2 par un tuyau 14. La pompe à haute pression 2 est avantageusement une pompe aller et retour qui possède une constante de temps très courte et qui ne présente donc pas de temps mort. Elle permet d'obtenir une pression de 400 MPa tout en assurant un gros débit et une pression constante. Les moyens de raccordement 3 entre la pompe à
haute pression 2 et les moyens de projection 4, non représentés sur la figure 2, sont constitués par un tuyau blindé 15 apte à véhiculer la phase dispersée pressurisée et ils présentent un circuit de dérivation 16 muni de vannes de contrôle 17 telles que des électrovannes. Le circuit de dérivation 16 comprend des moyens de régulation 6 de la température de la phase dispersée _ g _ pressurisée, représentés en traits pointillés sur la figure 2. Les moyens de régulation 6 sont, par ailleurs, constitués d'un serpentin à spires 18 entourant le tuyau blindé 15 sur une partie du circuit de dérivation 16 et relié à un échangeur calorifique 19.
I1 va de soi que la longueur du serpentin à spires 18 dépend, notamment, des coefficients calorifiques du fluide calorifique circulant dans ledit serpentin à spires 18 et de la phase dispersée utilisée. De plus, les moyens de l0 raccordement 3 peuvent ne pas comporter de circuit de dérivation 16 et le serpentin à spires 18 sera alors positionné directement autour du tuyau blindé. l5.
Par ailleurs, les moyens de régulation 6 comprennent également une sonde 20, montée de préférence en amont du serpentin à spires 18 sur le circuit de dérivation 16, permettant de contrôler la température de la phase dispersée dans le tuyau blindé 15.
Selon une première variante du dispositif émulseur selon l'invention représentée sur la figure 3, les moyens de projection 4 sont classiquement montés à l'extrémité du tuyau blindé 15, faisant face au sol et ils sont constitués d'une buse 21 supportée par un porte-buse 22 comportant un trou calibré 23. La buse 21 est classiquement constituée d'un corps 24 comportant à son extrémité inférieure un second trou calibré 25 et d'un pointeau 26 comportant un troisième trou calibré 27 coaxial au premier 23 et au second 25. Le diamètre du trou calibré 26 est avantageusement compris entre 0.08 et 0.15 mm pour une pression délivrée par la pompe à haute pression 2 de 200 MPa afin d'éviter que ledit trou calibré 26 ne s'obstrue.
Il va de soi que les moyens de projection 4 peuvent être dirigés vers le haut pour procurer un jet droit.
La buse 21 procure un jet aiguille, c'est-à-dire un jet de section étroite, ou jet cohérent 5 de la phase dispersée qui est brutalement dépressurisée et qui jaillit dans les moyens d'introduction 7. Lesdits moyens d'introduction 7 sont positionnés à l'extrémité inférieure du porte-buse 22 et sont constitués par un tube Venturi 28, d'une longueur d'environ 15 mm pour une pression comprise entre 200 MPa et 300 MPa, formant dans sa partie centrale une chambre de mélange 29 et à son extrémité inférieure un tube de focalisation 30. Le jet cohérent 5 jaillit ainsi dans la chambre de mélange 29 où l'émulsifiant, initialement contenu dans le réservoir 8 et qui est amené, par un conduit flexible 31 muni d' une vanne de contrôle 17 et d'un système de régulation de débit 32, dans la chambre de mélange 29 par effet Venturi, se mélangent pour procurer dans le tube de focalisation 30 un jet cohérent résultant 9.
I1 est à noter que le réservoir 8 est un réservoir ouvert pour que l'émulsifiant soit à la pression atmosphérique et puisse bénéficier de l'effet Venturi pour être amené dans la chambre de mélange 29. Par ailleurs, il serait envisageable d'introduire l'émulsifiant dans le jet cohérent de la phase dispersée au moyen d'un jet incident faisant un angle très petit avec ledit jet cohérent 5.
Le tube de focalisation 30 est positionné en immersion dans une phase dispersante statique ou quasi-statique contenue dans les moyens de soutirage 10 qui sont constitués d'un récipient cylindrique principal 33, d'un récipient cylindrique médian 34 et d'un cylindre central 35 coaxiaux. Le récipient cylindrique principal 33 présente la plus grande section et comprend deux ouvertures 36,37 dans sa partie supérieure pour l'introduction d'un fluide calorifique et deux autres ouvertures 38,39 dans sa partie inférieure pour la sortie dudit fluide calorifique, comme on le verra plus loin. Les ouvertures 36,37,38 et 39 du récipient cylindrique principal 33 sont avantageusement reliées à l'échangeur calorifique 19 par des moyens de raccordement classiques non représentés sur les figures. Le récipient cylindrique médian 34, positionné à l'intérieur du récipient cylindrique principal 33, comprend un fond renforcé 40 pour éviter sa déformation due à la pression du jet cohérent résultant 9. Le cylindre central 35, ouvert à
ses deux extrémités est positionné dans le récipient cylindrique médian 34 de telle sorte que son extrémité
inférieure 41 ne soit pas en contact avec le fond renforcé 40. Par ailleurs, le récipient cylindrique médian 34 et le cylindre central 35 comprennent respectivement une ouverture 42 dans sa partie centrale pour le soutirage de l'émulsion et une ouverture 43 dans sa partie supérieure pour l'introduction de la phase dispersante comme on le verra plus loin.
I1 va de soi que les moyens de soutirage 10 peuvent l0 être constitués d'un unique récipient cylindrique comprenant la phase dispersée et muni ou non d'une ouverture dans sa partie supérieure pour l'introduction de la phase dispersante et d'une autre ouverture dans sa partie inférieure pour le soutirage de l'émulsion soit en continu, soit en discontinu.
