CA2376284A1 - A method for the prophylaxis and/or treatment of medical disorders - Google Patents
A method for the prophylaxis and/or treatment of medical disorders Download PDFInfo
- Publication number
- CA2376284A1 CA2376284A1 CA002376284A CA2376284A CA2376284A1 CA 2376284 A1 CA2376284 A1 CA 2376284A1 CA 002376284 A CA002376284 A CA 002376284A CA 2376284 A CA2376284 A CA 2376284A CA 2376284 A1 CA2376284 A1 CA 2376284A1
- Authority
- CA
- Canada
- Prior art keywords
- seq
- nucleic acid
- acid molecule
- igf
- chemical analogue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/12—Keratolytics, e.g. wart or anti-corn preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1136—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1138—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/33—Chemical structure of the base
- C12N2310/335—Modified T or U
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Dermatology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Cardiology (AREA)
- Urology & Nephrology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Pain & Pain Management (AREA)
- Endocrinology (AREA)
- Rheumatology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention relates generally to a method for the prophylaxis and/ or treatment of skin disorders, and in particular proliferative and/or inflammatory skin disorders, and to genetic molecules useful for same. The present invention is particularly directed to genetic molecules capable of modulating growth factor interaction with its receptor on epidermal keratinocytes to inhibit, reduce or otherwise decrease stimulation of this layer of cells. The present invention contemplates, in a most preferred embodiment, a method for the prophylaxis and/or treatment of psoriasis.</SDO AB>
Description
A METHOD FOR THE PROPHYLAXIS AND/OR TREATMENT OF
MEDICAL DISORDERS
FIELD OF THE INVENTION
The present invention relates generally to a method for the prophylaxis and/or treatment of medical disorders, and in particular proliferative and/or inflammatory skin disorders, and to genetic molecules useful for same. The present invention is particularly directed to genetic molecules capable of modulating growth factor interaction with its receptor on cells such as epidermal keratinocytes to inhibit, reduce or otherwise decrease stimulation of this layer of cells.
The present invention contemplates, in a particularly preferred embodiment, a method for the prophylaxis and/or treatment of psoriasis or neovascularization conditions such as neovascularization of the retina. The present invention is further directed to the subject genetic molecules in adjunctive therapy for epidermal hyperplasia, such as in combination with UV
treatment, and to facilitate apoptosis of cancer cells and in particular cancer cells comprising keratinocytes.
BACKGROUND OF THE INVENTION
Bibliographic details of the publications numerically referred to in this specification are collected at the end of the description.
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that that prior art forms part of the common general knowledge in Australia or any other country.
Psoriasis and other similar conditions are common and often distressing proliferative and/or inflammatory skin disorders affecting or having the potential to affect a significant proportion of the population. The condition arises from over proliferation of basal keratinocytes in the epidermal layer of the skin associated with inflammation in the underlying dermis. Whilst a range of treatments have been developed, none is completely effective and free of adverse side effects. Although the underlying cause of psoriasis remains elusive, there is some consensus of opinion that the condition arises at least in part from over expression of local growth factors and their interaction with their receptors supporting keratinocyte proliferation via keratinocyte receptors which appear to be more abundant during psoriasis.
One important group of growth factors are the dermally-derived insulin-like growth factors (IGFs) which support keratinocyte proliferation. In particular, IGF-I and IGF-II are ubiquitous peptides each with potent mitogenic effects on a broad range of cells.
Molecules of the IGF type are also known as "progression factors" promoting "competent" cells through DNA synthesis.
The IGFs act through a common receptor known as the Type I or IGF-I receptor, which is tyrosine kinase linked. They are synthesised in mesenchymal tissues, including the dermis, and act on adjacent cells of mesodermal, endodermal or ectodermal origin. The regulation of their synthesis involves growth hormone (GH) in the liver, but is poorly defined in most tissues [ 1 ].
Particular proteins, referred to as IGF binding proteins (IGFBPs), appear to be involved in autocrine/paracrine regulation of tissue IGF availability [2]. Six IGFBPs have so far been identified. The exact effects of the IGFBPs is not clear and observed effects in vitro have been inhibitory or stimulatory depending on the experimental method employed [3].
There is some evidence, however, that certain IGFBPs are involved in targeting IGF-I to its cell surface receptor.
Skin, comprising epidermis and underlying dermis, has GH receptors on dermal fibroblasts [4].
Fibroblasts synthesize IGF-I as well as IGFBPs-3, -4, -5 and -6 [5] which may be involved in targeting IGF-I to adjacent cells as well as to the overlaying epidermis. The major epidermal cell type, the keratinocyte, does not synthesize IGF-I, but possesses IGF-I
receptors and is responsive to IGF-I [6].
It is apparent, therefore, that IGF-I and other growth promoting molecules, are responsible for or at least participate in a range of skin cell activities. In accordance with the present invention, the inventors have established that aberrations in the normal functioning of these molecules or aberrations in their interaction with their receptors is an important factor in a variety of medical disorders such as proliferative and/or inflammatory skin disorders. It is proposed, therefore, to target these molecules or other molecules which facilitate their functioning or interaction with their receptors to thereby ameliorate the effects of aberrant activity during or leading to skin disease conditions and other medical conditions such as those involving neovascularization.
Furthermore, these molecules may also be used to facilitate apoptosis of target cells and may be useful as adjunctive therapy for epidermal hyperplasia.
SUMMARY OF THE INVENTION
Nucleotide and amino acid sequences are referred to by a sequence identifier, i.e. (<400>1), (<400>2), etc. A sequence listing is provided after the claims.
Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.
Accordingly, one aspect of the present invention contemplates a method for ameliorating the effects of a medical disorder such as a proliferative and/or inflammatory skin disorder in a mammal, said method comprising contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation or a cell otherwise involved in the said medical disorder with an effective amount of a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing a growth factor mediated cell proliferation and/or inflammation and/or other medical disorder.
According to this preferred embodiment, there is provided a method for ameliorating the effects of a medical disorder such as a proliferative and/or inflammatory skin disorder in a mammal, said method comprising contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation or a cell otherwise involved with said medical disorder with an effective amount of a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation and/or inflammation and/or other medical disorder.
According to this embodiment, there is provided a method for ameliorating the effects of a proliferative and/or inflammatory skin disorder such as psoriasis said method comprising contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation with effective amounts of UV treatment and a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation and/or inflammation.
According to this embodiment, there is provided in a particularly preferred aspect a ribozyme comprising a hybridising region and a catalytic region wherein the hybridising region is capable of hybridising to at least part of a target mRNA sequence transcribed from a genomic gene corresponding to <400>1 or <400>2 wherein said catalytic domain is capable of cleaving said target mRNA sequence to reduce or inhibit IGF-I mediated cell proliferation and/or inflammation and/or other medical disorders.
Yet another aspect of the present invention contemplates co-suppression to reduce expression or to inhibit translation of an endogenous gene encoding, for example, IGF-I, its receptor, or IGFBPs such as IGFBP-2 and/or -3. In co-suppression, a second copy of an endogenous gene or a substantially similar copy or analogue of an endogenous gene is introduced into a cell following topical administration. As with antisense molecules, nucleic acid molecules defining a ribozyme or nucleic acid molecules useful in co-suppression may first be protected such as by using a nonionic backbone.
Another aspect of the present invention contemplates a pharmaceutical composition for topical administration which comprises a nucleic acid molecule capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation such as psoriasis and one or more pharmaceutically acceptable Garners and/or diluents.
-$-Yet another aspect of the present invention contemplates the use of a nucleic acid molecule in the manufacture of a medicament for the treatment of proliferative and/or inflammatory skin disorders or other medical disorders mediated by a growth factor.
Still a further aspect of the present invention contemplates an agent comprising a nucleic acid molecule as hereinbefore defined useful in the treatment of proliferative and/or inflammatory skin disorders, such as psoriasis or other medical disorder..
The present invention further contemplates the use of the genetic molecules and in particular the antisense molecules to inhibit the anti-apoptotic activity of IGF-I
receptor.
BRIEF DESCRIPTION OF THE FIGURES
Figure 1 is a representation of the nucleotide sequence of IGFBP-2.
LOCUS HSIGFBP2 1433 by RNA PRI 31-JAN-1990 S DEFINITIONHuman mRNA for insulin-like growth factor binding protein (IGFBP-2) KEYWORDS insulin-like growth factor binding protein.
SOURCE human ORGANISM Homo Sapiens IO Eukaryota; Animalia; Metazoa; Chordata; Vertebrata;
Mammalia;
Theria; Eutheria; Primates; Haplorhini; Catarrhini;
Hominidae.
REFERENCE 1 (bases 1 to 1433) AUTHORS Binkert,C., Landwehr,J., Mary,J.L., Schwander,J.
and Heinrich,G.
TITLE Cloning, sequence analysis and expression of a cDNA
encoding a 1S novel insulin-like growth factor binding protein (IGFBP-2) JOURNAL EMBO J. 8, 2497-2502 (1989) STANDARD full automatic COMMENT NCBI gi: 33009 FEATURES Location/Qualifiers ZO source 1. .1433 /organism="Homo Sapiens"
/dev stage="fetal"
/tissue type="liver"
misc eature 1416. .1420 f _ /note="pot. polyadenylation signal"
ZS
polyA site 1433 /note="polyadenylation site"
CDS 118. .1104 /note="precursor polypeptide; (AA -39 to 289); NCBI
gi:
3O 33010. "
/codon start=1 /translation="MLPRVGCPALPLPPPPLLPLLPLLLLLLGASGGGGGARAEVLFR
CPPCTPERLAACGPPPVAPPAAVAAVAGGARMPCAELVREPGCGCCSVCARLEGEACG
VYTPRCGQGLRCYPHPGSELPLQALVMGEGTCEKRRDAEYGASPEQVADNGDDHSEGG
KKLRPPPARTPCQQELDQVLERISTMRLPDERGPLEHLYSLHIPNCDKHGLYNLKQCK
MSLNGQRGECWCVNPNTGKLIQGAPTIRGDPECHLFYNEQQEACGVHTQRMQ"
(<400>21) CDS 118. .234 4O /note="signal peptide; (AA -39 to -1); NCBI gi: 33011."
/codon start=1 /translation="MLPRVGCPALPLPPPPLLPLLPLLLLLLGASGGGGGARA"
(<400>22) CDS 235. .1101 4S /note="mature IGFBP-2; (AA 1 to 289); NCBI gi: 33012."
/codon start=1 /translation="EVLFRCPPCTPERLAACGPPPVAPPAAVAAVAGGARMPCAELVR
EPGCGCCSVCARLEGEACGVYTPRCGQGLRCYPHPGSELPLQALVMGEGTCEKRRDAE
YGASPEQVADNGDDHSEGGLVENHVDSTMNMLGGGGSAGRKPLKSGMKELAVFREKVT
SO EQHRQMGKGGKHHLGLEEPKKLRPPPARTPCQQELDQVLERISTMRLPDERGPLEHLY
SLHIPNCDKHGLYNLKQCKMSLNGQRGECWCVNPNTGKLIQGAPTIRGDPECHLFYNE
QQEACGVHTQRMQ" (<400>23) BASE COUNT 239 a 466 c 501 g 227 t ORIGIN
SS
_ '7 _ HSIGFBP2 Length: 1433 May 11, 1994 10:06 Type: N Check: 6232 ..
Figure 2 is a representation of the nucleotide sequence of IGFBP-3.
S
LOCUS HUMGFIBPA 2474 by ss-mRNA PRI 15-JUN-1990 DEFINITION Human growth hormone-dependent insulin-like growth factor-binding protein mRNA, complete cds.
1~ KEYWORDS insulin-like growth factor binding protein.
SOURCE Human plasma, cDNA to mRNA, clone BP-53.
ORGANISM Homo sapiens Eukaryota; Animalia; Chordata; Vertebrata; Mammalia; Theria;
Eutheria; Primates; Haplorhini; Catarrhini; Hominidae.
1S REFERENCE 1 (bases 1 to 2474) AUTHORS Wood,W.I., Cachianes,G., Henzel,W.J., Winslow,G.A., Spencer,S.A., Hellmiss,R., Martin,J.L. and Baxter,R.C.
TITLE Cloning and expression of the growth hormone-dependent insulin-like growth factor-binding protein JOURNAL Mol. Endocrinol. 2, 1176-1185 (1988) STANDARD full automatic COMMENT NCBI gi: 183115 FEATURES Location/Qualifiers mRNA <1. .2474 ZS /note="GFIBP mRNA"
CDS 110. .985 /gene="IGFBP1"
/note="insulin-like growth factor-binding protein; NCBI
gi: 183116."
/codon start=1 /translation="MQRARPTLWAAALTLLVLLRGPPVARAGASSGGLGPWRCEPCD
ARALAQCAPPPAVCAELVREPGCGCCLTCALSEGQPCGIYTERCGSGLRCQPSPDEAR
PLQALLDGRGLCVNASAVSRLRAYLLPAPPAPGNASESEEDRSAGSVESPSVSSTHRV
SDPKFHPLHSKIIIIKKGHAKDSQRYKVDYESQSTDTQNFSSESKRETEYGPCRREME
TKGKEDVHCYSMQSK" (<400>24>) source 1. .2474 /organism="Homo sapiens"
BASE COUNT 597 a 646 c 651 g 580 t HUMGFIBPA Length: 2474 May 11, 1994 10:00 Type: N Check: 9946 ..
4S Figure 3 is a representation of the nucleotide sequence of IGF-1-receptor.
LOCUS HSIGFIRR 4989 by RNA PRI 28-MAR-1991 DEFINITION Human mRNA for insulin-like growth factor I receptor $0 KEYWORDS glycoprotein; insulin receptor;
insulin-like growth factor I receptor; membrane glycoprotein;
receptor; tyrosine kinase.
SOURCE human _g_ ORGANISM
Homo sapiens Eukaryota;
Animalia;
Metazoa;
Chordata;
Vertebrata;
Mammalia;
Theria; Eutheria; Primates; Haplorhini; Catarrhini;
Hominidae.
REFERENCE1 (bases 1 to 4989) AUTHORSUllrich,A., ., Gray, A., Tam,A.W., Yang-Feng,T., Tsubokawa,M
Collins,C., Henzel,W., Bon,T.L., Kathuria,S., Chen,E., Jakobs,S., Francke,U., Ramachandran,J.
and Fujita-Yamaguchi,Y.
TITLE Insulin-like growth factor I receptor primarycomparison structure:
with insulin receptor suggests structural dererminants that define 1~ functional specificity JOURNALEMBO 5, 2503-2512 (1986) J.
STANDARDfull automatic gi:
FEATURES Location/Qualifiers IS source 1. .4989 /organism="Homo sapiens"
/tissue type="placenta"
/clone lib="(lamda)gtl0"
/clone="(lambda)IGF-1-R.85, (lambda)IGF-1-R.76"
sig~eptide 32. .121 mat 122. .4132 peptide /note="IGF-I receptor"
misc_ feature 122. .2251 /note="alpha-subunit (AA 1 - 710)"
25 misc_ feature 182. .190 /note="pot.N-linked glycosylation 23)"
site (AA 21 -misc_ feature 335. .343 /note="pot.N-linked glycostlation 74)"
site (AA 72 -misc_ feature 434. .442 /note="pot.N-linked glycostlation - 107)"
site (AA 105 misc_ feature 761. .769 /note="pot.N-linked glycostlation - 216)"
site (AA 214 misc_ feature 971. .979 /note="pot.N-linked glycostlation - 286)"
site (AA 284 35 misc_ feature 1280. .1288 /note="pot.N-linked glycostlation - 389)"
site (AA 387 misc_ feature 1343. .1351 /note="pot.N-linked glycosylation - 410)"
site (AA 408 misc feature 1631. .1639 _ /note="pot.N-linked glycostlation - 506)"
site (AA 504 misc_ feature 1850. .1858 /note="pot.N-linked glycosylation - 579)"
site (AA 577 misc_ feature 1895. .1903 /note="pot.N-linked glycosylation - 594)"
site (AA 592 45 misc_ feature 1949. .1957 /note="pot.N-linked glycosylation - 612)"
site (AA 610 misc_ feature 2240. .2251 /note="putative proreceptor processing707 -site (AA
710)"
$0 misc_ feature 2252. .4132 /note="beta-subunit (AA 711 - 1337)"
misc_ feature 2270. .2278 /note="pot.N-linked glycosylation - 719]"
site (AA 717 misc_ feature 2297. .2305 $S /note="pot.N-linked glycosylation - 728)"
site (AA 726 misc_ feature 2321. .2329 /note="pot.N-linked glycosylation 736)"
site (AA 734 -misc_ feature 2729. .2737 /note="pot.N-linked glycosylation(AA 870 - 872)"
site misc_ feature 2768. .2776 /note="pot.N-linked glycosylation(AA 883 - 885)"
site misc_ feature 2837. .2908 /note="transmembrane region 929)"
(AA 906 -misc_ feature 2918. .2926 /note="pot.N-linked glycosylation(AA 933 - 935)"
site misc feature 3047. .3049 10_ /note="pot. ATP binding site (AA 976)"
misc_ feature 3053. .3055 /note="pot. ATP binding site (AA 978)"
misc_ feature 3062. .3064 /note="pot. ATP binding site (AA 981)"
15misc_ feature 3128. .3130 /note="pot. ATP binding site (AA 1003)"
CDS 32. .4132 /product="IGF-I receptor"
/note="50 stops when translation attempted, frame 1, code 20 0"
BASE 1216 a 1371 c 1320 g 1082 t COUNT
ORIGIN
HSIGFIRR Length: 4989 May 11, 1994 12:10 Type: N Check: 133 ..
Figure 4A is a photographic representation of a Western ligand blot of HaCaT
conditioned medium showing IGFBP-3 secreted in 24 hours after 7 day treatment with phosphorothioate oligonucleotides (BP3AS2, BP3AS3 and BP3S) at O.S~.M and S~,M;
* no oligonucleotide added.
Figure 4B is a graphical representation of a scanning imaging desitometry of Western ligand blot (Figure 4A), showing relative band intensities of IGFBP-3 and the 24kDa IGFBP-4 after treatment with phosphorothioate oligonucleotides;
* no oligonucleotide added.
Figure 5A is a photographic representation of a Western ligand blot of HaCaT
conditioned medium showing IGFBP-3 secreted in 24 hours after 7 day treatment with phosophorothioate oligonucleotide BP3AS2 at O.S~,M compared with several control oligonucleotides at O.S~.M.
(a) oligonucleotide BP3AS2NS; (b) oligonucleotide BP3AS4; (c) oligonucleotide BP3AS4NS; and (untreated), no oligonucleotide added.
Figure 5B is a graphical representation of a scanning imaging densitometry of Western ligand blot (Figure SA), showing relative band intensities of IGFBP-3 after treatment with phosphorothioate oligonucleotides as in Figure SA, showing IGFBP-3 band intensities expressed as a percentage of the average band intensity from conditioned medium of cells not treated with oligonucleotide.
Figure 6 is a graphical representation showing inhibition of IGF-I binding by antisense oligonucleotides to IGF-I receptor. IGFR.AS: antisense; IGFR.S: sense.
Figure 7 is a graphical representation showing inhibition of IGFBP-3 production in culture medium following initial treatment with antisense oligonucleotides once daily over a 2 day period.
Figure 8 is a graphical representation showing optimization of IGFBP-3 antisense oligonucleotide concentration as determined by relative IGFBP-3 concentration in culture medium.
Figure 9 is a diagramatic representation of a map of IGF-1 Receptor mRNA and position of target ODNs.
Figure 10 is a photographical representation showing Lipid-mediated uptake of oligonucleotide in keratinocytes. HaCaT keratinocytes were incubated for 24 hours in medium (DMEM plus 10% v/v FCS) containing fluorescently labelled ODN (R451, 30 nM) and cytofectin GSV (2 ~g/ml). The cells were then transferred to ODN-free medium and fluorescence microscopy (a) and phase contrast (b) images of the cells were obtained.
Figure 11 is a graphical representation of uptake (A) and toxicity (B) of ODN/lipid complexes in keratinocytes. Confluence HaCaT keratinocytes were incubated in DMEM
containing fluoresently labelled ODN (R451) plus liposome over 120 hours, viewed using fluorescene microscopy and trypan blue stained and counted.
Figure 12 is a graphical representation of an IGF-1 Receptor mRNA in ODN
treated (30nM) HaCaT cells (2~cg/ml GSV). HaCaT keratinocytes were treated for 96 hours with propynyl, dU, dC ODNs complexed with cytofectin GSV. Cells were treated with ODNs complementary to the human IGF-I receptor mRNA (27, 32, 74 and 78), 2 randomised sequence ODNs (R451) and R766), liposome alone (GSV) or were left untreated (UT). Total RNA was isolated then analysed for IGF-I receptor mRNA and GAPDH mRNA levels by RNase Protection and Phosphorlmager quantitiation.
(A) Electrophoretic analysis of IGF-I receptor and GAPDH mRNA fragments after RNase Protection. Molecular weight markers are shown on the right hand side. Full length probe is shown on the left hand side (G-probe and I-probe). GAPDH protected fragments (G) are seen at 316 bases and IGF-I receptor protected fragments (I) are seen at 276 bases.
(B) Relative level of IGF-I receptor mRNA following each treatment is shown.
Figure 13 is a graphical representation of an IGF-1 receptor mRNA in ODN
treated (30nM) HaCaT cells (2,ug/ml GSV). Summary of IGF-I receptor ODN screening data. HaCaT
keratinocytes were treated for 96 hours with C-5 propynyl, dU, dC ODNs complexed with cytofectin GSV. Total RNA was isolated then analysed for IGF-I receptor mRNA
and GAPDH mRNA levels by RNase protection and phosphorImager quantitiation.
Relative level of IGF-I receptor mRNA is shown after treatment with ODNs complementary to the human IGF-I receptor mRNA, 4 randomised sequence ODNs and liposome alone. (26-86=IGF-I
receptor ODNs; R1, R4, R7 and R9 = randomised ODNs (R1=8121, R4=8451, R7=8766, R9=R961); GSV=liposome alone; UT=untreated). *indicates a significant difference in relative IGF-I receptor mRNA from GSV treated cells (n=4-10, p < 0.05).
Figure 14 is a graphical representation of the effect of antisense oligonucleotides on IGF-1 receptor levels on the surface of keratinocytes. HaCaT cells were grown to confluence in 24-well plates in DMEM containing 10% v/v FCS. Oligodeoxynucleotide (ODN) and Cytofectin GSV (GSV, Glen Research) were mixed together in serum-free DMEM, incubated at room temperature for 10 minutes before being diluted ten-fold in medium and placed on the cells.
Cells were incubated for 72 hours with 30 nM random sequence or antisense ODN
and 2 ~cg/ml GSV or with GSV alone in DMEM containing 10% v/v FCS with solutions replaced every 24 hours. This was followed by incubation with ODN/GSV in serum-free DMEM for 48 hours. All incubations were performed at 37°C. Wells were washed twice with 1 ml cold PBS. Serum-free DMEM containing 10-'°M 'z5I-IGF-I was added with or without the IGF-I
analogue, des (1-3) IGF-I, at 10-'°M to 10-'M. Cells were incubated at 4°C for 17 hours with gentle shaking then washed three times with 1 ml cold PBS and lysed in 250 ,u1 O.SM
NaOH/0.1 % v/v Triton X-100 at room temperature for 4 hours. Specific binding of the solubilised cell extract was measured using a y counter.
Figure 15 is a graphical representation of the effect of antisense oligonucleotides on IGF-1 receptor levels on the surface of keratinocytes.
Figure 16 is a photographical representation of H & E stained sections of (A) psoriatic skin biopsy prior to grafting and (B) 49 day old psoriatic skin graft using skin from the same donor.
Figure 17 is a photographical representation of uptake of oligonucleotide after intradermal injection into psoriatic skin graft on a nude mouse. Psoriatic skin graft was intradermally injected with ODN (R451, 50 ,u1, 10 ~cM). The graft was removed and sectioned after 24 hours, then viewed using confocal microscopy.
Figure 18(a) is a photographical representation of Pregraft, Donor JH, Donor JH, PBS
treated, SO~cI, Donor JH, #50 treated, SO,uI, lO,uM.
Figure 18(b) is a photographical representation of Donor LB, pregraft, Donor LB, PBS
treated (SO~cI), Donor LB, #74 treated (SO,uI, lO,uM).
Figure 18(c) is a photographical representation of Donor PW, pregraft, Donor PW, R451 treated (50,u1, lO~cM), Donor LB, #74 treated (50,u1, lO,uM).
Figure 18(d) is a photographical representation of Donor GM, pregraft, Donor GB, 8451 treated (50,u1, lO,uM), Donor GM, #27 treated (50,u1, lO,uM).
Figure 19(a) is a photographical representation showing Donor JH pregraft, Donor JH PBS
treated 50,u1, Donor JH #50 treated 50,u1, lO,uM.
Figure 19(b) is a photographical representation Donor LB pregraft, Donor LB
PBS treated 50,u1, Donor LB #74 treated 50,u1, lO,uM.
Figure 19(c) is a photographical representational showing Donor PW pregraft, Donor PW
r451 treated 501, lO,uM, Donor PW #74 treated 50~c1, IO~cM.
Figure 19(d) is a photographical representation showing Donor GM pregraft, Donor GM
8451 treated 501, 10~M, Donor #27 treated 50,u1, 10~M.
Figure 20 is a graphical representation showing suppression of psoriasis after treatment with oligonucleotide (quantification). Oligonucleotide (50 ,u1, lO,uM) was injected every two days for 20 days, as were control treatments. Skin thickness was measured by removing the skin and using computer software (MCID analysis) to measure the exact thickness of each graft.
N=3-4 for each treatment. *indicates a significant difference from the pregraft value (ANOVA, P < 0.05) Figure 21 is a photographic representation of ahKi-67 imunobiological binding.
Figure 22 is a photographical representation showing penetration of oligonucleotide into human skin after topical treatment. Fluorescently labelled oligonucleotide (10 ~cM R451) was applied topically after formulation with cytofectin GSV (10 ,ug/ml) and viewed using confocal microscopy.
Figure 23 is a photographical representation showing penetration of oligonucleotide into human skin after application of topical gel formation. Fluorescently labelled oligonucleotide (10 ,uM R451) was applied topically after complexing with cytofectin GSV (10 ,ug/ml) and formulation into 3 % methylcellulose gel. Image was obtained using confocal microscopy.
Figure 24 is a graphical representation showing IGFBP-3 mRNA.
Figure 25(a) is a graphical representation showing IGFBP-3 mRNA in AON treated ( 100nM) HaCaT cells (2,ug/ml GSV).
Figure 25(b) is a graphical representation showing IGFBP-3 mRNA levels of AON
treated (100nm) HaCaT cells (2~cg/ml GSV).
Figure 25(c) is a graphical representation showing IGFBP-3 mRNA in AON treated (30nM) HaCaT cells (2~cg/ml GSV).
Figure 25(d) is a graphical representation showing IGFBP-3 mRNA in AON treated (30nM) HaCaT cells (2,ug/ml GSV).
Figure 26(a) is a graphical representation showing IGFBP-3 mRNA in ODN treated (30nM) HaCaT cells (2,ug/ml). HaCaT keratinocytes were treated for 51 hours with C-5 propynl, dU, dC ODNs complexed with cytofectin GSV. Total RNA was isolated then analysed for IGFBP-3 mRNA and GAPDH mRNA levels by Northern analysis and phosphorimager quantitation.
Relative level of IGFBP-3 mRNA is shown after treatment with ODNs complementary to the human IGFBP-3 mRNA, 4 randomised sequence ODNs and lipsome alone. (1-24=IGFBP-ODNs; R1, R4, R7 and R9=randomised ODNs (R1=8121, R4=8451, R7=8766, R9 R961); GS=liposome alone; UT=untreated). *indicates a significant different in relative IGFBP-3 mRNA from GSV treated cells (n- 5-8, p < 0.01), **indicates a significant difference in relative IGFBP-3 mRNA from GSV treated cells (n= 5-8, p < 0.05).
Figure 26(b) is a graphical representation showing IGFBP-3 mRNA in ODN treated (100nM) HaCaT cells (2,ug/ml GSV). HaCaT keratinocytes were treated for 51 hours with propynl, dU, dC ODNs complexed with cytofectin GSV. Total RNA was isolated then analysed for IGFBP-3 mRNA and GAPDH mRNA levels by Northern analysis and phosphorimager quantitation. Relative level of IGFBP-3 mRNA is shown after treatment with ODNs complementary to the human IGFBP-3 mRNA, 4 randomised sequence ODNs and liposome alone. (1-24=IGFBP-3 ODNs; R1, R4, R7 and R9 = randomised ODNs (Rl-R121, R4=8451, R7=8766, R9-R961), GS=lipsome alone; UT=untreated). *indicates a significant difference in relative IGFBP-3 mRNA from GSV treated cells (n- 6-8, p < 0.01).
Figure 27 is a representation showing a reduction in IGF-I receptor mRNA in HaCaT cells following treatment with antisense oligonucleotides. Confluent HaCaT cells were treated every 24 h for 4 days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM IGF-I
receptor specific oligonucleotides (#26 to #86) or random sequence oligonucleotides (R121, 8451 and R766). Total RNA was isolated and analysed for IGF-I receptor and GAPDH
mRNA by RNase protection assay. (a). Representative RNase protection assay gel showing IGF-I receptor (IGFR) and GAPDH mRNA in untreated or treated HaCaT cells. In this example, a reduction in IGFR band intensity relative to GAPDH can be seen with AON #27 and #78, but not with #32, #74 or the controls (R4, R7, random oligonucleotides 8451 and 8766, respectively; G, GSV lipid; UT, untreated).
(b) Densitometric quantitation of IGF-I receptor mRNA (normalised to GAPDH
mRNA) in HaCaT cells following treatment with IGF-I receptor specific oligonucleotides (solid black), random sequence oligonucleotides (horizontal striped bar) or GSV alone (shaded bar) compared to untreated cells (UT, vertical striped bar). Each oligonucleotide was assayed in duplicate in at least two separate experiments.
Results are presented as mean t SEM. A one-way ANOVA followed by Tukey's (1) test was performed; 1 indicates a significant difference between cells treated with IGF-I receptor specific AONs and all of the control treatments (p < 0.05). n=4 except for #27 and #32 (n=6), #28 and #68 (n=3), 8766 (n=9), and 8451, GSV and untreated (n=10).
S
Figure 28 is a representation showing a reduction in total cellular IGF-I
receptor protein following antisense oligonucleotide treatment. Confluent HaCaT cells were treated every 24 h for 4 days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM IGF-I
receptor specific AONs (#27, #50 and #64) or the random sequence oligonucleotide, 8451.
Total cellular protein was isolated and analysed for IGF-I receptor by SDS PAGE
followed by western blotting with an antibody specific for the human IGF-I receptor. (a) Duplicate treated cellular extracts showing the IGF-I receptor at the predicted size of 110 kD
(b) Densitometric quantitation of IGF-I receptor protein. Results are presented as mean ~
SEM of four different experiments each performed in duplicate. A one-way ANOVA
followed by a Dunnett's test was performed; * indicates a significant difference from GSV treated cells (p<0.01). GfV, GSV lipid alone; UT, untreated; 8451, random sequence oligonucleotide;
64, S0, 27, IGF-I receptor-specific AONs.
Figure 29 is a representation showing a reduction in IGF-I receptor numbers on the keratinocyte cell surface after antisense oligonucleotide treatment. HaCaT
cells were transfected with IGF-I receptor specific AONs #27 (-1-), #50 (-x-), #64 (---~---), a random sequence oligonucleotide 8451 (-o-), or treated with GSV lipid alone (--~--) every 24 h for four days (untreated cells, --~--). Competition binding assays using l2sl_IGF-I
and the receptor-specific analogue, des(1-3)IGF-I, were performed (inset);
plotted values are means t standard error. The mean values were then subjected to Scatchard analysis.
Figure 30 is a representation showing a reduction in keratinocyte cell number following antisense oligonucleotide treatment. HaCaT cells, initially at 40 %
confluence, were transfected with the IGF-I receptor specific AON #64, control sequences 8451 and 6416, or treated with GSV lipid alone every 24 h for 2 days (UT, untreated cells). Cell number was measured in the culture wells using a dye binding assay (Experimental protocol). Results are presented as mean ~ SD. A one-way ANOVA was performed, followed by a Tukey's multiple comparison test. 1 indicates a significant difference between cells treated with AON #64 and all of the control treatments (p < 0.001).
Figure 31 is a representation showing a reversal of epidermal hyperplasia in psoriatic human skin grafts on nude mice following intradermal injection with antisense oligonucleotides Grafted psoriasis lesions were injected with IGF-I receptor specific AONs, a random sequence oligonucleotide in PBS, or with PBS alone, every 2 days for 20 days, then analysed histologically. (a) Donor A graft treated with AON #50 showing epidermal thinning compared with pregraft and control (PBS) treated graft, and Donor B graft treated with AON #27 showing epidermal thinning compared with pregraft and control (R451) treated graft. E, epidermis; Scale bar, 400 mm; all pictures are at the same magnification. (b) Mean epidermal cross-sectional area over the full width of grafts was determined by digital image analysis.
Results are presented as mean ~ SEM. Shaded bars, control treatments: 8451, random oligonucleotide sequence; solid bars, treatments with oligonucleotides that inhibited IGF-I
receptor expression in vitro. * indicates a significant difference from the vehicle treated graft (p < 0.01, n=5-7), + + indicates a significant difference from the random sequence (R451) treated graft (p<0.01, n=5-7). (c) Parakeratosis (arrow) was absent in grafts treated with IGF-I receptor AONs (AON #50) but persisted in pregraft and control (PBS) treated graft.
Scale bar, 100 mm.
Figure 32 is a representation showing a reversal of epidermal hyperplasia correlates with reduced IGF-I receptor mRNA in grafted psoriasis lesions treated with antisense oligonucleotides (a) A psoriasis lesion prior to grafting, and after grafting and treatment with IGF-I receptor specific oligonucleotide #27 (AON #27) or random sequence (R451) was immunostained with antibodies to Ki67 to identify proliferating cells.
Proliferating cells are indicated by a dark brown nucleus (arrows). Scale bar, 250 mm; all pictures are at the same magnification. (b) The same lesion prior to grafting and after oligonucleotide treatment as in (a) was subjected to in situ hybridisation with a 35S-labeled cRNA probe complementary to the human IGF-I receptor mRNA. The presence of IGF-I receptor mRNA is indicated by silver grains (tiny black speckles), which are almost eliminated in the epidermis of the lesion treated with the IGF-I receptor-specific oligonucleotide #27 (AON #27). Arrows indicate the basal layer of the epidermis with dermis underneath. Scale bar, 50 ,um.
Figure 33 is a representation showing a reduction in IGF-I receptor mRNA in HaCaT
keratinocytes following treatment with oligonucleotides. HaCaT cell monolayers grown to 90 % confluence in DMEM contianing 10 % v/v fetal calf serum were treated with 24 h for two days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM
oligonucleotide.
Total RNA was isolated and analysed for IGF-I receptor and GAPDH mRNA using a commercially availble ribonuclease protection assay kit (RPAII, Ambicon Inc, Austin, Texas).
Band intensity was quantified using ImageQuant software (Molecular Dynamics, Sunnyvale, California).
Figure 34 is a representation showing a reduction in IGF-I receptor protein in HaCaT
keratinocytes following treatment with oligonucleotides. HaCaT cell monolayers grown to 90 % confluence in DMEM containing 10 % v/v fetal calf serum were treated every 24 h for four days with 2 ~g/ml GSV lipid alone (GSV) or complexed with 30 nM
oligonucleotide.
Cells were lyased in a buffer containing 50 mM HEPES, 150 mM NaCI, 10 % v/v gycerol, 1 % v/v Triton X-100 and 100 ~g/ml aprotinin on ice for 30 mins, then 30 ,ug of lysate was loaded onto a denaturing 7 % w/v polyacrylamide gel followed by transfer onto an Immobilon-P membrane (Millipore, Bedford, Massachusetts). Membranes were incubated with the anti-IGF-I receptor antibody C20 (Sanra Cruz Biotechnology Inc., Santa Cruz, California, 25 ng/ml in 150 mM NaCI, 10 mM Tris-HCI, pH 7.4, 0.1 % v/v Tween 20) for 1 h at room temperature and developed using the Vistra ECF western blotting kit (Amersham, Buckinghamshire, England). Band intensity was quantified using ImageQuant software (Molecular Dynamics, Sunnyvale, California).
Figure 35 is a representation showing a reduction in HaCaT keratinocyte cell number following treatment with oligonucleotides. HaCaT cell monolayers grown to 40%
confluence in DMEM containing 10 % fetal calf serum were treated every 24 h for three days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 15 nM oligonucleotide. Cell number was measured every 24 h using the amido black dye binding assay [32].
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is predicated in part on the use of molecules and in particular genetic molecules and more particularly antisense molecules to down-regulate a growth factor, its receptor and/or growth factor expression facilitating sequences.
Accordingly, one aspect of the present invention contemplates a method for ameliorating the effects of a medical disorder such as a proliferative and/or inflammatory skin disorder in a mammal, said method comprising contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation or a cell otherwise involved in the said medical disorder with an effective amount of a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing a growth factor mediated cell proliferation and/or inflammation and/or other medical disorder.
Growth factor mediated cell proliferation and inflammation are also referred to as epidermal hyperplasias and these and other medical disorders may be mediated by any number of molecules such as but not limited to IGF-I, keratinocyte growth factor (KGF), transforming growth factor-a (TGFa), tumour necrosis factor-a (TNFa), interleukin-1, -4, -6 and 8 (IL-1, IL-4, IL-6 and IL-8, respectively), basic fibroblast growth factor (bFGF) or a combination of one or more of the above. The present invention is particularly described and exemplified with reference to IGF-I and its receptor (IGF-I receptor) and to IGF-I
facilitating molecules, IGFBPs, since targeting these molecules according to the methods contemplated herein provides the best results to date. This is done, however, with the understanding that the present invention extends to any growth factor or cytokine-like molecule, a receptor thereof or a facilitating molecule like the IGFBPs involved in skin cell proliferation such as those molecules contemplated above and/or their receptors and/or facilitating molecules therefor.
According to this preferred embodiment, there is provided a method for ameliorating the effects of a medical disorder such as a proliferative and/or inflammatory skin disorder in a mammal, said method comprising contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation or a cell otherwise involved with said medical disorder with an effective amount of a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation and/or inflammation and/or other medical disorder.