Selon une seconde variante du dispositif émulseur conforme à l'invention, représentée sur la figure 4, les moyens de projection 4, tels que décrits précédemment, procurent un jet cohérent 5 qui jaillit dans un premier tube Venturi 28 tel que décrit précédemment permettant le mélange de l'émulsifiant, préalablement contenu dans le réservoir 8, avec la phase dispersée et procurant un jet cohérent résultant 9 comme on la déjà vu. Ledit jet cohérent résultant 9 jaillit alors dans un second tube Venturi 44 monté en série avec le premier 28 et formant une seconde chambre de mélange 45 dans sa partie centrale et un second tube de focalisation 46 dans sa partie inférieure.
Le jet cohérent résultant 9 jaillit ainsi dans la seconde chambre de mélange 45 où la phase dispersante, initialement contenue dans le réservoir 12 puis amenée, par un conduit flexible 31 muni d'une vanne de contrôle 17 et d'un système de régulation de débit 32, dans la seconde chambre de mélange 45 par effet Venturi, se mélange avec ledit jet cohérent résultant 9 pour procurer l'émulsion qui s'écoule dans le second tube de focalisation 46 sous la forme d'un jet cohérent final 13.
I1 va de soi que le dispositif peut comprendre plusieurs tubes Venturi montés en série permettant d'introduire successivement dans le jet cohérent 5 plusieurs émulsifiants et plusieurs phases dispersantes pour fabriquer des émulsions dites ternaires telles que des émulsions du type eau/huile/eau.
Le jet cohérent final 13, c'est-à-dire l'émulsion, est recueilli dans les moyens de soutirage 10 placés à la verticale sous le second tube de focalisation 46. Les moyens de soutirage 10 sont alors constitués d'un simple récipient cylindrique 47 muni d'une ouverture 48 dans sa partie inférieure pour soutirer en continu l' émulsion comme l'indique la flèche 49.
Naturellement, l'émulsion pourrait être soutirée en discontinu en utilisant un simple récipient cylindrique.
On expliquera maintenant le fonctionnement du dispositif émulseur selon l'invention en référence aux figures 2, 3, 5 et 6. Pour réaliser une émulsion du type huile dans eau par exemple, on place dans le réservoir 1 de l'huile de tournesol qui correspondra dans ce cas à la phase dispersée ; puis au moyen d'une pompe de gavage, non représentée sur la figure 2, on amorce la pompe à haute pression 2 qui met alors sous pression l'huile dans le tuyau blindé 15. On actionne, ensuite si nécessaire, les différentes vannes de contrôle 17 pour que l'huile circule dans le circuit de dérivation 16 afin de la réguler en température. L'huile sous pression jaillit de la buse 21 (figure 3) pour former un jet cohérent 5 à travers le tube venturi 28. L'huile est pressurisée, de préférence, à une pression supérieure ou égale à 200 MPa pour que le jet cohérent 5 ait une énergie suffisante pour former l' émulsion sans que la buse 21 ne s' obstrue . La vitesse de l' huile peut alors atteindre 900 m. s 1 pour une pression de 200 MPa et un diamètre de la buse 21 compris entre 0.08 et 0.15 mm.
Pour des raisons de clarté, on désignera par Tween 20 l'émulsifiant utilisé, le Tween 20 étant une marque déposée pour un émulsifiant que l'on appellera par la suite "Tween 20".
Par effet Venturi le "Tween 20" est aspiré par le jet cohérent 5 d'huile avec laquelle il se mélange pour former le jet cohérent résultant 9.
I1 est à noter que le "Tween 20", ne se dissout pas dans la phase dispersée, c'est-à-dire l'huile. D'une manière générale, l'émulsifiant ne se dissout que dans la phase dispersante ; ainsi, le "Tween 20" se mélange d'une manière homogène dans le jet cohérent 5 sans y être dissout.
Le jet cohérent résultant 9 est alors introduit en immersion dans l'eau, correspondant à la phase dispersante, qui est injectée en continue dans le cylindre central 35 par l'ouverture 43 comme l'indique la flèche 50 de la figure 3.
Lorsque le jet cohérent résultant 9 qui consiste dans le mélange de l'huile et du "Tween 20" entre en contact avec l'eau, des gouttelettes d'huiles se forment dans l'eau et le "Tween 20" se positionne autour de ces gouttelettes pour éviter que ces dernières se rassemblent et l'on obtient ainsi une émulsion du type huile dans eau.
L'émulsion ainsi obtenue poursuit sa descente dans le cylindre central 35 pour remonter ensuite entre les parois du récipient cylindrique médian 34 et ledit cylindre central 35, comme l'indique les flèches 51, et pour être finalement soutirée par l'ouverture 42 comme l'indique la flèche 52. L'émulsion peut être alors régulée en température grâce au passage d'un fluide calorifique entre le récipient cylindrique principal 33 et le récipient cylindrique médian 34. Le fluide calorifique entre par les ouvertures supérieures 36,37, comme l'indique les flèches 53 et sort par les ouvertures inférieures 38,39, comme l'indique les flèches 54 de la figure 3.
La taille des gouttelettes de l'émulsion, et plus précisément leur diamètre, dépend notamment de l'énergie apportée sous forme d'agitation au milieu comme on l'a déjà
vu mais aussi des fluides utilisé. Pour une émulsion du type huile dans eau par exemple, la taille des gouttelettes dépendra notamment du type d'huile utilisé.
La figure 5 représente le pourcentage des gouttelettes en fonction de leur diamètre, exprimé en nanomètre (nm) pour une émulsion du type huile dans eau, comprenant 10% d'huile de tournesol, 89% d'eau et 1%
d'émulsifiant "Tween 20", et obtenue en projetant un jet d'huile de tournesol, pressurisée à 200 MPa, dans de l'eau dans laquelle a été préalablement dissout le "Tween 20". La forme générale de la courbe ainsi que le pic aux environs de 500 nm indiquent que le diamètre moyen des gouttelettes de l'émulsion est compris entre 500 et 600 nm. Pour une émulsion comprenant 10% d'huile de tournesol, 89.5% d'eau et 0.5% d'émulsifiant "Tween 20" et obtenue selon l'invention, le pourcentage des gouttelettes .en fonction de leur diamètre, exprimé en nanomètre, représenté sur la figure 6, présente une courbe différente. On constate, en effet, un premier pic aux environs de 200 nm et un second pic aux environs de 450 nm indiquant une stabilisation plus rapide de la phase dispersée, c'est-à-dire de l'huile, puis un léger phénomène de coalescence. On obtient donc une émulsion dont la taille des gouttelettes est plus petite pour une quantité moindre d'émulsifiant comme le précise la figure 7.