The present invention is particularly described by psoriasis as the proliferative skin disorder.
However, the subject invention extends to a range of proliferative and/or inflammatory skin disorders or epidermal hyperplasias such as but not limited to psoriasis, ichthyosis, pityriasis rubra pilaris ("PRP"), seborrhoea, keloids, keratoses, neoplasias and scleroderma, warts, benign growths and cancers of the skin. The present invention extends to a range of other disorders such as neovascularization conditions such as but not limited to hyperneovasularization such as neovascularization of the retina, lining of the brain, skin, hyperproliferation of the inside of blood vessels, kidney disease, atherosclerotic disease, hyperplasias of the gut epithelium or growth factor mediated malignancies such as IGF1-mediated malignancies.
Furthermore, down-regulation of IGF-I receptor is useful as adjunctive therapy for epidermal hyperplasia. In accordance with this aspect of the present invention it is known that IGF-I
receptor elicits separate intracellular signals which prevent apoptosis [19].
In keratinocytes, IGF-I receptor activation has been shown to protect UV-irradiated cells from apoptosis [20].
In another cell type, a number of IGF-I receptors expressed by the cells correlated with tumorigenicity and apoptotic resistance [21]. Consequently, in accordance with the present invention, by inactivating IGF-I receptor on cells such as epidermal keratinocytes will achieve three important outcomes:
(r) Acute epidermal hyperplasia following UV has been suggested to increase the risk of keratinocyte carcinogenic transformation [22]. By reducing IGF-I receptor expression in the epidermis, the incidence of epidermal hyperplasia following UV exposure is likely to be reduced leading to an overall acceleration in normalization of the lesion and reduced carcinogenic risk.
(ii) Inhibition of anti-apoptotic action of IGF-I receptor will enhance the reversal of epidermal thickening and accelerate normalization of differentiation. Topical or injected IGF-I receptor antisense as adjunctive treatment will increase apoptosis in the epidermal layer thereby enhancing the reduction in acanthosis observed in UV
treatments.
(iii) Survival of keratinocytes, ie. those which evade apoptosis is likely to occur when cells have damaged DNA. Such mutations may be in the tumor suppressor region.
Consequently, the use of antisense therapy will result in less frequent selection of mutated keratinocytes and therefore reduced incidence of basal cell carcinomas and squamous.
According to this embodiment, there is provided a method for ameliorating the effects of a proliferative and/or inflammatory skin disorder such as psoriasis said method comprising 1 S contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation with effective amounts of UV treatment and a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation and/or inflammation.
The UV treatment and nucleic acid molecule or its chemical analogue may be administered in any order or may be done simultaneously. This method is particularly useful in treating psoriasis by combination of UV and antisense therapy. Preferably the antisense therapy is directed to the IGF-I receptor.
In a preferred embodiment, the present invention is directed to a method for ameliorating the effects of psoriasis or other medical disorder, said method comprising contacting proliferating skin or skin capable of proliferation or cells associated with said disorder with an effective amount of a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation or ameliorating the medical disorder.
The present invention extends to any mammal such as but not limited to humans, livestock animals (e.g. horses, sheep, cows, goats, pigs, donkeys), laboratory test animals (e.g. rabbits, mice, guinea pigs), companion animals (e.g. cats, dogs) and captive wild animals. However, the instant invention is particularly directed to proliferative and/or inflammatory skin disorders such as psoriasis in humans as well as medical disorders contemplated above.
The aspects of the subject invention instantly contemplated are particularly directed to the topical application of one or more suitable nucleic molecules capable of inhibiting, reducing or otherwise interfering with IGF-mediated cell proliferation and/or inflammation. More particularly, the nucleic acid molecule targets IGF-I interaction with its receptor.
Conveniently, therefore, the nucleic acid molecule is an antagonist of IGF-I
interaction with its receptor. Most conveniently, the nucleic acid molecule antagonist is an antisense molecule to the IGF-I receptor, to IGF-I itself or to a molecule capable of facilitating IGF-I interaction with its receptor such as but not limited to an IGFBP.
Insofar as the invention relates to IGFBPs, the preferred molecules are IGFBP-2, -3, -4, -5 and -6. The most preferred molecules are IGFBP-2 and IGFBP-3.
The nucleotide sequences of IGFBP-2 and IGFBP-3 are set forth in Figures 1 ( <
400 > 1) and 2 ( < 400 > 2), respectively. According to a particularly preferred aspect of the present invention, there is provided a nucleic acid molecule comprising at least about ten nucleotides capable of hybridising to, forming a heteroduplex or otherwise interacting with an mRNA
molecule directed from a gene corresponding to a genomic form of < 400 > 1 and/or < 400 > 2 and which thereby reduces or inhibits translation of said mRNA
molecule.
Preferably, the nucleic acid molecule is at least about 15 nucleotides in length and more preferably at least about 20-25 nucleotides in length. However, the instant invention extends to any length nucleic acid molecule including a molecule of 100-200 nucleotides in length to correspond to the full length of or near full length of the subject genes.
The nucleotide sequence of the antisense molecules may correspond exactly to a region or portion of < 400 > 1 or < 400 > 2 or may differ by one or more nucleotide substitutions, deletions and/or additions. It is a requirement, however, that the nucleic acid molecule interact with an mRNA molecule to thereby reduce its translation into active protein.
Examples of potential antisense molecules for IGFBP-2 and IGFBP-3 are those capable of interacting with sequences selected from the lists in Examples 6 and 7, respectively.
The nucleic acid molecules in the form of an antisense molecule may be linear or covalently closed circular and single stranded or partially double stranded. A double stranded molecule may form a triplex with target mRNA or a target gene. The molecule may also be protected from, for example, nucleases, by any number of means such as using a nonionic backbone or a phosphorothioate linkage. A convenient nonionic backbone contemplated herein is ethylphosphotriester linkage or a 2'-O-methylribosyl derivative. A
particularly useful modification modifies the DNA backbone by introducing phosphorothioate internucleotide linkages. Alternatively or in addition to the pyrimidine bases are modified by inclusion of a C-5 propyne substitution which modification is proposed to enhance duplex stability [23]. The present invention extends to any chemical modification to the bases and/or RNA
or DNA
backbone. Reference to a "chemical analogue" of a nucleic acid molecule includes reference to a modified base, nucleotide, nucleoside or phosphate backbone.
Examples of suitable oligonucleotide analogues are conveniently described in Ts' O et al [7] .
Further suitable examples of oligonucleotide analogues and chemical modifications are described in references 25 to 31.
Alternatively, the antisense molecules of the present invention may target the IGF-I gene itself or its receptor or a multivalent antisense molecule may be constructed or separate molecules administered which target at least two or an IGFBP, IGF-I and/or IGF-I-receptor. Examples of suitable antisense molecules capable of targetting the IGF-I receptor are those capable of interacting with sequences selected from the list in Example 8. One particularly useful antisense molecule is 5'- ATCTCTCCGCTTCCTTTC -3' ( < 400 > 10).
Other particularly useful antisense molecules are:
#27 UCCGGAGCCAGACUU
#64 CACAGUUGCUGCAAG
#78 UCUCCGCUUCCUUUC
#28 AGCCCCCACAGCGAG
#32 GCCUUGGAGAUGAGC
#40 UAACAGAGGUCAGCA
#42 GGAUCAGGGACCAGU
#46 CGGCAAGCUACACAG
#50 GGCAGGCAGGCACAC
Particularly useful molecules are selected from #27, #64 and #78. In a preferred embodiment these molecules comprise a C-5 propynyl dU, dC phosphorothioate modification.
A particularly preferred embodiment of the present invention contemplates a method of ameliorating the effects of psoriasis or other medical disorder, said method comprising contacting proliferating skin or skin capable of proliferation or cells associated with said medical disorder with an effective amount of one or more nucleic acid molecules or chemical analogues thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation or ameliorating the medical disorder wherein said one or more molecules comprises a polynucleotide capable of interacting with mRNA directed from an IGF-I gene, an IGF-I
receptor gene or a gene encoding an IGFBP such as IGFBP-2 and/or IGFBP-3.
Preferably, the nucleic acid molecule are antisense molecules. Particularly useful antisense molecules are:
#27 UCCGGAGCCAGACUU
#64 CACAGUUGCUGCAAG
#78 UCUCCGCUUCCUUUC
#28 AGCCCCCACAGCGAG
#32 GCCUUGGAGAUGAGC
#40 UAACAGAGGUCAGCA
#42 GGAUCAGGGACCAGU
#46 CGGCAAGCUACACAG
#50 GGCAGGCAGGCACAC
Even more particularly useful molecules are selected from #27, #64 and #78.
In accordance with one aspect of the present invention the nucleic acid molecule is topically applied in aqueous solution or in conjunction with a cream, ointment, oil or other suitable carrier and/or diluent. A single application may be sufficient depending on the severity or exigencies of the condition although more commonly, multiple applications are required ranging from hourly, multi-hourly, daily, multi-daily, weekly or monthly, or in some other suitable time interval. The treatment might comprise solely the application of the nucleic acid molecule or this may be applied in conjunction with other treatments for the skin proliferation and/or inflammatory disorder being treated or for other associated conditions including microbial infection, bleeding and the formation of a variety of rashes.
As an alternative to or in conjunction with antisense therapy, the subject invention extends to the nucleic acid molecule as, or incorporating, a ribozyme including a minizyme to, for example, IGF-I, its receptor or to molecules such as IGFBPs and in particular IGFBP-2 and -3.
Ribozymes are synthetic nucleic acid molecules which possess highly specific endoribonuclease activity. In particular, they comprise a hybridising region which is complementary in nucleotide sequence to at least part of a target RNA. Ribozymes are well described by Haseloff and Gerlach [8] and in International Patent Application No. WO 89/05852. The present invention extends to ribozymes which target mRNA specified by genes encoding IGF-I, its receptor or one or more IGFBPs such as IGFBP-2 and/or IGFBP-3.
According to this embodiment, there is provided in a particularly preferred aspect a ribozyme comprising a hybridising region and a catalytic region wherein the hybridising region is capable of hybridising to at least part of a target mRNA sequence transcribed from a genomic gene corresponding to (<400>1) or (<400>2) wherein said catalytic domain is capable of cleaving S said target mRNA sequence to reduce or inhibit IGF-I mediated cell proliferation and/or inflammation and/or other medical disorders.
Yet another aspect of the present invention contemplates co-suppression to reduce expression or to inhibit translation of an endogenous gene encoding, for example, IGF-I, its receptor, or IGFBPs such as IGFBP-2 and/or -3. In co-suppression, a second copy of an endogenous gene or a substantially similar copy or analogue of an endogenous gene is introduced into a cell following topical administration. As with antisense molecules, nucleic acid molecules defining a ribozyme or nucleic acid molecules useful in co-suppression may first be protected such as by using a nonionic backbone.
The efficacy of the nucleic acid molecules of the present invention can be conveniently tested and screened using an in vitro system comprising a basal keratinocyte cell line. A particularly useful system comprises the HaCaT cell line described by Boukamp et al [9]. In one assay, IGF-I is added to an oligonucleotide treated HaCaT cell line. Alternatively, growth of oligonucleotide treated HaCaT cells is observed on a feeder layer of irradiated 3T3 fibroblasts.
Using such in vitro assays, it is observed that antisense oligonucleotides to IGFBP-3, for example, inhibit production of IGFBP-3 by HaCaT cells. Other suitable animal models include the nude mouse/human skin graft model (15; 16) and the "flaky skin"
mouse model (17;
18). In the nude mouse model, microdermatome biopsies of psoriasis lesions are taken under local anaesthetic from volunteers then transplanted to congenital athymic (nude) mice. These transplanted human skin grafts maintain the characteristic hyperproliferating epidermis for 6-8 weeks. They are an established model for testing the efficacy of topically applied therapies for psoriasis. In the "flaky skin" mouse model, the fsn/fsn mutation produces mice with skin resembling human psoriasis. This mouse, or another mutant mouse with a similar phenotype is a further in vivo model to test the efficacy of topically applied therapies for psoriasis.
Another aspect of the present invention contemplates a pharmaceutical composition for topical administration which comprises a nucleic acid molecule capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation such as psoriasis and one or more pharmaceutically acceptable carriers and/or diluents. Preferably, the nucleic acid molecule is an antisense S molecule to IGF-I, the IGF-I receptor or an IGFBP such as IGFBP-2 and/or IGFBP-3 or comprises a ribozyme to one or more of these targets or is a molecule suitable for co suppression of one or more of these targets. The composition may comprise a single species of a nucleic acid molecule capable of targeting one of IGF-I, its receptor or an IGFBP, such as IGFBP-2 or IGFBP-3 or may be a multi-valent molecule capable of targeting two or more of IGF-I, its receptor or an IGFBP, such as IGFBP-2 and/or IGFBP-3.
The nucleic acid molecules may be administered in dispersions prepared in creams, ointments, oil or other suitable carrier and/or diluent such as glycerol, liquid polyethylene glycols and/or mixtures thereof. Under ordinary conditions of storage and use, these preparations may contain 1 S a preservative to prevent the growth of microorganisms.
The pharmaceutical forms suitable for topical use include sterile aqueous solutions (where water soluble) or dispersions and powders for the extemporaneous preparation of topical solutions or dispersions. In all cases, the form is preferably sterile although this is not an absolute requirement and is stable under the conditions of manufacture and storage. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of superfactants. The prevention of the action of microorganism can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride.
Topical solutions are prepared by incorporating the nucleic acid molecule compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by where necessary filter sterilization.
The active agent may alternatively be administered by intravenous, subcutaneous, nasal drip, suppository, implant means amongst other suitable routes of administration including intraperitoneal, intramuscular, absorption through epithelial or mucocutaneous linings for example via nasal, oral, vaginal, rectal or gastrointestinal administration.
Reference may conveniently be made to reference 24.
As used herein "pharmaceutically acceptable carriers and/or diluents" include any and all solvents, dispersion media, aqueous solutions, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, use thereof in the pharmaceutical compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions. Conveniently, the nucleic acid molecules of the present invention are stored in freeze-dried form and are reconstituted prior to use.
Yet another aspect of the present invention contemplates the use of a nucleic acid molecule in the manufacture of a medicament for the treatment of proliferative and/or inflammatory skin disorders or other medical disorders mediated by a growth factor. The proliferative and/or inflammatory skin disorder is generally psoriasis or other medical disorders as described above and the nucleic acid molecule targets IGF-I, the IGF-I receptor and/or an IGFBP such as IGFBP-2 and/or IGFBP-3.
Still a further aspect of the present invention contemplates an agent comprising a nucleic acid molecule as hereinbefore defined useful in the treatment of proliferative and/or inflammatory skin disorders, such as psoriasis or other medical disorder..
The present invention further contemplates the use of the genetic molecules and in particular the antisense molecules to inhibit the anti-apoptotic activity of IGF-I
receptor. Such a use is appropriate for the treatment of certain cancers and as adjunct therapy for epidermal hyperplasia such as in combination with UV treatment.
The present invention is further described by the following non-limiting Examples.
The differentiated human keratinocyte cell line, HaCaT [9] was used in the in vitro assay. Cells at passage numbers 33 to 36 were maintained as monolayer cultures in 5% v/v COZ at 37°C in Keratinocyte-SFM (Gibco) containing EGF and bovine pituitary extract as supplied. Media containing foetal calf serum were avoided because of the high content of IGF-I
binding proteins in serum.
Feeder layer plates of lethally irradiated 3T3 fibroblasts were prepared exactly as described by Rheinwald and Green [10].
Cells were grown to 4 days post confluence in 2cm2 wells with daily medium changes of Keratinocyte-SFM, then the medium was changed to DMEM (Cytosystems, Australia), with the following additions: 25mM Hepes, 0.19% w/v, sodium bicarbonate, 0.03% w/v glutamine (Sigma Chemical Co, USA), SOILT/ml penicillin and SO~g/ml streptomycin (Flow Laboratories).
After 24 hours, IGF-I or tIGF-I was added to triplicate wells, at the concentrations indicated, in O.SmI fresh DMEM containing 0.02% v/v bovine serum albumin (Sigma molecular biology grade) and incubated for a further 21 hours. [3H]-Thymidine (0.1 ~.Ci/well) was then added and the cells incubated for a further 3 hours. The medium was then aspirated and the cells washed once with ice-cold PBS and twice with ice-cold 10% v/v TCA. The TCA-precipitated monolayers were then solubilized with 0.25M NaOH (200~1/well), transferred to scintillation vials and radioactivity determined by liquid scintillation counting (Pharmacia Wallac 1410 liquid scintillation counter).
HaCaT conditioned medium (2501) was concentrated by adding 7501 cold ethanol, incubating at -20°C for 2 hours and centrifuging at 16,OOOg for 20 min at 4°C. The resulting pellet was air dried, resuspended thoroughly in non-reducing Laemmli sample buffer, heated to 90°C for 5 minutes and separated on 12% w/v SDS-PAGE according to the method of Laemmli (1970).
Separated proteins were electrophoretically transferred to nitrocellulose membrane (0.45mm, Schleicher and Schuell, Dassel, Germany) in a buffer containing 25mM Tris, 192mM glycine and 20% v/v methanol. IGFBPs were then visualised by the procedure of Hossenlopp et al [ 11 ], using ['ZSI]-IGF-I, followed by autoradiography. Autoradiographs were scanned in a BioRad Model GS-670 Imaging Densitometer and band densities were determined using the Molecular Analyst program.
Phosphorothioate oligodeoxynucleotides were synthesised by Bresatec, Adelaide, South Australia, Australia. The following antisense sequences were used: BP3AS2, 5'-GCG CCC
GCT GCA TGA CGC CTG CAA C -3' (<400>4), a 25mer complementary to the start codon region of the human IGFBP-3 mRNA; BP3AS3, 5'- CGG GCG GCT CAC CTG GAG CTG
GCG -3' (<400>5), a 24mer complementary to the exon 1/intron 1 splice site;
BP3AS4, 5'-AGG CGG CTG ACG GCA CTA -3'(<400>6), an l8mer complementary to a region of the coding sequence lacking RNA secondary structure and oligonucleotide-dimer formation (using the computer software "OLIGO for PC"). Since BP3AS4 was found to be ineffective at inhibiting IGFBP-3 synthesis, it was used as a control. The following additional control oligonucleotide sequences were used: BP3S, 5'- CAG GCG TCA TGC AGC GGG C -3' (<400>7), an l8mer sense control sequence equivalent to the start codon region; BP3AS2NS, S'- CGG AGA TGC CGC ATG CCA GCG CAG G -3' (<400>8), a 25mer randomised sequence with the same GC content as BP3AS2; BP3AS4NS, 5'- GAC AGC GTC GGA GCG
ATC -3' (<400>9), an l8mer randomised sequence with the same GC content as BP3AS4NS.
Design of the oligonucleotides was based on the human IGFBP-3 cDNA sequence of Spratt et al [12].
Cells were grown to one day post confluence in 2cm2 wells with daily medium changes of O.SmI
Keratinocyte-SFM, then subjected to daily medium changes of Keratinocyte-SFM
for a further 4 days. Daily additions of O.SmI fresh Keratinocyte-SFM were then continued for a further 7 days, except that at the time of medium addition, 5~1 oligonucleotide in PBS
was added to give the final concentrations indicated, then the wells were shaken to mix the oligonucleotide. After the final addition, cells were incubated for 24 hours and the medium collected for assay of IGFBPs. Cells were then counted after trypsinisation in a Coulter Industrial D
Counter, Coulter Bedfordshire, UK. Cell numbers after oligonucleotide treatment differed by less than 10%.
HaCaT cells secrete mainly IGFBP-3 (>95%), with the only other IGFBP
detectable in HaCaT
conditioned medium being IGFBP-4 (<5%). The effect on IGFBP-3 and IGFBP-4 synthesis of antisense oligonucleotides at two concentrations, SpM and O.SpM, was tested.
Two S oligonucleotides were used, BP3AS2 and BP3AS3, directed against the start site and the intron 1/exon 1 splice site, respectively of the IGFBP-3 mRNA. As a control, a sense oligonucleotide corresponding to the start site was used. As shown in Figures 4A and 4B, all oligonucleotides at SpM caused a significant reduction of IGFBP-3 synthesis compared with untreated cells, however, the two antisense oligonucleotides inhibited IGFBP-3 synthesis of approximately SO%
compared to the sense control (Figure 4B). The antisense oligonucleotide directed to the start codon appeared to be more effective of the two, the difference being more apparent at the lower concentration of O.SpM. The cells of IGFBP-4 secreted by the HaCaT cells make photographic reproduction of the bands on Western ligand blots difficult, however densitometry measurements provide adequate relative quantitation. This resulted in the significant observation that IGFBP-4 levels were unaffected by oligonucleotide addition to the cells, suggesting that the observed inhibitory effects on IGFBP-3 are specific.
To further investigate the inhibitory effects of the more effective of the two antisense oligonucleotides, BP3AS2, inhibition by this oligonucleotide at O.SpM was compared with a number of control oligonucleotides, including one antisense oligonucleotide to IGFBP-3 that had proved to be ineffective at O.SpM. As shown in Figures SA and SB, BP3AS2 was again inhibitory, resulting in levels of IGFBP-3 of approximately SO% of the most non-specifically inhibitory control oligonucleotide, the randomised equivalent of BP3AS2. The other control oligonucleotides caused no reduction in IGFBP-3 levels at O.SpM, compared to untreated cells.
Of possible significance is the fact that this control oligonucleotide, BP3AS2NS, like BP3AS2 itself, has the highest potential Tm of the three control oligonucleotides used in this experiment, enhancing the probability of non-specific base pairing with non-target mRNAs.
However, the lack of inhibition of IGFBP-4 secretion by BP3AS2 suggests that this oligonucleotide is selective even compared with the most closely related protein likely to be present in this cell line.
Antisense oligonucleotides to IGFBP2 may be selected from molecules capable of interacting with one or more of the following sense oligonucleotides:
ATTCGGGGCGAGGGA CGCAGGGCCGTGCAC CCGCGCCGCGCTGCC
TTCGGGGCGAGGGAG GCAGGGCCGTGCACC CGCGCCGCGCTGCCG
TCGGGGCGAGGGAGG CAGGGCCGTGCACCT GCGCCGCGCTGCCGA
CGGGGCGAGGGAGGA AGGGCCGTGCACCTG CGCCGCGCTGCCGAC
GGGGCGAGGGAGGAG GGGCCGTGCACCTGC GCCGCGCTGCCGACC
GGGCGAGGGAGGAGG GGCCGTGCACCTGCC CCGCGCTGCCGACCG
GCGAGGGAGGAGGAA CCGTGCACCTGCCCG GCGCTGCCGACCGCC
CGAGGGAGGAGGAAG CGTGCACCTGCCCGC CGCTGCCGACCGCCA
GAGGGAGGAGGAAGA GTGCACCTGCCCGCC GCTGCCGACCGCCAG
AGGGAGGAGGAAGAA TGCACCTGCCCGCCC CTGCCGACCGCCAGC
GGAGGAGGAAGAAGC CACCTGCCCGCCCGC GCCGACCGCCAGCAT
GAGGAGGAAGAAGCG ACCTGCCCGCCCGCC CCGACCGCCAGCATG
AGGAGGAAGAAGCGG CCTGCCCGCCCGCCC CGACCGCCAGCATGC
GGAGGAAGAAGCGGA CTGCCCGCCCGCCCG GACCGCCAGCATGCT
AGGAAGAAGCGGAGG GCCCGCCCGCCCGCT CCGCCAGCATGCTGC
GGAAGAAGCGGAGGA CCCGCCCGCCCGCTC CGCCAGCATGCTGCC
GAAGAAGCGGAGGAG CCGCCCGCCCGCTCG GCCAGCATGCTGCCG
AAGAAGCGGAGGAGG CGCCCGCCCGCTCGC CCAGCATGCTGCCGA
GAAGCGGAGGAGGCG CCCGCCCGCTCGCTC AGCATGCTGCCGAGA
AAGCGGAGGAGGCGG CCGCCCGCTCGCTCG GCATGCTGCCGAGAG
AGCGGAGGAGGCGGC CGCCCGCTCGCTCGC CATGCTGCCGAGAGT
GCGGAGGAGGCGGCT GCCCGCTCGCTCGCT ATGCTGCCGAGAGTG
GGAGGAGGCGGCTCC CCGCTCGCTCGCTCG GCTGCCGAGAGTGGG
GAGGAGGCGGCTCCC CGCTCGCTCGCTCGC CTGCCGAGAGTGGGC
AGGAGGCGGCTCCCG GCTCGCTCGCTCGCC TGCCGAGAGTGGGCT
GGAGGCGGCTCCCGC CTCGCTCGCTCGCCC GCCGAGAGTGGGCTG
AGGCGGCTCCCGCTC CGCTCGCTCGCCCGC CGAGAGTGGGCTGCC
GGCGGCTCCCGCTCG GCTCGCTCGCCCGCC GAGAGTGGGCTGCCC
GCGGCTCCCGCTCGC CTCGCTCGCCCGCCG AGAGTGGGCTGCCCC
CGGCTCCCGCTCGCA TCGCTCGCCCGCCGC GAGTGGGCTGCCCCG
GCTCCCGCTCGCAGG GCTCGCCCGCCGCGC GTGGGCTGCCCCGCG
CTCCCGCTCGCAGGG CTCGCCCGCCGCGCC TGGGCTGCCCCGCGC
TCCCGCTCGCAGGGC TCGCCCGCCGCGCCG GGGCTGCCCCGCGCT
CCCGCTCGCAGGGCC CGCCCGCCGCGCCGC GGCTGCCCCGCGCTG
CGCTCGCAGGGCCGT CCCGCCGCGCCGCGC CTGCCCCGCGCTGCC
GCTCGCAGGGCCGTG CCGCCGCGCCGCGCT TGCCCCGCGCTGCCG
CTCGCAGGGCCGTGC CGCCGCGCCGCGCTG GCCCCGCGCTGCCGC
TCGCAGGGCCGTGCA GCCGCGCCGCGCTGC CCCCGCGCTGCCGCT
CCCGCGCTGCCGCTG CTGCTGCTACTGGGC CTGTTCCGCTGCCCG
CCGCGCTGCCGCTGC TGCTGCTACTGGGCG TGTTCCGCTGCCCGC
CGCGCTGCCGCTGCC GCTGCTACTGGGCGC GTTCCGCTGCCCGCC
GCGCTGCCGCTGCCG CTGCTACTGGGCGCG TTCCGCTGCCCGCCC
CGCTGCCGCTGCCGC TGCTACTGGGCGCGA TCCGCTGCCCGCCCT
GCTGCCGCTGCCGCC GCTACTGGGCGCGAG CCGCTGCCCGCCCTG
CTGCCGCTGCCGCCG CTACTGGGCGCGAGT CGCTGCCCGCCCTGC
TGCCGCTGCCGCCGC TACTGGGCGCGAGTG GCTGCCCGCCCTGCA
GCCGCTGCCGCCGCC ACTGGGCGCGAGTGG CTGCCCGCCCTGCAC
CGCTGCCGCCGCCGC TGGGCGCGAGTGGCG GCCCGCCCTGCACAC
GCTGCCGCCGCCGCC GGGCGCGAGTGGCGG CCCGCCCTGCACACC
CTGCCGCCGCCGCCG GGCGCGAGTGGCGGC CCGCCCTGCACACCC
TGCCGCCGCCGCCGC GCGCGAGTGGCGGCG CGCCCTGCACACCCG
CCGCCGCCGCCGCTG GCGAGTGGCGGCGGC CCCTGCACACCCGAG
CGCCGCCGCCGCTGC CGAGTGGCGGCGGCG CCTGCACACCCGAGC
GCCGCCGCCGCTGCT GAGTGGCGGCGGCGG CTGCACACCCGAGCG
CCGCCGCCGCTGCTG AGTGGCGGCGGCGGC TGCACACCCGAGCGC
GCCGCCGCTGCTGCC TGGCGGCGGCGGCGG CACACCCGAGCGCCT
CCGCCGCTGCTGCCG GGCGGCGGCGGCGGG ACACCCGAGCGCCTG
CGCCGCTGCTGCCGC GCGGCGGCGGCGGGG CACCCGAGCGCCTGG
GCCGCTGCTGCCGCT CGGCGGCGGCGGGGC ACCCGAGCGCCTGGC
CGCTGCTGCCGCTGC GCGGCGGCGGGGCGC CCGAGCGCCTGGCCG
GCTGCTGCCGCTGCT CGGCGGCGGGGCGCG CGAGCGCCTGGCCGC
CTGCTGCCGCTGCTG GGCGGCGGGGCGCGC GAGCGCCTGGCCGCC
TGCTGCCGCTGCTGC GCGGCGGGGCGCGCG AGCGCCTGGCCGCCT
CTGCCGCTGCTGCCG ' GGCGGGGCGCGCGCG CGCCTGGCCGCCTGC
TGCCGCTGCTGCCGC GCGGGGCGCGCGCGG GCCTGGCCGCCTGCG
GCCGCTGCTGCCGCT CGGGGCGCGCGCGGA CCTGGCCGCCTGCGG
CCGCTGCTGCCGCTG GGGGCGCGCGCGGAG CTGGCCGCCTGCGGG
GCTGCTGCCGCTGCT GGCGCGCGCGGAGGT GGCCGCCTGCGGGCC
CTGCTGCCGCTGCTG GCGCGCGCGGAGGTG GCCGCCTGCGGGCCC
TGCTGCCGCTGCTGC CGCGCGCGGAGGTGC CCGCCTGCGGGCCCC
GCTGCCGCTGCTGCT GCGCGCGGAGGTGCT CGCCTGCGGGCCCCC
TGCCGCTGCTGCTGC GCGCGGAGGTGCTGT CCTGCGGGCCCCCGC
GCCGCTGCTGCTGCT CGCGGAGGTGCTGTT CTGCGGGCCCCCGCC
CCGCTGCTGCTGCTG GCGGAGGTGCTGTTC TGCGGGCCCCCGCCG
CGCTGCTGCTGCTGC CGGAGGTGCTGTTCC GCGGGCCCCCGCCGG
CTGCTGCTGCTGCTA GAGGTGCTGTTCCGC GGGCCCCCGCCGGTT
TGCTGCTGCTGCTAC AGGTGCTGTTCCGCT GGCCCCCGCCGGTTG
GCTGCTGCTGCTACT GGTGCTGTTCCGCTG GCCCCCGCCGGTTGC
CTGCTGCTGCTACTG GTGCTGTTCCGCTGC CCCCCGCCGGTTGCG
GCTGCTGCTACTGGG GCTGTTCCGCTGCCC CCCGCCGGTTGCGCC
CCGCCGGTTGCGCCG ATGCCATGCGCGGAG TGCGCCCGGCTGGAG
CGCCGGTTGCGCCGC TGCCATGCGCGGAGC GCGCCCGGCTGGAGG
GCCGGTTGCGCCGCC GCCATGCGCGGAGCT CGCCCGGCTGGAGGG
CCGGTTGCGCCGCCC CCATGCGCGGAGCTC GCCCGGCTGGAGGGC
CGGTTGCGCCGCCCG CATGCGCGGAGCTCG CCCGGCTGGAGGGCG
GGTTGCGCCGCCCGC ATGCGCGGAGCTCGT CCGGCTGGAGGGCGA
GTTGCGCCGCCCGCC TGCGCGGAGCTCGTC CGGCTGGAGGGCGAG
TTGCGCCGCCCGCCG GCGCGGAGCTCGTCC GGCTGGAGGGCGAGG
TGCGCCGCCCGCCGC CGCGGAGCTCGTCCG GCTGGAGGGCGAGGC
CGCCGCCCGCCGCGG CGGAGCTCGTCCGGG TGGAGGGCGAGGCGT
GCCGCCCGCCGCGGT GGAGCTCGTCCGGGA GGAGGGCGAGGCGTG
CCGCCCGCCGCGGTG GAGCTCGTCCGGGAG GAGGGCGAGGCGTGC
CGCCCGCCGCGGTGG AGCTCGTCCGGGAGC AGGGCGAGGCGTGCG
CCCGCCGCGGTGGCC CTCGTCCGGGAGCCG GGCGAGGCGTGCGGC
CCGCCGCGGTGGCCG TCGTCCGGGAGCCGG GCGAGGCGTGCGGCG
CGCCGCGGTGGCCGC CGTCCGGGAGCCGGG CGAGGCGTGCGGCGT
GCCGCGGTGGCCGCA GTCCGGGAGCCGGGC GAGGCGTGCGGCGTC
CGCGGTGGCCGCAGT CCGGGAGCCGGGCTG GGCGTGCGGCGTCTA
GCGGTGGCCGCAGTG CGGGAGCCGGGCTGC GCGTGCGGCGTCTAC
CGGTGGCCGCAGTGG GGGAGCCGGGCTGCG CGTGCGGCGTCTACA
GGTGGCCGCAGTGGC GGAGCCGGGCTGCGG GTGCGGCGTCTACAC
TGGCCGCAGTGGCCG AGCCGGGCTGCGGCT GCGGCGTCTACACCC
GGCCGCAGTGGCCGG GCCGGGCTGCGGCTG CGGCGTCTACACCCC
GCCGCAGTGGCCGGA CCGGGCTGCGGCTGC GGCGTCTACACCCCG
CCGCAGTGGCCGGAG CGGGCTGCGGCTGCT GCGTCTACACCCCGC
GCAGTGGCCGGAGGC GGCTGCGGCTGCTGC GTCTACACCCCGCGC
CAGTGGCCGGAGGCG GCTGCGGCTGCTGCT TCTACACCCCGCGCT
AGTGGCCGGAGGCGC CTGCGGCTGCTGCTC CTACACCCCGCGCTG
GTGGCCGGAGGCGCC TGCGGCTGCTGCTCG TACACCCCGCGCTGC
GGCCGGAGGCGCCCG CGGCTGCTGCTCGGT CACCCCGCGCTGCGG
GCCGGAGGCGCCCGC GGCTGCTGCTCGGTG ACCCCGCGCTGCGGC
CCGGAGGCGCCCGCA GCTGCTGCTCGGTGT CCCCGCGCTGCGGCC
CGGAGGCGCCCGCAT CTGCTGCTCGGTGTG CCCGCGCTGCGGCCA
GAGGCGCCCGCATGC GCTGCTCGGTGTGCG CGCGCTGCGGCCAGG
AGGCGCCCGCATGCC CTGCTCGGTGTGCGC GCGCTGCGGCCAGGG
GGCGCCCGCATGCCA TGCTCGGTGTGCGCC CGCTGCGGCCAGGGG
GCGCCCGCATGCCAT GCTCGGTGTGCGCCC GCTGCGGCCAGGGGC
GCCCGCATGCCATGC TCGGTGTGCGCCCGG TGCGGCCAGGGGCTG
CCCGCATGCCATGCG CGGTGTGCGCCCGGC GCGGCCAGGGGCTGC
CCGCATGCCATGCGC GGTGTGCGCCCGGCT CGGCCAGGGGCTGCG
CGCATGCCATGCGCG GTGTGCGCCCGGCTG GGCCAGGGGCTGCGC
CATGCCATGCGCGGA GTGCGCCCGGCTGGA CCAGGGGCTGCGCTG
CAGGGGCTGCGCTGC CTGGTCATGGGCGAG GCCAGCCCGGAGCAG
AGGGGCTGCGCTGCT TGGTCATGGGCGAGG CCAGCCCGGAGCAGG
GGGGCTGCGCTGCTA GGTCATGGGCGAGGG CAGCCCGGAGCAGGT
GGGCTGCGCTGCTAT GTCATGGGCGAGGGC AGCCCGGAGCAGGTT
GGCTGCGCTGCTATC TCATGGGCGAGGGCA GCCCGGAGCAGGTTG
GCTGCGCTGCTATCC CATGGGCGAGGGCAC CCCGGAGCAGGTTGC
CTGCGCTGCTATCCC ATGGGCGAGGGCACT CCGGAGCAGGTTGCA
TGCGCTGCTATCCCC TGGGCGAGGGCACTT CGGAGCAGGTTGCAG
GCGCTGCTATCCCCA GGGCGAGGGCACTTG GGAGCAGGTTGCAGA
GCTGCTATCCCCACC GCGAGGGCACTTGTG AGCAGGTTGCAGACA
CTGCTATCCCCACCC CGAGGGCACTTGTGA GCAGGTTGCAGACAA
TGCTATCCCCACCCG GAGGGCACTTGTGAG CAGGTTGCAGACAAT
GCTATCCCCACCCGG AGGGCACTTGTGAGA AGGTTGCAGACAATG
TATCCCCACCCGGGC GGCACTTGTGAGAAG GTTGCAGACAATGGC
.