Le graphique de la figure 7 représente la déstabilisation exprimée en pourcentage, en ordonnée, qui correspond au pourcentage de la quantité de la phase déstabilisée par rapport à sa quantité initiale, en fonction du rapport émulsifiant/phase dispersée, en abscisse, c'est-à-dire le rapport des pourcentages d'émulsifiant et de phase dispersée de l'émulsion. La courbe en traits pointillés correspond à une émulsion obtenue en introduisant un jet d'eau, pressurisée à 200 MPa, dans de l'huile dans laquelle été préalablement mélangé le "Tween 20" et la courbe en trait plein correspond à une émulsion obtenue selon l'invention. On observe, en référence à la figure 7, que la stabilisation, c'est-à-dire une déstabilisation nulle, est obtenue à un rapport d'environ 0.03 pour une émulsion conforme à
l'invention et à un rapport d'environ 0.12 pour l'autre émulsion classiquement obtenue. Par conséquent, une plus faible quantité d'émulsifiant est nécessaire pour stabiliser l'émulsion. En effet, on peut raisonnablement estimer que le "Tween 20" n'étant introduit d'une manière homogène dans l'huile que quelques millisecondes avant l'impact avec l'eau, en raison des dimensions du tube Venturi 28 et de la vitesse de l'huile dans le jet cohêrent 5, seul l'émulsifiant nécessaire à la stabilisation de l'interface des phases dispersée et dispersante n'est requis et donc n'est apporté.
Il est évident que les valeurs portées sur les figures 5, 6 et 7 sont purement indicatives et varient en fonction des types d'émulsion. Par ailleurs, suivant les types d'émulsion et leurs applications, un émulsifiant approprié sera utilisé.
Enfin, il va de soi que le procédé selon l'invention et le dispositif émulseur le mettant en oeuvre permettent de réaliser tous les types d'émulsion, notamment des émulsions du type eau dans huile ou du type ternaire, et les exemples que l'on vient de donner ne sont que des illustrations particulières en aucun cas limitatives quant aux domaines d'application de l'invention.
- 4 -in that, the dispersed phase being either contained in a adapted tank, or delivered continuously, it includes a first stage of pressurizing the dispersed phase by conventional high pressure pumping means then, we performs a sudden depressurization of said phase dispersed by means of creating a jet needle, i.e. a jet of narrow section, or jet consistent in which the dispersed phase can reach a speed of about 900 ms- '. It is then possible to introduce the coherent jet of the dispersed phase into a dispersing phase in which a emulsifier suitable for obtaining the emulsion.
Such a method does not make it possible to obtain a size average droplet size small enough why, we prefer to introduce the appropriate emulsifier in said coherent jet by means ensuring the mixing the dispersed phase with said emulsifier. We then obtains a resulting coherent throw which includes the dispersed phase and emulsifier. This resulting coherent jet is finally brought into contact with the dispersing phase to obtain the mixture or the emulsion.
An emulsion is thus obtained, the droplets of which have an average diameter of between a few tens and a few hundred nanometers, depending on the fluids used, while requiring a reduced intake emulsifier unlike the prior art where the decreasing droplet diameter, i.e. their increasing total surface, a greater quantity additive would have been necessary.
Furthermore, bringing the coherent jet into contact resulting with the dispersing phase, according to a first variant of the process, is obtained by positioning said jet coherent resulting in immersion in the dispersing phase in a static or quasi-static position in means of racking.
According to a second variant of the method, the implementation contact of the resulting coherent jet with the dispersing phase is obtained by means ensuring the introduction of the dispersing phase in said resulting coherent jet and simultaneously their emulsion which then constitutes a jet consistent final.
During the abrupt depressurization of the phase dispersed, the latter undergoes heating which can notably modify its hydrodynamic characteristics and organoleptics, that's why the temperature of the phase dispersed under pressure is regulated according to a range of temperature between -20 ° C and + 80 ° C so that the the emulsion is more homogeneous over time.
In addition, the dispersed phase is pressurized to a pressure greater than or equal to 200 MPa.
Another object of the invention relates to a device foam concentrate for continuous or batch production of a mixture or an emulsion from at least one emulsifier and at least two fluids known to be immiscible, for example a fatty liquid product mixed with water and an emulsifier, said fluids defining a phase dispersed and a dispersing phase, and said device comprising a high pressure pump the inlet of which is connected to a fluid source such as a reservoir containing a dispersed phase; this device is remarkable in that the high pump output pressure is connected, by connection means, to means for projecting the dispersed phase in the form of a coherent jet cooperating with means of introduction, using the Venturi effect, of an emulsifier in said jet coherent emerging, in immersion, in the phase dispersant contained in a tank provided with means of continuous or discontinuous withdrawal of the emulsion.
According to an alternative embodiment of the device comprising a high pressure pump the inlet of which is connected to a fluid source such as a reservoir containing a dispersed phase, the pump outlet at high pressure is connected, by connection means, to means for projecting the phase dispersed under the form of a coherent jet, provided at their outlet with at least two introduction means which are connected in series and using the Venturi effect, respectively at least the emulsifier in said coherent jet and phase dispersant in the resulting coherent jet, to provide the emulsion which is advantageously continuously recovered at the output of said introduction means.