ATCCCCACCCGGGCT GCACTTGTGAGAAGC TTGCAGACAATGGCG
TCCCCACCCGGGCTC CACTTGTGAGAAGCG TGCAGACAATGGCGA
CCCCACCCGGGCTCC ACTTGTGAGAAGCGC GCAGACAATGGCGAT
CCACCCGGGCTCCGA TTGTGAGAAGCGCCG AGACAATGGCGATGA
CACCCGGGCTCCGAG TGTGAGAAGCGCCGG GACAATGGCGATGAC
ACCCGGGCTCCGAGC GTGAGAAGCGCCGGG ACAATGGCGATGACC
CCCGGGCTCCGAGCT TGAGAAGCGCCGGGA CAATGGCGATGACCA
CGGGCTCCGAGCTGC AGAAGCGCCGGGACG ATGGCGATGACCACT
GGGCTCCGAGCTGCC GAAGCGCCGGGACGC TGGCGATGACCACTC
GGCTCCGAGCTGCCC AAGCGCCGGGACGCC GGCGATGACCACTCA
GCTCCGAGCTGCCCC AGCGCCGGGACGCCG GCGATGACCACTCAG
TCCGAGCTGCCCCTG CGCCGGGACGCCGAG GATGACCACTCAGAA
CCGAGCTGCCCCTGC GCCGGGACGCCGAGT ATGACCACTCAGAAG
CGAGCTGCCCCTGCA CCGGGACGCCGAGTA TGACCACTCAGAAGG
GAGCTGCCCCTGCAG CGGGACGCCGAGTAT GACCACTCAGAAGGA
GCTGCCCCTGCAGGC GGACGCCGAGTATGG CCACTCAGAAGGAGG
CTGCCCCTGCAGGCG GACGCCGAGTATGGC CACTCAGAAGGAGGC
TGCCCCTGCAGGCGC ACGCCGAGTATGGCG ACTCAGAAGGAGGCC
GCCCCTGCAGGCGCT CGCCGAGTATGGCGC CTCAGAAGGAGGCCT
CCCTGCAGGCGCTGG CCGAGTATGGCGCCA CAGAAGGAGGCCTGG
CCTGCAGGCGCTGGT CGAGTATGGCGCCAG AGAAGGAGGCCTGGT
CTGCAGGCGCTGGTC GAGTATGGCGCCAGC GAAGGAGGCCTGGTG
TGCAGGCGCTGGTCA AGTATGGCGCCAGCC AAGGAGGCCTGGTGG
CAGGCGCTGGTCATG TATGGCGCCAGCCCG GGAGGCCTGGTGGAG
AGGCGCTGGTCATGG ATGGCGCCAGCCCGG GAGGCCTGGTGGAGA
GGCGCTGGTCATGGG TGGCGCCAGCCCGGA AGGCCTGGTGGAGAA
GCGCTGGTCATGGGC GGCGCCAGCCCGGAG GGCCTGGTGGAGAAC
GCTGGTCATGGGCGA CGCCAGCCCGGAGCA CCTGGTGGAGAACCA
CTGGTGGAGAACCAC AGTGCTGGCCGGAAG CGGGAGAAGGTCACT
TGGTGGAGAACCACG GTGCTGGCCGGAAGC GGGAGAAGGTCACTG
GGTGGAGAACCACGT TGCTGGCCGGAAGCC GGAGAAGGTCACTGA
GTGGAGAACCACGTG GCTGGCCGGAAGCCC GAGAAGGTCACTGAG
TGGAGAACCACGTGG CTGGCCGGAAGCCCC AGAAGGTCACTGAGC
GGAGAACCACGTGGA TGGCCGGAAGCCCCT GAAGGTCACTGAGCA
GAGAACCACGTGGAC GGCCGGAAGCCCCTC AAGGTCACTGAGCAG
AGAACCACGTGGACA GCCGGAAGCCCCTCA AGGTCACTGAGCAGC
GAACCACGTGGACAG CCGGAAGCCCCTCAA GGTCACTGAGCAGCA
ACCACGTGGACAGCA GGAAGCCCCTCAAGT TCACTGAGCAGCACC
CCACGTGGACAGCAC GAAGCCCCTCAAGTC CACTGAGCAGCACCG
CACGTGGACAGCACC AAGCCCCTCAAGTCG ACTGAGCAGCACCGG
ACGTGGACAGCACCA AGCCCCTCAAGTCGG CTGAGCAGCACCGGC
GTGGACAGCACCATG CCCCTCAAGTCGGGT GAGCAGCACCGGCAG
TGGACAGCACCATGA CCCTCAAGTCGGGTA AGCAGCACCGGCAGA
GGACAGCACCATGAA CCTCAAGTCGGGTAT GCAGCACCGGCAGAT
GACAGCACCATGAAC CTCAAGTCGGGTATG CAGCACCGGCAGATG
CAGCACCATGAACAT CAAGTCGGGTATGAA GCACCGGCAGATGGG
AGCACCATGAACATG AAGTCGGGTATGAAG CACCGGCAGATGGGC
GCACCATGAACATGT AGTCGGGTATGAAGG ACCGGCAGATGGGCA
CACCATGAACATGTT GTCGGGTATGAAGGA CCGGCAGATGGGCAA
CCATGAACATGTTGG CGGGTATGAAGGAGC GGCAGATGGGCAAGG
CATGAACATGTTGGG GGGTATGAAGGAGCT GCAGATGGGCAAGGG
ATGAACATGTTGGGC GGTATGAAGGAGCTG CAGATGGGCAAGGGT
TGAACATGTTGGGCG GTATGAAGGAGCTGG AGATGGGCAAGGGTG
AACATGTTGGGCGGG ATGAAGGAGCTGGCC ATGGGCAAGGGTGGC
ACATGTTGGGCGGGG TGAAGGAGCTGGCCG TGGGCAAGGGTGGCA
CATGTTGGGCGGGGG GAAGGAGCTGGCCGT GGGCAAGGGTGGCAA
ATGTTGGGCGGGGGA AAGGAGCTGGCCGTG GGCAAGGGTGGCAAG
GTTGGGCGGGGGAGG GGAGCTGGCCGTGTT CAAGGGTGGCAAGCA
TTGGGCGGGGGAGGC GAGCTGGCCGTGTTC AAGGGTGGCAAGCAT
TGGGCGGGGGAGGCA AGCTGGCCGTGTTCC AGGGTGGCAAGCATC
GGGCGGGGGAGGCAG GCTGGCCGTGTTCCG GGGTGGCAAGCATCA
GCGGGGGAGGCAGTG TGGCCGTGTTCCGGG GTGGCAAGCATCACC
CGGGGGAGGCAGTGC GGCCGTGTTCCGGGA TGGCAAGCATCACCT
GGGGGAGGCAGTGCT GCCGTGTTCCGGGAG GGCAAGCATCACCTT
GGGGAGGCAGTGCTG CCGTGTTCCGGGAGA GCAAGCATCACCTTG
GGAGGCAGTGCTGGC GTGTTCCGGGAGAAG AAGCATCACCTTGGC
GAGGCAGTGCTGGCC TGTTCCGGGAGAAGG AGCATCACCTTGGCC
AGGCAGTGCTGGCCG GTTCCGGGAGAAGGT GCATCACCTTGGCCT
GGCAGTGCTGGCCGG TTCCGGGAGAAGGTC CATCACCTTGGCCTG
CAGTGCTGGCCGGAA CCGGGAGAAGGTCAC TCACCTTGGCCTGGA
CACCTTGGCCTGGAG CCCTGCCAACAGGAA CTTCCGGATGAGCGG
ACCTTGGCCTGGAGG CCTGCCAACAGGAAC TTCCGGATGAGCGGG
CCTTGGCCTGGAGGA CTGCCAACAGGAACT TCCGGATGAGCGGGG
CTTGGCCTGGAGGAG TGCCAACAGGAACTG CCGGATGAGCGGGGC
TTGGCCTGGAGGAGC GCCAACAGGAACTGG CGGATGAGCGGGGCC
TGGCCTGGAGGAGCC CCAACAGGAACTGGA GGATGAGCGGGGCCC
GGCCTGGAGGAGCCC CAACAGGAACTGGAC GATGAGCGGGGCCCT
GCCTGGAGGAGCCCA AACAGGAACTGGACC ATGAGCGGGGCCCTC
CCTGGAGGAGCCCAA ACAGGAACTGGACCA TGAGCGGGGCCCTCT
TGGAGGAGCCCAAGA AGGAACTGGACCAGG AGCGGGGCCCTCTGG
GGAGGAGCCCAAGAA GGAACTGGACCAGGT GCGGGGCCCTCTGGA
GAGGAGCCCAAGAAG GAACTGGACCAGGTC CGGGGCCCTCTGGAG
AGGAGCCCAAGAAGC AACTGGACCAGGTCC GGGGCCCTCTGGAGC
GAGCCCAAGAAGCTG CTGGACCAGGTCCTG GGCCCTCTGGAGCAC
AGCCCAAGAAGCTGC TGGACCAGGTCCTGG GCCCTCTGGAGCACC
GCCCAAGAAGCTGCG GGACCAGGTCCTGGA CCCTCTGGAGCACCT
CCCAAGAAGCTGCGA GACCAGGTCCTGGAG CCTCTGGAGCACCTC
CAAGAAGCTGCGACC CCAGGTCCTGGAGCG TCTGGAGCACCTCTA
AAGAAGCTGCGACCA CAGGTCCTGGAGCGG CTGGAGCACCTCTAC
AGAAGCTGCGACCAC AGGTCCTGGAGCGGA TGGAGCACCTCTACT
GAAGCTGCGACCACC GGTCCTGGAGCGGAT GGAGCACCTCTACTC
AGCTGCGACCACCCC TCCTGGAGCGGATCT AGCACCTCTACTCCC
GCTGCGACCACCCCC CCTGGAGCGGATCTC GCACCTCTACTCCCT
CTGCGACCACCCCCT CTGGAGCGGATCTCC CACCTCTACTCCCTG
TGCGACCACCCCCTG TGGAGCGGATCTCCA ACCTCTACTCCCTGC
CGACCACCCCCTGCC GAGCGGATCTCCACC CTCTACTCCCTGCAC
GACCACCCCCTGCCA AGCGGATCTCCACCA TCTACTCCCTGCACA
ACCACCCCCTGCCAG GCGGATCTCCACCAT CTACTCCCTGCACAT
CCACCCCCTGCCAGG CGGATCTCCACCATG TACTCCCTGCACATC
ACCCCCTGCCAGGAC GATCTCCACCATGCG CTCCCTGCACATCCC
CCCCCTGCCAGGACT ATCTCCACCATGCGC TCCCTGCACATCCCC
CCCCTGCCAGGACTC TCTCCACCATGCGCC CCCTGCACATCCCCA
CCCTGCCAGGACTCC CTCCACCATGCGCCT CCTGCACATCCCCAA
CTGCCAGGACTCCCT CCACCATGCGCCTTC TGCACATCCCCAACT
TGCCAGGACTCCCTG CACCATGCGCCTTCC GCACATCCCCAACTG
GCCAGGACTCCCTGC ACCATGCGCCTTCCG CACATCCCCAACTGT
CCAGGACTCCCTGCC CCATGCGCCTTCCGG ~ACATCCCCAACTGTG
AGGACTCCCTGCCAA ATGCGCCTTCCGGAT ATCCCCAACTGTGAC
GGACTCCCTGCCAAC TGCGCCTTCCGGATG TCCCCAACTGTGACA
GACTCCCTGCCAACA GCGCCTTCCGGATGA CCCCAACTGTGACAA
ACTCCCTGCCAACAG CGCCTTCCGGATGAG CCCAACTGTGACAAG
TCCCTGCCAACAGGA CCTTCCGGATGAGCG CAACTGTGACAAGCA
AACTGTGACAAGCAT AACGGGCAGCGTGGG ATCCAGGGAGCCCCC
ACTGTGACAAGCATG ACGGGCAGCGTGGGG TCCAGGGAGCCCCCA
CTGTGACAAGCATGG CGGGCAGCGTGGGGA CCAGGGAGCCCCCAC
TGTGACAAGCATGGC GGGCAGCGTGGGGAG CAGGGAGCCCCCACC
GTGACAAGCATGGCC GGCAGCGTGGGGAGT AGGGAGCCCCCACCA
TGACAAGCATGGCCT GCAGCGTGGGGAGTG GGGAGCCCCCACCAT
GACAAGCATGGCCTG CAGCGTGGGGAGTGC GGAGCCCCCACCATC
ACAAGCATGGCCTGT AGCGTGGGGAGTGCT GAGCCCCCACCATCC
CAAGCATGGCCTGTA GCGTGGGGAGTGCTG AGCCCCCACCATCCG
AGCATGGCCTGTACA GTGGGGAGTGCTGGT CCCCCACCATCCGGG
GCATGGCCTGTACAA TGGGGAGTGCTGGTG CCCCACCATCCGGGG
CATGGCCTGTACAAC GGGGAGTGCTGGTGT CCCACCATCCGGGGG
ATGGCCTGTACAACC GGGAGTGCTGGTGTG CCACCATCCGGGGGG
GGCCTGTACAACCTC GAGTGCTGGTGTGTG ACCATCCGGGGGGAC
GCCTGTACAACCTCA AGTGCTGGTGTGTGA CCATCCGGGGGGACC
CCTGTACAACCTCAA GTGCTGGTGTGTGAA CATCCGGGGGGACCC
CTGTACAACCTCAAA TGCTGGTGTGTGAAC ATCCGGGGGGACCCC
GTACAACCTCAA~CA CTGGTGTGTGAACCC CCGGGGGGACCCCGA
TACAACCTCAAACAG TGGTGTGTGAACCCC CGGGGGGACCCCGAG
ACAACCTCAAACAGT GGTGTGTGAACCCCA GGGGGGACCCCGAGT
CAACCTCAAACAGTG GTGTGTGAACCCCAA GGGGGACCCCGAGTG
ACCTCAAACAGTGCA GTGTGAACCCCAACA GGGACCCCGAGTGTC
CCTCAAACAGTGCAA TGTGAACCCCAACAC GGACCCCGAGTGTCA
CTCAAACAGTGCAAG GTGAACCCCAACACC GACCCCGAGTGTCAT
TCAAACAGTGCAAGA TGAACCCCAACACCG ACCCCGAGTGTCATC
AAACAGTGCAAGATG AACCCCAACACCGGG CCCGAGTGTCATCTC
AACAGTGCAAGATGT ACCCCAACACCGGGA CCGAGTGTCATCTCT
ACAGTGCAAGATGTC CCCCAACACCGGGAA CGAGTGTCATCTCTT
CAGTGCAAGATGTCT CCCAACACCGGGAAG GAGTGTCATCTCTTC
GTGCAAGATGTCTCT CAACACCGGGAAGCT GTGTCATCTCTTCTA
TGCAAGATGTCTCTG AACACCGGGAAGCTG TGTCATCTCTTCTAC
GCAAGATGTCTCTGA ACACCGGGAAGCTGA GTCATCTCTTCTACA
CAAGATGTCTCTGAA CACCGGGAAGCTGAT TCATCTCTTCTACAA
AGATGTCTCTGAACG CCGGGAAGCTGATCC ATCTCTTCTACAATG
GATGTCTCTGAACGG CGGGAAGCTGATCCA TCTCTTCTACAATGA
ATGTCTCTGAACGGG GGGAAGCTGATCCAG CTCTTCTACAATGAG
TGTCTCTGAACGGGC GGAAGCTGATCCAGG TCTTCTACAATGAGC
TCTCTGAACGGGCAG AAGCTGATCCAGGGA TTCTACAATGAGCAG
CTCTGAACGGGCAGC AGCTGATCCAGGGAG TCTACAATGAGCAGC
TCTGAACGGGCAGCG GCTGATCCAGGGAGC CTACAATGAGCAGCA
CTGAACGGGCAGCGT CTGATCCAGGGAGCC TACAATGAGCAGCAG
GAACGGGCAGCGTGG GATCCAGGGAGCCCC CAATGAGCAGCAGGA
AATGAGCAGCAGGAG GCAGCCAGCCGGTGC GCAGAAAACGGAGAG
ATGAGCAGCAGGAGG CAGCCAGCCGGTGCC CAGAAAACGGAGAGT
TGAGCAGCAGGAGGC AGCCAGCCGGTGCCT AGAAAACGGAGAGTG
GAGCAGCAGGAGGCT GCCAGCCGGTGCCTG GAAAACGGAGAGTGC
AGCAGCAGGAGGCTT CCAGCCGGTGCCTGG AAAACGGAGAGTGCT
GCAGCAGGAGGCTTG CAGCCGGTGCCTGGC AAACGGAGAGTGCTT
CAGCAGGAGGCTTGC AGCCGGTGCCTGGCG AACGGAGAGTGCTTG
AGCAGGAGGCTTGCG GCCGGTGCCTGGCGC ACGGAGAGTGCTTGG
GCAGGAGGCTTGCGG CCGGTGCCTGGCGCC CGGAGAGTGCTTGGG
AGGAGGCTTGCGGGG GGTGCCTGGCGCCCC GAGAGTGCTTGGGTG
GGAGGCTTGCGGGGT GTGCCTGGCGCCCCT AGAGTGCTTGGGTGG
GAGGCTTGCGGGGTG TGCCTGGCGCCCCTG GAGTGCTTGGGTGGT
AGGCTTGCGGGGTGC GCCTGGCGCCCCTGC AGTGCTTGGGTGGTG
GCTTGCGGGGTGCAC CTGGCGCCCCTGCCC TGCTTGGGTGGTGGG
CTTGCGGGGTGCACA TGGCGCCCCTGCCCC GCTTGGGTGGTGGGT
TTGCGGGGTGCACAC GGCGCCCCTGCCCCC CTTGGGTGGTGGGTG
TGCGGGGTGCACACC GCGCCCCTGCCCCCC TTGGGTGGTGGGTGC
CGGGGTGCACACCCA GCCCCTGCCCCCCGC GGGTGGTGGGTGCTG
GGGGTGCACACCCAG CCCCTGCCCCCCGCC GGTGGTGGGTGCTGG
GGGTGCACACCCAGC CCCTGCCCCCCGCCC GTGGTGGGTGCTGGA
GGTGCACACCCAGCG CCTGCCCCCCGCCCC TGGTGGGTGCTGGAG
TGCACACCCAGCGGA TGCCCCCCGCCCCTC GTGGGTGCTGGAGGA
GCACACCCAGCGGAT GCCCCCCGCCCCTCT TGGGTGCTGGAGGAT
CACACCCAGCGGATG CCCCCCGCCCCTCTC GGGTGCTGGAGGATT
ACACCCAGCGGATGC CCCCCGCCCCTCTCC GGTGCTGGAGGATTT
ACCCAGCGGATGCAG CCCGCCCCTCTCCAA TGCTGGAGGATTTTC
CCCAGCGGATGCAGT CCGCCCCTCTCCAAA GCTGGAGGATTTTCC
CCAGCGGATGCAGTA CGCCCCTCTCCAAAC CTGGAGGATTTTCCA
CAGCGGATGCAGTAG GCCCCTCTCCAAACA TGGAGGATTTTCCAG
GCGGATGCAGTAGAC CCCTCTCCAAACACC GAGGATTTTCCAGTT
CGGATGCAGTAGACC CCTCTCCAAACACCG AGGATTTTCCAGTTC
GGATGCAGTAGACCG CTCTCCAAACACCGG GGATTTTCCAGTTCT
GATGCAGTAGACCGC TCTCCAAACACCGGC GATTTTCCAGTTCTG
TGCAGTAGACCGCAG TCCAAACACCGGCAG TTTTCCAGTTCTGAC
GCAGTAGACCGCAGC CCAAACACCGGCAGA TTTCCAGTTCTGACA
CAGTAGACCGCAGCC CAAACACCGGCAGAA TTCCAGTTCTGACAC
AGTAGACCGCAGCCA AAACACCGGCAGAAA TCCAGTTCTGACACA
TAGACCGCAGCCAGC ACACCGGCAGAAAAC CAGTTCTGACACACG
AGACCGCAGCCAGCC CACCGGCAGAAAACG AGTTCTGACACACGT
GACCGCAGCCAGCCG ACCGGCAGAAAACGG GTTCTGACACACGTA
ACCGCAGCCAGCCGG CCGGCAGAAAACGGA TTCTGACACACGTAT
CGCAGCCAGCCGGTG GGCAGAAAACGGAGA CTGACACACGTATTT
TGACACACGTATTTA CCCGGCCTCTCTCTT TCCCCGGGGGAGGAA
GACACACGTATTTAT CCGGCCTCTCTCTTC CCCCGGGGGAGGAAG
ACACACGTATTTATA CGGCCTCTCTCTTCC CCCGGGGGAGGAAGG
CACACGTATTTATAT GGCCTCTCTCTTCCC CCGGGGGAGGAAGGG
ACACGTATTTATATT GCCTCTCTCTTCCCA CGGGGGAGGAAGGGG
CACGTATTTATATTT CCTCTCTCTTCCCAG GGGGGAGGAAGGGGG
ACGTATTTATATTTG CTCTCTCTTCCCAGC GGGGAGGAAGGGGGT
CGTATTTATATTTGG TCTCTCTTCCCAGCT GGGAGGAAGGGGGTT
GTATTTATATTTGGA CTCTCTTCCCAGCTG GGAGGAAGGGGGTTG
ATTTATATTTGGAAA CTCTTCCCAGCTGCA AGGAAGGGGGTTGTG
TTTATATTTGGAAAG TCTTCCCAGCTGCAG GGAAGGGGGTTGTGG
TTATATTTGGAAAGA CTTCCCAGCTGCAGA GAAGGGGGTTGTGGT
TATATTTGGAAAGAG TTCCCAGCTGCAGAT AAGGGGGTTGTGGTC
TATTTGGAAAGAGAC CCCAGCTGCAGATGC GGGGGTTGTGGTCGG
ATTTGGAAAGAGACC CCAGCTGCAGATGCC GGGGTTGTGGTCGGG
TTTGGAAAGAGACCA CAGCTGCAGATGCCA GGGTTGTGGTCGGGG
TTGGAAAGAGACCAG AGCTGCAGATGCCAC GGTTGTGGTCGGGGA
GGAAAGAGACCAGCA CTGCAGATGCCACAC TTGTGGTCGGGGAGC
GAAAGAGACCAGCAC TGCAGATGCCACACC TGTGGTCGGGGAGCT
AAAGAGACCAGCACC GCAGATGCCACACCT GTGGTCGGGGAGCTG
AAGAGACCAGCACCG CAGATGCCACACCTG TGGTCGGGGAGCTGG
GAGACCAGCACCGAG GATGCCACACCTGCT GTCGGGGAGCTGGGG
AGACCAGCACCGAGC ATGCCACACCTGCTC TCGGGGAGCTGGGGT
GACCAGCACCGAGCT TGCCACACCTGCTCC CGGGGAGCTGGGGTA
ACCAGCACCGAGCTC GCCACACCTGCTCCT GGGGAGCTGGGGTAC
CAGCACCGAGCTCGG CACACCTGCTCCTTC GGAGCTGGGGTACAG
AGCACCGAGCTCGGC ACACCTGCTCCTTCT GAGCTGGGGTACAGG
GCACCGAGCTCGGCA CACCTGCTCCTTCTT AGCTGGGGTACAGGT
CACCGAGCTCGGCAC ACCTGCTCCTTCTTG GCTGGGGTACAGGTT
CCGAGCTCGGCACCT CTGCTCCTTCTTGCT TGGGGTACAGGTTTG
CGAGCTCGGCACCTC TGCTCCTTCTTGCTT GGGGTACAGGTTTGG
GAGCTCGGCACCTCC GCTCCTTCTTGCTTT GGGTACAGGTTTGGG
AGCTCGGCACCTCCC CTCCTTCTTGCTTTC GGTACAGGTTTGGGG
CTCGGCACCTCCCCG CCTTCTTGCTTTCCC TACAGGTTTGGGGAG
TCGGCACCTCCCCGG CTTCTTGCTTTCCCC ACAGGTTTGGGGAGG
CGGCACCTCCCCGGC TTCTTGCTTTCCCCG CAGGTTTGGGGAGGG
GGCACCTCCCCGGCC TCTTGCTTTCCCCGG AGGTTTGGGGAGGGG
CACCTCCCCGGCCTC TTGCTTTCCCCGGGG GTTTGGGGAGGGGGA
ACCTCCCCGGCCTCT TGCTTTCCCCGGGGG TTTGGGGAGGGGGAA
CCTCCCCGGCCTCTC GCTTTCCCCGGGGGA TTGGGGAGGGGGAAG
CTCCCCGGCCTCTCT CTTTCCCCGGGGGAG TGGGGAGGGGGAAGA
CCCCGGCCTCTCTCT TTCCCCGGGGGAGGA GGGAGGGGGAAGAGA
GGAGGGGGAAGAGAA AGATTAAAGGAAGGA
GAGGGGGAAGAGAAA GATTAAAGGAAGGAA
AGGGGGAAGAGAAAT ATTAAAGGAAGGAAA
GGGGGAAGAGAAATT TTAAAGGAAGGAAAA
GGGGAAGAGAAATTT TAAAGGAAGGAAAAG
GGGAAGAGAAATTTT AAAGGAAGGAAAAGT
GGAAGAGAAATTTTT
GAAGAGAAATTTTTA
AAGAGAAATTTTTAT
GAGAAATTTTTATTT
AGAAATTTTTATTTT
GAAATTTTTATTTTT
AAATTTTTATTTTTG
ATTTTTATTTTTGAA
TTTTTATTTTTGAAC
TTTTATTTTTGAACC
TTTATTTTTGAACCC
TATTTTTGAACCCCT
ATTTTTGAACCCCTG
TTTTTGAACCCCTGT
TTTTGAACCCCTGTG
TTGAACCCCTGTGTC
TGAACCCCTGTGTCC
GAACCCCTGTGTCCC
AACCCCTGTGTCCCT
CCCCTGTGTCCCTTT
CCCTGTGTCCCTTTT
CCTGTGTCCCTTTTG
CTGTGTCCCTTTTGC
GTGTCCCTTTTGCAT
TGTCCCTTTTGCATA
GTCCCTTTTGCATAA
TCCCTTTTGCATAAG
CCTTTTGCATAAGAT
CTTTTGCATAAGATT
TTTTGCATAAGATTA
TTTGCATAAGATTAA
TGCATAAGATTAAAG
GCATAAGATTAAAGG
CATAAGATTAAAGGA
ATAAGATTAAAGGAA
AAGATTAAAGGAAGG
Antisense oligonucleotides to IGFBP3 may be selected from molecules capable of interacting S with one or more of the following sense oligonucleotides:
CTCAGCGCCCAGCCG GCCGTGTACTGTCGC GCAGCGTGCCCCGGT
TCAGCGCCCAGCCGC CCGTGTACTGTCGCC CAGCGTGCCCCGGTT
CAGCGCCCAGCCGCT CGTGTACTGTCGCCC AGCGTGCCCCGGTTG
GCGCCCAGCCGCTTC TGTACTGTCGCCCCA CGTGCCCCGGTTGCA
CGCCCAGCCGCTTCC GTACTGTCGCCCCAT GTGCCCCGGTTGCAG
GCCCAGCCGCTTCCT TACTGTCGCCCCATC TGCCCCGGTTGCAGG
CCCAGCCGCTTCCTG ACTGTCGCCCCATCC GCCCCGGTTGCAGGC
CAGCCGCTTCCTGCC TGTCGCCCCATCCCT CCCGGTTGCAGGCGT
AGCCGCTTCCTGCCT GTCGCCCCATCCCTG CCGGTTGCAGGCGTC
GCCGCTTCCTGCCTG TCGCCCCATCCCTGC CGGTTGCAGGCGTCA
CCGCTTCCTGCCTGG CGCCCCATCCCTGCG GGTTGCAGGCGTCAT
GCTTCCTGCCTGGAT CCCCATCCCTGCGCG TTGCAGGCGTCATGC
CTTCCTGCCTGGATT CCCATCCCTGCGCGC TGCAGGCGTCATGCA
TTCCTGCCTGGATTC CCATCCCTGCGCGCC GCAGGCGTCATGCAG
TCCTGCCTGGATTCC CATCCCTGCGCGCCC CAGGCGTCATGCAGC
CTGCCTGGATTCCAC TCCCTGCGCGCCCAG GGCGTCATGCAGCGG
TGCCTGGATTCCACA CCCTGCGCGCCCAGC GCGTCATGCAGCGGG
GCCTGGATTCCACAG CCTGCGCGCCCAGCC CGTCATGCAGCGGGC
CCTGGATTCCACAGC CTGCGCGCCCAGCCT GTCATGCAGCGGGCG
TGGATTCCACAGCTT GCGCGCCCAGCCTGC CATGCAGCGGGCGCG
GGATTCCACAGCTTC CGCGCCCAGCCTGCC ATGCAGCGGGCGCGA
GATTCCACAGCTTCG GCGCCCAGCCTGCCA TGCAGCGGGCGCGAC
ATTCCACAGCTTCGC CGCCCAGCCTGCCAA GCAGCGGGCGCGACC
TCCACAGCTTCGCGC CCCAGCCTGCCAAGC AGCGGGCGCGACCCA
CCACAGCTTCGCGCC CCAGCCTGCCAAGCA GCGGGCGCGACCCAC
CACAGCTTCGCGCCG CAGCCTGCCAAGCAG CGGGCGCGACCCACG
ACAGCTTCGCGCCGT AGCCTGCCAAGCAGC GGGCGCGACCCACGC
AGCTTCGCGCCGTGT CCTGCCAAGCAGCGT GCGCGACCCACGCTC
GCTTCGCGCCGTGTA CTGCCAAGCAGCGTG CGCGACCCACGCTCT
CTTCGCGCCGTGTAC TGCCAAGCAGCGTGC GCGACCCACGCTCTG
TTCGCGCCGTGTACT GCCAAGCAGCGTGCC CGACCCACGCTCTGG
CGCGCCGTGTACTGT CAAGCAGCGTGCCCC ACCCACGCTCTGGGC
GCGCCGTGTACTGTC AAGCAGCGTGCCCCG CCCACGCTCTGGGCC
CGCCGTGTACTGTCG AGCAGCGTGCCCCGG CCACGCTCTGGGCCG
CACGCTCTGGGCCGC GGTGGCGCGGGCTGG CGAGCCGTGCGACGC
ACGCTCTGGGCCGCT GTGGCGCGGGCTGGC GAGCCGTGCGACGCG
CGCTCTGGGCCGCTG TGGCGCGGGCTGGCG AGCCGTGCGACGCGC
GCTCTGGGCCGCTGC GGCGCGGGCTGGCGC GCCGTGCGACGCGCG
CTCTGGGCCGCTGCG GCGCGGGCTGGCGCG CCGTGCGACGCGCGT
TCTGGGCCGCTGCGC CGCGGGCTGGCGCGA CGTGCGACGCGCGTG
CTGGGCCGCTGCGCT GCGGGCTGGCGCGAG GTGCGACGCGCGTGC
TGGGCCGCTGCGCTG CGGGCTGGCGCGAGC TGCGACGCGCGTGCA
GGGCCGCTGCGCTGA GGGCTGGCGCGAGCT GCGACGCGCGTGCAC
GCCGCTGCGCTGACT GCTGGCGCGAGCTCG GACGCGCGTGCACTG
CCGCTGCGCTGACTC CTGGCGCGAGCTCGG ACGCGCGTGCACTGG
CGCTGCGCTGACTCT TGGCGCGAGCTCGGG CGCGCGTGCACTGGC
GCTGCGCTGACTCTG GGCGCGAGCTCGGGG GCGCGTGCACTGGCC
TGCGCTGACTCTGCT CGCGAGCTCGGGGGG GCGTGCACTGGCCCA
GCGCTGACTCTGCTG GCGAGCTCGGGGGGC CGTGCACTGGCCCAG
CGCTGACTCTGCTGG CGAGCTCGGGGGGCT GTGCACTGGCCCAGT
GCTGACTCTGCTGGT GAGCTCGGGGGGCTT TGCACTGGCCCAGTG
TGACTCTGCTGGTGC GCTCGGGGGGCTTGG CACTGGCCCAGTGCG
GACTCTGCTGGTGCT CTCGGGGGGCTTGGG ACTGGCCCAGTGCGC
ACTCTGCTGGTGCTG TCGGGGGGCTTGGGT CTGGCCCAGTGCGCG
CTCTGCTGGTGCTGC CGGGGGGCTTGGGTC TGGCCCAGTGCGCGC
CTGCTGGTGCTGCTC GGGGGCTTGGGTCCC GCCCAGTGCGCGCCT
TGCTGGTGCTGCTCC GGGGCTTGGGTCCCG CCCAGTGCGCGCCTC
GCTGGTGCTGCTCCG GGGCTTGGGTCCCGT CCAGTGCGCGCCTCC
CTGGTGCTGCTCCGC GGCTTGGGTCCCGTG CAGTGCGCGCCTCCG
GGTGCTGCTCCGCGG CTTGGGTCCCGTGGT GTGCGCGCCTCCGCC
GTGCTGCTCCGCGGG TTGGGTCCCGTGGTG TGCGCGCCTCCGCCC
TGCTGCTCCGCGGGC TGGGTCCCGTGGTGC GCGCGCCTCCGCCCG
GCTGCTCCGCGGGCC GGGTCCCGTGGTGCG CGCGCCTCCGCCCGC
TGCTCCGCGGGCCGC GTCCCGTGGTGCGCT CGCCTCCGCCCGCCG
GCTCCGCGGGCCGCC TCCCGTGGTGCGCTG GCCTCCGCCCGCCGT
CTCCGCGGGCCGCCG CCCGTGGTGCGCTGC CCTCCGCCCGCCGTG
TCCGCGGGCCGCCGG CCGTGGTGCGCTGCG CTCCGCCCGCCGTGT
CGCGGGCCGCCGGTG GTGGTGCGCTGCGAG CCGCCCGCCGTGTGC
GCGGGCCGCCGGTGG TGGTGCGCTGCGAGC CGCCCGCCGTGTGCG
CGGGCCGCCGGTGGC GGTGCGCTGCGAGCC GCCCGCCGTGTGCGC
GGGCCGCCGGTGGCG GTGCGCTGCGAGCCG CCCGCCGTGTGCGCG
GCCGCCGGTGGCGCG GCGCTGCGAGCCGTG CGCCGTGTGCGCGGA
CCGCCGGTGGCGCGG CGCTGCGAGCCGTGC GCCGTGTGCGCGGAG
CGCCGGTGGCGCGGG GCTGCGAGCCGTGCG CCGTGTGCGCGGAGC
GCCGGTGGCGCGGGC CTGCGAGCCGTGCGA CGTGTGCGCGGAGCT
CGGTGGCGCGGGCTG GCGAGCCGTGCGACG TGTGCGCGGAGCTGG
GTGCGCGGAGCTGGT ACTGAGCGAGGGCCA CCTTCGCTGCCAGCC
TGCGCGGAGCTGGTG CTGAGCGAGGGCCAG CTTCGCTGCCAGCCG
GCGCGGAGCTGGTGC TGAGCGAGGGCCAGC TTCGCTGCCAGCCGT
CGCGGAGCTGGTGCG GAGCGAGGGCCAGCC TCGCTGCCAGCCGTC
GCGGAGCTGGTGCGC AGCGAGGGCCAGCCG CGCTGCCAGCCGTCG
CGGAGCTGGTGCGCG GCGAGGGCCAGCCGT GCTGCCAGCCGTCGC
GGAGCTGGTGCGCGA CGAGGGCCAGCCGTG CTGCCAGCCGTCGCC
GAGCTGGTGCGCGAG GAGGGCCAGCCGTGC TGCCAGCCGTCGCCC
AGCTGGTGCGCGAGC AGGGCCAGCCGTGCG GCCAGCCGTCGCCCG
CTGGTGCGCGAGCCG GGCCAGCCGTGCGGC CAGCCGTCGCCCGAC
TGGTGCGCGAGCCGG GCCAGCCGTGCGGCA AGCCGTCGCCCGACG
GGTGCGCGAGCCGGG CCAGCCGTGCGGCAT GCCGTCGCCCGACGA
GTGCGCGAGCCGGGC CAGCCGTGCGGCATC CCGTCGCCCGACGAG
GCGCGAGCCGGGCTG GCCGTGCGGCATCTA GTCGCCCGACGAGGC
CGCGAGCCGGGCTGC CCGTGCGGCATCTAC TCGCCCGACGAGGCG
GCGAGCCGGGCTGCG ' CGTGCGGCATCTACA CGCCCGACGAGGCGC
CGAGCCGGGCTGCGG GTGCGGCATCTACAC. GCCCGACGAGGCGCG
AGCCGGGCTGCGGCT GCGGCATCTACACCG CCGACGAGGCGCGAC
GCCGGGCTGCGGCTG CGGCATCTACACCGA CGACGAGGCGCGACC
CCGGGCTGCGGCTGC GGCATCTACACCGAG GACGAGGCGCGACCG
CGGGCTGCGGCTGCT GCATCTACACCGAGC ACGAGGCGCGACCGC
GGCTGCGGCTGCTGC ATCTACACCGAGCGC GAGGCGCGACCGCTG
GCTGCGGCTGCTGCC TCTACACCGAGCGCT AGGCGCGACCGCTGC
CTGCGGCTGCTGCCT CTACACCGAGCGCTG GGCGCGACCGCTGCA
TGCGGCTGCTGCCTG TACACCGAGCGCTGT GCGCGACCGCTGCAG
CGGCTGCTGCCTGAC CACCGAGCGCTGTGG GCGACCGCTGCAGGC
GGCTGCTGCCTGACG ACCGAGCGCTGTGGC CGACCGCTGCAGGCG
GCTGCTGCCTGACGT CCGAGCGCTGTGGCT GACCGCTGCAGGCGC
CTGCTGCCTGACGTG CGAGCGCTGTGGCTC ACCGCTGCAGGCGCT
GCTGCCTGACGTGCG AGCGCTGTGGCTCCG CGCTGCAGGCGCTGC
CTGCCTGACGTGCGC GCGCTGTGGCTCCGG GCTGCAGGCGCTGCT
TGCCTGACGTGCGCA CGCTGTGGCTCCGGC CTGCAGGCGCTGCTG
GCCTGACGTGCGCAC GCTGTGGCTCCGGCC TGCAGGCGCTGCTGG
CTGACGTGCGCACTG TGTGGCTCCGGCCTT CAGGCGCTGCTGGAC
TGACGTGCGCACTGA GTGGCTCCGGCCTTC AGGCGCTGCTGGACG
GACGTGCGCACTGAG TGGCTCCGGCCTTCG GGCGCTGCTGGACGG
ACGTGCGCACTGAGC GGCTCCGGCCTTCGC GCGCTGCTGGACGGC
GTGCGCACTGAGCGA CTCCGGCCTTCGCTG GCTGCTGGACGGCCG
TGCGCACTGAGCGAG TCCGGCCTTCGCTGC CTGCTGGACGGCCGC
GCGCACTGAGCGAGG CCGGCCTTCGCTGCC TGCTGGACGGCCGCG
CGCACTGAGCGAGGG CGGCCTTCGCTGCCA GCTGGACGGCCGCGG
SOGCACTGAGCGAGGGC GGCCTTCGCTGCCAG CTGGACGGCCGCGGG
CACTGAGCGAGGGCC GCCTTCGCTGCCAGC TGGACGGCCGCGGGC
GGACGGCCGCGGGCT CTACCTGCTGCCAGC AGACCGCAGCGCCGG
GACGGCCGCGGGCTC TACCTGCTGCCAGCG GACCGCAGCGCCGGC
ACGGCCGCGGGCTCT ACCTGCTGCCAGCGC ACCGCAGCGCCGGCA