According to a secondary characteristic of the devices according to the invention, the connection means, between the high pressure pump and the projection means, are provided with temperature regulation means on all or l0 part of their length.
Other advantages and features will emerge better from the following description of several execution variants, given as examples not limiting, of the process and of the foaming device putting it opens according to the invention with reference to annexed drawings on which.
- Figure 1 is a schematic representation of foam concentrate device according to the invention, - Figure 2 is a partial diagram in light perspective of the foam concentrate device according to the invention comprising the dispersed phase reservoir, the high pressure, the connecting means and the means of temperature regulation, - Figure 3 is a partial diagram of the first variant of the foaming device according to the invention comprising the means for projecting the phase dispersed, the means for introducing the emulsifier into the jet and the means of withdrawal, - Figure 4 is a partial diagram of the second variant of the foaming device according to the invention comprising the means for projecting the phase dispersed, two means of introducing respectively the emulsifier and the dispersing phase connected in series and withdrawal means, - Figure 5 is a graph showing the percentage (%) of droplets according to their diameter expressed in nanometer (nm) for an example oil-in-water type emulsion, comprising 10% oil sunflower, 89% water and 1% Tween 20 emulsifier (registered trademark), and obtained by projecting a jet of oil from sunflower, pressurized to 200 MPa, in 1 ° water in which was previously dissolved Tween 20 (brand filed), - Figure 6 is a graph showing the percentage (%) of droplets according to their diameter expressed in nanometers (nm) for an emulsion of oil in water type, comprising 10% sunflower oil, l0 89.5% water and 0.5% Tween 20 emulsifier (registered trademark) and obtained according to the method.
- Figure 7 is a graph representing the influence of the emulsifier / dispersing phase ratio on the stability of a water in oil type emulsion.
For reasons of clarity, the following will be designated by emulsion all mixtures and emulsions obtained according to the invention and by emulsifier all the mixing devices, homogenizer, "microfluidizer", foam concentrate and homogenizer-emulsifier.
The device for continuous or discontinuous emulsion which is represented on the Figures 1 to 4, includes a tank 1 containing a phase dispersed and the output of which is connected to a high pressure 2. A booster pump, not shown on the figures, will advantageously be positioned between the tank 1 and the high pressure pump 2 to prime the latter in a conventional manner. Leaving the high pressure pump 2 is connected, with reference to the Figure 1, by connection means 3, to means of projection 4 of the dispersing phase in the form of a jet needle or coherent jet 5. Furthermore, the means of connection 3, between the high pressure pump 2 and the projection means 4, are provided with means for regulation 6 of the temperature of the dispersed phase, under pressure in said connection means 3, on all or part of their length. The output of the means of projection 4 is provided with introduction means 7 into the coherent jet 5 of an emulsifier contained in a second _ g _ tank 8 connected to said means of introduction 7 of such so that when they come out a coherent jet resulting 9 consisting of the dispersed phase and the emulsifier. The resulting coherent jet 9 is then put in contact with the dispersing phase contained in means withdrawal 10 continuously or discontinuously as is will see further. The resulting coherent throw 9 is preferably positioned in immersion in said phase dispersant to benefit from optimal energy, said l0 resulting coherent jet, necessary to obtain a fine emulsion.
According to an alternative embodiment of the foam concentrate device according to the invention, the output of the introduction means 7 is provided with second introduction means 11, shown in dotted lines in FIG. 1, in the coherent jet resulting from a dispersing phase contained in a third tank 12, also shown in lines dotted in Figure 1, connected to said means introduction 11 so that when they come out a final coherent jet 13 consisting of the emulsion. The jet coherent final 13, i.e. the emulsion, is then collected continuously or discontinuously in the means of racking 10.
With reference to FIG. 2, the reservoir 1, containing the dispersed phase, is connected to the high pump pressure 2 by a pipe 14. The high pressure pump 2 is advantageously a return pump which has a very short time constant which therefore does not present time out. It provides a pressure of 400 MPa while ensuring high flow and pressure constant. The connection means 3 between the pump high pressure 2 and the projection means 4, not shown in Figure 2, are constituted by a pipe armored 15 capable of carrying the dispersed pressurized phase and they have a branch circuit 16 provided with control valves 17 such as solenoid valves. The branch circuit 16 includes means for regulation 6 of the temperature of the dispersed phase _ g _ pressurized, shown in dotted lines on the Figure 2. The regulating means 6 are, moreover, consisting of a coil of coils 18 surrounding the pipe shielded 15 on part of the branch circuit 16 and connected to a heat exchanger 19.
It goes without saying that the length of the coil with coils 18 depends, in particular, on the heat coefficients of the fluid heat circulating in said coil with turns 18 and of the dispersed phase used. In addition, the means of l0 connection 3 may not include a circuit bypass 16 and the coil 18 will then be positioned directly around the armored pipe. l5.
Furthermore, the regulating means 6 comprise also a probe 20, preferably mounted upstream of the coil with turns 18 on the branch circuit 16, allowing to control the phase temperature dispersed in the armored pipe 15.
According to a first variant of the foam concentrate device according to the invention shown in Figure 3, the means projection 4 are conventionally mounted at the end of the armored pipe 15, facing the ground and they are made up a nozzle 21 supported by a nozzle holder 22 comprising a calibrated hole 23. The nozzle 21 is conventionally constituted a body 24 comprising at its lower end a second calibrated hole 25 and a needle 26 having a third hole calibrated 27 coaxial with first 23 and at second 25. The diameter of the calibrated hole 26 is advantageously between 0.08 and 0.15 mm for a pressure delivered by the high pressure pump 2 of 200 MPa in order to prevent said calibrated hole 26 from is obstructed.
It goes without saying that the projection means 4 can be directed upward to provide a straight stream.
The nozzle 21 provides a needle jet, that is to say a jet of narrow section, or coherent jet 5 of the phase dispersed which is brutally depressurized and which gushes out in the introduction means 7. Said means introduction 7 are positioned at the lower end of the nozzle holder 22 and are constituted by a Venturi tube 28, with a length of about 15 mm for a pressure included between 200 MPa and 300 MPa, forming in its central part a mixing chamber 29 and at its lower end a focusing tube 30. The coherent jet 5 thus springs in the mixing chamber 29 where the emulsifier, initially contained in the reservoir 8 and which is supplied, by a flexible conduit 31 provided with a control valve 17 and a flow control system 32, in the room 29 by Venturi effect, mix to provide in the focusing tube 30 a coherent jet resulting 9.
I1 it should be noted that the reservoir 8 is a reservoir open so that the emulsifier is under pressure atmospheric and can benefit from the Venturi effect for be brought into the mixing chamber 29. Furthermore, there it would be possible to introduce the emulsifier into the jet coherent dispersed phase by means of an incident jet making a very small angle with said coherent jet 5.
The focusing tube 30 is positioned in immersion in a static or almost dispersing phase static contained in the withdrawal means 10 which are consisting of a main cylindrical container 33, a median cylindrical container 34 and a central cylinder 35 coaxial. The main cylindrical container 33 has the larger section and includes two openings 36.37 in its upper part for the introduction of a fluid calorific and two other openings 38.39 in its part lower for the outlet of said heat fluid, as we will see it later. The openings 36, 37, 38 and 39 of the main cylindrical container 33 are advantageously connected to the heat exchanger 19 by means of conventional connections not shown in the figures. The median cylindrical container 34, positioned inside of the main cylindrical container 33, includes a bottom reinforced 40 to avoid its deformation due to the pressure of the coherent jet resulting 9. The central cylinder 35, open to its two ends is positioned in the container cylindrical median 34 so that its end lower 41 is not in contact with the bottom reinforced 40. Furthermore, the cylindrical container median 34 and central cylinder 35 include respectively an opening 42 in its central part for drawing off the emulsion and an opening 43 in its upper part for the introduction of the phase dispersing as we will see later.
It goes without saying that the withdrawal means 10 can l0 consist of a single cylindrical container comprising the dispersed phase and whether or not provided with a opening in its upper part for the introduction of the dispersing phase and another opening in its lower part for drawing off the emulsion either continuous, or discontinuous.
According to a second variant of the foam concentrate device according to the invention, shown in Figure 4, the projection means 4, as described above, provide a coherent jet 5 which springs in a first Venturi tube 28 as described above allowing the mixture of the emulsifier, previously contained in the tank 8, with the phase dispersed and providing a jet coherent resulting 9 as already seen. Said jet resulting coherent 9 then springs into a second tube Venturi 44 mounted in series with the first 28 and forming a second mixing chamber 45 in its central part and a second focusing tube 46 in its lower part.
The resulting coherent jet 9 thus flows in the second mixing chamber 45 where the dispersing phase, initially contained in the tank 12 then brought, by a conduit flexible 31 provided with a control valve 17 and a system flow control 32, in the second chamber mix 45 by Venturi effect, mix with said jet coherent resulting 9 to provide the flowing emulsion in the second focusing tube 46 in the form of a final coherent stream 13.
It goes without saying that the device can include several Venturi tubes mounted in series allowing to successively introduce into the coherent jet 5 several emulsifiers and several dispersing phases to manufacture so-called ternary emulsions such as water / oil / water type emulsions.
The final coherent jet 13, that is to say the emulsion, is collected in the withdrawal means 10 placed at the vertical under the second focusing tube 46. The withdrawal means 10 then consist of a simple cylindrical container 47 provided with an opening 48 in its lower part to continuously draw the emulsion as indicated by arrow 49.
Naturally, the emulsion could be drawn off in discontinuous using a simple cylindrical container.