CGGCCGCGGGCTCTG CCTGCTGCCAGCGCC CCGCAGCGCCGGCAG
GGCCGCGGGCTCTGC CTGCTGCCAGCGCCG CGCAGCGCCGGCAGT
GCCGCGGGCTCTGCG TGCTGCCAGCGCCGC GCAGCGCCGGCAGTG
CCGCGGGCTCTGCGT GCTGCCAGCGCCGCC CAGCGCCGGCAGTGT
CGCGGGCTCTGCGTC CTGCCAGCGCCGCCA AGCGCCGGCAGTGTG
GCGGGCTCTGCGTCA TGCCAGCGCCGCCAG GCGCCGGCAGTGTGG
GGGCTCTGCGTCAAC CCAGCGCCGCCAGCT GCCGGCAGTGTGGAG
GGCTCTGCGTCAACG CAGCGCCGCCAGCTC CCGGCAGTGTGGAGA
GCTCTGCGTCAACGC AGCGCCGCCAGCTCC CGGCAGTGTGGAGAG
CTCTGCGTCAACGCT GCGCCGCCAGCTCCA GGCAGTGTGGAGAGC
CTGCGTCAACGCTAG GCCGCCAGCTCCAGG CAGTGTGGAGAGCCC
TGCGTCAACGCTAGT CCGCCAGCTCCAGGA AGTGTGGAGAGCCCG
GCGTCAACGCTAGTG CGCCAGCTCCAGGAA GTGTGGAGAGCCCGT
CGTCAACGCTAGTGC GCCAGCTCCAGGAAA TGTGGAGAGCCCGTC
TCAACGCTAGTGCCG CAGCTCCAGGAAATG TGGAGAGCCCGTCCG
CAACGCTAGTGCCGT AGCTCCAGGAAATGC GGAGAGCCCGTCCGT
AACGCTAGTGCCGTC GCTCCAGGAAATGCT GAGAGCCCGTCCGTC
ACGCTAGTGCCGTCA CTCCAGGAAATGCTA AGAGCCCGTCCGTCT
GCTAGTGCCGTCAGC CCAGGAAATGCTAGT AGCCCGTCCGTCTCC
CTAGTGCCGTCAGCC CAGGAAATGCTAGTG GCCCGTCCGTCTCCA
TAGTGCCGTCAGCCG AGGAAATGCTAGTGA CCCGTCCGTCTCCAG
AGTGCCGTCAGCCGC GGAAATGCTAGTGAG CCGTCCGTCTCCAGC
TGCCGTCAGCCGCCT AAATGCTAGTGAGTC GTCCGTCTCCAGCAC
GCCGTCAGCCGCCTG AATGCTAGTGAGTCG TCCGTCTCCAGCACG
CCGTCAGCCGCCTGC ATGCTAGTGAGTCGG CCGTCTCCAGCACGC
CGTCAGCCGCCTGCG TGCTAGTGAGTCGGA CGTCTCCAGCACGCA
TCAGCCGCCTGCGCG CTAGTGAGTCGGAGG TCTCCAGCACGCACC
CAGCCGCCTGCGCGC TAGTGAGTCGGAGGA CTCCAGCACGCACCG
AGCCGCCTGCGCGCC AGTGAGTCGGAGGAA TCCAGCACGCACCGG
GCCGCCTGCGCGCCT GTGAGTCGGAGGAAG CCAGCACGCACCGGG
CGCCTGCGCGCCTAC GAGTCGGAGGAAGAC AGCACGCACCGGGTG
GCCTGCGCGCCTACC AGTCGGAGGAAGACC GCACGCACCGGGTGT
CCTGCGCGCCTACCT GTCGGAGGAAGACCG CACGCACCGGGTGTC
CTGCGCGCCTACCTG TCGGAGGAAGACCGC ACGCACCGGGTGTCT
GCGCGCCTACCTGCT GGAGGAAGACCGCAG GCACCGGGTGTCTGA
CGCGCCTACCTGCTG GAGGAAGACCGCAGC CACCGGGTGTCTGAT
GCGCCTACCTGCTGC AGGAAGACCGCAGCG ACCGGGTGTCTGATC
CGCCTACCTGCTGCC GGAAGACCGCAGCGC CCGGGTGTCTGATCC
CCTACCTGCTGCCAG AAGACCGCAGCGCCG GGGTGTCTGATCCCA
GGTGTCTGATCCCAA GAAAGGGCATGCTAA GAGCACAGATACCCA
GTGTCTGATCCCAAG AAAGGGCATGCTAAA AGCACAGATACCCAG
TGTCTGATCCCAAGT AAGGGCATGCTAAAG GCACAGATACCCAGA
GTCTGATCCCAAGTT AGGGCATGCTAAAGA CACAGATACCCAGAA
TCTGATCCCAAGTTC GGGCATGCTAAAGAC ACAGATACCCAGAAC
CTGATCCCAAGTTCC GGCATGCTAAAGACA CAGATACCCAGAACT
TGATCCCAAGTTCCA GCATGCTAAAGACAG AGATACCCAGAACTT
GATCCCAAGTTCCAC CATGCTAAAGACAGC GATACCCAGAACTTC
ATCCCAAGTTCCACC ATGCTAAAGACAGCC ATACCCAGAACTTCT
CCCAAGTTCCACCCC GCTAAAGACAGCCAG ACCCAGAACTTCTCC
CCAAGTTCCACCCCC CTAAAGACAGCCAGC CCCAGAACTTCTCCT
CAAGTTCCACCCCCT TAAAGACAGCCAGCG CCAGAACTTCTCCTC
AAGTTCCACCCCCTC AAAGACAGCCAGCGC CAGAACTTCTCCTCC
GTTCCACCCCCTCCA AGACAGCCAGCGCTA GAACTTCTCCTCCGA
TTCCACCCCCTCCAT GACAGCCAGCGCTAC AACTTCTCCTCCGAG
TCCACCCCCTCCATT ACAGCCAGCGCTACA ACTTCTCCTCCGAGT
CCACCCCCTCCATTC CAGCCAGCGCTACAA CTTCTCCTCCGAGTC
ACCCCCTCCATTCAA GCCAGCGCTACAAAG TCTCCTCCGAGTCCA
CCCCCTCCATTCAAA CCAGCGCTACAAAGT CTCCTCCGAGTCCAA
CCCCTCCATTCAAAG CAGCGCTACAAAGTT TCCTCCGAGTCCAAG
CCCTCCATTCAAAGA AGCGCTACAAAGTTG CCTCCGAGTCCAAGC
CTCCATTCAAAGATA CGCTACAAAGTTGAC TCCGAGTCCAAGCGG
TCCATTCAAAGATAA GCTACAAAGTTGACT CCGAGTCCAAGCGGG
CCATTCAAAGATAAT CTACAAAGTTGACTA CGAGTCCAAGCGGGA
CATTCAAAGATAATC TACAAAGTTGACTAC GAGTCCAAGCGGGAG
TTCAAAGATAATCAT CAAAGTTGACTACGA GTCCAAGCGGGAGAC
TCAAAGATAATCATC AAAGTTGACTACGAG TCCAAGCGGGAGACA
CAAAGATAATCATCA AAGTTGACTACGAGT CCAAGCGGGAGACAG
AAAGATAATCATCAT AGTTGACTACGAGTC CAAGCGGGAGACAGA
AGATAATCATCATCA TTGACTACGAGTCTC AGCGGGAGACAGAAT
GATAATCATCATCAA TGACTACGAGTCTCA GCGGGAGACAGAATA
ATAATCATCATCAAG GACTACGAGTCTCAG CGGGAGACAGAATAT
TAATCATCATCAAGA ACTACGAGTCTCAGA GGGAGACAGAATATG
ATCATCATCAAGAAA TACGAGTCTCAGAGC GAGACAGAATATGGT
TCATCATCAAGAAAG ACGAGTCTCAGAGCA AGACAGAATATGGTC
CATCATCAAGAAAGG CGAGTCTCAGAGCAC GACAGAATATGGTCC
ATCATCAAGAAAGGG GAGTCTCAGAGCACA ACAGAATATGGTCCC
CATCAAGAAAGGGCA GTCTCAGAGCACAGA AGAATATGGTCCCTG
ATCAAGAAAGGGCAT TCTCAGAGCACAGAT GAATATGGTCCCTGC
TCAAGAAAGGGCATG CTCAGAGCACAGATA AATATGGTCCCTGCC
CAAGAAAGGGCATGC TCAGAGCACAGATAC ATATGGTCCCTGCCG
AGAAAGGGCATGCTA AGAGCACAGATACCC ATGGTCCCTGCCGTA
TGGTCCCTGCCGTAG CAATGTGCTGAGTCC ATTTTATAAGAA.AAA
GGTCCCTGCCGTAGA AATGTGCTGAGTCCC TTTTATAAGAAAAAG
GTCCCTGCCGTAGAG ATGTGCTGAGTCCCA TTTATAAGAAAAAGC
TCCCTGCCGTAGAGA TGTGCTGAGTCCCAG TTATAAGAAAAAGCA
CCCTGCCGTAGAGAA GTGCTGAGTCCCAGG TATAAGAAAAAGCAG
CCTGCCGTAGAGAAA TGCTGAGTCCCAGGG ATAAGAAAAAGCAGT
CTGCCGTAGAGAAAT GCTGAGTCCCAGGGG TAAGAA.AAAGCAGTG
TGCCGTAGAGAAATG CTGAGTCCCAGGGGT AAGAAAAAGCAGTGT
GCCGTAGAGAAATGG TGAGTCCCAGGGGTG AGAAAAAGCAGTGTC
CGTAGAGAAATGGAA AGTCCCAGGGGTGTA AAAAAGCAGTGTCGC
GTAGAGAAATGGAAG GTCCCAGGGGTGTAC AAAAGCAGTGTCGCC
TAGAGAAATGGAAGA TCCCAGGGGTGTACA AAAGCAGTGTCGCCC
AGAGAAATGGAAGAC CCCAGGGGTGTACAC AAGCAGTGTCGCCCT
AGAAATGGAAGACAC CAGGGGTGTACACAT GCAGTGTCGCCCTTC
GAAATGGAAGACACA AGGGGTGTACACATT CAGTGTCGCCCTTCC
AAATGGAAGACACAC GGGGTGTACACATTC AGTGTCGCCCTTCCA
AATGGAAGACACACT GGGTGTACACATTCC GTGTCGCCCTTCCAA
TGGAAGACACACTGA GTGTACACATTCCCA GTCGCCCTTCCAAAG
GGAAGACACACTGAA TGTACACATTCCCAA TCGCCCTTCCAAAGG
GAAGACACACTGAAT GTACACATTCCCAAC CGCCCTTCCAAAGGC
AAGACACACTGAATC TACACATTCCCAACT GCCCTTCCAAAGGCA
GACACACTGAATCAC CACATTCCCAACTGT CCTTCCAAAGGCAGG
ACACACTGAATCACC ACATTCCCAACTGTG CTTCCAAAGGCAGGA
CACACTGAATCACCT CATTCCCAACTGTGA TTCCAAAGGCAGGAA
ACACTGAATCACCTG ATTCCCAACTGTGAC TCCAAAGGCAGGAAG
ACTGAATCACCTGAA TCCCAACTGTGACAA CAAAGGCAGGAAGCG
CTGAATCACCTGAAG CCCAACTGTGACAAG AAAGGCAGGAAGCGG
TGAATCACCTGAAGT CCAACTGTGACAAGA AAGGCAGGAAGCGGG
GAATCACCTGAAGTT CAACTGTGACAAGAA AGGCAGGAAGCGGGG
ATCACCTGAAGTTCC ACTGTGACAAGAAGG GCAGGAAGCGGGGCT
TCACCTGAAGTTCCT CTGTGACAAGAAGGG CAGGAAGCGGGGCTT
CACCTGAAGTTCCTC TGTGACAAGAAGGGA AGGAAGCGGGGCTTC
ACCTGAAGTTCCTCA GTGACAAGAAGGGAT GGAAGCGGGGCTTCT
CTGAAGTTCCTCAAT GACAAGAAGGGATTT AAGCGGGGCTTCTGC
TGAAGTTCCTCAATG ACAAGAAGGGATTTT AGCGGGGCTTCTGCT
GAAGTTCCTCAATGT CAAGAAGGGATTTTA GCGGGGCTTCTGCTG
AAGTTCCTCAATGTG AAGAAGGGATTTTAT CGGGGCTTCTGCTGG
GTTCCTCAATGTGCT GAAGGGATTTTATAA GGGCTTCTGCTGGTG
TTCCTCAATGTGCTG AAGGGATTTTATAAG GGCTTCTGCTGGTGT
TCCTCAATGTGCTGA AGGGATTTTATAAGA GCTTCTGCTGGTGTG
CCTCAATGTGCTGAG GGGATTTTATAAGAA CTTCTGCTGGTGTGT
TCAATGTGCTGAGTC GATTTTATAAGAAAA TCTGCTGGTGTGTGG
CTGCTGGTGTGTGGA GGGGAAGGAGGACGT CGCAAGTTAATGTGG
TGCTGGTGTGTGGAT GGGAAGGAGGACGTG GCAAGTTAATGTGGA
GCTGGTGTGTGGATA GGAAGGAGGACGTGC CAAGTTAATGTGGAG
CTGGTGTGTGGATAA GAAGGAGGACGTGCA AAGTTAATGTGGAGC
S TGGTGTGTGGATAAG AAGGAGGACGTGCAC AGTTAATGTGGAGCT
GGTGTGTGGATAAGT AGGAGGACGTGCACT GTTAATGTGGAGCTC
GTGTGTGGATAAGTA GGAGGACGTGCACTG TTAATGTGGAGCTCA
TGTGTGGATAAGTAT GAGGACGTGCACTGC TAATGTGGAGCTCAA
GTGTGGATAAGTATG AGGACGTGCACTGCT AATGTGGAGCTCAAA
GTGGATAAGTATGGG GACGTGCACTGCTAC TGTGGAGCTCAAATA
TGGATAAGTATGGGC ACGTGCACTGCTACA GTGGAGCTCAAATAT
GGATAAGTATGGGCA CGTGCACTGCTACAG TGGAGCTCAAATATG
GATAAGTATGGGCAG GTGCACTGCTACAGC GGAGCTCAAATATGC
TAAGTATGGGCAGCC GCACTGCTACAGCAT AGCTCAAATATGCCT
AAGTATGGGCAGCCT CACTGCTACAGCATG GCTCAAATATGCCTT
AGTATGGGCAGCCTC ACTGCTACAGCATGC CTCAAATATGCCTTA
GTATGGGCAGCCTCT CTGCTACAGCATGCA TCAAATATGCCTTAT
ATGGGCAGCCTCTCC GCTACAGCATGCAGA AAATATGCCTTATTT
TGGGCAGCCTCTCCC CTACAGCATGCAGAG AATATGCCTTATTTT
GGGCAGCCTCTCCCA TACAGCATGCAGAGC ATATGCCTTATTTTG
GGCAGCCTCTCCCAG ACAGCATGCAGAGCA TATGCCTTATTTTGC
CAGCCTCTCCCAGGC AGCATGCAGAGCAAG TGCCTTATTTTGCAC
AGCCTCTCCCAGGCT GCATGCAGAGCAAGT GCCTTATTTTGCACA
GCCTCTCCCAGGCTA CATGCAGAGCAAGTA CCTTATTTTGCACAA
CCTCTCCCAGGCTAC ATGCAGAGCAAGTAG CTTATTTTGCACAAA
TCTCCCAGGCTACAC GCAGAGCAAGTAGAC TATTTTGCACAAAAG
CTCCCAGGCTACACC CAGAGCAAGTAGACG ATTTTGCACAAAAGA
TCCCAGGCTACACCA AGAGCAAGTAGACGC TTTTGCACAAAAGAC
CCCAGGCTACACCAC GAGCAAGTAGACGCC TTTGCACAAAAGACT
CAGGCTACACCACCA GCAAGTAGACGCCTG TGCACAAAAGACTGC
AGGCTACACCACCAA CAAGTAGACGCCTGC GCACAAAAGACTGCC
GGCTACACCACCAAG AAGTAGACGCCTGCC CACAAAAGACTGCCA
GCTACACCACCAAGG AGTAGACGCCTGCCG ACAAAAGACTGCCAA
TACACCACCAAGGGG TAGACGCCTGCCGCA AAAAGACTGCCAAGG
ACACCACCAAGGGGA AGACGCCTGCCGCAA AAAGACTGCCAAGGA
CACCACCAAGGGGAA GACGCCTGCCGCAAG AAGACTGCCAAGGAC
ACCACCAAGGGGAAG ACGCCTGCCGCAAGT AGACTGCCAAGGACA
CACCAAGGGGAAGGA GCCTGCCGCAAGTTA ACTGCCAAGGACATG
ACCAAGGGGAAGGAG CCTGCCGCAAGTTAA CTGCCAAGGACATGA
CCAAGGGGAAGGAGG CTGCCGCAAGTTAAT TGCCAAGGACATGAC
CAAGGGGAAGGAGGA TGCCGCAAGTTAATG GCCAAGGACATGACC
SOAAGGGGAAGGAGGAC GCCGCAAGTTAATGT CCAAGGACATGACCA
AGGGGAAGGAGGACG CCGCAAGTTAATGTG CAAGGACATGACCAG
AAGGACATGACCAGC GTGAACTGATTTTTT TATGGTTTCTTTGAA
AGGACATGACCAGCA TGAACTGATTTTTTT ATGGTTTCTTTGAAT
GGACATGACCAGCAG GAACTGATTTTTTTT TGGTTTCTTTGAATG
GACATGACCAGCAGC AACTGATTTTTTTTA GGTTTCTTTGAATGG
ACATGACCAGCAGCT ACTGATTTTTTTTAA GTTTCTTTGAATGGT
CATGACCAGCAGCTG CTGATTTTTTTTAAA TTTCTTTGAATGGTA
ATGACCAGCAGCTGG TGATTTTTTTTAAAC TTCTTTGAATGGTAA
TGACCAGCAGCTGGC GATTTTTTTTAAACC TCTTTGAATGGTAAA
GACCAGCAGCTGGCT ATTTTTTTTAAACCA CTTTGAATGGTAAAC
CCAGCAGCTGGCTAC TTTTTTTAAACCAAA TTGAATGGTAAACTT
CAGCAGCTGGCTACA TTTTTTAAACCAAAG TGAATGGTAAACTTG
AGCAGCTGGCTACAG TTTTTAAACCAAAGT GAATGGTAAACTTGA
GCAGCTGGCTACAGC TTTTAAACCAAAGTT AATGGTAAACTTGAG
AGCTGGCTACAGCCT TTAAACCAAAGTTTA TGGTAAACTTGAGCA
GCTGGCTACAGCCTC TAAACCAAAGTTTAG GGTAAACTTGAGCAT
CTGGCTACAGCCTCG AAACCAAAGTTTAGA GTAAACTTGAGCATC
TGGCTACAGCCTCGA AACCAAAGTTTAGAA TAAACTTGAGCATCT
GCTACAGCCTCGATT CCAAAGTTTAGAAAG AACTTGAGCATCTTT
CTACAGCCTCGATTT CAAAGTTTAGAAAGA ACTTGAGCATCTTTT
TACAGCCTCGATTTA AAAGTTTAGAAAGAG CTTGAGCATCTTTTC
ACAGCCTCGATTTAT AAGTTTAGAAAGAGG TTGAGCATCTTTTCA
AGCCTCGATTTATAT GTTTAGAAAGAGGTT GAGCATCTTTTCACT
GCCTCGATTTATATT TTTAGAAAGAGGTTT AGCATCTTTTCACTT
CCTCGATTTATATTT TTAGAAAGAGGTTTT GCATCTTTTCACTTT
CTCGATTTATATTTC TAGAAAGAGGTTTTT CATCTTTTCACTTTC
CGATTTATATTTCTG GAAAGAGGTTTTTGA TCTTTTCACTTTCCA
GATTTATATTTCTGT AAAGAGGTTTTTGAA CTTTTCACTTTCCAG
ATTTATATTTCTGTT AAGAGGTTTTTGAAA TTTTCACTTTCCAGT
TTTATATTTCTGTTT AGAGGTTTTTGAAAT TTTCACTTTCCAGTA
TATATTTCTGTTTGT AGGTTTTTGAAATGC TCACTTTCCAGTAGT
ATATTTCTGTTTGTG GGTTTTTGAAATGCC CACTTTCCAGTAGTC
TATTTCTGTTTGTGG GTTTTTGAAATGCCT ACTTTCCAGTAGTCA
ATTTCTGTTTGTGGT TTTTTGAAATGCCTA CTTTCCAGTAGTCAG
TTCTGTTTGTGGTGA TTTGAAATGCCTATG TTCCAGTAGTCAGCA
TCTGTTTGTGGTGAA TTGAAATGCCTATGG TCCAGTAGTCAGCAA
CTGTTTGTGGTGAAC TGAAATGCCTATGGT CCAGTAGTCAGCAAA
TGTTTGTGGTGAACT GAAATGCCTATGGTT CAGTAGTCAGCAAAG
TTTGTGGTGAACTGA AATGCCTATGGTTTC GTAGTCAGCAAAGAG
TTGTGGTGAACTGAT ATGCCTATGGTTTCT TAGTCAGCAAAGAGC
TGTGGTGAACTGATT TGCCTATGGTTTCTT AGTCAGCAAAGAGCA
GTGGTGAACTGATTT GCCTATGGTTTCTTT GTCAGCAAAGAGCAG
GGTGAACTGATTTTT CTATGGTTTCTTTGA CAGCAAAGAGCAGTT
AGCAAAGAGCAGTTT ACTCGAGCACAGCAC TTGGTCGAAGCGGCC
GCAAAGAGCAGTTTG CTCGAGCACAGCACC TGGTCGAAGCGGCCG
CAAAGAGCAGTTTGA TCGAGCACAGCACCC GGTCGAAGCGGCCGA
AAAGAGCAGTTTGAA CGAGCACAGCACCCA GTCGAAGCGGCCGAC
AAGAGCAGTTTGAAT GAGCACAGCACCCAG TCGAAGCGGCCGACC
AGAGCAGTTTGAATT AGCACAGCACCCAGA CGAAGCGGCCGACCA
GAGCAGTTTGAATTT GCACAGCACCCAGAC GAAGCGGCCGACCAC
AGCAGTTTGAATTTT CACAGCACCCAGACT AAGCGGCCGACCACT
GCAGTTTGAATTTTC ACAGCACCCAGACTT AGCGGCCGACCACTG
AGTTTGAATTTTCTT AGCACCCAGACTTCA CGGCCGACCACTGAC
GTTTGAATTTTCTTG GCACCCAGACTTCAT GGCCGACCACTGACT
TTTGAATTTTCTTGT CACCCAGACTTCATG GCCGACCACTGACTT
TTGAATTTTCTTGTC ACCCAGACTTCATGC CCGACCACTGACTTT
GAATTTTCTTGTCGC CCAGACTTCATGCGC GACCACTGACTTTGT
AATTTTCTTGTCGCT CAGACTTCATGCGCC ACCACTGACTTTGTG
ATTTTCTTGTCGCTT AGACTTCATGCGCCC CCACTGACTTTGTGA
TTTTCTTGTCGCTTC GACTTCATGCGCCCG CACTGACTTTGTGAC
TTCTTGTCGCTTCCT CTTCATGCGCCCGTG CTGACTTTGTGACTT
TCTTGTCGCTTCCTA TTCATGCGCCCGTGG TGACTTTGTGACTTA
CTTGTCGCTTCCTAT TCATGCGCCCGTGGA GACTTTGTGACTTAG
TTGTCGCTTCCTATC CATGCGCCCGTGGAA ACTTTGTGACTTAGG
GTCGCTTCCTATCAA TGCGCCCGTGGAATG TTTGTGACTTAGGCG
TCGCTTCCTATCAAA GCGCCCGTGGAATGC TTGTGACTTAGGCGG
CGCTTCCTATCAAAA CGCCCGTGGAATGCT TGTGACTTAGGCGGC
GCTTCCTATCAAAAT GCCCGTGGAATGCTC GTGACTTAGGCGGCT
TTCCTATCAAAATAT CCGTGGAATGCTCAC GACTTAGGCGGCTGT
TCCTATCAAAATATT CGTGGAATGCTCACC ACTTAGGCGGCTGTG
CCTATCAAAATATTC GTGGAATGCTCACCA CTTAGGCGGCTGTGT
CTATCAAAATATTCA TGGAATGCTCACCAC TTAGGCGGCTGTGTT
ATCAAAATATTCAGA GAATGCTCACCACAT AGGCGGCTGTGTTGC
TCAAAATATTCAGAG AATGCTCACCACATG GGCGGCTGTGTTGCC
CAAAATATTCAGAGA ATGCTCACCACATGT GCGGCTGTGTTGCCT
AAAATATTCAGAGAC TGCTCACCACATGTT CGGCTGTGTTGCCTA
AATATTCAGAGACTC CTCACCACATGTTGG GCTGTGTTGCCTATG
ATATTCAGAGACTCG TCACCACATGTTGGT CTGTGTTGCCTATGT
TATTCAGAGACTCGA CACCACATGTTGGTC TGTGTTGCCTATGTA
ATTCAGAGACTCGAG ACCACATGTTGGTCG GTGTTGCCTATGTAG
TCAGAGACTCGAGCA CACATGTTGGTCGAA GTTGCCTATGTAGAG
CAGAGACTCGAGCAC ACATGTTGGTCGAAG TTGCCTATGTAGAGA
AGAGACTCGAGCACA CATGTTGGTCGAAGC TGCCTATGTAGAGAA
GAGACTCGAGCACAG ATGTTGGTCGAAGCG GCCTATGTAGAGAAC
GACTCGAGCACAGCA GTTGGTCGAAGCGGC CTATGTAGAGAACAC
TATGTAGAGAACACG TATCGAGAATAGGAA ATGCTCCTGGAGCTC
ATGTAGAGAACACGC ATCGAGAATAGGAAA TGCTCCTGGAGCTCA
TGTAGAGAACACGCT TCGAGAATAGGAAAA GCTCCTGGAGCTCAC
GTAGAGAACACGCTT CGAGAATAGGAAAAC CTCCTGGAGCTCACA
TAGAGAACACGCTTC GAGAATAGGAAAACC TCCTGGAGCTCACAG
AGAGAACACGCTTCA AGAATAGGAAAACCT CCTGGAGCTCACAGC
GAGAACACGCTTCAC GAATAGGAAAACCTT CTGGAGCTCACAGCC
AGAACACGCTTCACC AATAGGAAAACCTTT TGGAGCTCACAGCCT
GAACACGCTTCACCC ATAGGAAAACCTTTA GGAGCTCACAGCCTT
ACACGCTTCACCCCC AGGAAAACCTTTAAA AGCTCACAGCCTTCT
CACGCTTCACCCCCA GGAAAACCTTTAAAC GCTCACAGCCTTCTG
ACGCTTCACCCCCAC GAAAACCTTTAAACC CTCACAGCCTTCTGT
CGCTTCACCCCCACT AAAACCTTTAAACCC TCACAGCCTTCTGTG
CTTCACCCCCACTCC AACCTTTAAACCCCG ACAGCCTTCTGTGGT
TTCACCCCCACTCCC ACCTTTAAACCCCGG CAGCCTTCTGTGGTG
TCACCCCCACTCCCC CCTTTAAACCCCGGT AGCCTTCTGTGGTGT
CACCCCCACTCCCCG CTTTAAACCCCGGTC GCCTTCTGTGGTGTC
CCCCCACTCCCCGTA TTAAACCCCGGTCAT CTTCTGTGGTGTCAT
CCCCACTCCCCGTAC TAAACCCCGGTCATC TTCTGTGGTGTCATT
CCCACTCCCCGTACA AAACCCCGGTCATCC TCTGTGGTGTCATTT
CCACTCCCCGTACAG AACCCCGGTCATCCG CTGTGGTGTCATTTC
ACTCCCCGTACAGTG CCCCGGTCATCCGGA GTGGTGTCATTTCTG
CTCCCCGTACAGTGC CCCGGTCATCCGGAC TGGTGTCATTTCTGA
TCCCCGTACAGTGCG CCGGTCATCCGGACA GGTGTCATTTCTGAA
CCCCGTACAGTGCGC CGGTCATCCGGACAT GTGTCATTTCTGAAA
CCGTACAGTGCGCAC GTCATCCGGACATCC GTCATTTCTGAAACA
CGTACAGTGCGCACA TCATCCGGACATCCC TCATTTCTGAAACAA
GTACAGTGCGCACAG CATCCGGACATCCCA CATTTCTGAAACAAG
TACAGTGCGCACAGG ATCCGGACATCCCAA ATTTCTGAAACAAGG
CAGTGCGCACAGGCT CCGGACATCCCAACG TTCTGAAACAAGGGC
AGTGCGCACAGGCTT CGGACATCCCAACGC TCTGAAACAAGGGCG
GTGCGCACAGGCTTT GGACATCCCAACGCA CTGAAACAAGGGCGT
TGCGCACAGGCTTTA GACATCCCAACGCAT TGAAACAAGGGCGTG
CGCACAGGCTTTATC CATCCCAACGCATGC AAACAAGGGCGTGGA
GCACAGGCTTTATCG ATCCCAACGCATGCT AACAAGGGCGTGGAT
CACAGGCTTTATCGA TCCCAACGCATGCTC ACAAGGGCGTGGATC
ACAGGCTTTATCGAG CCCAACGCATGCTCC CAAGGGCGTGGATCC
AGGCTTTATCGAGAA CAACGCATGCTCCTG AGGGCGTGGATCCCT
GGCTTTATCGAGAAT AACGCATGCTCCTGG GGGCGTGGATCCCTC
GCTTTATCGAGAATA ACGCATGCTCCTGGA GGCGTGGATCCCTCA
CTTTATCGAGAATAG CGCATGCTCCTGGAG GCGTGGATCCCTCAA
TTATCGAGAATAGGA CATGCTCCTGGAGCT GTGGATCCCTCAACC
TGGATCCCTCAACCA TTGGGGACTATTGGA GTATCTAAGAATGTT
GGATCCCTCAACCAA TGGGGACTATTGGAG TATCTAAGAATGTTC
GATCCCTCAACCAAG GGGGACTATTGGAGA ATCTAAGAATGTTCT
ATCCCTCAACCAAGA GGGACTATTGGAGAA TCTAAGAATGTTCTA
S TCCCTCAACCAAGAA GGACTATTGGAGAAA CTAAGAATGTTCTAG
CCCTCAACCAAGAAG GACTATTGGAGAAAA TAAGAATGTTCTAGG
CCTCAACCAAGAAGA ACTATTGGAGAAAAT AAGAATGTTCTAGGG
CTCAACCAAGAAGAA CTATTGGAGAAAATA AGAATGTTCTAGGGC
TCAACCAAGAAGAAT TATTGGAGAAAATAA GAATGTTCTAGGGCA
AACCAAGAAGAATGT TTGGAGAAAATAAGG ATGTTCTAGGGCACT
ACCAAGAAGAATGTT TGGAGAAAATAAGGT TGTTCTAGGGCACTC
CCAAGAAGAATGTTT GGAGAAAATAAGGTG GTTCTAGGGCACTCT
CAAGAAGAATGTTTA GAGAAAATAAGGTGG TTCTAGGGCACTCTG
AGAAGAATGTTTATG GAAAATAAGGTGGAG CTAGGGCACTCTGGG
GAAGAATGTTTATGT AAAATAAGGTGGAGT TAGGGCACTCTGGGA
AAGAATGTTTATGTC AAATAAGGTGGAGTC AGGGCACTCTGGGAA
AGAATGTTTATGTCT AATAAGGTGGAGTCC GGGCACTCTGGGAAC
AATGTTTATGTCTTC TAAGGTGGAGTCCTA GCACTCTGGGAACCT
ATGTTTATGTCTTCA AAGGTGGAGTCCTAC CACTCTGGGAACCTA
TGTTTATGTCTTCAA AGGTGGAGTCCTACT ACTCTGGGAACCTAT
GTTTATGTCTTCAAG GGTGGAGTCCTACTT CTCTGGGAACCTATA
TTATGTCTTCAAGTG TGGAGTCCTACTTGT CTGGGAACCTATAAA
TATGTCTTCAAGTGA GGAGTCCTACTTGTT TGGGAACCTATAAAG
ATGTCTTCAAGTGAC GAGTCCTACTTGTTT GGGAACCTATAAAGG
TGTCTTCAAGTGACC AGTCCTACTTGTTTA GGAACCTATAAAGGC
TCTTCAAGTGACCTG TCCTACTTGTTTAAA AACCTATAAAGGCAG
CTTCAAGTGACCTGT CCTACTTGTTTAAAA ACCTATAAAGGCAGG
TTCAAGTGACCTGTA CTACTTGTTTAAAAA CCTATAAAGGCAGGT
TCAAGTGACCTGTAC TACTTGTTTAAAAAA CTATAAAGGCAGGTA
AAGTGACCTGTACTG CTTGTTTAAAAAATA ATAAAGGCAGGTATT
AGTGACCTGTACTGC TTGTTTAAAAAATAT TAAAGGCAGGTATTT
GTGACCTGTACTGCT TGTTTAAAAAATATG AAAGGCAGGTATTTC
TGACCTGTACTGCTT GTTTAAAAAATATGT AAGGCAGGTATTTCG
40GACCTGTACTGCTTG TTTAA.AA.A.ATATGTA AGGCAGGTATTTCGG
ACCTGTACTGCTTGG TTAAAAAATATGTAT GGCAGGTATTTCGGG
CCTGTACTGCTTGGG TAAAAAATATGTATC GCAGGTATTTCGGGC
CTGTACTGCTTGGGG AAAAAATATGTATCT CAGGTATTTCGGGCC
TGTACTGCTTGGGGA AAAAATATGTATCTA AGGTATTTCGGGCCC
TACTGCTTGGGGACT AAATATGTATCTAAG GTATTTCGGGCCCTC
ACTGCTTGGGGACTA AATATGTATCTAAGA TATTTCGGGCCCTCC
CTGCTTGGGGACTAT ATATGT'ATCTAAGAA ATTTCGGGCCCTCCT
TGCTTGGGGACTATT TATGTATCTAAGAAT TTTCGGGCCCTCCTC
SOGCTTGGGGACTATTG ATGTATCTAAGAATG TTCGGGCCCTCCTCT
CTTGGGGACTATTGG TGTATCTAAGAATGT TCGGGCCCTCCTCTT
CGGGCCCTCCTCTTC CAGGATGGCTTTTGC AGAGTCAGCCTCCAC
GGGCCCTCCTCTTCA AGGATGGCTTTTGCT GAGTCAGCCTCCACA
GGCCCTCCTCTTCAG GGATGGCTTTTGCTG AGTCAGCCTCCACAT
GCCCTCCTCTTCAGG GATGGCTTTTGCTGC GTCAGCCTCCACATT
CCCTCCTCTTCAGGA ATGGCTTTTGCTGCG TCAGCCTCCACATTC
CCTCCTCTTCAGGAA TGGCTTTTGCTGCGG CAGCCTCCACATTCA
CTCCTCTTCAGGAAT GGCTTTTGCTGCGGC AGCCTCCACATTCAG
TCCTCTTCAGGAATC GCTTTTGCTGCGGCC GCCTCCACATTCAGA
CCTCTTCAGGAATCT CTTTTGCTGCGGCCC CCTCCACATTCAGAG
TCTTCAGGAATCTTC TTTGCTGCGGCCCCG TCCACATTCAGAGGC
CTTCAGGAATCTTCC TTGCTGCGGCCCCGT CCACATTCAGAGGCA
TTCAGGAATCTTCCT TGCTGCGGCCCCGTG CACATTCAGAGGCAT
TCAGGAATCTTCCTG GCTGCGGCCCCGTGG ACATTCAGAGGCATC
AGGAATCTTCCTGAA TGCGGCCCCGTGGGG ATTCAGAGGCATCAC
GGAATCTTCCTGAAG GCGGCCCCGTGGGGT TTCAGAGGCATCACA
GAATCTTCCTGAAGA CGGCCCCGTGGGGTA TCAGAGGCATCACAA
AATCTTCCTGAAGAC GGCCCCGTGGGGTAG CAGAGGCATCACAAG
TCTTCCTGAAGACAT CCCCGTGGGGTAGGA GAGGCATCACAAGTA
CTTCCTGAAGACATG CCCGTGGGGTAGGAG AGGCATCACAAGTAA
TTCCTGAAGACATGG CCGTGGGGTAGGAGG GGCATCACAAGTAAT
TCCTGAAGACATGGC CGTGGGGTAGGAGGG GCATCACAAGTAATG
CTGAAGACATGGCCC TGGGGTAGGAGGGAC ATCACAAGTAATGGC
TGAAGACATGGCCCA GGGGTAGGAGGGACA TCACAAGTAATGGCA
GAAGACATGGCCCAG GGGTAGGAGGGACAG CACAAGTAATGGCAC
AAGACATGGCCCAGT GGTAGGAGGGACAGA ACAAGTAATGGCACA
GACATGGCCCAGTCG TAGGAGGGACAGAGA AAGTAATGGCACAAT
ACATGGCCCAGTCGA AGGAGGGACAGAGAG AGTAATGGCACAATT
CATGGCCCAGTCGAA GGAGGGACAGAGAGA GTAATGGCACAATTC
ATGGCCCAGTCGAAG GAGGGACAGAGAGAC TAATGGCACAATTCT
GGCCCAGTCGAAGGC GGGACAGAGAGACGG ATGGCACAATTCTTC
GCCCAGTCGAAGGCC GGACAGAGAGACGGG TGGCACAATTCTTCG
CCCAGTCGAAGGCCC GACAGAGAGACGGGA GGCACAATTCTTCGG
CCAGTCGAAGGCCCA ACAGAGAGACGGGAG GCACAATTCTTCGGA
AGTCGAAGGCCCAGG AGAGAGACGGGAGAG ACAATTCTTCGGATG
GTCGAAGGCCCAGGA GAGAGACGGGAGAGT CAATTCTTCGGATGA
TCGAAGGCCCAGGAT AGAGACGGGAGAGTC AATTCTTCGGATGAC
CGAAGGCCCAGGATG GAGACGGGAGAGTCA ATTCTTCGGATGACT
AAGGCCCAGGATGGC GACGGGAGAGTCAGC TCTTCGGATGACTGC
AGGCCCAGGATGGCT ACGGGAGAGTCAGCC CTTCGGATGACTGCA
GGCCCAGGATGGCTT CGGGAGAGTCAGCCT TTCGGATGACTGCAG
GCCCAGGATGGCTTT GGGAGAGTCAGCCTC TCGGATGACTGCAGA
CCAGGATGGCTTTTG GAGAGTCAGCCTCCA GGATGACTGCAGAAA
GATGACTGCAGAAAA ATTTCTGAGGATAAG TTTTGTCCTCCTTAG