We will now explain how the foam concentrate according to the invention with reference to Figures 2, 3, 5 and 6. To make an emulsion of the type oil in water for example, we place in tank 1 of sunflower oil which in this case will correspond to the dispersed phase; then by means of a booster pump, not shown in Figure 2, the pump is primed at high pressure 2 which then pressurizes the oil in the armored pipe 15. Then, if necessary, activate the different control valves 17 so that the oil circulates in branch circuit 16 in order to regulate it in temperature. Pressurized oil spurts from nozzle 21 (Figure 3) to form a coherent jet 5 through the tube venturi 28. The oil is pressurized, preferably at a pressure greater than or equal to 200 MPa so that the jet coherent 5 has enough energy to form the emulsion without the nozzle 21 becoming blocked. The speed of the oil can then reach 900 m. s 1 for a pressure of 200 MPa and a diameter of the nozzle 21 between 0.08 and 0.15 mm.
For reasons of clarity, we will denote by Tween 20 the emulsifier used, Tween 20 being a registered trademark for an emulsifier which will be called later "Tween 20".
By Venturi effect the "Tween 20" is sucked in by the jet coherent 5 of oil with which it mixes to form the resulting coherent jet 9.
It should be noted that the "Tween 20" does not dissolve in the dispersed phase, that is to say the oil. Of a in general, the emulsifier dissolves only in the dispersing phase; thus, the "Tween 20" mixes with a homogeneously in coherent jet 5 without being there dissolved.
The resulting coherent jet 9 is then introduced in immersion in water, corresponding to the dispersing phase, which is continuously injected into the central cylinder 35 through opening 43 as indicated by arrow 50 of the figure 3.
When the resulting coherent jet 9 which consists in the mixture of oil and "Tween 20" comes into contact with water, oil droplets form in the water and the "Tween 20" is positioned around these droplets to prevent them from coming together and we thus obtains an oil-in-water emulsion.
The emulsion thus obtained continues its descent into the central cylinder 35 to then go up between the walls of the middle cylindrical container 34 and said cylinder central 35, as indicated by arrows 51, and to be finally drawn off by opening 42 as indicated by the arrow 52. The emulsion can then be regulated by temperature thanks to the passage of a heat fluid between the main cylindrical container 33 and the container cylindrical median 34. The heat fluid enters through the upper openings 36.37, as indicated by arrows 53 and exits through the lower openings 38.39, as indicated by the arrows 54 in FIG. 3.
The size of the emulsion droplets, and more precisely their diameter, depends in particular on the energy brought in the form of agitation in the middle as we have already seen but also fluids used. For an emulsion of type oil in water for example, the size of the droplets will depend in particular on the type of oil used.
Figure 5 shows the percentage of droplets according to their diameter, expressed in nanometer (nm) for an oil-in-water emulsion, including 10% sunflower oil, 89% water and 1%
"Tween 20" emulsifier, obtained by spraying sunflower oil, pressurized to 200 MPa, in water in which the "Tween 20" was previously dissolved. The general shape of the curve and the peak around 500 nm indicate that the average diameter of the droplets of the emulsion is between 500 and 600 nm. For a emulsion comprising 10% sunflower oil, 89.5% water and 0.5% of "Tween 20" emulsifier and obtained according to the invention, the percentage of droplets as a function of their diameter, expressed in nanometers, represented on the Figure 6 shows a different curve. We note, in effect, a first peak around 200 nm and a second peak around 450 nm indicating more stabilization rapid dispersed phase, i.e. oil, then a slight phenomenon of coalescence. So we get a emulsion with smaller droplet size for a lesser amount of emulsifier as specified in the figure 7.
The graph in Figure 7 shows the destabilization expressed as a percentage, on the ordinate, which corresponds to the percentage of the quantity of the phase destabilized compared to its initial quantity, in function of the emulsifier / dispersed phase ratio, abscissa, i.e. the ratio of percentages emulsifier and dispersed phase of the emulsion. The curve in dotted lines corresponds to an emulsion obtained by introducing a jet of water, pressurized to 200 MPa, in oil in which been previously mixed the "Tween 20" and the curve in solid line corresponds to an emulsion obtained according to the invention. We observes, with reference to FIG. 7, that the stabilization, i.e. zero destabilization, is obtained at a ratio of about 0.03 for an emulsion conforming to the invention and at a ratio of about 0.12 for the other emulsion conventionally obtained. Therefore, one more small amount of emulsifier is required to stabilize the emulsion. Indeed, one can reasonably consider that the "Tween 20" not being introduced in a way homogeneous in oil only a few milliseconds before impact with water, due to the dimensions of the tube Venturi 28 and the speed of the oil in the jet 5, only the emulsifier necessary for stabilization of the dispersed phase interface and dispersant is not required and therefore is not provided.
It is obvious that the values carried on the Figures 5, 6 and 7 are purely indicative and vary in depending on the types of emulsion. Furthermore, according to types of emulsion and their applications, an emulsifier appropriate will be used.
Finally, it goes without saying that the method according to the invention and the foaming device using it make it possible to make all types of emulsion, especially emulsions of the water in oil type or of the ternary type, and the examples that we just gave are just illustrations particular in no way limiting as to the fields of application of the invention.

Claims (9)

REVENDICATIONS 1 - Procédé de fabrication en continu ou en discontinu d'un mélangé ou d'une émulsion à partir d'au moins un émulsifiant et au moins deux fluides réputés non miscibles, par exemple un corps gras mélangé à de l'eau et un émulsifiant approprié, lesdits fluides définissant une phase dispersée et une phase dispersante, caractérisé en ce que la phase dispersée étant soit contenue dans un réservoir adapté soit délivrée en continu, on exécute dans l'ordre au moins les étapes suivantes :
- la phase dispersée est mise sous pression par de classiques moyens de pompage haute pression puis, - la phase dispersée est brutalement dépressurisée grâce à des moyens permettant de créer un jet cohérent (5) puis, - un émulsifiant approprié est alors introduit dans ledit jet cohérent (5) grâce à des moyens assurant le mélange de la phase dispersée avec ledit émulsifiant et procurant ainsi un jet cohérent résultant (9) puis, - ledit jet cohérent résultant (9) est mis en contact avec la phase dispersante pour obtenir, finalement, l'émulsion.
1 - Manufacturing process continuously or in batch of mixed or emulsion from at least at least one emulsifier and at least two fluids deemed not to miscible, for example a fatty substance mixed with water and an appropriate emulsifier, said fluids defining a dispersed phase and a dispersing phase, characterized in that the dispersed phase being is contained in a suitable tank is continuously supplied, we execute in order at least the following steps:
- the dispersed phase is pressurized by conventional high pressure pumping means then, - the dispersed phase is suddenly depressurized by means of which a coherent jet can be created (5) then, - an appropriate emulsifier is then introduced into said coherent jet (5) by means ensuring the mixing the dispersed phase with said emulsifier and thus providing a coherent resultant jet (9) then, - said resulting coherent jet (9) is brought into contact with the dispersing phase to obtain, finally, the emulsion.
2 - Procédé selon la revendication 1 caractérisé en ce que le ou les fluides formant la phase dispersée est pressurisée à une pression supérieure ou égale à 200 MPa. 2 - Method according to claim 1 characterized in what the fluid (s) forming the dispersed phase is pressurized to a pressure greater than or equal to 200 MPa. 3 - Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la température de la phase dispersée sous pression est régulée selon une gamme de température comprise entre -20°C et +80°C. 3 - Method according to any one of claims previous characterized in that the temperature of the pressure dispersed phase is regulated according to a range temperature between -20 ° C and + 80 ° C. 4 - Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la mise en contact du jet cohérent résultant (9) avec la phase dispersante est obtenue en positionnant ledit jet cohérent résultant (9) en immersion dans la phase dispersante en position statique ou quasi statique. 4 - Method according to any one of claims previous characterized in that the contacting of the jet coherent resulting (9) with the dispersing phase is obtained by positioning said coherent jet resulting (9) in immersion in the dispersing phase in a static position or quasi-static. - Procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que la mise en contact du jet cohérent résultant (9) avec la phase dispersante est obtenue grâce à des moyens assurant l'introduction de la phase dispersante dans ledit jet cohérent résultant (9) et simultanément leur émulsion qui constitue alors un jet cohérent final (13). - Method according to any one of the claims 1 to 4 characterized in that bringing the jet into contact coherent resulting (9) with the dispersing phase is obtained by means ensuring the introduction of the dispersing phase in said resulting coherent jet (9) and simultaneously their emulsion which then constitutes a jet coherent final (13). 6 - Dispositif pour la fabrication en continu ou en discontinu d'un mélange ou d'une émulsion à partir d'au moins un émulsifiant et au moins deux fluides réputés non miscibles, par exemple un produit liquide gras mélangé à de l'eau et un émulsifiant approprié, lesdits fluides définissant une phase dispersée et une phase dispersante, mettant en oeuvre le procédé selon la revendication 4 et comportant une pompe à haute pression (2) dont l'entrée est connectée à une source de fluide telle qu'un réservoir (1) contenant une phase dispersée, caractérisé en ce que la sortie de la pompe à haute pression (2) est reliée, par des moyens de raccordement (6), à des moyens de projection (4) de la phase dispersée sous la forme d'un jet cohérent (5) coopérant avec des moyens d'introduction (7), connecté à un réservoir ouvert (8) et utilisant l'effet Venturi, d'un émulsifiant dans ledit jet cohérent (5) pour former un jet cohérent résultant (9) dans un tube de focalisation (30) solidaire des moyens d'introduction (7) et débouchant, en immersion, dans la phase dispersante contenue dans des moyens de soutirage (10), en continu ou en discontinu, de l'émulsion. 6 - Device for continuous or continuous manufacturing batch of a mixture or an emulsion from at least at least one emulsifier and at least two fluids deemed not to miscible, for example a fatty liquid product mixed with water and a suitable emulsifier, said fluids defining a dispersed phase and a dispersing phase, implementing the method according to claim 4 and comprising a high pressure pump (2) whose inlet is connected to a source of fluid such as a reservoir (1) containing a dispersed phase, characterized in that the outlet of the high pressure pump (2) is connected by connection means (6), to projection means (4) of the dispersed phase in the form of a coherent jet (5) cooperating with introduction means (7), connected to a open tank (8) and using the Venturi effect, a emulsifier in said coherent jet (5) to form a jet coherent resulting (9) in a focusing tube (30) integral with the introduction means (7) and opening out, immersion, in the dispersing phase contained in withdrawal means (10), continuously or discontinuously, from the emulsion. 7 - Dispositif pour la fabrication en continu ou en discontinu d'un mélange ou d'une émulsion à partir d'au moins un additif et au moins deux fluides réputés non miscibles, par exemple un produit liquide gras mélangé à de l'eau et un émulsifiant approprié, lesdits fluides définissant une phase dispersée et une phase dispersante, mettant en oeuvre le procédé selon la revendication 5 et comportant une pompe à haute pression (2) dont l'entrée est connectée à une source de fluide telle qu'un réservoir (1) contenant une phase dispersée, caractérisé en ce que la sortie de la pompe à haute pression (2) est reliée, par des moyens de raccordement (3), à des moyens de projection (4) de la phase dispersée sous la forme d'un jet cohérent (5), munis é leur sortie d'au moins, deux moyens d'introduction (7,11) qui sont montés en série, reliés à un réservoir ouvert respectivement (8) et (12) et utilisant l'effet Venturi, respectivement au moins de l'émulsifiant dans ledit jet cohérent (5) pour former un jet cohérent résultant (9) et de la phase dispersante dans ledit jet cohérent résultant (9) pour former un let cohérent-final (13) et procurer ainsi l'émulsion qui est récupérée en continu ou en discontinu à la sortie des seconds moyens d'introduction (11) par des moyens de soutirage (10). 7 - Device for continuous or batch of a mixture or an emulsion from at least at least one additive and at least two fluids deemed not to be miscible, for example a fatty liquid product mixed with water and a suitable emulsifier, said fluids defining a dispersed phase and a dispersing phase, implementing the method according to claim 5 and comprising a high pressure pump (2) whose inlet is connected to a source of fluid such as a reservoir (1) containing a dispersed phase, characterized in that the outlet of the high pressure pump (2) is connected by connection means (3), to projection means (4) of the dispersed phase in the form of a coherent jet (5), provided with their output at least two means introduction (7,11) which are connected in series, connected to a tank open respectively (8) and (12) and using the Venturi effect, respectively at least of the emulsifier in said coherent jet (5) to form a coherent jet resulting (9) and from the dispersing phase in said jet coherent resulting (9) to form a coherent let-final (13) and thus provide the emulsion which is recovered continuously or discontinuously at the outlet of the second means introduction (11) by withdrawal means (10). 8 - Dispositif émulseur selon l'une quelconque des revendications 6 et 7 caractérisé en ce que les moyens de raccordement (3), entre la pompe à haute pression (2) et les moyens, de projection (4), sont munis de moyens de régulation de la température (6) sur tout ou partie de leur longueur. 8 - foam concentrate device according to any one of claims 6 and 7 characterized in that the means of connection (3), between the high pressure pump (2) and the projection means (4) are provided with means for temperature regulation (6) over all or part of their length. 9 - Dispositif émulseur selon la revendication 8 caractérisé. en ce que les moyens de régulation de la température (6) sont constitués d'une sonde de température (20) positionnée sur les moyens de raccordement (3) et d'un serpentin à spires (18), connecté
à un échangeur calorifique (13), qui entoure lesdits moyens de raccordement (3).