ATGACTGCAGAAAAT TTTCTGAGGATAAGC TTTGTCCTCCTTAGC
TGACTGCAGAAAATA TTCTGAGGATAAGCT TTGTCCTCCTTAGCA
GACTGCAGAAAATAG TCTGAGGATAAGCTC TGTCCTCCTTAGCAC
ACTGCAGAAAATAGT CTGAGGATAAGCTCT GTCCTCCTTAGCACA
CTGCAGAAAATAGTG TGAGGATAAGCTCTT TCCTCCTTAGCACAA
TGCAGAAAATAGTGT GAGGATAAGCTCTTT CCTCCTTAGCACAAT
GCAGAAAATAGTGTT AGGATAAGCTCTTTA CTCCTTAGCACAATG
CAGAAAATAGTGTTT GGATAAGCTCTTTAA TCCTTAGCACAATGT
GAAAATAGTGTTTTG ATAAGCTCTTTAAAG CTTAGCACAATGTAA
AAAATAGTGTTTTGT TAAGCTCTTTAAAGG TTAGCACAATGTAAA
AAATAGTGTTTTGTA AAGCTCTTTAAAGGC TAGCACAATGTAAAA
AATAGTGTTTTGTAG AGCTCTTTAAAGGCA AGCACAATGTAAAAA
TAGTGTTTTGTAGTT CTCTTTAAAGGCAAA CACAATGTAAAAAAG
AGTGTTTTGTAGTTC TCTTTAAAGGCAAAG ACAATGTAAAAAAGA
GTGTTTTGTAGTTCA CTTTAAAGGCAAAGC CAATGTAAAAAAGAA
TGTTTTGTAGTTCAA TTTAAAGGCAAAGCT AATGTAAAAAAGAAT
TTTTGTAGTTCAACA TAAAGGCAAAGCTTT TGTAAAAAAGAATAG
TTTGTAGTTCAACAA AAAGGCAAAGCTTTA GTAAAA.AAGAATAGT
TTGTAGTTCAACAAC AAGGCAAAGCTTTAT TAAAAAAGAATAGTA
TGTAGTTCAACAACT AGGCAAAGCTTTATT AAAAAAGAATAGTAA
TAGTTCAACAACTCA GCAAAGCTTTATTTT AAAAGAATAGTAATA
AGTTCAACAACTCAA CAAAGCTTTATTTTC AAAGAATAGTAATAT
GTTCAACAACTCAAG AAAGCTTTATTTTCA AAGAATAGTAATATC
TTCAACAACTCAAGA AAGCTTTATTTTCAT AGAATAGTAATATCA
CAACAACTCAAGACG GCTTTATTTTCATCT AATAGTAATATCAGA
AACAACTCAAGACGA CTTTATTTTCATCTC ATAGTAATATCAGAA
ACAACTCAAGACGAA TTTATTTTCATCTCT TAGTAATATCAGAAC
CAACTCAAGACGAAG TTATTTTCATCTCTC AGTAATATCAGAACA
ACTCAAGACGAAGCT ATTTTCATCTCTCAT TAATATCAGAACAGG
CTCAAGACGAAGCTT TTTTCATCTCTCATC AATATCAGAACAGGA
TCAAGACGAAGCTTA TTTCATCTCTCATCT ATATCAGAACAGGAA
CAAGACGAAGCTTAT TTCATCTCTCATCTT TATCAGAACAGGAAG
AGACGAAGCTTATTT CATCTCTCATCTTTT TCAGAACAGGAAGGA
GACGAAGCTTATTTC ATCTCTCATCTTTTG CAGAACAGGAAGGAG
ACGAAGCTTATTTCT TCTCTCATCTTTTGT AGAACAGGAAGGAGG
CGAAGCTTATTTCTG CTCTCATCTTTTGTC GAACAGGAAGGAGGA
AAGCTTATTTCTGAG CTCATCTTTTGTCCT ACAGGAAGGAGGAAT
AGCTTATTTCTGAGG TCATCTTTTGTCCTC CAGGAAGGAGGAATG
GCTTATTTCTGAGGA CATCTTTTGTCCTCC AGGAAGGAGGAATGG
CTTATTTCTGAGGAT ATCTTTTGTCCTCCT GGAAGGAGGAATGGC
TATTTCTGAGGATAA CTTTTGTCCTCCTTA AAGGAGGAATGGCTT
AGGAGGAATGGCTTG GATTCACCCATGTTT ATTCACACATATATG
GGAGGAATGGCTTGC ATTCACCCATGTTTG TTCACACATATATGC
GAGGAATGGCTTGCT TTCACCCATGTTTGT TCACACATATATGCA
AGGAATGGCTTGCTG TCACCCATGTTTGTT CACACATATATGCAG
GGAATGGCTTGCTGG CACCCATGTTTGTTG ACACATATATGCAGA
GAATGGCTTGCTGGG ACCCATGTTTGTTGA CACATATATGCAGAG
AATGGCTTGCTGGGG CCCATGTTTGTTGAA ACATATATGCAGAGA
ATGGCTTGCTGGGGA CCATGTTTGTTGAAC CATATATGCAGAGAA
TGGCTTGCTGGGGAG CATGTTTGTTGAACT ATATATGCAGAGAAG
GCTTGCTGGGGAGCC TGTTTGTTGAACTTA ATATGCAGAGAAGAT
CTTGCTGGGGAGCCC GTTTGTTGAACTTAG TATGCAGAGAAGATA
TTGCTGGGGAGCCCA TTTGTTGAACTTAGA ATGCAGAGAAGATAT
TGCTGGGGAGCCCAT TTGTTGAACTTAGAG TGCAGAGAAGATATG
CTGGGGAGCCCATCC GTTGAACTTAGAGTC CAGAGAAGATATGTT
TGGGGAGCCCATCCA TTGAACTTAGAGTCA AGAGAAGATATGTTC
GGGGAGCCCATCCAG TGAACTTAGAGTCAT GAGAAGATATGTTCT
GGGAGCCCATCCAGG GAACTTAGAGTCATT AGAAGATATGTTCTT
GAGCCCATCCAGGAC ACTTAGAGTCATTCT AAGATATGTTCTTGT
AGCCCATCCAGGACA CTTAGAGTCATTCTC AGATATGTTCTTGTT
GCCCATCCAGGACAC TTAGAGTCATTCTCA GATATGTTCTTGTTA
CCCATCCAGGACACT TAGAGTCATTCTCAT ATATGTTCTTGTTAA
CATCCAGGACACTGG GAGTCATTCTCATGC ATGTTCTTGTTAACA
ATCCAGGACACTGGG AGTCATTCTCATGCT TGTTCTTGTTAACAT
TCCAGGACACTGGGA GTCATTCTCATGCTT GTTCTTGTTAACATT
CCAGGACACTGGGAG TCATTCTCATGCTTT TTCTTGTTAACATTG
AGGACACTGGGAGCA ATTCTCATGCTTTTC CTTGTTAACATTGTA
GGACACTGGGAGCAC TTCTCATGCTTTTCT TTGTTAACATTGTAT
GACACTGGGAGCACA TCTCATGCTTTTCTT TGTTAACATTGTATA
ACACTGGGAGCACAT CTCATGCTTTTCTTT GTTAACATTGTATAC
ACTGGGAGCACATAG CATGCTTTTCTTTAT TAACATTGTATACAA
CTGGGAGCACATAGA ATGCTTTTCTTTATA AACATTGTATACAAC
TGGGAGCACATAGAG TGCTTTTCTTTATAA ACATTGTATACAACA
GGGAGCACATAGAGA GCTTTTCTTTATAAT CATTGTATACAACAT
GAGCACATAGAGATT TTTTCTTTATAATTC TTGTATACAACATAG
AGCACATAGAGATTC TTTCTTTATAATTCA TGTATACAACATAGC
GCACATAGAGATTCA TTCTTTATAATTCAC GTATACAACATAGCC
CACATAGAGATTCAC TCTTTATAATTCACA TATACAACATAGCCC
CATAGAGATTCACCC TTTATAATTCACACA TACAACATAGCCCCA
ATAGAGATTCACCCA TTATAATTCACACAT ACAACATAGCCCCAA
TAGAGATTCACCCAT TATAATTCACACATA CAACATAGCCCCAAA
AGAGATTCACCCATG ATAATTCACACATAT AACATAGCCCCAAAT
AGATTCACCCATGTT AATTCACACATATAT CATAGCCCCAAATAT
ATAGCCCCAAATATA AGAGATGCTATATGA CCCAGAGACTGGGCT
TAGCCCCAAATATAG GAGATGCTATATGAT CCAGAGACTGGGCTG
AGCCCCAAATATAGT AGATGCTATATGATA CAGAGACTGGGCTGC
GCCCCAAATATAGTA GATGCTATATGATAC AGAGACTGGGCTGCT
CCCCAAATATAGTAA ATGCTATATGATACA GAGACTGGGCTGCTC
CCCAAATATAGTAAG TGCTATATGATACAA AGACTGGGCTGCTCT
CCAAATATAGTAAGA GCTATATGATACAAC GACTGGGCTGCTCTC
CAAATATAGTAAGAT CTATATGATACAACT ACTGGGCTGCTCTCC
AAATATAGTAAGATC TATATGATACAACTG CTGGGCTGCTCTCCC
ATATAGTAAGATCTA TATGATACAACTGTG GGGCTGCTCTCCCGG
TATAGTAAGATCTAT ATGATACAACTGTGG GGCTGCTCTCCCGGA
ATAGTAAGATCTATA TGATACAACTGTGGC GCTGCTCTCCCGGAG
TAGTAAGATCTATAC GATACAACTGTGGCC CTGCTCTCCCGGAGG
GTAAGATCTATACTA TACAACTGTGGCCAT GCTCTCCCGGAGGCC
TAAGATCTATACTAG ACAACTGTGGCCATG CTCTCCCGGAGGCCA
AAGATCTATACTAGA CAACTGTGGCCATGA TCTCCCGGAGGCCAA
AGATCTATACTAGAT AACTGTGGCCATGAC CTCCCGGAGGCCAAA
ATCTATACTAGATAA CTGTGGCCATGACTG CCCGGAGGCCAAACC
TCTATACTAGATAAT TGTGGCCATGACTGA CCGGAGGCCAAACCC
CTATACTAGATAATC GTGGCCATGACTGAG CGGAGGCCAAACCCA
TATACTAGATAATCC TGGCCATGACTGAGG GGAGGCCAAACCCAA
TACTAGATAATCCTA GCCATGACTGAGGAA AGGCCAAACCCAAGA
ACTAGATAATCCTAG CCATGACTGAGGAAA GGCCAAACCCAAGAA
CTAGATAATCCTAGA CATGACTGAGGAAAG GCCAAACCCAAGAAG
TAGATAATCCTAGAT ATGACTGAGGAAAGG CCAAACCCAAGAAGG
GATAATCCTAGATGA GACTGAGGAAAGGAG AAACCCAAGAAGGTC
ATAATCCTAGATGAA ACTGAGGAAAGGAGC AACCCAAGAAGGTCT
TAATCCTAGATGAAA CTGAGGAAAGGAGCT ACCCAAGAAGGTCTG
AATCCTAGATGAAAT TGAGGAAAGGAGCTC CCCAAGAAGGTCTGG
TCCTAGATGAAATGT AGGAAAGGAGCTCAC CAAGAAGGTCTGGCA
CCTAGATGAAATGTT GGAAAGGAGCTCACG AAGAAGGTCTGGCAA
CTAGATGAAATGTTA GAAAGGAGCTCACGC AGAAGGTCTGGCAAA
TAGATGAAATGTTAG AAAGGAGCTCACGCC GAAGGTCTGGCAAAG
GATGAAATGTTAGAG AGGAGCTCACGCCCA AGGTCTGGCAAAGTC
ATGAAATGTTAGAGA GGAGCTCACGCCCAG GGTCTGGCAAAGTCA
TGAAATGTTAGAGAT GAGCTCACGCCCAGA GTCTGGCAAAGTCAG
GAAATGTTAGAGATG AGCTCACGCCCAGAG TCTGGCAAAGTCAGG
AATGTTAGAGATGCT CTCACGCCCAGAGAC TGGCAAAGTCAGGCT
ATGTTAGAGATGCTA TCACGCCCAGAGACT GGCAAAGTCAGGCTC
TGTTAGAGATGCTAT CACGCCCAGAGACTG GCAAAGTCAGGCTCA
GTTAGAGATGCTATA ACGCCCAGAGACTGG CAAAGTCAGGCTCAG
TAGAGATGCTATATG GCCCAGAGACTGGGC AAGTCAGGCTCAGGG
AGTCAGGCTCAGGGA GCTGCATAGAGCTCT CCTATTAGCTTTTCT
GTCAGGCTCAGGGAG CTGCATAGAGCTCTC CTATTAGCTTTTCTT
TCAGGCTCAGGGAGA TGCATAGAGCTCTCC TATTAGCTTTTCTTT
CAGGCTCAGGGAGAC GCATAGAGCTCTCCT ATTAGCTTTTCTTTA
AGGCTCAGGGAGACT CATAGAGCTCTCCTT TTAGCTTTTCTTTAT
GGCTCAGGGAGACTC ATAGAGCTCTCCTTG TAGCTTTTCTTTATT
GCTCAGGGAGACTCT TAGAGCTCTCCTTGA AGCTTTTCTTTATTT
CTCAGGGAGACTCTG AGAGCTCTCCTTGAA GCTTTTCTTTATTTT
TCAGGGAGACTCTGC GAGCTCTCCTTGAAA CTTTTCTTTATTTTT
AGGGAGACTCTGCCC GCTCTCCTTGAAAAC TTTCTTTATTTTTTT
GGGAGACTCTGCCCT CTCTCCTTGAAAACA TTCTTTATTTTTTTA
GGAGACTCTGCCCTG TCTCCTTGAAAACAG TCTTTATTTTTTTAA
GAGACTCTGCCCTGC CTCCTTGAAAACAGA CTTTATTTTTTTAAC
GACTCTGCCCTGCTG CCTTGAAAACAGAGG TTATTTTTTTAACTT
ACTCTGCCCTGCTGC CTTGAAAACAGAGGG TATTTTTTTAACTTT
CTCTGCCCTGCTGCA TTGAAAACAGAGGGG ATTTTTTTAACTTTT
TCTGCCCTGCTGCAG TGAAAACAGAGGGGT TTTTTTTAACTTTTT
TGCCCTGCTGCAGAC AAAACAGAGGGGTCT TTTTTAACTTTTTGG
GCCCTGCTGCAGACC AAACAGAGGGGTCTC TTTTAACTTTTTGGG
CCCTGCTGCAGACCT AACAGAGGGGTCTCA TTTAACTTTTTGGGG
CCTGCTGCAGACCTC ACAGAGGGGTCTCAA TTAACTTTTTGGGGG
TGCTGCAGACCTCGG AGAGGGGTCTCAAGA AACTTTTTGGGGGGA
GCTGCAGACCTCGGT GAGGGGTCTCAAGAC ACTTTTTGGGGGGAA
CTGCAGACCTCGGTG AGGGGTCTCAAGACA CTTTTTGGGGGGAAA
TGCAGACCTCGGTGT GGGGTCTCAAGACAT TTTTTGGGGGGAAAA
CAGACCTCGGTGTGG GGTCTCAAGACATTC TTTGGGGGGAAAAGT
AGACCTCGGTGTGGA GTCTCAAGACATTCT TTGGGGGGAAAAGTA
GACCTCGGTGTGGAC TCTCAAGACATTCTG TGGGGGGAAAAGTAT
ACCTCGGTGTGGACA CTCAAGACATTCTGC GGGGGGAAAAGTATT
CTCGGTGTGGACACA CAAGACATTCTGCCT GGGGAAAAGTATTTT
TCGGTGTGGACACAC AAGACATTCTGCCTA GGGAAAAGTATTTTT
CGGTGTGGACACACG AGACATTCTGCCTAC GGAAAAGTATTTTTG
GGTGTGGACACACGC GACATTCTGCCTACC GAAAAGTATTTTTGA
TGTGGACACACGCTG CATTCTGCCTACCTA AAAGTATTTTTGAGA
GTGGACACACGCTGC ATTCTGCCTACCTAT AAGTATTTTTGAGAA
TGGACACACGCTGCA TTCTGCCTACCTATT AGTATTTTTGAGAAG
GGACACACGCTGCAT TCTGCCTACCTATTA GTATTTTTGAGAAGT
ACACACGCTGCATAG TGCCTACCTATTAGC ATTTTTGAGAAGTTT
CACACGCTGCATAGA GCCTACCTATTAGCT TTTTTGAGAAGTTTG
ACACGCTGCATAGAG CCTACCTATTAGCTT TTTTGAGAAGTTTGT
CACGCTGCATAGAGC CTACCTATTAGCTTT TTTGAGAAGTTTGTC
CGCTGCATAGAGCTC ACCTATTAGCTTTTC TGAGAAGTTTGTCTT
GAGAAGTTTGTCTTG
AGAAGTTTGTCTTGC
GAAGTTTGTCTTGCA
AAGTTTGTCTTGCAA
AGTTTGTCTTGCAAT
GTTTGTCTTGCAATG
TTTGTCTTGCAATGT
TTGTCTTGCAATGTA
TGTCTTGCAATGTAT
GTCTTGCAATGTATT
TCTTGCAATGTATTT
CTTGCAATGTATTTA
TTGCAATGTATTTAT
TGCAATGTATTTATA
GCAATGTATTTATAA
CAATGTATTTATAAA
AATGTATTTATAAAT
ATGTATTTATAAATA
TGTATTTATAAATAG
GTATTTATAAATAGT
TATTTATAAATAGTA
ATTTATAAATAGTAA
TTTATAAATAGTAAA
TTATAAATAGTAAAT
TATAAATAGTAAATA
ATAAATAGTAAATAA
TAAATAGTAAATAAA
AAATAGTAAATAAAG
AATAGTAAATAAAGT
ATAGTAAATAAAGTT
TAGTAAATAAAGTTT
AGTAAATAAAGTTTT
GTAAATAAAGTTTTT
TAAATAAAGTTTTTA
AAATAAAGTTTTTAC
AATAAAGTTTTTACC
ATAAAGTTTTTACCA
TAAAGTTTTTACCAT
AAAGTTTTTACCATT
Antisense oligonucleotides to IGF-I may be selected from molecules capable of interacting with one or more of the following sense oligonucleotides:
TTTTTTTTTTTTTTG TTTTTTTTTTTGAGA TTTTTTTTGAGAAAG
TTTTTTTTTTTTTGA TTTTTTTTTTGAGAA TTTTTTTGAGAAAGG
TTTTTTTTTTTTGAG TTTTTTTTTGAGAAA TTTTTTGAGAAAGGG
TTTTTGAGAAAGGGA GGAGGAGGGTCCCCG CTCTCGCTCTGGCCG
TTTTGAGAAAGGGAA GAGGAGGGTCCCCGA TCTCGCTCTGGCCGA
TTTGAGAAAGGGAAT AGGAGGGTCCCCGAC CTCGCTCTGGCCGAC
TTGAGAAAGGGAATT GGAGGGTCCCCGACC TCGCTCTGGCCGACG
S TGAGAAAGGGAATTT GAGGGTCCCCGACCT CGCTCTGGCCGACGA
GAGAAAGGGAATTTC AGGGTCCCCGACCTC GCTCTGGCCGACGAG
AGAAAGGGAATTTCA GGGTCCCCGACCTCG CTCTGGCCGACGAGT
GAAAGGGAATTTCAT GGTCCCCGACCTCGC TCTGGCCGACGAGTG
AAAGGGAATTTCATC GTCCCCGACCTCGCT CTGGCCGACGAGTGG
AGGGAATTTCATCCC CCCCGACCTCGCTGT GGCCGACGAGTGGAG
GGGAATTTCATCCCA CCCGACCTCGCTGTG GCCGACGAGTGGAGA
GGAATTTCATCCCAA CCGACCTCGCTGTGG CCGACGAGTGGAGAA
GAATTTCATCCCAAA CGACCTCGCTGTGGG CGACGAGTGGAGAAA
ATTTCATCCCAAATA ACCTCGCTGTGGGGG ACGAGTGGAGAAATC
TTTCATCCCAAATAA CCTCGCTGTGGGGGC CGAGTGGAGAAATCT
TTCATCCCAAATAAA CTCGCTGTGGGGGCT GAGTGGAGAAATCTG
TCATCCCAAATAAAA TCGCTGTGGGGGCTC AGTGGAGAAATCTGC
ATCCCAAATAAAAGG GCTGTGGGGGCTCCT TGGAGAAATCTGCGG
TCCCAAATAAAAGGA CTGTGGGGGCTCCTG GGAGAAATCTGCGGG
CCCAAATAAAAGGAA TGTGGGGGCTCCTGT GAGAAATCTGCGGGC
CCAAATAAAAGGAAT GTGGGGGCTCCTGTT AGAAATCTGCGGGCC
25CAAATAAAAGGAAT'G TGGGGGCTCCTGTTT GAAATCTGCGGGCCA
AAATAAAAGGAATGA GGGGGCTCCTGTTTC AAATCTGCGGGCCAG
AATAAAAGGAATGAA GGGGCTCCTGTTTCT AATCTGCGGGCCAGG
ATAAAAGGAATGAAG GGGCTCCTGTTTCTC ATCTGCGGGCCAGGC
TAAAAGGAATGAAGT GGCTCCTGTTTCTCT TCTGCGGGCCAGGCA
AAAGGAATGAAGTCT CTCCTGTTTCTCTCC TGCGGGCCAGGCATC
AAGGAATGAAGTCTG TCCTGTTTCTCTCCG GCGGGCCAGGCATCG
AGGAATGAAGTCTGG CCTGTTTCTCTCCGC CGGGCCAGGCATCGA
GGAATGAAGTCTGGC CTGTTTCTCTCCGCC GGGCCAGGCATCGAC
AATGAAGTCTGGCTC GTTTCTCTCCGCCGC GCCAGGCATCGACAT
ATGAAGTCTGGCTCC TTTCTCTCCGCCGCG CCAGGCATCGACATC
TGAAGTCTGGCTCCG TTCTCTCCGCCGCGC CAGGCATCGACATCC
GAAGTCTGGCTCCGG TCTCTCCGCCGCGCT AGGCATCGACATCCG
AGTCTGGCTCCGGAG TCTCCGCCGCGCTCT GCATCGACATCCGCA
GTCTGGCTCCGGAGG CTCCGCCGCGCTCTC CATCGACATCCGCAA
TCTGGCTCCGGAGGA TCCGCCGCGCTCTCG ATCGACATCCGCAAC
CTGGCTCCGGAGGAG CCGCCGCGCTCTCGC TCGACATCCGCAACG
GGCTCCGGAGGAGGG GCCGCGCTCTCGCTC GACATCCGCAACGAC
GCTCCGGAGGAGGGT CCGCGCTCTCGCTCT ACATCCGCAACGACT
CTCCGGAGGAGGGTC CGCGCTCTCGCTCTG CATCCGCAACGACTA
TCCGGAGGAGGGTCC GCGCTCTCGCTCTGG ATCCGCAACGACTAT
CGGAGGAGGGTCCCC GCTCTCGCTCTGGCC CCGCAACGACTATCA
CGCAACGACTATCAG GGCTACCTCCACATC CGCTTCCCCAAGCTC
GCAACGACTATCAGC GCTACCTCCACATCC GCTTCCCCAAGCTCA
CAACGACTATCAGCA CTACCTCCACATCCT CTTCCCCAAGCTCAC
AACGACTATCAGCAG TACCTCCACATCCTG TTCCCCAAGCTCACG
ACGACTATCAGCAGC ACCTCCACATCCTGC TCCCCAAGCTCACGG
CGACTATCAGCAGCT CCTCCACATCCTGCT CCCCAAGCTCACGGT
GACTATCAGCAGCTG CTCCACATCCTGCTC CCCAAGCTCACGGTC
ACTATCAGCAGCTGA TCCACATCCTGCTCA CCAAGCTCACGGTCA
CTATCAGCAGCTGAA CCACATCCTGCTCAT CAAGCTCACGGTCAT
ATCAGCAGCTGAAGC ACATCCTGCTCATCT AGCTCACGGTCATTA
TCAGCAGCTGAAGCG CATCCTGCTCATCTC GCTCACGGTCATTAC
CAGCAGCTGAAGCGC ATCCTGCTCATCTCC CTCACGGTCATTACC
AGCAGCTGAAGCGCC TCCTGCTCATCTCCA TCACGGTCATTACCG
CAGCTGAAGCGCCTG CTGCTCATCTCCAAG ACGGTCATTACCGAG
AGCTGAAGCGCCTGG TGCTCATCTCCAAGG CGGTCATTACCGAGT
GCTGAAGCGCCTGGA GCTCATCTCCAAGGC . GGTCATTACCGAGTA
CTGAAGCGCCTGGAG CTCATCTCCAAGGCC GTCATTACCGAGTAC
GAAGCGCCTGGAGAA CATCTCCAAGGCCGA CATTACCGAGTACTT
AAGCGCCTGGAGAAC ATCTCCAAGGCCGAG ATTACCGAGTACTTG
AGCGCCTGGAGAACT TCTCCAAGGCCGAGG TTACCGAGTACTTGC
GCGCCTGGAGAACTG CTCCAAGGCCGAGGA TACCGAGTACTTGCT
GCCTGGAGAACTGCA CCAAGGCCGAGGACT CCGAGTACTTGCTGC
CCTGGAGAACTGCAC CAAGGCCGAGGACTA CGAGTACTTGCTGCT
CTGGAGAACTGCACG AAGGCCGAGGACTAC GAGTACTTGCTGCTG
TGGAGAACTGCACGG AGGCCGAGGACTACC AGTACTTGCTGCTGT
GAGAACTGCACGGTG GCCGAGGACTACCGC TACTTGCTGCTGTTC
AGAACTGCACGGTGA CCGAGGACTACCGCA ACTTGCTGCTGTTCC
GAACTGCACGGTGAT CGAGGACTACCGCAG CTTGCTGCTGTTCCG
AACTGCACGGTGATC GAGGACTACCGCAGC TTGCTGCTGTTCCGA
CTGCACGGTGATCGA GGACTACCGCAGCTA GCTGCTGTTCCGAGT
TGCACGGTGATCGAG GACTACCGCAGCTAC CTGCTGTTCCGAGTG
GCACGGTGATCGAGG ACTACCGCAGCTACC TGCTGTTCCGAGTGG
CACGGTGATCGAGGG CTACCGCAGCTACCG GCTGTTCCGAGTGGC
CGGTGATCGAGGGCT ACCGCAGCTACCGCT TGTTCCGAGTGGCTG
GGTGATCGAGGGCTA CCGCAGCTACCGCTT GTTCCGAGTGGCTGG
GTGATCGAGGGCTAC CGCAGCTACCGCTTC TTCCGAGTGGCTGGC
TGATCGAGGGCTACC GCAGCTACCGCTTCC TCCGAGTGGCTGGCC
ATCGAGGGCTACCTC AGCTACCGCTTCCCC CGAGTGGCTGGCCTC
TCGAGGGCTACCTCC GCTACCGCTTCCCCA GAGTGGCTGGCCTCG
CGAGGGCTACCTCCA CTACCGCTTCCCCAA AGTGGCTGGCCTCGA
GAGGGCTACCTCCAC TACCGCTTCCCCAAG GTGGCTGGCCTCGAG
GGGCTACCTCCACAT CCGCTTCCCCAAGCT GGCTGGCCTCGAGAG
GCTGGCCTCGAGAGC GGCTGGAAACTCTTC CTCAAGGATATTGGG
CTGGCCTCGAGAGCC GCTGGAAACTCTTCT TCAAGGATATTGGGC
TGGCCTCGAGAGCCT CTGGAAACTCTTCTA CAAGGATATTGGGCT
GGCCTCGAGAGCCTC TGGAAACTCTTCTAC AAGGATATTGGGCTT
GCCTCGAGAGCCTCG GGAAACTCTTCTACA AGGATATTGGGCTTT
CCTCGAGAGCCTCGG GAAACTCTTCTACAA GGATATTGGGCTTTA
CTCGAGAGCCTCGGA AAACTCTTCTACAAC GATATTGGGCTTTAC
TCGAGAGCCTCGGAG AACTCTTCTACAACT ATATTGGGCTTTACA
CGAGAGCCTCGGAGA ACTCTTCTACAACTA TATTGGGCTTTACAA
AGAGCCTCGGAGACC TCTTCTACAACTACG TTGGGCTTTACAACC
GAGCCTCGGAGACCT CTTCTACAACTACGC TGGGCTTTACAACCT
AGCCTCGGAGACCTC TTCTACAACTACGCC GGGCTTTACAACCTG
GCCTCGGAGACCTCT TCTACAACTACGCCC GGCTTTACAACCTGA
CTCGGAGACCTCTTC TACAACTACGCCCTG CTTTACAACCTGAGG
TCGGAGACCTCTTCC ACAACTACGCCCTGG TTTACAACCTGAGGA
CGGAGACCTCTTCCC CAACTACGCCCTGGT TTACAACCTGAGGAA
GGAGACCTCTTCCCC AACTACGCCCTGGTC TACAACCTGAGGAAC
AGACCTCTTCCCCAA CTACGCCCTGGTCAT CAACCTGAGGAACAT
GACCTCTTCCCCAAC TACGCCCTGGTCATC AACCTGAGGAACATT
ACCTCTTCCCCAACC ACGCCCTGGTCATCT ACCTGAGGAACATTA
CCTCTTCCCCAACCT CGCCCTGGTCATCTT CCTGAGGAACATTAC
TCTTCCCCAACCTCA CCCTGGTCATCTTCG TGAGGAACATTACTC
CTTCCCCAACCTCAC CCTGGTCATCTTCGA GAGGAACATTACTCG
TTCCCCAACCTCACG CTGGTCATCTTCGAG AGGAACATTACTCGG
TCCCCAACCTCACGG TGGTCATCTTCGAGA GGAACATTACTCGGG
CCCAACCTCACGGTC GTCATCTTCGAGATG AACATTACTCGGGGG
CCAACCTCACGGTCA TCATCTTCGAGATGA ACATTACTCGGGGGG
CAACCTCACGGTCAT CATCTTCGAGATGAC CATTACTCGGGGGGC
AACCTCACGGTCATC ATCTTCGAGATGACC ATTACTCGGGGGGCC
CCTCACGGTCATCCG CTTCGAGATGACCAA TACTCGGGGGGCCAT
CTCACGGTCATCCGC TTCGAGATGACCAAT ACTCGGGGGGCCATC
TCACGGTCATCCGCG TCGAGATGACCAATC CTCGGGGGGCCATCA
CACGGTCATCCGCGG CGAGATGACCAATCT TCGGGGGGCCATCAG
CGGTCATCCGCGGCT AGATGACCAATCTCA GGGGGGCCATCAGGA
GGTCATCCGCGGCTG GATGACCAATCTCAA GGGGGCCATCAGGAT
GTCATCCGCGGCTGG ATGACCAATCTCAAG GGGGCCATCAGGATT
TCATCCGCGGCTGGA TGACCAATCTCAAGG GGGCCATCAGGATTG
ATCCGCGGCTGGAAA ACCAATCTCAAGGAT GCCATCAGGATTGAG
TCCGCGGCTGGAAAC CCAATCTCAAGGATA CCATCAGGATTGAGA
CCGCGGCTGGAAACT CAATCTCAAGGATAT CATCAGGATTGAGAA
CGCGGCTGGAAACTC AATCTCAAGGATATT ATCAGGATTGAGAAA
CGGCTGGAAACTCTT TCTCAAGGATATTGG CAGGATTGAGAAAAA
AGGATTGAGAAP~AAT CTGATCCTGGATGCG AAGGAATGTGGGGAC
GGATTGAGAA.P.AATG TGATCCTGGATGCGG AGGAATGTGGGGACC
GATTGAGAAAAATGC GATCCTGGATGCGGT GGAATGTGGGGACCT
ATTGAGAAAAATGCT ATCCTGGATGCGGTG GAATGTGGGGACCTG
S TTGAGAAAAATGCTG TCCTGGATGCGGTGT AATGTGGGGACCTGT
TGAGAAAAATGCTGA CCTGGATGCGGTGTC ATGTGGGGACCTGTG
GAGAAAAATGCTGAC CTGGATGCGGTGTCC TGTGGGGACCTGTGT
AGAAAAATGCTGACC TGGATGCGGTGTCCA GTGGGGACCTGTGTC
GAAAAATGCTGACCT GGATGCGGTGTCCAA TGGGGACCTGTGTCC
10AAAA.ATGCTGACCTC GATGCGGTGTCCAAT GGGGACCTGTGTCCA
AAAATGCTGACCTCT ATGCGGTGTCCAATA GGGACCTGTGTCCAG
AAATGCTGACCTCTG TGCGGTGTCCAATAA GGACCTGTGTCCAGG
AATGCTGACCTCTGT GCGGTGTCCAATAAC GACCTGTGTCCAGGG
ATGCTGACCTCTGTT CGGTGTCCAATAACT ACCTGTGTCCAGGGA
GCTGACCTCTGTTAC GTGTCCAATAACTAC CTGTGTCCAGGGACC
CTGACCTCTGTTACC TGTCCAATAACTACA TGTGTCCAGGGACCA
TGACCTCTGTTACCT GTCCAATAACTACAT GTGTCCAGGGACCAT
GACCTCTGTTACCTC TCCAATAACTACATT TGTCCAGGGACCATG
CCTCTGTTACCTCTC CAATAACTACATTGT TCCAGGGACCATGGA
CTCTGTTACCTCTCC AATAACTACATTGTG CCAGGGACCATGGAG
TCTGTTACCTCTCCA ATAACTACATTGTGG CAGGGACCATGGAGG
CTGTTACCTCTCCAC TAACTACATTGTGGG AGGGACCATGGAGGA
GTTACCTCTCCACTG ACTACATTGTGGGGA GGACCATGGAGGAGA
TTACCTCTCCACTGT CTACATTGTGGGGAA GACCATGGAGGAGAA
TACCTCTCCACTGTG TACATTGTGGGGAAT ACCATGGAGGAGAAG
ACCTCTCCACTGTGG ACATTGTGGGGAATA CCATGGAGGAGAAGC
CTCTCCACTGTGGAC ATTGTGGGGAATAAG ATGGAGGAGAAGCCG
TCTCCACTGTGGACT TTGTGGGGAATAAGC TGGAGGAGAAGCCGA
CTCCACTGTGGACTG TGTGGGGAATAAGCC GGAGGAGAAGCCGAT
TCCACTGTGGACTGG GTGGGGAATAAGCCC GAGGAGAAGCCGATG
CACTGTGGACTGGTC GGGGAATAAGCCCCC GGAGAAGCCGATGTG
ACTGTGGACTGGTCC GGGAATAAGCCCCCA GAGAAGCCGATGTGT
CTGTGGACTGGTCCC GGAATAAGCCCCCAA AGAAGCCGATGTGTG
TGTGGACTGGTCCCT GAATAAGCCCCCAAA GAAGCCGATGTGTGA
TGGACTGGTCCCTGA ATAAGCCCCCAAAGG AGCCGATGTGTGAGA
GGACTGGTCCCTGAT TAAGCCCCCAAAGGA GCCGATGTGTGAGAA
GACTGGTCCCTGATC AAGCCCCCAAAGGAA CCGATGTGTGAGAAG
ACTGGTCCCTGATCC AGCCCCCAAAGGAAT CGATGTGTGAGAAGA
TGGTCCCTGATCCTG CCCCCAAAGGAATGT ATGTGTGAGAAGACC
GGTCCCTGATCCTGG CCCCAAAGGAATGTG TGTGTGAGAAGACCA
GTCCCTGATCCTGGA CCCAAAGGAATGTGG GTGTGAGAAGACCAC
TCCCTGATCCTGGAT CCAAAGGAATGTGGG TGTGAGAAGACCACC
CCTGATCCTGGATGC AAAGGAATGTGGGGA TGAGAAGACCACCAT
GAGAAGACCACCATC CGCTGCCAGAAAATG AACAATGAGTGCTGC
AGAAGACCACCATCA GCTGCCAGAAAATGT ACAATGAGTGCTGCC
GAAGACCACCATCAA CTGCCAGAAAATGTG CAATGAGTGCTGCCA
AAGACCACCATCAAC TGCCAGAAAATGTGC AATGAGTGCTGCCAC
AGACCACCATCAACA GCCAGAAAATGTGCC ATGAGTGCTGCCACC
GACCACCATCAACAA CCAGAAAATGTGCCC TGAGTGCTGCCACCC
ACCACCATCAACAAT CAGAAAATGTGCCCA GAGTGCTGCCACCCC
CCACCATCAACAATG AGAAAATGTGCCCAA AGTGCTGCCACCCCG
CACCATCAACAATGA GAAAATGTGCCCAAG GTGCTGCCACCCCGA
CCATCAACAATGAGT AAATGTGCCCAAGCA GCTGCCACCCCGAGT
CATCAACAATGAGTA AATGTGCCCAAGCAC CTGCCACCCCGAGTG
ATCAACAATGAGTAC ATGTGCCCAAGCACG TGCCACCCCGAGTGC
TCAACAATGAGTACA TGTGCCCAAGCACGT GCCACCCCGAGTGCC
AACAATGAGTACAAC TGCCCAAGCACGTGT CACCCCGAGTGCCTG
ACAATGAGTACAACT GCCCAAGCACGTGTG ACCCCGAGTGCCTGG
CAATGAGTACAACTA CCCAAGCACGTGTGG CCCCGAGTGCCTGGG
AATGAGTACAACTAC CCAAGCACGTGTGGG CCCGAGTGCCTGGGC
TGAGTACAACTACCG AAGCACGTGTGGGAA CGAGTGCCTGGGCAG
GAGTACAACTACCGC AGCACGTGTGGGAAG GAGTGCCTGGGCAGC
AGTACAACTACCGCT GCACGTGTGGGAAGC AGTGCCTGGGCAGCT
GTACAACTACCGCTG CACGTGTGGGAAGCG GTGCCTGGGCAGCTG
ACAACTACCGCTGCT CGTGTGGGAAGCGGG GCCTGGGCAGCTGCA
CAACTACCGCTGCTG GTGTGGGAAGCGGGC CCTGGGCAGCTGCAG
AACTACCGCTGCTGG TGTGGGAAGCGGGCG CTGGGCAGCTGCAGC
ACTACCGCTGCTGGA GTGGGAAGCGGGCGT TGGGCAGCTGCAGCG
TACCGCTGCTGGACC GGGAAGCGGGCGTGC GGCAGCTGCAGCGCG
ACCGCTGCTGGACCA GGAAGCGGGCGTGCA GCAGCTGCAGCGCGC
CCGCTGCTGGACCAC GAAGCGGGCGTGCAC CAGCTGCAGCGCGCC
CGCTGCTGGACCACA AAGCGGGCGTGCACC AGCTGCAGCGCGCCT
CTGCTGGACCACAAA GCGGGCGTGCACCGA CTGCAGCGCGCCTGA
TGCTGGACCACAAAC CGGGCGTGCACCGAG TGCAGCGCGCCTGAC
GCTGGACCACAAACC GGGCGTGCACCGAGA GCAGCGCGCCTGACA
CTGGACCACAAACCG GGCGTGCACCGAGAA CAGCGCGCCTGACAA
GGACCACAAACCGCT CGTGCACCGAGAACA GCGCGCCTGACAACG
GACCACAAACCGCTG GTGCACCGAGAACAA CGCGCCTGACAACGA
ACCACAAACCGCTGC TGCACCGAGAACAAT GCGCCTGACAACGAC
CCACAAACCGCTGCC GCACCGAGAACAATG CGCCTGACAACGACA
ACAAACCGCTGCCAG ACCGAGAACAATGAG CCTGACAACGACACG
CAAACCGCTGCCAGA CCGAGAACAATGAGT CTGACAACGACACGG
AAACCGCTGCCAGAA CGAGAACAATGAGTG TGACAACGACACGGC
AACCGCTGCCAGAAA GAGAACAATGAGTGC GACAACGACACGGCC
CCGCTGCCAGAAAAT GAACAATGAGTGCTG CAACGACACGGCCTG
AACGACACGGCCTGT GTGCCTGCCTGCCCG GACCGTGACTTCTGC
ACGACACGGCCTGTG TGCCTGCCTGCCCGC ACCGTGACTTCTGCG
CGACACGGCCTGTGT GCCTGCCTGCCCGCC CCGTGACTTCTGCGC
GACACGGCCTGTGTA CCTGCCTGCCCGCCC CGTGACTTCTGCGCC
ACACGGCCTGTGTAG CTGCCTGCCCGCCCA GTGACTTCTGCGCCA
CACGGCCTGTGTAGC TGCCTGCCCGCCCAA TGACTTCTGCGCCAA
ACGGCCTGTGTAGCT GCCTGCCCGCCCAAC GACTTCTGCGCCAAC
CGGCCTGTGTAGCTT CCTGCCCGCCCAACA ACTTCTGCGCCAACA
GGCCTGTGTAGCTTG CTGCCCGCCCAACAC CTTCTGCGCCAACAT
CCTGTGTAGCTTGCC GCCCGCCCAACACCT TCTGCGCCAACATCC
CTGTGTAGCTTGCCG CCCGCCCAACACCTA CTGCGCCAACATCCT
TGTGTAGCTTGCCGC CCGCCCAACACCTAC TGCGCCAACATCCTC
GTGTAGCTTGCCGCC CGCCCAACACCTACA GCGCCAACATCCTCA
GTAGCTTGCCGCCAC CCCAACACCTACAGG GCCAACATCCTCAGC
TAGCTTGCCGCCACT CCAACACCTACAGGT CCAACATCCTCAGCG
AGCTTGCCGCCACTA CAACACCTACAGGTT CAACATCCTCAGCGC
GCTTGCCGCCACTAC AACACCTACAGGTTT AACATCCTCAGCGCC
TTGCCGCCACTACTA CACCTACAGGTTTGA CATCCTCAGCGCCGA
TGCCGCCACTACTAC ACCTACAGGTTTGAG ATCCTCAGCGCCGAG
GCCGCCACTACTACT CCTACAGGTTTGAGG TCCTCAGCGCCGAGA
CCGCCACTACTACTA CTACAGGTTTGAGGG CCTCAGCGCCGAGAG
GCCACTACTACTATG ACAGGTTTGAGGGCT TCAGCGCCGAGAGCA
CCACTACTACTATGC CAGGTTTGAGGGCTG CAGCGCCGAGAGCAG
CACTACTACTATGCC AGGTTTGAGGGCTGG AGCGCCGAGAGCAGC
ACTACTACTATGCCG GGTTTGAGGGCTGGC GCGCCGAGAGCAGCG
TACTACTATGCCGGT TTTGAGGGCTGGCGC GCCGAGAGCAGCGAC
ACTACTATGCCGGTG TTGAGGGCTGGCGCT CCGAGAGCAGCGACT
CTACTATGCCGGTGT TGAGGGCTGGCGCTG CGAGAGCAGCGACTC
TACTATGCCGGTGTC GAGGGCTGGCGCTGT GAGAGCAGCGACTCC
CTATGCCGGTGTCTG GGGCTGGCGCTGTGT GAGCAGCGACTCCGA
TATGCCGGTGTCTGT GGCTGGCGCTGTGTG AGCAGCGACTCCGAG
ATGCCGGTGTCTGTG GCTGGCGCTGTGTGG GCAGCGACTCCGAGG
TGCCGGTGTCTGTGT CTGGCGCTGTGTGGA CAGCGACTCCGAGGG
CCGGTGTCTGTGTGC GGCGCTGTGTGGACC GCGACTCCGAGGGGT
CGGTGTCTGTGTGCC GCGCTGTGTGGACCG CGACTCCGAGGGGTT
GGTGTCTGTGTGCCT CGCTGTGTGGACCGT GACTCCGAGGGGTTT
GTGTCTGTGTGCCTG GCTGTGTGGACCGTG ACTCCGAGGGGTTTG
GTCTGTGTGCCTGCC TGTGTGGACCGTGAC TCCGAGGGGTTTGTG
TCTGTGTGCCTGCCT GTGTGGACCGTGACT CCGAGGGGTTTGTGA
CTGTGTGCCTGCCTG TGTGGACCGTGACTT CGAGGGGTTTGTGAT
TGTGTGCCTGCCTGC GTGGACCGTGACTTC GAGGGGTTTGTGATC
TGTGCCTGCCTGCCC GGACCGTGACTTCTG GGGGTTTGTGATCCA
GGGTTTGTGATCCAC ATCCGCAACGGCAGC CCGAAGGTCTGTGAG
GGTTTGTGATCCACG TCCGCAACGGCAGCC CGAAGGTCTGTGAGG
GTTTGTGATCCACGA CCGCAACGGCAGCCA GAAGGTCTGTGAGGA
TTTGTGATCCACGAC CGCAACGGCAGCCAG AAGGTCTGTGAGGAA
TTGTGATCCACGACG GCAACGGCAGCCAGA AGGTCTGTGAGGAAG
TGTGATCCACGACGG CAACGGCAGCCAGAG GGTCTGTGAGGAAGA
GTGATCCACGACGGC AACGGCAGCCAGAGC GTCTGTGAGGAAGAA
TGATCCACGACGGCG ACGGCAGCCAGAGCA TCTGTGAGGAAGAAA
GATCCACGACGGCGA CGGCAGCCAGAGCAT CTGTGAGGAAGAAAA
TCCACGACGGCGAGT GCAGCCAGAGCATGT GTGAGGAAGAAAAGA
CCACGACGGCGAGTG CAGCCAGAGCATGTA TGAGGAAGAAAAGAA
CACGACGGCGAGTGC AGCCAGAGCATGTAC GAGGAAGAAAAGAAA
ACGACGGCGAGTGCA GCCAGAGCATGTACT AGGAAGAAAAGAAAA
GACGGCGAGTGCATG CAGAGCATGTACTGC GAAGAAAAGAAAACA
ACGGCGAGTGCATGC AGAGCATGTACTGCA AAGAAAAGAAAACAA
CGGCGAGTGCATGCA GAGCATGTACTGCAT AGAAAAGAAAACAAA
GGCGAGTGCATGCAG AGCATGTACTGCATC GAAAAGAAAACAAAG
CGAGTGCATGCAGGA CATGTACTGCATCCC AAAGAAAACAAAGAC
GAGTGCATGCAGGAG ATGTACTGCATCCCT AAGAAAACAAAGACC
AGTGCATGCAGGAGT TGTACTGCATCCCTT AGAAAACAAAGACCA
GTGCATGCAGGAGTG GTACTGCATCCCTTG GAAAACAAAGACCAT
GCATGCAGGAGTGCC ACTGCATCCCTTGTG AAACAAAGACCATTG
CATGCAGGAGTGCCC CTGCATCCCTTGTGA AACAAAGACCATTGA
ATGCAGGAGTGCCCC TGCATCCCTTGTGAA ACAAAGACCATTGAT
TGCAGGAGTGCCCCT GCATCCCTTGTGAAG CAAAGACCATTGATT
CAGGAGTGCCCCTCG ATCCCTTGTGAAGGT AAGACCATTGATTCT
AGGAGTGCCCCTCGG TCCCTTGTGAAGGTC AGACCATTGATTCTG
GGAGTGCCCCTCGGG CCCTTGTGAAGGTCC GACCATTGATTCTGT
GAGTGCCCCTCGGGC CCTTGTGAAGGTCCT ACCATTGATTCTGTT
GTGCCCCTCGGGCTT TTGTGAAGGTCCTTG CATTGATTCTGTTAC
TGCCCCTCGGGCTTC TGTGAAGGTCCTTGC ATTGATTCTGTTACT
GCCCCTCGGGCTTCA GTGAAGGTCCTTGCC TTGATTCTGTTACTT
CCCCTCGGGCTTCAT TGAAGGTCCTTGCCC TGATTCTGTTACTTC
CCTCGGGCTTCATCC AAGGTCCTTGCCCGA ATTCTGTTACTTCTG
CTCGGGCTTCATCCG AGGTCCTTGCCCGAA TTCTGTTACTTCTGC
TCGGGCTTCATCCGC GGTCCTTGCCCGAAG TCTGTTACTTCTGCT
CGGGCTTCATCCGCA GTCCTTGCCCGAAGG CTGTTACTTCTGCTC
GGCTTCATCCGCAAC CCTTGCCCGAAGGTC GTTACTTCTGCTCAG
GCTTCATCCGCAACG CTTGCCCGAAGGTCT TTACTTCTGCTCAGA
CTTCATCCGCAACGG TTGCCCGAAGGTCTG TACTTCTGCTCAGAT
TTCATCCGCAACGGC TGCCCGAAGGTCTGT ACTTCTGCTCAGATG
CATCCGCAACGGCAG CCCGAAGGTCTGTGA TTCTGCTCAGATGCT
TCTGCTCAGATGCTC AACATCCGACGGGGG CTCATCGAGGTGGTG
CTGCTCAGATGCTCC ACATCCGACGGGGGA TCATCGAGGTGGTGA
TGCTCAGATGCTCCA CATCCGACGGGGGAA CATCGAGGTGGTGAC
GCTCAGATGCTCCAA ATCCGACGGGGGAAT ATCGAGGTGGTGACG
CTCAGATGCTCCAAG TCCGACGGGGGAATA TCGAGGTGGTGACGG
TCAGATGCTCCAAGG CCGACGGGGGAATAA CGAGGTGGTGACGGG
CAGATGCTCCAAGGA CGACGGGGGAATAAC GAGGTGGTGACGGGC
AGATGCTCCAAGGAT GACGGGGGAATAACA AGGTGGTGACGGGCT
GATGCTCCAAGGATG ACGGGGGAATAACAT GGTGGTGACGGGCTA
TGCTCCAAGGATGCA GGGGGAATAACATTG TGGTGACGGGCTACG
GCTCCAAGGATGCAC GGGGAATAACATTGC GGTGACGGGCTACGT
CTCCAAGGATGCACC GGGAATAACATTGCT GTGACGGGCTACGTG
TCCAAGGATGCACCA GGAATAACATTGCTT TGACGGGCTACGTGA
CAAGGATGCACCATC AATAACATTGCTTCA ACGGGCTACGTGAAG
AAGGATGCACCATCT ATAACATTGCTTCAG CGGGCTACGTGAAGA
AGGATGCACCATCTT TAACATTGCTTCAGA GGGCTACGTGAAGAT
GGATGCACCATCTTC AACATTGCTTCAGAG GGCTACGTGAAGATC
ATGCACCATCTTCAA CATTGCTTCAGAGCT CTACGTGAAGATCCG
TGCACCATCTTCAAG ATTGCTTCAGAGCTG TACGTGAAGATCCGC
GCACCATCTTCAAGG TTGCTTCAGAGCTGG ACGTGAAGATCCGCC
CACCATCTTCAAGGG TGCTTCAGAGCTGGA CGTGAAGATCCGCCA
CCATCTTCAAGGGCA CTTCAGAGCTGGAGA TGAAGATCCGCCATT
CATCTTCAAGGGCAA TTCAGAGCTGGAGAA GAAGATCCGCCATTC
ATCTTCAAGGGCAAT TCAGAGCTGGAGAAC AAGATCCGCCATTCT
TCTTCAAGGGCAATT CAGAGCTGGAGAACT AGATCCGCCATTCTC
TTCAAGGGCAATTTG GAGCTGGAGAACTTC ATCCGCCATTCTCAT
TCAAGGGCAATTTGC AGCTGGAGAACTTCA TCCGCCATTCTCATG
CAAGGGCAATTTGCT GCTGGAGAACTTCAT CCGCCATTCTCATGC
AAGGGCAATTTGCTC CTGGAGAACTTCATG CGCCATTCTCATGCC
GGGCAATTTGCTCAT GGAGAACTTCATGGG CCATTCTCATGCCTT
GGCAATTTGCTCATT GAGAACTTCATGGGG CATTCTCATGCCTTG
GCAATTTGCTCATTA AGAACTTCATGGGGC ATTCTCATGCCTTGG
CAATTTGCTCATTAA GAACTTCATGGGGCT TTCTCATGCCTTGGT
ATTTGCTCATTAACA ACTTCATGGGGCTCA CTCATGCCTTGGTCT
TTTGCTCATTAACAT CTTCATGGGGCTCAT TCATGCCTTGGTCTC
TTGCTCATTAACATC TTCATGGGGCTCATC CATGCCTTGGTCTCC
TGCTCATTAACATCC TCATGGGGCTCATCG ATGCCTTGGTCTCCT
CTCATTAACATCCGA ATGGGGCTCATCGAG GCCTTGGTCTCCTTG
TCATTAACATCCGAC TGGGGCTCATCGAGG CCTTGGTCTCCTTGT
CATTAACATCCGACG GGGGCTCATCGAGGT CTTGGTCTCCTTGTC
ATTAACATCCGACGG GGGCTCATCGAGGTG TTGGTCTCCTTGTCC
TAACATCCGACGGGG GCTCATCGAGGTGGT GGTCTCCTTGTCCTT
GTCTCCTTGTCCTTC CTAGAAGGGAATTAC CTGTGGGACTGGGAC
TCTCCTTGTCCTTCC TAGAAGGGAATTACT TGTGGGACTGGGACC
CTCCTTGTCCTTCCT AGAAGGGAATTACTC GTGGGACTGGGACCA
TCCTTGTCCTTCCTA GAAGGGAATTACTCC TGGGACTGGGACCAC
CCTTGTCCTTCCTAA AAGGGAATTACTCCT GGGACTGGGACCACC
CTTGTCCTTCCTAAA AGGGAATTACTCCTT GGACTGGGACCACCG
TTGTCCTTCCTAAAA GGGAATTACTCCTTC GACTGGGACCACCGC
TGTCCTTCCTAAAAA GGAATTACTCCTTCT ACTGGGACCACCGCA
GTCCTTCCTAAAAAA GAATTACTCCTTCTA CTGGGACCACCGCAA
10TCCTTCCTAAAP~AAC AATTACTCCTTCTAC TGGGACCACCGCAAC
CCTTCCTAAAAAACC ATTACTCCTTCTACG GGGACCACCGCAACC
CTTCCTAAAAAACCT TTACTCCTTCTACGT GGACCACCGCAACCT
TTCCTAAAAAACCTT TACTCCTTCTACGTC GACCACCGCAACCTG
TCCTAAAAAACCTTC ACTCCTTCTACGTCC ACCACCGCAACCTGA
15CCTAAP.A.A.ACCTTCG CTCCTTCTACGTCCT CCACCGCAACCTGAC
CTP.AAP.AACCTTCGC TCCTTCTACGTCCTC CACCGCAACCTGACC
TAA.A.A.A.ACCTTCGCCCCTTCTACGTCCTCG ACCGCAACCTGACCA
AAAAAACCTTCGCCT CTTCTACGTCCTCGA CCGCAACCTGACCAT
P.AAAACCTTCGCCTC TTCTACGTCCTCGAC CGCAACCTGACCATC
AAACCTTCGCCTCAT CTACGTCCTCGACAA CAACCTGACCATCAA
AACCTTCGCCTCATC TACGTCCTCGACAAC AACCTGACCATCAAA
ACCTTCGCCTCATCC ACGTCCTCGACAACC ACCTGACCATCAAAG
CCTTCGCCTCATCCT CGTCCTCGACAACCA CCTGACCATCAAAGC
TTCGCCTCATCCTAG TCCTCGACAACCAGA TGACCATCAAAGCAG
TCGCCTCATCCTAGG CCTCGACAACCAGAA GACCATCAAAGCAGG
CGCCTCATCCTAGGA CTCGACAACCAGAAC ACCATCAAAGCAGGG
GCCTCATCCTAGGAG TCGACAACCAGAACT CCATCAAAGCAGGGA
CTCATCCTAGGAGAG GACAACCAGAACTTG ATCAAAGCAGGGAAA
TCATCCTAGGAGAGG ACAACCAGAACTTGC TCAAAGCAGGGAAAA
CATCCTAGGAGAGGA CAACCAGAACTTGCA CAAAGCAGGGAAAAT
ATCCTAGGAGAGGAG AACCAGAACTTGCAG AAAGCAGGGAAAATG
CCTAGGAGAGGAGCA CCAGAACTTGCAGCA AGCAGGGAAAATGTA
CTAGGAGAGGAGCAG CAGAACTTGCAGCAA GCAGGGAAAATGTAC
TAGGAGAGGAGCAGC AGAACTTGCAGCAAC CAGGGAAAATGTACT
AGGAGAGGAGCAGCT GAACTTGCAGCAACT AGGGAAAATGTACTT
GAGAGGAGCAGCTAG ACTTGCAGCAACTGT GGAAAATGTACTTTG
AGAGGAGCAGCTAGA CTTGCAGCAACTGTG GAAAATGTACTTTGC
GAGGAGCAGCTAGAA TTGCAGCAACTGTGG AAAATGTACTTTGCT
AGGAGCAGCTAGAAG TGCAGCAACTGTGGG AAATGTACTTTGCTT
GAGCAGCTAGAAGGG CAGCAACTGTGGGAC ATGTACTTTGCTTTC
AGCAGCTAGAAGGGA AGCAACTGTGGGACT TGTACTTTGCTTTCA
GCAGCTAGAAGGGAA GCAACTGTGGGACTG GTACTTTGCTTTCAA
CAGCTAGAAGGGAAT CAACTGTGGGACTGG TACTTTGCTTTCAAT
GCTAGAAGGGAATTA ACTGTGGGACTGGGA CTTTGCTTTCAATCC
TTTGCTTTCAATCCC GTGACGGGGACTAAA AACGGGGAGAGAGCC
TTGCTTTCAATCCCA TGACGGGGACTAAAG ACGGGGAGAGAGCCT
TGCTTTCAATCCCAA GACGGGGACTAAAGG CGGGGAGAGAGCCTC
GCTTTCAATCCCAAA ACGGGGACTAAAGGG GGGGAGAGAGCCTCC
CTTTCAATCCCAAAT CGGGGACTAAAGGGC GGGAGAGAGCCTCCT
TTTCAATCCCAAATT GGGGACTAAAGGGCG GGAGAGAGCCTCCTG
TTCAATCCCAAATTA GGGACTAAAGGGCGC GAGAGAGCCTCCTGT
TCAATCCCAAATTAT GGACTAAAGGGCGCC AGAGAGCCTCCTGTG
CAATCCCAAATTATG GACTAAAGGGCGCCA GAGAGCCTCCTGTGA
ATCCCAAATTATGTG CTAAAGGGCGCCAAA GAGCCTCCTGTGAAA
TCCCAAATTATGTGT TAAAGGGCGCCAAAG AGCCTCCTGTGAAAG
CCCAAATTATGTGTT AAAGGGCGCCAAAGC GCCTCCTGTGAAAGT
CCAAATTATGTGTTT AAGGGCGCCAAAGCA CCTCCTGTGAAAGTG
AAATTATGTGTTTCC GGGCGCCAAAGCAAA TCCTGTGAAAGTGAC
AATTATGTGTTTCCG GGCGCCAAAGCAAAG CCTGTGAAAGTGACG
ATTATGTGTTTCCGA GCGCCAAAGCAAAGG CTGTGAAAGTGACGT
TTATGTGTTTCCGAA CGCCAAAGCAAAGGG TGTGAAAGTGACGTC
ATGTGTTTCCGAAAT CCAAAGCAAAGGGGA TGAAAGTGACGTCCT
TGTGTTTCCGAAATT CAAAGCAAAGGGGAC GAAAGTGACGTCCTG
GTGTTTCCGAAATTT AAAGCAAAGGGGACA AAAGTGACGTCCTGC
TGTTTCCGAAATTTA AAGCAAAGGGGACAT AAGTGACGTCCTGCA
TTTCCGAAATTTACC GCAAAGGGGACATAA GTGACGTCCTGCATT
TTCCGAAATTTACCG CAAAGGGGACATAAA TGACGTCCTGCATTT
TCCGAAATTTACCGC AAAGGGGACATAAAC GACGTCCTGCATTTC
CCGAAATTTACCGCA AAGGGGACATAAACA ACGTCCTGCATTTCA
GAAATTTACCGCATG GGGGACATAAACACC GTCCTGCATTTCACC
AAATTTACCGCATGG GGGACATAAACACCA TCCTGCATTTCACCT
AATTTACCGCATGGA GGACATAAACACCAG CCTGCATTTCACCTC
ATTTACCGCATGGAG GACATAAACACCAGG CTGCATTTCACCTCC
TTACCGCATGGAGGA CATAAACACCAGGAA GCATTTCACCTCCAC
TACCGCATGGAGGAA ATAAACACCAGGAAC CATTTCACCTCCACC
ACCGCATGGAGGAAG TAAACACCAGGAACA ATTTCACCTCCACCA
CCGCATGGAGGAAGT AAACACCAGGAACAA TTTCACCTCCACCAC
GCATGGAGGAAGTGA ACACCAGGAACAACG TCACCTCCACCACCA
CATGGAGGAAGTGAC CACCAGGAACAACGG CACCTCCACCACCAC
ATGGAGGAAGTGACG ACCAGGAACAACGGG ACCTCCACCACCACG
TGGAGGAAGTGACGG CCAGGAACAACGGGG CCTCCACCACCACGT
GAGGAAGTGACGGGG AGGAACAACGGGGAG TCCACCACCACGTCG
AGGAAGTGACGGGGA GGAACAACGGGGAGA CCACCACCACGTCGA
GGAAGTGACGGGGAC GAACAACGGGGAGAG CACCACCACGTCGAA
GAAGTGACGGGGACT AACAACGGGGAGAGA ACCACCACGTCGAAG
AGTGACGGGGACTAA CAACGGGGAGAGAGC CACCACGTCGAAGAA
ACCACGTCGAAGAAT GACTACAGGGATCTC AAGAATGTCACAGAG
CCACGTCGAAGAATC ACTACAGGGATCTCA AGAATGTCACAGAGT
CACGTCGAAGAATCG CTACAGGGATCTCAT GAATGTCACAGAGTA
ACGTCGAAGAATCGC TACAGGGATCTCATC AATGTCACAGAGTAT
CGTCGAAGAATCGCA ACAGGGATCTCATCA ATGTCACAGAGTATG
GTCGAAGAATCGCAT CAGGGATCTCATCAG TGTCACAGAGTATGA
TCGAAGAATCGCATC AGGGATCTCATCAGC GTCACAGAGTATGAT
CGAAGAATCGCATCA GGGATCTCATCAGCT TCACAGAGTATGATG
GAAGAATCGCATCAT GGATCTCATCAGCTT CACAGAGTATGATGG
AGAATCGCATCATCA ATCTCATCAGCTTCA CAGAGTATGATGGGC
GAATCGCATCATCAT TCTCATCAGCTTCAC AGAGTATGATGGGCA
AATCGCATCATCATA CTCATCAGCTTCACC GAGTATGATGGGCAG
ATCGCATCATCATAA TCATCAGCTTCACCG AGTATGATGGGCAGG
CGCATCATCATAACC ATCAGCTTCACCGTT TATGATGGGCAGGAT
GCATCATCATAACCT TCAGCTTCACCGTTT ATGATGGGCAGGATG
CATCATCATAACCTG CAGCTTCACCGTTTA TGATGGGCAGGATGC
ATCATCATAACCTGG AGCTTCACCGTTTAC GATGGGCAGGATGCC
CATCATAACCTGGCA CTTCACCGTTTACTA TGGGCAGGATGCCTG
ATCATAACCTGGCAC TTCACCGTTTACTAC GGGCAGGATGCCTGC
TCATAACCTGGCACC TCACCGTTTACTACA GGCAGGATGCCTGCG
CATAACCTGGCACCG CACCGTTTACTACAA GCAGGATGCCTGCGG
TAACCTGGCACCGGT CCGTTTACTACAAGG AGGATGCCTGCGGCT
AACCTGGCACCGGTA CGTTTACTACAAGGA GGATGCCTGCGGCTC
ACCTGGCACCGGTAC GTTTACTACAAGGAA GATGCCTGCGGCTCC
CCTGGCACCGGTACC TTTACTACAAGGAAG ATGCCTGCGGCTCCA
TGGCACCGGTACCGG TACTACAAGGAAGCA GCCTGCGGCTCCAAC
GGCACCGGTACCGGC ACTACAAGGAAGCAC CCTGCGGCTCCAACA
GCACCGGTACCGGCC CTACAAGGAAGCACC CTGCGGCTCCAACAG
CACCGGTACCGGCCC TACAAGGAAGCACCC TGCGGCTCCAACAGC
CCGGTACCGGCCCCC CAAGGAAGCACCCTT CGGCTCCAACAGCTG
CGGTACCGGCCCCCT AAGGAAGCACCCTTT GGCTCCAACAGCTGG
GGTACCGGCCCCCTG AGGAAGCACCCTTTA GCTCCAACAGCTGGA
GTACCGGCCCCCTGA GGAAGCACCCTTTAA CTCCAACAGCTGGAA
ACCGGCCCCCTGACT AAGCACCCTTTAAGA CCAACAGCTGGAACA
CCGGCCCCCTGACTA AGCACCCTTTAAGAA CAACAGCTGGAACAT
CGGCCCCCTGACTAC GCACCCTTTAAGAAT AACAGCTGGAACATG
GGCCCCCTGACTACA CACCCTTTAAGAATG ACAGCTGGAACATGG
CCCCCTGACTACAGG CCCTTTAAGAATGTC AGCTGGAACATGGTG
CCCCTGACTACAGGG CCTTTAAGAATGTCA GCTGGAACATGGTGG
CCCTGACTACAGGGA CTTTAAGAATGTCAC CTGGAACATGGTGGA
CCTGACTACAGGGAT TTTAAGAATGTCACA TGGAACATGGTGGAC
TGACTACAGGGATCT TAAGAATGTCACAGA GAACATGGTGGACGT
AACATGGTGGACGTG TTACTACATGGGCTG GTGACCCTCACCATG
ACATGGTGGACGTGG TACTACATGGGCTGA TGACCCTCACCATGG
CATGGTGGACGTGGA ACTACATGGGCTGAA GACCCTCACCATGGT
ATGGTGGACGTGGAC CTACATGGGCTGAAG ACCCTCACCATGGTG
TGGTGGACGTGGACC TACATGGGCTGAAGC CCCTCACCATGGTGG
GGTGGACGTGGACCT ACATGGGCTGAAGCC CCTCACCATGGTGGA
GTGGACGTGGACCTC CATGGGCTGAAGCCC CTCACCATGGTGGAG
TGGACGTGGACCTCC ATGGGCTGAAGCCCT TCACCATGGTGGAGA
GGACGTGGACCTCCC TGGGCTGAAGCCCTG CACCATGGTGGAGAA
ACGTGGACCTCCCGC GGCTGAAGCCCTGGA CCATGGTGGAGAACG
CGTGGACCTCCCGCC GCTGAAGCCCTGGAC CATGGTGGAGAACGA
GTGGACCTCCCGCCC CTGAAGCCCTGGACT ATGGTGGAGAACGAC
TGGACCTCCCGCCCA TGAAGCCCTGGACTC TGGTGGAGAACGACC
GACCTCCCGCCCAAC AAGCCCTGGACTCAG GTGGAGAACGACCAT
ACCTCCCGCCCAACA AGCCCTGGACTCAGT TGGAGAACGACCATA
CCTCCCGCCCAACAA GCCCTGGACTCAGTA GGAGAACGACCATAT
CTCCCGCCCAACAAG CCCTGGACTCAGTAC GAGAACGACCATATC
CCCGCCCAACAAGGA CTGGACTCAGTACGC GAACGACCATATCCG
CCGCCCAACAAGGAC TGGACTCAGTACGCC AACGACCATATCCGT
CGCCCAACAAGGACG GGACTCAGTACGCCG ACGACCATATCCGTG
GCCCAACAAGGACGT GACTCAGTACGCCGT CGACCATATCCGTGG
CCAACAAGGACGTGG CTCAGTACGCCGTTT ACCATATCCGTGGGG
CAACAAGGACGTGGA TCAGTACGCCGTTTA CCATATCCGTGGGGC
AACAAGGACGTGGAG CAGTACGCCGTTTAC CATATCCGTGGGGCC
ACAAGGACGTGGAGC AGTACGCCGTTTACG ATATCCGTGGGGCCA
AAGGACGTGGAGCCC TACGCCGTTTACGTC ATCCGTGGGGCCAAG
AGGACGTGGAGCCCG ACGCCGTTTACGTCA TCCGTGGGGCCAAGA
GGACGTGGAGCCCGG CGCCGTTTACGTCAA CCGTGGGGCCAAGAG
GACGTGGAGCCCGGC GCCGTTTACGTCAAG CGTGGGGCCAAGAGT
CGTGGAGCCCGGCAT CGTTTACGTCAAGGC TGGGGCCAAGAGTGA
GTGGAGCCCGGCATC GTTTACGTCAAGGCT GGGGCCAAGAGTGAG
TGGAGCCCGGCATCT TTTACGTCAAGGCTG GGGCCAAGAGTGAGA
GGAGCCCGGCATCTT TTACGTCAAGGCTGT GGCCAAGAGTGAGAT
AGCCCGGCATCTTAC ACGTCAAGGCTGTGA CCAAGAGTGAGATCT
GCCCGGCATCTTACT CGTCAAGGCTGTGAC CAAGAGTGAGATCTT
CCCGGCATCTTACTA GTCAAGGCTGTGACC AAGAGTGAGATCTTG
CCGGCATCTTACTAC TCAAGGCTGTGACCC AGAGTGAGATCTTGT
GGCATCTTACTACAT AAGGCTGTGACCCTC AGTGAGATCTTGTAC
GCATCTTACTACATG AGGCTGTGACCCTCA GTGAGATCTTGTACA
CATCTTACTACATGG GGCTGTGACCCTCAC TGAGATCTTGTACAT
ATCTTACTACATGGG GCTGTGACCCTCACC GAGATCTTGTACATT
CTTACTACATGGGCT TGTGACCCTCACCAT GATCTTGTACATTCG
ATCTTGTACATTCGC CTTTCAGCATCGAAC TCTCTGCCCAACGGC
TCTTGTACATTCGCA TTTCAGCATCGAACT CTCTGCCCAACGGCA
CTTGTACATTCGCAC TTCAGCATCGAACTC TCTGCCCAACGGCAA
TTGTACATTCGCACC TCAGCATCGAACTCC CTGCCCAACGGCAAC
S TGTACATTCGCACCA CAGCATCGAACTCCT TGCCCAACGGCAACC
GTACATTCGCACCAA AGCATCGAACTCCTC GCCCAACGGCAACCT
TACATTCGCACCAAT GCATCGAACTCCTCT CCCAACGGCAACCTG
ACATTCGCACCAATG CATCGAACTCCTCTT CCAACGGCAACCTGA
CATTCGCACCAATGC ATCGAACTCCTCTTC CAACGGCAACCTGAG
TTCGCACCAATGCTT CGAACTCCTCTTCTC ACGGCAACCTGAGTT
TCGCACCAATGCTTC GAACTCCTCTTCTCA CGGCAACCTGAGTTA
CGCACCAATGCTTCA AACTCCTCTTCTCAG GGCAACCTGAGTTAC
GCACCAATGCTTCAG ACTCCTCTTCTCAGT GCAACCTGAGTTACT
ACCAATGCTTCAGTT TCCTCTTCTCAGTTA AACCTGAGTTACTAC
CCAATGCTTCAGTTC CCTCTTCTCAGTTAA ACCTGAGTTACTACA
CAATGCTTCAGTTCC CTCTTCTCAGTTAAT CCTGAGTTACTACAT
AATGCTTCAGTTCCT TCTTCTCAGTTAATC CTGAGTTACTACATT
TGCTTCAGTTCCTTC TTCTCAGTTAATCGT GAGTTACTACATTGT
GCTTCAGTTCCTTCC TCTCAGTTAATCGTG AGTTACTACATTGTG
CTTCAGTTCCTTCCA CTCAGTTAATCGTGA GTTACTACATTGTGC
TTCAGTTCCTTCCAT TCAGTTAATCGTGAA TTACTACATTGTGCG
CAGTTCCTTCCATTC AGTTAATCGTGAAGT ACTACATTGTGCGCT
AGTTCCTTCCATTCC GTTAATCGTGAAGTG CTACATTGTGCGCTG
GTTCCTTCCATTCCC TTAATCGTGAAGTGG TACATTGTGCGCTGG
TTCCTTCCATTCCCT TAATCGTGAAGTGGA ACATTGTGCGCTGGC
CCTTCCATTCCCTTG ATCGTGAAGTGGAAC ATTGTGCGCTGGCAG
CTTCCATTCCCTTGG TCGTGAAGTGGAACC TTGTGCGCTGGCAGC
TTCCATTCCCTTGGA CGTGAAGTGGAACCC TGTGCGCTGGCAGCG
TCCATTCCCTTGGAC GTGAAGTGGAACCCT GTGCGCTGGCAGCGG
CATTCCCTTGGACGT GAAGTGGAACCCTCC GCGCTGGCAGCGGCA
ATTCCCTTGGACGTT AAGTGGAACCCTCCC CGCTGGCAGCGGCAG
TTCCCTTGGACGTTC AGTGGAACCCTCCCT GCTGGCAGCGGCAGC
TCCCTTGGACGTTCT GTGGAACCCTCCCTC CTGGCAGCGGCAGCC
CCTTGGACGTTCTTT GGAACCCTCCCTCTC GGCAGCGGCAGCCTC
CTTGGACGTTCTTTC GAACCCTCCCTCTCT GCAGCGGCAGCCTCA
TTGGACGTTCTTTCA AACCCTCCCTCTCTG CAGCGGCAGCCTCAG
TGGACGTTCTTTCAG ACCCTCCCTCTCTGC AGCGGCAGCCTCAGG
GACGTTCTTTCAGCA CCTCCCTCTCTGCCC CGGCAGCCTCAGGAC
ACGTTCTTTCAGCAT CTCCCTCTCTGCCCA GGCAGCCTCAGGACG
CGTTCTTTCAGCATC TCCCTCTCTGCCCAA GCAGCCTCAGGACGG
GTTCTTTCAGCATCG CCCTCTCTGCCCAAC CAGCCTCAGGACGGC
TCTTTCAGCATCGAA CTCTCTGCCCAACGG GCCTCAGGACGGCTA
CCTCAGGACGGCTAC CCCATCAGGAAGTAT AACCCCAAGACTGAG
CTCAGGACGGCTACC CCATCAGGAAGTATG ACCCCAAGACTGAGG
TCAGGACGGCTACCT CATCAGGAAGTATGC CCCCAAGACTGAGGT
CAGGACGGCTACCTT ATCAGGAAGTATGCC CCCAAGACTGAGGTG
AGGACGGCTACCTTT TCAGGAAGTATGCCG CCAAGACTGAGGTGT
GGACGGCTACCTTTA CAGGAAGTATGCCGA CAAGACTGAGGTGTG
GACGGCTACCTTTAC AGGAAGTATGCCGAC AAGACTGAGGTGTGT
ACGGCTACCTTTACC GGAAGTATGCCGACG AGACTGAGGTGTGTG
CGGCTACCTTTACCG GAAGTATGCCGACGG GACTGAGGTGTGTGG
GCTACCTTTACCGGC AGTATGCCGACGGCA CTGAGGTGTGTGGTG
CTACCTTTACCGGCA GTATGCCGACGGCAC TGAGGTGTGTGGTGG
TACCTTTACCGGCAC TATGCCGACGGCACC GAGGTGTGTGGTGGG
ACCTTTACCGGCACA ATGCCGACGGCACCA AGGTGTGTGGTGGGG
CTTTACCGGCACAAT GCCGACGGCACCATC GTGTGTGGTGGGGAG
TTTACCGGCACAATT CCGACGGCACCATCG TGTGTGGTGGGGAGA
TTACCGGCACAATTA CGACGGCACCATCGA GTGTGGTGGGGAGAA
TACCGGCACAATTAC GACGGCACCATCGAC TGTGGTGGGGAGAAA
CCGGCACAATTACTG CGGCACCATCGACAT TGGTGGGGAGAAAGG
CGGCACAATTACTGC GGCACCATCGACATT GGTGGGGAGAAAGGG
GGCACAATTACTGCT GCACCATCGACATTG GTGGGGAGAAAGGGC
GCACAATTACTGCTC CACCATCGACATTGA TGGGGAGAAAGGGCC
ACAATTACTGCTCCA CCATCGACATTGAGG GGGAGAAAGGGCCTT