- Dispositif émulseur selon l'une quelconque des revendications 6 à 9 caractérisé en ce qui les moyens de soutirage (10) sont munis de moyens de régulation de la température (33,36,37,38,39) connecté à l'échangeur calorifique (13).
9 - foam concentrate device according to claim 8 characterized. in that the means of regulating the temperature (6) consist of a temperature probe temperature (20) positioned on the means of connection (3) and a coil of coils (18), connected to a heat exchanger (13), which surrounds said means connection (3).

- foam concentrate device according to any one of claims 6 to 9 characterized in that the means of racking (10) are provided with means for regulating the temperature (33,36,37,38,39) connected to the exchanger heat (13).
CA002379754A 1999-07-21 2000-07-21 Method for making emulsions and implementing device Abandoned CA2379754A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9909448A FR2796568B1 (en) 1999-07-21 1999-07-21 PROCESS FOR PRODUCING EMULSIONS AND DEVICE THEREOF
FR99/09448 1999-07-21
PCT/FR2000/002106 WO2001005493A1 (en) 1999-07-21 2000-07-21 Method for making emulsions and implementing device

Publications (1)

Publication Number Publication Date
CA2379754A1 true CA2379754A1 (en) 2001-01-25

Family

ID=9548342

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002379754A Abandoned CA2379754A1 (en) 1999-07-21 2000-07-21 Method for making emulsions and implementing device

Country Status (7)

Country Link
EP (1) EP1202795B1 (en)
AT (1) ATE269148T1 (en)
AU (1) AU7005600A (en)
CA (1) CA2379754A1 (en)
DE (1) DE60011623D1 (en)
FR (1) FR2796568B1 (en)
WO (1) WO2001005493A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3066947B1 (en) * 2017-05-30 2020-12-11 Michelin & Cie MIXING OF AN ELASTOMERIC COMPOSITE BY CONTINUOUS MIXING IN THE LIQUID PHASE
FR3066946B1 (en) * 2017-05-30 2022-12-16 Michelin & Cie CONTINUOUS MIXING IN LIQUID PHASE FOR THE PRODUCTION OF COMPOSITES FOR USE IN ELASTOMERIC PRODUCTS

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH559574A5 (en) * 1973-10-18 1975-03-14 Maier Kurt Continuously metering detergent into running water - for washing cars using jet induction and mixing
DE2549086A1 (en) * 1975-11-03 1977-05-18 Helmut Mueller Prodn. of low concn. emulsions - from viscous concentrates using double mixing to first prepare strong emulsion
ZA767406B (en) * 1975-12-22 1977-11-30 Ici Ltd Method of dispersing an oil slick
GB2076672A (en) * 1980-02-18 1981-12-09 Unilever Ltd Making foam
EP0399041A4 (en) * 1988-04-25 1991-07-24 Inzhenerny Tsentr "Transzvuk" Method and device for preparation of emulsions
EP0616002B1 (en) * 1992-09-18 1998-03-04 Idemitsu Petrochemical Co., Ltd. Process for producing polycarbonate powder

Also Published As

Publication number Publication date
DE60011623D1 (en) 2004-07-22
WO2001005493A8 (en) 2001-04-12
FR2796568A1 (en) 2001-01-26
ATE269148T1 (en) 2004-07-15
FR2796568B1 (en) 2001-09-21
EP1202795A1 (en) 2002-05-08
AU7005600A (en) 2001-02-05
EP1202795B1 (en) 2004-06-16
WO2001005493A1 (en) 2001-01-25

Similar Documents

Publication Publication Date Title
EP0869841B1 (en) Foam generating device
EP0676244B1 (en) Apparatus for spraying a liquid, especially a high viscosity liquid by using at least one auxiliary gas
EP3549905B1 (en) Device for forming drops in a microfluidic circuit
EP1551540B1 (en) Method and device for making a dispersion or an emulsion
FR2722711A1 (en) Method and appts. for increasing flow rate of pressurised liq. by applying ultrasonic energy
EP1051464B1 (en) Method for preparing an emulsified fuel and implementing device
CA2765982A1 (en) Method for preparing a stable oil-in-water emulsion
EP1202795B1 (en) Method for making emulsions and implementing devices
FR2761899A1 (en) PROCESS AND INSTALLATION FOR TANGENTIAL FILTRATION OF A VISCOUS LIQUID
WO2010052388A1 (en) Method for forming an emulsion from liquids mutually immiscible and application for the liquid supply of a nebulisation device
FR3020578A1 (en) INJECTION DEVICE, IN PARTICULAR FOR INJECTING A HYDROCARBON LOAD IN A REFINING UNIT.
JP6191999B2 (en) Method and apparatus for producing a composition in which a dispersed phase is dispersed in a continuous phase
WO2018172474A1 (en) Improved charge injection device for an fcc unit
CA2939691C (en) Process and device for dispersing gas in a liquid
WO2020200994A1 (en) Methods for producing powder by spray drying
EP3902625A1 (en) Device and method for creating an emulsion
FR2924033A1 (en) Essential oil's e.g. citrus fruit essential oil, stable emulsion realizing method, involves cooling oil and water before oil and water return to atmospheric pressure for obtaining droplets whose average size is less than micrometer
BE526229A (en)
BE510572A (en)
BE586862A (en)
BE534959A (en)
BE599098A (en)
BE614965A (en)
BE552943A (en)
EP2252332A2 (en) Liquid-feeding method of an atomizing device

Legal Events

Date Code Title Description
FZDE Discontinued