CAATTACTGCTCCAA CATCGACATTGAGGA GGAGAAAGGGCCTTG
AATTACTGCTCCAAA ATCGACATTGAGGAG GAGAAAGGGCCTTGC
ATTACTGCTCCAAAG TCGACATTGAGGAGG AGAAAGGGCCTTGCT
TACTGCTCCAAAGAC GACATTGAGGAGGTC AAAGGGCCTTGCTGC
ACTGCTCCAAAGACA ACATTGAGGAGGTCA AAGGGCCTTGCTGCG
CTGCTCCAAAGACAA CATTGAGGAGGTCAC AGGGCCTTGCTGCGC
TGCTCCAAAGACAAA ATTGAGGAGGTCACA GGGCCTTGCTGCGCC
CTCCAAAGACAAAAT TGAGGAGGTCACAGA GCCTTGCTGCGCCTG
TCCAAAGACAAAATC GAGGAGGTCACAGAG CCTTGCTGCGCCTGC
CCAAAGACAAAATCC AGGAGGTCACAGAGA CTTGCTGCGCCTGCC
CAAAGACAAAATCCC GGAGGTCACAGAGAA TTGCTGCGCCTGCCC
AAGACAAAATCCCCA AGGTCACAGAGAACC GCTGCGCCTGCCCCA
AGACAAAATCCCCAT GGTCACAGAGAACCC CTGCGCCTGCCCCAA
GACAAAATCCCCATC GTCACAGAGAACCCC TGCGCCTGCCCCAAA
ACAAAATCCCCATCA TCACAGAGAACCCCA GCGCCTGCCCCAAAA
AAAATCCCCATCAGG ACAGAGAACCCCAAG GCCTGCCCCAAAACT
AAATCCCCATCAGGA CAGAGAACCCCAAGA CCTGCCCCAAAACTG
AATCCCCATCAGGAA AGAGAACCCCAAGAC CTGCCCCAAAACTGA
ATCCCCATCAGGAAG GAGAACCCCAAGACT TGCCCCAAAACTGAA
CCCCATCAGGAAGTA GAACCCCAAGACTGA CCCCAAAACTGAAGC
CCCAAAACTGAAGCC AAAGTCTTTGAGAAT AGGAAGCGGAGAGAT
CCAAAACTGAAGCCG AAGTCTTTGAGAATT GGAAGCGGAGAGATG
CAAAACTGAAGCCGA AGTCTTTGAGAATTT GAAGCGGAGAGATGT
AAAACTGAAGCCGAG GTCTTTGAGAATTTC AAGCGGAGAGATGTC
AAACTGAAGCCGAGA TCTTTGAGAATTTCC AGCGGAGAGATGTCA
AACTGAAGCCGAGAA CTTTGAGAATTTCCT GCGGAGAGATGTCAT
ACTGAAGCCGAGAAG TTTGAGAATTTCCTG CGGAGAGATGTCATG
CTGAAGCCGAGAAGC TTGAGAATTTCCTGC GGAGAGATGTCATGC
TGAAGCCGAGAAGCA TGAGAATTTCCTGCA GAGAGATGTCATGCA
AAGCCGAGAAGCAGG AGAATTTCCTGCACA GAGATGTCATGCAAG
AGCCGAGAAGCAGGC GAATTTCCTGCACAA AGATGTCATGCAAGT
GCCGAGAAGCAGGCC AATTTCCTGCACAAC GATGTCATGCAAGTG
CCGAGAAGCAGGCCG ATTTCCTGCACAACT ATGTCATGCAAGTGG
GAGAAGCAGGCCGAG TTCCTGCACAACTCC GTCATGCAAGTGGCC
AGAAGCAGGCCGAGA TCCTGCACAACTCCA TCATGCAAGTGGCCA
GAAGCAGGCCGAGAA CCTGCACAACTCCAT CATGCAAGTGGCCAA
AAGCAGGCCGAGAAG CTGCACAACTCCATC ATGCAAGTGGCCAAC
GCAGGCCGAGAAGGA GCACAACTCCATCTT GCAAGTGGCCAACAC
CAGGCCGAGAAGGAG CACAACTCCATCTTC CAAGTGGCCAACACC
AGGCCGAGAAGGAGG ACAACTCCATCTTCG AAGTGGCCAACACCA
GGCCGAGAAGGAGGA CAACTCCATCTTCGT AGTGGCCAACACCAC
CCGAGAAGGAGGAGG ACTCCATCTTCGTGC TGGCCAACACCACCA
CGAGAAGGAGGAGGC CTCCATCTTCGTGCC GGCCAACACCACCAT
GAGAAGGAGGAGGCT TCCATCTTCGTGCCC GCCAACACCACCATG
AGAAGGAGGAGGCTG CCATCTTCGTGCCCA CCAACACCACCATGT
AAGGAGGAGGCTGAA ATCTTCGTGCCCAGA AACACCACCATGTCC
AGGAGGAGGCTGAAT TCTTCGTGCCCAGAC ACACCACCATGTCCA
GGAGGAGGCTGAATA CTTCGTGCCCAGACC CACCACCATGTCCAG
GAGGAGGCTGAATAC TTCGTGCCCAGACCT ACCACCATGTCCAGC
GGAGGCTGAATACCG CGTGCCCAGACCTGA CACCATGTCCAGCCG
GAGGCTGAATACCGC GTGCCCAGACCTGAA ACCATGTCCAGCCGA
AGGCTGAATACCGCA TGCCCAGACCTGAAA CCATGTCCAGCCGAA
GGCTGAATACCGCAA GCCCAGACCTGAAAG CATGTCCAGCCGAAG
CTGAATACCGCAAAG CCAGACCTGAAAGGA TGTCCAGCCGAAGCA
TGAATACCGCAAAGT CAGACCTGAAAGGAA GTCCAGCCGAAGCAG
GAATACCGCAAAGTC AGACCTGAAAGGAAG TCCAGCCGAAGCAGG
AATACCGCAAAGTCT GACCTGAAAGGAAGC CCAGCCGAAGCAGGA
TACCGCAAAGTCTTT CCTGAAAGGAAGCGG AGCCGAAGCAGGAAC
ACCGCAAAGTCTTTG CTGAAAGGAAGCGGA GCCGAAGCAGGAACA
CCGCAAAGTCTTTGA TGAAAGGAAGCGGAG CCGAAGCAGGAACAC
CGCAAAGTCTTTGAG GAAAGGAAGCGGAGA CGAAGCAGGAACACC
CAAAGTCTTTGAGAA AAGGAAGCGGAGAGA AAGCAGGAACACCAC
AGCAGGAACACCACG CTGGAGACAGAGTAC ACTGTCATTTCTAAC
GCAGGAACACCACGG TGGAGACAGAGTACC CTGTCATTTCTAACC
CAGGAACACCACGGC GGAGACAGAGTACCC TGTCATTTCTAACCT
AGGAACACCACGGCC GAGACAGAGTACCCT GTCATTTCTAACCTT
GGAACACCACGGCCG AGACAGAGTACCCTT TCATTTCTAACCTTC
GAACACCACGGCCGC GACAGAGTACCCTTT CATTTCTAACCTTCG
AACACCACGGCCGCA ACAGAGTACCCTTTC ATTTCTAACCTTCGG
ACACCACGGCCGCAG CAGAGTACCCTTTCT TTTCTAACCTTCGGC
CACCACGGCCGCAGA AGAGTACCCTTTCTT TTCTAACCTTCGGCC
CCACGGCCGCAGACA AGTACCCTTTCTTTG CTAACCTTCGGCCTT
CACGGCCGCAGACAC GTACCCTTTCTTTGA TAACCTTCGGCCTTT
ACGGCCGCAGACACC TACCCTTTCTTTGAG AACCTTCGGCCTTTC
CGGCCGCAGACACCT ACCCTTTCTTTGAGA ACCTTCGGCCTTTCA
GCCGCAGACACCTAC CCTTTCTTTGAGAGC CTTCGGCCTTTCACA
CCGCAGACACCTACA CTTTCTTTGAGAGCA TTCGGCCTTTCACAT
CGCAGACACCTACAA TTTCTTTGAGAGCAG TCGGCCTTTCACATT
GCAGACACCTACAAC TTCTTTGAGAGCAGA CGGCCTTTCACATTG
AGACACCTACAACAT CTTTGAGAGCAGAGT GCCTTTCACATTGTA
GACACCTACAACATC TTTGAGAGCAGAGTG CCTTTCACATTGTAC
ACACCTACAACATCA TTGAGAGCAGAGTGG CTTTCACATTGTACC
CACCTACAACATCAC TGAGAGCAGAGTGGA TTTCACATTGTACCG
CCTACAACATCACCG AGAGCAGAGTGGATA TCACATTGTACCGCA
CTACAACATCACCGA GAGCAGAGTGGATAA CACATTGTACCGCAT
TACAACATCACCGAC AGCAGAGTGGATAAC ACATTGTACCGCATC
ACAACATCACCGACC GCAGAGTGGATAACA CATTGTACCGCATCG
AACATCACCGACCCG AGAGTGGATAACAAG TTGTACCGCATCGAT
ACATCACCGACCCGG GAGTGGATAACAAGG TGTACCGCATCGATA
CATCACCGACCCGGA AGTGGATAACAAGGA GTACCGCATCGATAT
ATCACCGACCCGGAA GTGGATAACAAGGAG TACCGCATCGATATC
CACCGACCCGGAAGA GGATAACAAGGAGAG CCGCATCGATATCCA
ACCGACCCGGAAGAG GATAACAAGGAGAGA CGCATCGATATCCAC
CCGACCCGGAAGAGC ATAACAAGGAGAGAA GCATCGATATCCACA
CGACCCGGAAGAGCT TAACAAGGAGAGAAC CATCGATATCCACAG
ACCCGGAAGAGCTGG ACAAGGAGAGAACTG TCGATATCCACAGCT
CCCGGAAGAGCTGGA CAAGGAGAGAACTGT CGATATCCACAGCTG
CCGGAAGAGCTGGAG AAGGAGAGAACTGTC GATATCCACAGCTGC
CGGAAGAGCTGGAGA AGGAGAGAACTGTCA ATATCCACAGCTGCA
GAAGAGCTGGAGACA GAGAGAACTGTCATT ATCCACAGCTGCAAC
AAGAGCTGGAGACAG AGAGAACTGTCATTT TCCACAGCTGCAACC
AGAGCTGGAGACAGA GAGAACTGTCATTTC CCACAGCTGCAACCA
GAGCTGGAGACAGAG AGAACTGTCATTTCT CACAGCTGCAACCAC
GCTGGAGACAGAGTA AACTGTCATTTCTAA CAGCTGCAACCACGA
_77_ AGCTGCAACCACGAG TTTGCAAGGACTATG ACCTGGGAGCCAAGG
GCTGCAACCACGAGG TTGCAAGGACTATGC CCTGGGAGCCAAGGC
CTGCAACCACGAGGC TGCAAGGACTATGCC CTGGGAGCCAAGGCC
TGCAACCACGAGGCT GCAAGGACTATGCCC TGGGAGCCAAGGCCT
GCAACCACGAGGCTG CAAGGACTATGCCCG GGGAGCCAAGGCCTG
CAACCACGAGGCTGA AAGGACTATGCCCGC GGAGCCAAGGCCTGA
AACCACGAGGCTGAG AGGACTATGCCCGCA GAGCCAAGGCCTGAA
ACCACGAGGCTGAGA GGACTATGCCCGCAG AGCCAAGGCCTGAAA
CCACGAGGCTGAGAA GACTATGCCCGCAGA GCCAAGGCCTGAAAA
ACGAGGCTGAGAAGC CTATGCCCGCAGAAG CAAGGCCTGAAAACT
CGAGGCTGAGAAGCT TATGCCCGCAGAAGG AAGGCCTGAAAACTC
GAGGCTGAGAAGCTG ATGCCCGCAGAAGGA AGGCCTGAAAACTCC
AGGCTGAGAAGCTGG TGCCCGCAGAAGGAG GGCCTGAAAACTCCA
GCTGAGAAGCTGGGC CCCGCAGAAGGAGCA CCTGAAAACTCCATC
CTGAGAAGCTGGGCT CCGCAGAAGGAGCAG CTGAAAACTCCATCT
TGAGAAGCTGGGCTG CGCAGAAGGAGCAGA TGAAAACTCCATCTT
GAGAAGCTGGGCTGC GCAGAAGGAGCAGAT GAAAACTCCATCTTT
GAAGCTGGGCTGCAG AGAAGGAGCAGATGA AAACTCCATCTTTTT
AAGCTGGGCTGCAGC GAAGGAGCAGATGAC AACTCCATCTTTTTA
AGCTGGGCTGCAGCG AAGGAGCAGATGACA ACTCCATCTTTTTAA
GCTGGGCTGCAGCGC AGGAGCAGATGACAT CTCCATCTTTTTAAA
TGGGCTGCAGCGCCT GAGCAGATGACATTC CCATCTTTTTAAAGT
GGGCTGCAGCGCCTC AGCAGATGACATTCC CATCTTTTTAAAGTG
GGCTGCAGCGCCTCC GCAGATGACATTCCT ATCTTTTTAAAGTGG
GCTGCAGCGCCTCCA CAGATGACATTCCTG TCTTTTTAAAGTGGC
TGCAGCGCCTCCAAC GATGACATTCCTGGG TTTTTAAAGTGGCCG
GCAGCGCCTCCAACT ATGACATTCCTGGGC TTTTAAAGTGGCCGG
CAGCGCCTCCAACTT TGACATTCCTGGGCC TTTAAAGTGGCCGGA
AGCGCCTCCAACTTC GACATTCCTGGGCCA TTAAAGTGGCCGGA.A
CGCCTCCAACTTCGT CATTCCTGGGCCAGT AAAGTGGCCGGAACC
GCCTCCAACTTCGTC ATTCCTGGGCCAGTG AAGTGGCCGGAACCT
CCTCCAACTTCGTCT TTCCTGGGCCAGTGA AGTGGCCGGAACCTG
CTCCAACTTCGTCTT TCCTGGGCCAGTGAC GTGGCCGGAACCTGA
CCAACTTCGTCTTTG CTGGGCCAGTGACCT GGCCGGAACCTGAGA
CAACTTCGTCTTTGC TGGGCCAGTGACCTG GCCGGAACCTGAGAA
AACTTCGTCTTTGCA GGGCCAGTGACCTGG CCGGAACCTGAGAAT
ACTTCGTCTTTGCAA GGCCAGTGACCTGGG CGGAACCTGAGAATC
TTCGTCTTTGCAAGG CCAGTGACCTGGGAG GAACCTGAGAATCCC
TCGTCTTTGCAAGGA CAGTGACCTGGGAGC AACCTGAGAATCCCA
CGTCTTTGCAAGGAC AGTGACCTGGGAGCC ACCTGAGAATCCCAA
GTCTTTGCAAGGACT GTGACCTGGGAGCCA CCTGAGAATCCCAAT
CTTTGCAAGGACTAT GACCTGGGAGCCAAG TGAGAATCCCAATGG
_7g_ GAGAATCCCAATGGA GTTGAGGATCAGCGA GGGGCCAAGCTAAAC
AGAATCCCAATGGAT TTGAGGATCAGCGAG GGGCCAAGCTAAACC
GAATCCCAATGGATT TGAGGATCAGCGAGA GGCCAAGCTAA.P.CCG
AATCCCAATGGATTG GAGGATCAGCGAGAA GCCAAGCTAAACCGG
ATCCCAATGGATTGA AGGATCAGCGAGAAT CCAAGCTAAACCGGC
TCCCAATGGATTGAT GGATCAGCGAGAATG CAAGCTAAACCGGCT
CCCAATGGATTGATT GATCAGCGAGAATGT AAGCTAAACCGGCTA
CCAATGGATTGATTC ATCAGCGAGAATGTG AGCTAAACCGGCTAA
CAATGGATTGATTCT TCAGCGAGAATGTGT GCTAAACCGGCTAAA
ATGGATTGATTCTAA AGCGAGAATGTGTGT TAAACCGGCTAAACC
TGGATTGATTCTAAT GCGAGAATGTGTGTC AAACCGGCTAAACCC
GGATTGATTCTAATG CGAGAATGTGTGTCC AACCGGCTAAACCCG
GATTGATTCTAATGT GAGAATGTGTGTCCA ACCGGCTAAACCCGG
TTGATTCTAATGTAT GAATGTGTGTCCAGA CGGCTAA.ACCCGGGG
TGATTCTAATGTATG AATGTGTGTCCAGAC GGCTAAACCCGGGGA
GATTCTAATGTATGA ATGTGTGTCCAGACA GCTAAACCCGGGGAA
ATTCTAATGTATGAA TGTGTGTCCAGACAG CTAAACCCGGGGAAC
TCTAATGTATGAAAT TGTGTCCAGACAGGA AAACCCGGGGAACTA
CTAATGTATGAAATA GTGTCCAGACAGGAA AACCCGGGGAACTAC
TAATGTATGAAATAA TGTCCAGACAGGAAT ACCCGGGGAACTACA
AATGTATGAAATAAA GTCCAGACAGGAATA CCCGGGGAACTACAC
TGTATGAAATAAAAT CCAGACAGGAATACA CGGGGAACTACACAG
GTATGAAATAAAATA CAGACAGGAATACAG GGGGAACTACACAGC
TATGAA.ATAAAATAC AGACAGGAATACAGG GGGAACTACACAGCC
ATGAAATAAAATACG GACAGGAATACAGGA GGAACTACACAGCCC
GAAATAAAATACGGA CAGGAATACAGGAAG AACTACACAGCCCGG
AAATAAAATACGGAT AGGAATACAGGAAGT ACTACACAGCCCGGA
AATAAAATACGGATC GGAATACAGGAAGTA CTACACAGCCCGGAT
ATAAAATACGGATCA GAATACAGGAAGTAT TACACAGCCCGGATT
AAAATACGGATCACA ATACAGGAAGTATGG CACAGCCCGGATTCA
AAATACGGATCACAA TACAGGAAGTATGGA ACAGCCCGGATTCAG
AATACGGATCACAAG ACAGGAAGTATGGAG CAGCCCGGATTCAGG
ATACGGATCACAAGT CAGGAAGTATGGAGG AGCCCGGATTCAGGC
ACGGATCACAAGTTG GGAAGTATGGAGGGG CCCGGATTCAGGCCA
CGGATCACAAGTTGA GAAGTATGGAGGGGC CCGGATTCAGGCCAC
GGATCACAAGTTGAG AAGTATGGAGGGGCC CGGATTCAGGCCACA
GATCACAAGTTGAGG AGTATGGAGGGGCCA GGATTCAGGCCACAT
TCACAAGTTGAGGAT TATGGAGGGGCCAAG ATTCAGGCCACATCT
CACAAGTTGAGGATC ATGGAGGGGCCAAGC TTCAGGCCACATCTC
ACAAGTTGAGGATCA TGGAGGGGCCAAGCT TCAGGCCACATCTCT
CAAGTTGAGGATCAG GGAGGGGCCAAGCTA CAGGCCACATCTCTC
AGTTGAGGATCAGCG AGGGGCCAAGCTAAA GGCCACATCTCTCTC
GCCACATCTCTCTCT GTCCAGGCCAAAACA CCCGTCGCTGTCCTG
CCACATCTCTCTCTG TCCAGGCCAAAACAG CCGTCGCTGTCCTGT
CACATCTCTCTCTGG CCAGGCCAAAACAGG CGTCGCTGTCCTGTT
ACATCTCTCTCTGGG CAGGCCAAAACAGGA GTCGCTGTCCTGTTG
CATCTCTCTCTGGGA AGGCCAAAACAGGAT TCGCTGTCCTGTTGA
ATCTCTCTCTGGGAA GGCCAAAACAGGATA CGCTGTCCTGTTGAT
TCTCTCTCTGGGAAT GCCAAAACAGGATAT GCTGTCCTGTTGATC
CTCTCTCTGGGAATG CCAAAACAGGATATG CTGTCCTGTTGATCG
TCTCTCTGGGAATGG CAAAACAGGATATGA TGTCCTGTTGATCGT
TCTCTGGGAATGGGT AAACAGGATATGAAA TCCTGTTGATCGTGG
CTCTGGGAATGGGTC AACAGGATATGAAAA CCTGTTGATCGTGGG
TCTGGGAATGGGTCG ACAGGATATGAAAAC CTGTTGATCGTGGGA
CTGGGAATGGGTCGT CAGGATATGAAAACT TGTTGATCGTGGGAG
GGGAATGGGTCGTGG GGATATGAAAACTTC TTGATCGTGGGAGGG
GGAATGGGTCGTGGA GATATGAAAACTTCA TGATCGTGGGAGGGT
GAATGGGTCGTGGAC ATATGAAAACTTCAT GATCGTGGGAGGGTT
AATGGGTCGTGGACA TATGAAAACTTCATC ATCGTGGGAGGGTTG
TGGGTCGTGGACAGA TGAAAACTTCATCCA CGTGGGAGGGTTGGT
GGGTCGTGGACAGAT GAAAACTTCATCCAT GTGGGAGGGTTGGTG
GGTCGTGGACAGATC AAAACTTCATCCATC TGGGAGGGTTGGTGA
GTCGTGGACAGATCC AAACTTCATCCATCT GGGAGGGTTGGTGAT
CGTGGACAGATCCTG ACTTCATCCATCTGA GAGGGTTGGTGATTA
GTGGACAGATCCTGT CTTCATCCATCTGAT AGGGTTGGTGATTAT
TGGACAGATCCTGTG TTCATCCATCTGATC GGGTTGGTGATTATG
GGACAGATCCTGTGT TCATCCATCTGATCA GGTTGGTGATTATGC
ACAGATCCTGTGTTC ATCCATCTGATCATC TTGGTGATTATGCTG
CAGATCCTGTGTTCT TCCATCTGATCATCG TGGTGATTATGCTGT
AGATCCTGTGTTCTT CCATCTGATCATCGC GGTGATTATGCTGTA
GATCCTGTGTTCTTC CATCTGATCATCGCT GTGATTATGCTGTAC
TCCTGTGTTCTTCTA TCTGATCATCGCTCT GATTATGCTGTACGT
CCTGTGTTCTTCTAT CTGATCATCGCTCTG ATTATGCTGTACGTC
CTGTGTTCTTCTATG TGATCATCGCTCTGC TTATGCTGTACGTCT
TGTGTTCTTCTATGT GATCATCGCTCTGCC TATGCTGTACGTCTT
TGTTCTTCTATGTCC TCATCGCTCTGCCCG TGCTGTACGTCTTCC
GTTCTTCTATGTCCA CATCGCTCTGCCCGT GCTGTACGTCTTCCA
TTCTTCTATGTCCAG ATCGCTCTGCCCGTC CTGTACGTCTTCCAT
TCTTCTATGTCCAGG TCGCTCTGCCCGTCG TGTACGTCTTCCATA
TTCTATGTCCAGGCC GCTCTGCCCGTCGCT TACGTCTTCCATAGA
TCTATGTCCAGGCCA CTCTGCCCGTCGCTG ACGTCTTCCATAGAA
CTATGTCCAGGCCAA TCTGCCCGTCGCTGT CGTCTTCCATAGAAA
TATGTCCAGGCCAAA CTGCCCGTCGCTGTC GTCTTCCATAGAAAG
TGTCCAGGCCAAAAC GCCCGTCGCTGTCCT CTTCCATAGAAAGAG
TTCCATAGAAAGAGA TCTGTGAACCCGGAG TGGGAGGTGGCTCGG
TCCATAGAAAGAGAA CTGTGAACCCGGAGT GGGAGGTGGCTCGGG
CCATAGAAAGAGAAA TGTGAACCCGGAGTA GGAGGTGGCTCGGGA
CATAGAAAGAGAAAT GTGAACCCGGAGTAC GAGGTGGCTCGGGAG
ATAGAAAGAGAAATA TGAACCCGGAGTACT AGGTGGCTCGGGAGA
TAGAAAGAGAAATAA GAACCCGGAGTACTT GGTGGCTCGGGAGAA
AGAAAGAGAAATAAC AACCCGGAGTACTTC GTGGCTCGGGAGAAG
GAAAGAGAAATAACA ACCCGGAGTACTTCA TGGCTCGGGAGAAGA
AAAGAGAAATAACAG CCCGGAGTACTTCAG GGCTCGGGAGAAGAT
AGAGAAATAACAGCA CGGAGTACTTCAGCG CTCGGGAGAAGATCA
GAGAAATAACAGCAG GGAGTACTTCAGCGC TCGGGAGAAGATCAC
AGAAATAACAGCAGG GAGTACTTCAGCGCT CGGGAGAAGATCACC
GAAATAACAGCAGGC AGTACTTCAGCGCTG GGGAGAAGATCACCA
AATAACAGCAGGCTG TACTTCAGCGCTGCT GAGAAGATCACCATG
ATAACAGCAGGCTGG ACTTCAGCGCTGCTG AGAAGATCACCATGA
TAACAGCAGGCTGGG CTTCAGCGCTGCTGA GAAGATCACCATGAG
AACAGCAGGCTGGGG TTCAGCGCTGCTGAT AAGATCACCATGAGC
CAGCAGGCTGGGGAA CAGCGCTGCTGATGT GATCACCATGAGCCG
AGCAGGCTGGGGAAT AGCGCTGCTGATGTG ATCACCATGAGCCGG
GCAGGCTGGGGAATG GCGCTGCTGATGTGT TCACCATGAGCCGGG
CAGGCTGGGGAATGG CGCTGCTGATGTGTA CACCATGAGCCGGGA
GGCTGGGGAATGGAG CTGCTGATGTGTACG CCATGAGCCGGGAAC
GCTGGGGAATGGAGT TGCTGATGTGTACGT CATGAGCCGGGAACT
CTGGGGAATGGAGTG GCTGATGTGTACGTT ATGAGCCGGGAACTT
TGGGGAATGGAGTGC CTGATGTGTACGTTC TGAGCCGGGAACTTG
GGGAATGGAGTGCTG GATGTGTACGTTCCT AGCCGGGAACTTGGG
GGAATGGAGTGCTGT ATGTGTACGTTCCTG GCCGGGAACTTGGGC
GAATGGAGTGCTGTA TGTGTACGTTCCTGA CCGGGAACTTGGGCA
AATGGAGTGCTGTAT GTGTACGTTCCTGAT CGGGAACTTGGGCAG
TGGAGTGCTGTATGC GTACGTTCCTGATGA GGAACTTGGGCAGGG
GGAGTGCTGTATGCC TACGTTCCTGATGAG GAACTTGGGCAGGGG
GAGTGCTGTATGCCT ACGTTCCTGATGAGT AACTTGGGCAGGGGT
AGTGCTGTATGCCTC CGTTCCTGATGAGTG ACTTGGGCAGGGGTC
TGCTGTATGCCTCTG TTCCTGATGAGTGGG TTGGGCAGGGGTCGT
GCTGTATGCCTCTGT TCCTGATGAGTGGGA TGGGCAGGGGTCGTT
CTGTATGCCTCTGTG CCTGATGAGTGGGAG GGGCAGGGGTCGTTT
TGTATGCCTCTGTGA CTGATGAGTGGGAGG GGCAGGGGTCGTTTG
TATGCCTCTGTGAAC GATGAGTGGGAGGTG CAGGGGTCGTTTGGG
ATGCCTCTGTGAACC ATGAGTGGGAGGTGG AGGGGTCGTTTGGGA
TGCCTCTGTGAACCC TGAGTGGGAGGTGGC GGGGTCGTTTGGGAT
GCCTCTGTGAACCCG GAGTGGGAGGTGGCT GGGTCGTTTGGGATG
SOCCTCTGTGAACCCGG AGTGGGAGGTGGCTC GGTCGTTTGGGATGG
CTCTGTGAACCCGGA GTGGGAGGTGGCTCG GTCGTTTGGGATGGT
TCGTTTGGGATGGTC CCTGAAACCAGAGTG GAGAGGATTGAGTTT
CGTTTGGGATGGTCT CTGAAACCAGAGTGG AGAGGATTGAGTTTC
GTTTGGGATGGTCTA TGAAACCAGAGTGGC GAGGATTGAGTTTCT
TTTGGGATGGTCTAT GAAACCAGAGTGGCC AGGATTGAGTTTCTC
TTGGGATGGTCTATG AAACCAGAGTGGCCA GGATTGAGTTTCTCA
TGGGATGGTCTATGA AACCAGAGTGGCCAT GATTGAGTTTCTCAA
GGGATGGTCTATGAA ACCAGAGTGGCCATT ATTGAGTTTCTCAAC
GGATGGTCTATGAAG CCAGAGTGGCCATTA TTGAGTTTCTCAACG
GATGGTCTATGAAGG CAGAGTGGCCATTAA TGAGTTTCTCAACGA
TGGTCTATGAAGGAG GAGTGGCCATTAAAA AGTTTCTCAACGAAG
GGTCTATGAAGGAGT AGTGGCCATTAAAAC GTTTCTCAACGAAGC
GTCTATGAAGGAGTT GTGGCCATTAAAACA TTTCTCAACGAAGCT
TCTATGAAGGAGTTG TGGCCATTAAAACAG TTCTCAACGAAGCTT
TATGAAGGAGTTGCC GCCATTAAAACAGTG CTCAACGAAGCTTCT
ATGAAGGAGTTGCCA CCATTAAAACAGTGA TCAACGAAGCTTCTG
TGAAGGAGTTGCCAA CATTAAAACAGTGAA CAACGAAGCTTCTGT
GAAGGAGTTGCCAAG ATTAAAACAGTGAAC AACGAAGCTTCTGTG
AGGAGTTGCCAAGGG TAAAACAGTGAACGA CGAAGCTTCTGTGAT
GGAGTTGCCAAGGGT AAAACAGTGAACGAG GAAGCTTCTGTGATG
GAGTTGCCAAGGGTG AAACAGTGAACGAGG AAGCTTCTGTGATGA
AGTTGCCAAGGGTGT AACAGTGAACGAGGC AGCTTCTGTGATGAA
TTGCCAAGGGTGTGG CAGTGAACGAGGCCG CTTCTGTGATGAAGG
TGCCAAGGGTGTGGT AGTGAACGAGGCCGC TTCTGTGATGAAGGA
GCCAAGGGTGTGGTG GTGAACGAGGCCGCA TCTGTGATGAAGGAG
CCAAGGGTGTGGTGA TGAACGAGGCCGCAA CTGTGATGAAGGAGT
AAGGGTGTGGTGAAA AACGAGGCCGCAAGC GTGATGAAGGAGTTC
AGGGTGTGGTGAAAG ACGAGGCCGCAAGCA TGATGAAGGAGTTCA
GGGTGTGGTGAAAGA CGAGGCCGCAAGCAT GATGAAGGAGTTCAA
GGTGTGGTGAAAGAT GAGGCCGCAAGCATG ATGAAGGAGTTCAAT
TGTGGTGAAAGATGA GGCCGCAAGCATGCG GAAGGAGTTCAATTG
GTGGTGAAAGATGAA GCCGCAAGCATGCGT AAGGAGTTCAATTGT
TGGTGAAAGATGAAC CCGCAAGCATGCGTG AGGAGTTCAATTGTC
GGTGAAAGATGAACC CGCAAGCATGCGTGA GGAGTTCAATTGTCA
TGAAAGATGAACCTG CAAGCATGCGTGAGA AGTTCAATTGTCACC
GAAAGATGAACCTGA AAGCATGCGTGAGAG GTTCAATTGTCACCA
AAAGATGAACCTGAA AGCATGCGTGAGAGG TTCAATTGTCACCAT
AAGATGAACCTGAAA GCATGCGTGAGAGGA TCAATTGTCACCATG
GATGAACCTGAAACC ATGCGTGAGAGGATT AATTGTCACCATGTG
ATGAACCTGAAACCA TGCGTGAGAGGATTG ATTGTCACCATGTGG
TGAACCTGAAACCAG GCGTGAGAGGATTGA TTGTCACCATGTGGT
GAACCTGAAACCAGA CGTGAGAGGATTGAG TGTCACCATGTGGTG
ACCTGAAACCAGAGT TGAGAGGATTGAGTT TCACCATGTGGTGCG
CACCATGTGGTGCGA GTCATCATGGAACTG CTGAGGCCAGAAATG
ACCATGTGGTGCGAT TCATCATGGAACTGA TGAGGCCAGAAATGG
CCATGTGGTGCGATT CATCATGGAACTGAT GAGGCCAGAAATGGA
CATGTGGTGCGATTG ATCATGGAACTGATG AGGCCAGAAATGGAG
ATGTGGTGCGATTGC TCATGGAACTGATGA GGCCAGAAATGGAGA
TGTGGTGCGATTGCT CATGGAACTGATGAC GCCAGAAATGGAGAA
GTGGTGCGATTGCTG ATGGAACTGATGACA CCAGAAATGGAGAAT
TGGTGCGATTGCTGG TGGAACTGATGACAC CAGAAATGGAGAATA
GGTGCGATTGCTGGG GGAACTGATGACACG AGAAATGGAGAATAA
TGCGATTGCTGGGTG AACTGATGACACGGG AAATGGAGAATAATC
GCGATTGCTGGGTGT ACTGATGACACGGGG AATGGAGAATAATCC
CGATTGCTGGGTGTG CTGATGACACGGGGC ATGGAGAATAATCCA
GATTGCTGGGTGTGG TGATGACACGGGGCG TGGAGAATAATCCAG
TTGCTGGGTGTGGTG ATGACACGGGGCGAT GAGAATAATCCAGTC
TGCTGGGTGTGGTGT TGACACGGGGCGATC AGAATAATCCAGTCC
GCTGGGTGTGGTGTC GACACGGGGCGATCT GAATAATCCAGTCCT
CTGGGTGTGGTGTCC ACACGGGGCGATCTC AATAATCCAGTCCTA
GGGTGTGGTGTCCCA ACGGGGCGATCTCAA TAATCCAGTCCTAGC
GGTGTGGTGTCCCAA CGGGGCGATCTCAAA AATCCAGTCCTAGCA
GTGTGGTGTCCCAAG GGGGCGATCTCAAAA ATCCAGTCCTAGCAC
TGTGGTGTCCCAAGG GGGCGATCTCAAAAG TCCAGTCCTAGCACC
TGGTGTCCCAAGGCC GCGATCTCAAAAGTT CAGTCCTAGCACCTC
GGTGTCCCAAGGCCA CGATCTCAAAAGTTA AGTCCTAGCACCTCC
GTGTCCCAAGGCCAG GATCTCAAAAGTTAT GTCCTAGCACCTCCA
TGTCCCAAGGCCAGC ATCTCAAAAGTTATC TCCTAGCACCTCCAA
TCCCAAGGCCAGCCA CTCAAAAGTTATCTC CTAGCACCTCCAAGC
CCCAAGGCCAGCCAA TCAAAAGTTATCTCC TAGCACCTCCAAGCC
CCAAGGCCAGCCAAC CAAAAGTTATCTCCG AGCACCTCCAAGCCT
CAAGGCCAGCCAACA AAAAGTTATCTCCGG GCACCTCCAAGCCTG
AGGCCAGCCAACACT AAGTTATCTCCGGTC ACCTCCAAGCCTGAG
GGCCAGCCAACACTG AGTTATCTCCGGTCT CCTCCAAGCCTGAGC
GCCAGCCAACACTGG GTTATCTCCGGTCTC CTCCAAGCCTGAGCA
CCAGCCAACACTGGT TTATCTCCGGTCTCT TCCAAGCCTGAGCAA
AGCCAACACTGGTCA ATCTCCGGTCTCTGA CAAGCCTGAGCAAGA
GCCAACACTGGTCAT TCTCCGGTCTCTGAG AAGCCTGAGCAAGAT
CCAACACTGGTCATC CTCCGGTCTCTGAGG AGCCTGAGCAAGATG
CAACACTGGTCATCA TCCGGTCTCTGAGGC GCCTGAGCAAGATGA
ACACTGGTCATCATG CGGTCTCTGAGGCCA CTGAGCAAGATGATT
CACTGGTCATCATGG GGTCTCTGAGGCCAG TGAGCAAGATGATTC
ACTGGTCATCATGGA GTCTCTGAGGCCAGA GAGCAAGATGATTCA
CTGGTCATCATGGAA TCTCTGAGGCCAGAA AGCAAGATGATTCAG
SOTGGTCATCATGGAAC CTCTGAGGCCAGAAA GCAAGATGATTCAGA
GGTCATCATGGAACT TCTGAGGCCAGAAAT CAAGATGATTCAGAT
AAGATGATTCAGATG GCCAATAAGTTCGTC GAAGATTTCACAGTC
AGATGATTCAGATGG CCAATAAGTTCGTCC AAGATTTCACAGTCA
GATGATTCAGATGGC CAATAAGTTCGTCCA AGATTTCACAGTCAA
ATGATTCAGATGGCC AATAAGTTCGTCCAC GATTTCACAGTCAAA
TGATTCAGATGGCCG ATAAGTTCGTCCACA ATTTCACAGTCAAAA
GATTCAGATGGCCGG TAAGTTCGTCCACAG TTTCACAGTCAAAAT
ATTCAGATGGCCGGA AAGTTCGTCCACAGA TTCACAGTCAAAATC
TTCAGATGGCCGGAG AGTTCGTCCACAGAG TCACAGTCAAAATCG
TCAGATGGCCGGAGA GTTCGTCCACAGAGA CACAGTCAAAATCGG
AGATGGCCGGAGAGA TCGTCCACAGAGACC CAGTCAAAATCGGAG
GATGGCCGGAGAGAT CGTCCACAGAGACCT AGTCAAAATCGGAGA
ATGGCCGGAGAGATT GTCCACAGAGACCTT GTCAAAATCGGAGAT
TGGCCGGAGAGATTG TCCACAGAGACCTTG TCAAAATCGGAGATT
GCCGGAGAGATTGCA CACAGAGACCTTGCT AAAATCGGAGATTTT
CCGGAGAGATTGCAG ACAGAGACCTTGCTG AAATCGGAGATTTTG
CGGAGAGATTGCAGA CAGAGACCTTGCTGC AATCGGAGATTTTGG
GGAGAGATTGCAGAC AGAGACCTTGCTGCC ATCGGAGATTTTGGT
AGAGATTGCAGACGG AGACCTTGCTGCCCG CGGAGATTTTGGTAT
GAGATTGCAGACGGC GACCTTGCTGCCCGG GGAGATTTTGGTATG
AGATTGCAGACGGCA ACCTTGCTGCCCGGA GAGATTTTGGTATGA
GATTGCAGACGGCAT CCTTGCTGCCCGGAA AGATTTTGGTATGAC
TTGCAGACGGCATGG TTGCTGCCCGGAATT ATTTTGGTATGACGC
TGCAGACGGCATGGC TGCTGCCCGGAATTG TTTTGGTATGACGCG
GCAGACGGCATGGCA GCTGCCCGGAATTGC TTTGGTATGACGCGA
CAGACGGCATGGCAT CTGCCCGGAATTGCA TTGGTATGACGCGAG
GACGGCATGGCATAC GCCCGGAATTGCATG GGTATGACGCGAGAT
ACGGCATGGCATACC CCCGGAATTGCATGG GTATGACGCGAGATA
CGGCATGGCATACCT CCGGAATTGCATGGT TATGACGCGAGATAT
GGCATGGCATACCTC CGGAATTGCATGGTA ATGACGCGAGATATC
CATGGCATACCTCAA GAATTGCATGGTAGC GACGCGAGATATCTA
ATGGCATACCTCAAC AATTGCATGGTAGCC ACGCGAGATATCTAT
TGGCATACCTCAACG ATTGCATGGTAGCCG CGCGAGATATCTATG
GGCATACCTCAACGC TTGCATGGTAGCCGA GCGAGATATCTATGA
CATACCTCAACGCCA GCATGGTAGCCGAAG GAGATATCTATGAGA
ATACCTCAACGCCAA CATGGTAGCCGAAGA AGATATCTATGAGAC
TACCTCAACGCCAAT ATGGTAGCCGAAGAT GATATCTATGAGACA
ACCTCAACGCCAATA TGGTAGCCGAAGATT ATATCTATGAGACAG
CTCAACGCCAATAAG GTAGCCGAAGATTTC ATCTATGAGACAGAC
TCAACGCCAATAAGT TAGCCGAAGATTTCA TCTATGAGACAGACT
CAACGCCAATAAGTT AGCCGAAGATTTCAC CTATGAGACAGACTA
AACGCCAATAAGTTC GCCGAAGATTTCACA TATGAGACAGACTAT
CGCCAATAAGTTCGT CGAAGATTTCACAGT TGAGACAGACTATTA
GAGACAGACTATTAC ATGTCTCCTGAGTCC TGGTCCTTCGGGGTC
AGACAGACTATTACC TGTCTCCTGAGTCCC GGTCCTTCGGGGTCG
GACAGACTATTACCG GTCTCCTGAGTCCCT GTCCTTCGGGGTCGT
ACAGACTATTACCGG TCTCCTGAGTCCCTC TCCTTCGGGGTCGTC
CAGACTATTACCGGA CTCCTGAGTCCCTCA CCTTCGGGGTCGTCC
AGACTATTACCGGAA TCCTGAGTCCCTCAA CTTCGGGGTCGTCCT
GACTATTACCGGAAA CCTGAGTCCCTCAAG TTCGGGGTCGTCCTC
ACTATTACCGGAAAG CTGAGTCCCTCAAGG TCGGGGTCGTCCTCT
CTATTACCGGAAAGG TGAGTCCCTCAAGGA CGGGGTCGTCCTCTG
ATTACCGGAAAGGAG AGTCCCTCAAGGATG GGGTCGTCCTCTGGG
TTACCGGAAAGGAGG GTCCCTCAAGGATGG GGTCGTCCTCTGGGA
TACCGGAAAGGAGGC TCCCTCAAGGATGGA GTCGTCCTCTGGGAG
ACCGGAAAGGAGGCA CCCTCAAGGATGGAG TCGTCCTCTGGGAGA
CGGAAAGGAGGCAAA CTCAAGGATGGAGTC GTCCTCTGGGAGATC
GGAAAGGAGGCAAAG TCAAGGATGGAGTCT TCCTCTGGGAGATCG
GAAAGGAGGCAAAGG CAAGGATGGAGTCTT CCTCTGGGAGATCGC
AAAGGAGGCAAAGGG AAGGATGGAGTCTTC CTCTGGGAGATCGCC
AGGAGGCAAAGGGCT GGATGGAGTCTTCAC CTGGGAGATCGCCAC
GGAGGCAAAGGGCTG GATGGAGTCTTCACC TGGGAGATCGCCACA
GAGGCAAAGGGCTGC ATGGAGTCTTCACCA GGGAGATCGCCACAC
AGGCAAAGGGCTGCT TGGAGTCTTCACCAC GGAGATCGCCACACT
GCAAAGGGCTGCTGC GAGTCTTCACCACTT AGATCGCCACACTGG
CAAAGGGCTGCTGCC AGTCTTCACCACTTA GATCGCCACACTGGC
AAAGGGCTGCTGCCC GTCTTCACCACTTAC ATCGCCACACTGGCC
AAGGGCTGCTGCCCG TCTTCACCACTTACT TCGCCACACTGGCCG
GGGCTGCTGCCCGTG TTCACCACTTACTCG GCCACACTGGCCGAG
GGCTGCTGCCCGTGC TCACCACTTACTCGG CCACACTGGCCGAGC
GCTGCTGCCCGTGCG CACCACTTACTCGGA CACACTGGCCGAGCA
CTGCTGCCCGTGCGC ACCACTTACTCGGAC ACACTGGCCGAGCAG
GCTGCCCGTGCGCTG CACTTACTCGGACGT ACTGGCCGAGCAGCC
CTGCCCGTGCGCTGG ACTTACTCGGACGTC CTGGCCGAGCAGCCC
TGCCCGTGCGCTGGA CTTACTCGGACGTCT TGGCCGAGCAGCCCT
GCCCGTGCGCTGGAT TTACTCGGACGTCTG GGCCGAGCAGCCCTA
CCGTGCGCTGGATGT ACTCGGACGTCTGGT CCGAGCAGCCCTACC
CGTGCGCTGGATGTC CTCGGACGTCTGGTC CGAGCAGCCCTACCA
GTGCGCTGGATGTCT TCGGACGTCTGGTCC GAGCAGCCCTACCAG
TGCGCTGGATGTCTC CGGACGTCTGGTCCT AGCAGCCCTACCAGG
CGCTGGATGTCTCCT GACGTCTGGTCCTTC CAGCCCTACCAGGGC
GCTGGATGTCTCCTG ACGTCTGGTCCTTCG AGCCCTACCAGGGCT
CTGGATGTCTCCTGA CGTCTGGTCCTTCGG GCCCTACCAGGGCTT
TGGATGTCTCCTGAG GTCTGGTCCTTCGGG CCCTACCAGGGCTTG
GATGTCTCCTGAGTC CTGGTCCTTCGGGGT CTACCAGGGCTTGTC
TACCAGGGCTTGTCC CTTCTGGACAAGCCA ATGTGCTGGCAGTAT
ACCAGGGCTTGTCCA TTCTGGACAAGCCAG TGTGCTGGCAGTATA
CCAGGGCTTGTCCAA TCTGGACAAGCCAGA GTGCTGGCAGTATAA
CAGGGCTTGTCCAAC CTGGACAAGCCAGAC TGCTGGCAGTATAAC
AGGGCTTGTCCAACG TGGACAAGCCAGACA GCTGGCAGTATAACC
GGGCTTGTCCAACGA GGACAAGCCAGACAA CTGGCAGTATAACCC
GGCTTGTCCAACGAG GACAAGCCAGACAAC TGGCAGTATAACCCC
GCTTGTCCAACGAGC ACAAGCCAGACAACT GGCAGTATAACCCCA
CTTGTCCAACGAGCA CAAGCCAGACAACTG GCAGTATAACCCCAA
TGTCCAACGAGCAAG AGCCAGACAACTGTC AGTATAACCCCAAGA
GTCCAACGAGCAAGT GCCAGACAACTGTCC GTATAACCCCAAGAT
TCCAACGAGCAAGTC CCAGACAACTGTCCT TATAACCCCAAGATG
CCAACGAGCAAGTCC CAGACAACTGTCCTG ATAACCCCAAGATGA
AACGAGCAAGTCCTT GACAACTGTCCTGAC AACCCCAAGATGAGG
ACGAGCAAGTCCTTC ACAACTGTCCTGACA ACCCCAAGATGAGGC
CGAGCAAGTCCTTCG CAACTGTCCTGACAT CCCCAAGATGAGGCC
GAGCAAGTCCTTCGC AACTGTCCTGACATG CCCAAGATGAGGCCT
GCAAGTCCTTCGCTT CTGTCCTGACATGCT CAAGATGAGGCCTTC
CAAGTCCTTCGCTTC TGTCCTGACATGCTG AAGATGAGGCCTTCC
AAGTCCTTCGCTTCG GTCCTGACATGCTGT AGATGAGGCCTTCCT
AGTCCTTCGCTTCGT TCCTGACATGCTGTT GATGAGGCCTTCCTT
TCCTTCGCTTCGTCA CTGACATGCTGTTTG TGAGGCCTTCCTTCC
CCTTCGCTTCGTCAT TGACATGCTGTTTGA GAGGCCTTCCTTCCT
CTTCGCTTCGTCATG GACATGCTGTTTGAA AGGCCTTCCTTCCTG
TTCGCTTCGTCATGG ACATGCTGTTTGAAC GGCCTTCCTTCCTGG
CGCTTCGTCATGGAG ATGCTGTTTGAACTG CCTTCCTTCCTGGAG
GCTTCGTCATGGAGG TGCTGTTTGAACTGA CTTCCTTCCTGGAGA
CTTCGTCATGGAGGG GCTGTTTGAACTGAT TTCCTTCCTGGAGAT
TTCGTCATGGAGGGC CTGTTTGAACTGATG TCCTTCCTGGAGATC
CGTCATGGAGGGCGG GTTTGAACTGATGCG CTTCCTGGAGATCAT
GTCATGGAGGGCGGC TTTGAACTGATGCGC TTCCTGGAGATCATC
TCATGGAGGGCGGCC TTGAACTGATGCGCA TCCTGGAGATCATCA
CATGGAGGGCGGCCT TGAACTGATGCGCAT CCTGGAGATCATCAG
TGGAGGGCGGCCTTC AACTGATGCGCATGT TGGAGATCATCAGCA
GGAGGGCGGCCTTCT ACTGATGCGCATGTG GGAGATCATCAGCAG
GAGGGCGGCCTTCTG CTGATGCGCATGTGC GAGATCATCAGCAGC
AGGGCGGCCTTCTGG TGATGCGCATGTGCT AGATCATCAGCAGCA
GGCGGCCTTCTGGAC ATGCGCATGTGCTGG ATCATCAGCAGCATC
GCGGCCTTCTGGACA TGCGCATGTGCTGGC TCATCAGCAGCATCA
CGGCCTTCTGGACAA GCGCATGTGCTGGCA CATCAGCAGCATCAA
GGCCTTCTGGACAAG CGCATGTGCTGGCAG ATCAGCAGCATCAAA
CCTTCTGGACAAGCC CATGTGCTGGCAGTA CAGCAGCATCAAAGA
AGCAGCATCAAAGAG TACAGCGAGGAGAAC GAGAACATGGAGAGC
GCAGCATCAAAGAGG ACAGCGAGGAGAACA AGAACATGGAGAGCG
CAGCATCAAAGAGGA CAGCGAGGAGAACAA GAACATGGAGAGCGT
AGCATCAAAGAGGAG AGCGAGGAGAACAAG AACATGGAGAGCGTC
GCATCAAAGAGGAGA GCGAGGAGAACAAGC ACATGGAGAGCGTCC
CATCAAAGAGGAGAT CGAGGAGAACAAGCT CATGGAGAGCGTCCC
ATCAAAGAGGAGATG GAGGAGAACAAGCTG ATGGAGAGCGTCCCC
TCAAAGAGGAGATGG AGGAGAACAAGCTGC TGGAGAGCGTCCCCC
CAAAGAGGAGATGGA GGAGAACAAGCTGCC GGAGAGCGTCCCCCT
AAGAGGAGATGGAGC AGAACAAGCTGCCCG AGAGCGTCCCCCTGG
AGAGGAGATGGAGCC GAACAAGCTGCCCGA GAGCGTCCCCCTGGA
GAGGAGATGGAGCCT AACAAGCTGCCCGAG AGCGTCCCCCTGGAC
AGGAGATGGAGCCTG ACAAGCTGCCCGAGC GCGTCCCCCTGGACC
GAGATGGAGCCTGGC AAGCTGCCCGAGCCG GTCCCCCTGGACCCC
AGATGGAGCCTGGCT AGCTGCCCGAGCCGG TCCCCCTGGACCCCT
GATGGAGCCTGGCTT GCTGCCCGAGCCGGA CCCCCTGGACCCCTC
ATGGAGCCTGGCTTC CTGCCCGAGCCGGAG CCCCTGGACCCCTCG
GGAGCCTGGCTTCCG GCCCGAGCCGGAGGA CCTGGACCCCTCGGC
GAGCCTGGCTTCCGG CCCGAGCCGGAGGAG CTGGACCCCTCGGCC
AGCCTGGCTTCCGGG CCGAGCCGGAGGAGC TGGACCCCTCGGCCT
GCCTGGCTTCCGGGA CGAGCCGGAGGAGCT GGACCCCTCGGCCTC
CTGGCTTCCGGGAGG AGCCGGAGGAGCTGG ACCCCTCGGCCTCCT
TGGCTTCCGGGAGGT GCCGGAGGAGCTGGA CCCCTCGGCCTCCTC
GGCTTCCGGGAGGTC CCGGAGGAGCTGGAC CCCTCGGCCTCCTCG
GCTTCCGGGAGGTCT CGGAGGAGCTGGACC CCTCGGCCTCCTCGT
TTCCGGGAGGTCTCC GAGGAGCTGGACCTG TCGGCCTCCTCGTCC
TCCGGGAGGTCTCCT AGGAGCTGGACCTGG CGGCCTCCTCGTCCT
CCGGGAGGTCTCCTT GGAGCTGGACCTGGA GGCCTCCTCGTCCTC
CGGGAGGTCTCCTTC GAGCTGGACCTGGAG GCCTCCTCGTCCTCC
GGAGGTCTCCTTCTA GCTGGACCTGGAGCC CTCCTCGTCCTCCCT
GAGGTCTCCTTCTAC CTGGACCTGGAGCCA TCCTCGTCCTCCCTG
AGGTCTCCTTCTACT TGGACCTGGAGCCAG CCTCGTCCTCCCTGC
GGTCTCCTTCTACTA GGACCTGGAGCCAGA CTCGTCCTCCCTGCC
TCTCCTTCTACTACA ACCTGGAGCCAGAGA CGTCCTCCCTGCCAC
CTCCTTCTACTACAG CCTGGAGCCAGAGAA GTCCTCCCTGCCACT
TCCTTCTACTACAGC CTGGAGCCAGAGAAC TCCTCCCTGCCACTG
CCTTCTACTACAGCG TGGAGCCAGAGAACA CCTCCCTGCCACTGC
TTCTACTACAGCGAG GAGCCAGAGAACATG TCCCTGCCACTGCCC
TCTACTACAGCGAGG AGCCAGAGAACATGG CCCTGCCACTGCCCG
CTACTACAGCGAGGA GCCAGAGAACATGGA CCTGCCACTGCCCGA
TACTACAGCGAGGAG CCAGAGAACATGGAG CTGCCACTGCCCGAC
SOACTACAGCGAGGAGA CAGAGAACATGGAGA TGCCACTGCCCGACA
CTACAGCGAGGAGAA AGAGAACATGGAGAG GCCACTGCCCGACAG
_g7_ CCACTGCCCGACAGA GGGGTGCTGGTCCTC ATGAACGGGGGCCGC
CACTGCCCGACAGAC GGGTGCTGGTCCTCC TGAACGGGGGCCGCA
ACTGCCCGACAGACA GGTGCTGGTCCTCCG GAACGGGGGCCGCAA
CTGCCCGACAGACAC GTGCTGGTCCTCCGC AACGGGGGCCGCAAG
TGCCCGACAGACACT TGCTGGTCCTCCGCG ACGGGGGCCGCAAGA
GCCCGACAGACACTC GCTGGTCCTCCGCGC CGGGGGCCGCAAGAA
CCCGACAGACACTCA CTGGTCCTCCGCGCC GGGGGCCGCAAGAAC
CCGACAGACACTCAG TGGTCCTCCGCGCCA GGGGCCGCAAGAACG
CGACAGACACTCAGG GGTCCTCCGCGCCAG GGGCCGCAAGAACGA
ACAGACACTCAGGAC TCCTCCGCGCCAGCT GCCGCAAGAACGAGC
CAGACACTCAGGACA CCTCCGCGCCAGCTT CCGCAAGAACGAGCG
AGACACTCAGGACAC CTCCGCGCCAGCTTC CGCAAGAACGAGCGG
GACACTCAGGACACA TCCGCGCCAGCTTCG GCAAGAACGAGCGGG
CACTCAGGACACAAG CGCGCCAGCTTCGAC AAGAACGAGCGGGCC
ACTCAGGACACAAGG GCGCCAGCTTCGACG AGAACGAGCGGGCCT
CTCAGGACACAAGGC CGCCAGCTTCGACGA GAACGAGCGGGCCTT
TCAGGACACAAGGCC GCCAGCTTCGACGAG AACGAGCGGGCCTTG
AGGACACAAGGCCGA CAGCTTCGACGAGAG CGAGCGGGCCTTGCC
GGACACAAGGCCGAG AGCTTCGACGAGAGA GAGCGGGCCTTGCCG
GACACAAGGCCGAGA GCTTCGACGAGAGAC AGCGGGCCTTGCCGC
ACACAAGGCCGAGAA CTTCGACGAGAGACA GCGGGCCTTGCCGCT
ACAAGGCCGAGAACG TCGACGAGAGACAGC GGGCCTTGCCGCTGC
CAAGGCCGAGAACGG CGACGAGAGACAGCC GGCCTTGCCGCTGCC
AAGGCCGAGAACGGC GACGAGAGACAGCCT GCCTTGCCGCTGCCC
AGGCCGAGAACGGCC ACGAGAGACAGCCTT CCTTGCCGCTGCCCC
GCCGAGAACGGCCCC GAGAGACAGCCTTAC TTGCCGCTGCCCCAG
CCGAGAACGGCCCCG AGAGACAGCCTTACG TGCCGCTGCCCCAGT
CGAGAACGGCCCCGG GAGACAGCCTTACGC GCCGCTGCCCCAGTC
GAGAACGGCCCCGGC AGACAGCCTTACGCC CCGCTGCCCCAGTCT
GAACGGCCCCGGCCC ACAGCCTTACGCCCA GCTGCCCCAGTCTTC
AACGGCCCCGGCCCT CAGCCTTACGCCCAC CTGCCCCAGTCTTCG
ACGGCCCCGGCCCTG AGCCTTACGCCCACA TGCCCCAGTCTTCGA
CGGCCCCGGCCCTGG GCCTTACGCCCACAT GCCCCAGTCTTCGAC
GCCCCGGCCCTGGGG CTTACGCCCACATGA CCCAGTCTTCGACCT
CCCCGGCCCTGGGGT TTACGCCCACATGAA CCAGTCTTCGACCTG
CCCGGCCCTGGGGTG TACGCCCACATGAAC CAGTCTTCGACCTGC
CCGGCCCTGGGGTGC ACGCCCACATGAACG AGTCTTCGACCTGCT
GGCCCTGGGGTGCTG GCCCACATGAACGGG TCTTCGACCTGCTGA
GCCCTGGGGTGCTGG CCCACATGAACGGGG CTTCGACCTGCTGAT
CCCTGGGGTGCTGGT CCACATGAACGGGGG TTCGACCTGCTGATC
CCTGGGGTGCTGGTC CACATGAACGGGGGC TCGACCTGCTGATCC
TGGGGTGCTGGTCCT CATGAACGGGGGCCG GACCTGCTGATCCTT
_$g_ ACCTGCTGATCCTTG GCGCAGCGGGGTGGG TCCTGTACCTCAGTG
CCTGCTGATCCTTGG CGCAGCGGGGTGGGG CCTGTACCTCAGTGG
CTGCTGATCCTTGGA GCAGCGGGGTGGGGG CTGTACCTCAGTGGA
TGCTGATCCTTGGAT CAGCGGGGTGGGGGG TGTACCTCAGTGGAT
GCTGATCCTTGGATC AGCGGGGTGGGGGGG GTACCTCAGTGGATC
CTGATCCTTGGATCC GCGGGGTGGGGGGGG TACCTCAGTGGATCT
TGATCCTTGGATCCT CGGGGTGGGGGGGGA ACCTCAGTGGATCTT
GATCCTTGGATCCTG GGGGTGGGGGGGGAG CCTCAGTGGATCTTC
ATCCTTGGATCCTGA GGGTGGGGGGGGAGA CTCAGTGGATCTTCA
CCTTGGATCCTGAAT GTGGGGGGGGAGAGA CAGTGGATCTTCAGT
CTTGGATCCTGAATC TGGGGGGGGAGAGAG AGTGGATCTTCAGTT
TTGGATCCTGAATCT GGGGGGGGAGAGAGA GTGGATCTTCAGTTC
TGGATCCTGAATCTG GGGGGGGAGAGAGAG TGGATCTTCAGTTCT
GATCCTGAATCTGTG GGGGGAGAGAGAGTT GATCTTCAGTTCTGC
ATCCTGAATCTGTGC GGGGAGAGAGAGTTT ATCTTCAGTTCTGCC
TCCTGAATCTGTGCA GGGAGAGAGAGTTTT TCTTCAGTTCTGCCC
CCTGAATCTGTGCAA GGAGAGAGAGTTTTA CTTCAGTTCTGCCCT
TGAATCTGTGCAAAC AGAGAGAGTTTTAAC TCAGTTCTGCCCTTG
GAATCTGTGCAAACA GAGAGAGTTTTAACA CAGTTCTGCCCTTGC
AATCTGTGCAAACAG AGAGAGTTTTAACAA AGTTCTGCCCTTGCT
ATCTGTGCAAACAGT GAGAGTTTTAACAAT GTTCTGCCCTTGCTG
~
CTGTGCAAACAGTAA GAGTTTTAACAATCC TCTGCCCTTGCTGCC
TGTGCAAACAGTAAC AGTTTTAACAATCCA CTGCCCTTGCTGCCC
GTGCAAACAGTAACG GTTTTAACAATCCAT TGCCCTTGCTGCCCG
TGCAAACAGTAACGT TTTTAACAATCCATT GCCCTTGCTGCCCGC
CAAACAGTAACGTGT TTAACAATCCATTCA CCTTGCTGCCCGCGG
AAACAGTAACGTGTG TAACAATCCATTCAC CTTGCTGCCCGCGGG
AACAGTAACGTGTGC AACAATCCATTCACA TTGCTGCCCGCGGGA
ACAGTAACGTGTGCG ACAATCCATTCACAA TGCTGCCCGCGGGAG
AGTAACGTGTGCGCA AATCCATTCACAAGC CTGCCCGCGGGAGAC
GTAACGTGTGCGCAC ATCCATTCACAAGCC TGCCCGCGGGAGACA
TAACGTGTGCGCACG TCCATTCACAAGCCT GCCCGCGGGAGACAG
AACGTGTGCGCACGC CCATTCACAAGCCTC . CCCGCGGGAGACAGC
CGTGTGCGCACGCGC ATTCACAAGCCTCCT CGCGGGAGACAGCTT
GTGTGCGCACGCGCA TTCACAAGCCTCCTG GCGGGAGACAGCTTC
TGTGCGCACGCGCAG TCACAAGCCTCCTGT CGGGAGACAGCTTCT
GTGCGCACGCGCAGC CACAAGCCTCCTGTA GGGAGACAGCTTCTC
GCGCACGCGCAGCGG CAAGCCTCCTGTACC GAGACAGCTTCTCTG
CGCACGCGCAGCGGG AAGCCTCCTGTACCT AGACAGCTTCTCTGC
GCACGCGCAGCGGGG AGCCTCCTGTACCTC GACAGCTTCTCTGCA
CACGCGCAGCGGGGT GCCTCCTGTACCTCA ACAGCTTCTCTGCAG
CGCGCAGCGGGGTGG CTCCTGTACCTCAGT AGCTTCTCTGCAGTA
GCTTCTCTGCAGTAA CAGCTTTTTATTCCC CTTAATGACAACACT
CTTCTCTGCAGTAAA AGCTTTTTATTCCCT TTAATGACAACACTT
TTCTCTGCAGTAAAA GCTTTTTATTCCCTG TAATGACAACACTTA
TCTCTGCAGTAAAAC CTTTTTATTCCCTGC AATGACAACACTTAA
CTCTGCAGTAAAACA TTTTTATTCCCTGCC ATGACAACACTTAAT
TCTGCAGTAAAACAC TTTTATTCCCTGCCC TGACAACACTTAATA
CTGCAGTAAAACACA TTTATTCCCTGCCCA GACAACACTTAATAG
TGCAGTAAAACACAT TTATTCCCTGCCCAA ACAACACTTAATAGC
GCAGTAAAACACATT TATTCCCTGCCCAAA CAACACTTAATAGCA
AGTAAAACACATTTG TTCCCTGCCCAAACC ACACTTAATAGCAAC
GTAAAACACATTTGG TCCCTGCCCAAACCC CACTTAATAGCAACA
TAAAACACATTTGGG CCCTGCCCAAACCCT ACTTAATAGCAACAG
AAAACACATTTGGGA CCTGCCCAAACCCTT CTTAATAGCAACAGA
AACACATTTGGGATG TGCCCAAACCCTTAA TAATAGCAACAGAGC
ACACATTTGGGATGT GCCCAAACCCTTAAC AATAGCAACAGAGCA
CACATTTGGGATGTT CCCAAACCCTTAACT ATAGCAACAGAGCAC
ACATTTGGGATGTTC CCAAACCCTTAACTG TAGCAACAGAGCACT
ATTTGGGATGTTCCT AAACCCTTAACTGAC GCAACAGAGCACTTG
TTTGGGATGTTCCTT AACCCTTAACTGACA CAACAGAGCACTTGA
TTGGGATGTTCCTTT ACCCTTAACTGACAT AACAGAGCACTTGAG
TGGGATGTTCCTTTT CCCTTAACTGACATG ACAGAGCACTTGAGA
GGATGTTCCTTTTTT CTTAACTGACATGGG AGAGCACTTGAGAAC
GATGTTCCTTTTTTC TTAACTGACATGGGC GAGCACTTGAGAACC
ATGTTCCTTTTTTCA TAACTGACATGGGCC AGCACTTGAGAACCA
TGTTCCTTTTTTCAA AACTGACATGGGCCT GCACTTGAGAACCAG
TTCCTTTTTTCAATA CTGACATGGGCCTTT ACTTGAGAACCAGTC
TCCTTTTTTCAATAT TGACATGGGCCTTTA CTTGAGAACCAGTCT
CCTTTTTTCAATATG GACATGGGCCTTTAA TTGAGAACCAGTCTC
CTTTTTTCAATATGC ACATGGGCCTTTAAG TGAGAACCAGTCTCC
TTTTTCAATATGCAA ATGGGCCTTTAAGAA AGAACCAGTCTCCTC
TTTTCAATATGCAAG TGGGCCTTTAAGAAC GAACCAGTCTCCTCA
TTTCAATATGCAAGC GGGCCTTTAAGAACC AACCAGTCTCCTCAC
TTCAATATGCAAGCA GGCCTTTAAGAACCT ACCAGTCTCCTCACT
CAATATGCAAGCAGC CCTTTAAGAACCTTA CAGTCTCCTCACTCT
AATATGCAAGCAGCT CTTTAAGAACCTTAA AGTCTCCTCACTCTG
ATATGCAAGCAGCTT TTTAAGAACCTTAAT GTCTCCTCACTCTGT
TATGCAAGCAGCTTT TTAAGAACCTTAATG TCTCCTCACTCTGTC
TGCAAGCAGCTTTTT AAGAACCTTAATGAC TCCTCACTCTGTCCC
GCAAGCAGCTTTTTA AGAACCTTAATGACA CCTCACTCTGTCCCT
CAAGCAGCTTTTTAT GAACCTTAATGACAA CTCACTCTGTCCCTG
AAGCAGCTTTTTATT AACCTTAATGACAAC TCACTCTGTCCCTGT
GCAGCTTTTTATTCC CCTTAATGACAACAC ACTCTGTCCCTGTCC
CTCTGTCCCTGTCCT AACGGAAAAATAATT TGAGGAAGTGGCTGT
TCTGTCCCTGTCCTT ACGGAAA.AATAATTG GAGGAAGTGGCTGTC
CTGTCCCTGTCCTTC CGGAAAA.ATAATTGC AGGAAGTGGCTGTCC
TGTCCCTGTCCTTCC GGAAAAATAATTGCC GGAAGTGGCTGTCCC
S GTCCCTGTCCTTCCC GAAAAATAATTGCCA GAAGTGGCTGTCCCT
TCCCTGTCCTTCCCT AAAAATAATTGCCAC AAGTGGCTGTCCCTG
CCCTGTCCTTCCCTG AAAATAATTGCCACA AGTGGCTGTCCCTGT
CCTGTCCTTCCCTGT AAATAATTGCCACAA GTGGCTGTCCCTGTG
CTGTCCTTCCCTGTT AATAATTGCCACAAG TGGCTGTCCCTGTGG
GTCCTTCCCTGTTCT TAATTGCCACAAGTC GCTGTCCCTGTGGCC
TCCTTCCCTGTTCTC AATTGCCACAAGTCC CTGTCCCTGTGGCCC
CCTTCCCTGTTCTCC ATTGCCACAAGTCCA TGTCCCTGTGGCCCC
CTTCCCTGTTCTCCC TTGCCACAAGTCCAG GTCCCTGTGGCCCCA
TCCCTGTTCTCCCTT GCCACAAGTCCAGCT CCCTGTGGCCCCATC
CCCTGTTCTCCCTTT CCACAAGTCCAGCTG CCTGTGGCCCCATCC
CCTGTTCTCCCTTTC CACAAGTCCAGCTGG CTGTGGCCCCATCCA
CTGTTCTCCCTTTCT ACAAGTCCAGCTGGG TGTGGCCCCATCCAA
GTTCTCCCTTTCTCT AAGTCCAGCTGGGAA TGGCCCCATCCAACC
TTCTCCCTTTCTCTC AGTCCAGCTGGGAAG GGCCCCATCCAACCA
TCTCCCTTTCTCTCT GTCCAGCTGGGAAGC GCCCCATCCAACCAC
CTCCCTTTCTCTCTC TCCAGCTGGGAAGCC CCCCATCCAACCACT
CCCTTTCTCTCTCCT CAGCTGGGAAGCCCT CCATCCAACCACTGT
CCTTTCTCTCTCCTC AGCTGGGAAGCCCTT CATCCAACCACTGTA
CTTTCTCTCTCCTCT GCTGGGAAGCCCTTT ATCCAACCACTGTAC
TTTCTCTCTCCTCTC CTGGGAAGCCCTTTT TCCAACCACTGTACA
TCTCTCTCCTCTCTG GGGAAGCCCTTTTTA CAACCACTGTACACA
CTCTCTCCTCTCTGC GGAAGCCCTTTTTAT AACCACTGTACACAC
TCTCTCCTCTCTGCT GAAGCCCTTTTTATC ACCACTGTACACACC
CTCTCCTCTCTGCTT AAGCCCTTTTTATCA CCACTGTACACACCC
CTCCTCTCTGCTTCA GCCCTTTTTATCAGT ACTGTACACACCCGC
TCCTCTCTGCTTCAT CCCTTTTTATCAGTT CTGTACACACCCGCC
CCTCTCTGCTTCATA CCTTTTTATCAGTTT TGTACACACCCGCCT
CTCTCTGCTTCATAA CTTTTTATCAGTTTG GTACACACCCGCCTG
CTCTGCTTCATAACG TTTTATCAGTTTGAG ACACACCCGCCTGAC
TCTGCTTCATAACGG TTTATCAGTTTGAGG CACACCCGCCTGACA
CTGCTTCATAACGGA TTATCAGTTTGAGGA ACACCCGCCTGACAC
TGCTTCATAACGGAA TATCAGTTTGAGGAA CACCCGCCTGACACC
CTTCATAACGGAAAA TCAGTTTGAGGAAGT CCCGCCTGACACCGT
TTCATAACGGAAAAA CAGTTTGAGGAAGTG CCGCCTGACACCGTG
TCATAACGGAAAA.AT AGTTTGAGGAAGTGG CGCCTGACACCGTGG
CATAACGGAAAAATA GTTTGAGGAAGTGGC GCCTGACACCGTGGG
TAACGGAAAAATAAT TTGAGGAAGTGGCTG CTGACACCGTGGGTC
TGACACCGTGGGTCA TTATCTTTCACCTTT CCAAGGCTGTTACCA
GACACCGTGGGTCAT TATCTTTCACCTTTC CAAGGCTGTTACCAT
ACACCGTGGGTCATT ATCTTTCACCTTTCT AAGGCTGTTACCATT
CACCGTGGGTCATTA TCTTTCACCTTTCTA AGGCTGTTACCATTT
ACCGTGGGTCATTAC CTTTCACCTTTCTAG GGCTGTTACCATTTT
CCGTGGGTCATTACA TTTCACCTTTCTAGG GCTGTTACCATTTTA
CGTGGGTCATTACAA TTCACCTTTCTAGGG CTGTTACCATTTTAA
GTGGGTCATTACAAA TCACCTTTCTAGGGA TGTTACCATTTTAAC
TGGGTCATTACAAAA CACCTTTCTAGGGAC GTTACCATTTTAACG
GGTCATTACAAAAAA CCTTTCTAGGGACAT TACCATTTTAACGCT
GTCATTACAAAAAAA CTTTCTAGGGACATG ACCATTTTAACGCTG
TCATTACAAAAAAAC TTTCTAGGGACATGA CCATTTTAACGCTGC
CATTACAAAAAAACA TTCTAGGGACATGAA CATTTTAACGCTGCC
TTACAA.AA.AA.ACACG CTAGGGACATGAAAT TTTTAACGCTGCCTA
TACAAAAAAACACGT TAGGGACATGAAATT TTTAACGCTGCCTAA
ACAA.AAAA.ACACGTG AGGGACATGAAATTT TTAACGCTGCCTAAT
CAAAAAAACACGTGG GGGACATGAAATTTA TAACGCTGCCTAATT
AAAAAACACGTGGAG GACATGAAATTTACA ACGCTGCCTAATTTT
AAAAACACGTGGAGA ACATGAAATTTACAA CGCTGCCTAATTTTG
AAAACACGTGGAGAT CATGAAATTTACAAA GCTGCCTAATTTTGC
AAACACGTGGAGATG ATGAAATTTACAAAG CTGCCTAATTTTGCC
ACACGTGGAGATGGA GAAATTTACAAAGGG GCCTAATTTTGCCAA
CACGTGGAGATGGAA AAATTTACAAAGGGC CCTAATTTTGCCAAA
ACGTGGAGATGGAAA AATTTACAAAGGGCC CTAATTTTGCCAAAA
CGTGGAGATGGAAAT ATTTACAAAGGGCCA TAATTTTGCCAAAAT
TGGAGATGGAAATTT TTACAAAGGGCCATC ATTTTGCCAAAATCC
GGAGATGGAAATTTT TACAAAGGGCCATCG TTTTGCCAAAATCCT
GAGATGGAAATTTTT ACAAAGGGCCATCGT TTTGCCAAAATCCTG
AGATGGAAATTTTTA CAAAGGGCCATCGTT TTGCCAAAATCCTGA
ATGGAAATTTTTACC AAGGGCCATCGTTCA GCCAAAATCCTGAAC
TGGAAATTTTTACCT AGGGCCATCGTTCAT CCAAAATCCTGAACT
GGAAATTTTTACCTT GGGCCATCGTTCATC CAAAATCCTGAACTT
GAAATTTTTACCTTT GGCCATCGTTCATCC AAAATCCTGAACTTT
AATTTTTACCTTTAT CCATCGTTCATCCAA AATCCTGAACTTTCT
ATTTTTACCTTTATC CATCGTTCATCCAAG ATCCTGAACTTTCTC
TTTTTACCTTTATCT ATCGTTCATCCAAGG TCCTGAACTTTCTCC
TTTTACCTTTATCTT TCGTTCATCCAAGGC CCTGAACTTTCTCCC
TTACCTTTATCTTTC GTTCATCCAAGGCTG TGAACTTTCTCCCTC
TACCTTTATCTTTCA TTCATCCAAGGCTGT GAACTTTCTCCCTCA
ACCTTTATCTTTCAC TCATCCAAGGCTGTT AACTTTCTCCCTCAT
CCTTTATCTTTCACC CATCCAAGGCTGTTA ACTTTCTCCCTCATC
TTTATCTTTCACCTT TCCAAGGCTGTTACC TTTCTCCCTCATCGG
TTCTCCCTCATCGGC GCATGGCAGCTGGTT CCATCCGACTGCCCC
TCTCCCTCATCGGCC CATGGCAGCTGGTTG CATCCGACTGCCCCT
CTCCCTCATCGGCCC ATGGCAGCTGGTTGC ATCCGACTGCCCCTG
TCCCTCATCGGCCCG TGGCAGCTGGTTGCT TCCGACTGCCCCTGC
CCCTCATCGGCCCGG GGCAGCTGGTTGCTC CCGACTGCCCCTGCT
CCTCATCGGCCCGGC GCAGCTGGTTGCTCC CGACTGCCCCTGCTG
CTCATCGGCCCGGCG CAGCTGGTTGCTCCA GACTGCCCCTGCTGT
TCATCGGCCCGGCGC AGCTGGTTGCTCCAT ACTGCCCCTGCTGTG
CATCGGCCCGGCGCT GCTGGTTGCTCCATT CTGCCCCTGCTGTGC
TCGGCCCGGCGCTGA TGGTTGCTCCATTTG GCCCCTGCTGTGCTG
CGGCCCGGCGCTGAT GGTTGCTCCATTTGA CCCCTGCTGTGCTGC
GGCCCGGCGCTGATT GTTGCTCCATTTGAG CCCTGCTGTGCTGCT
GCCCGGCGCTGATTC TTGCTCCATTTGAGA CCTGCTGTGCTGCTC
CCGGCGCTGATTCCT GCTCCATTTGAGAGA TGCTGTGCTGCTCAA
CGGCGCTGATTCCTC CTCCATTTGAGAGAC GCTGTGCTGCTCAAG
GGCGCTGATTCCTCG TCCATTTGAGAGACA CTGTGCTGCTCAAGG
GCGCTGATTCCTCGT CCATTTGAGAGACAC TGTGCTGCTCAAGGC
GCTGATTCCTCGTGT ATTTGAGAGACACGC TGCTGCTCAAGGCCA
CTGATTCCTCGTGTC TTTGAGAGACACGCT GCTGCTCAAGGCCAC
TGATTCCTCGTGTCC TTGAGAGACACGCTG CTGCTCAAGGCCACA
GATTCCTCGTGTCCG TGAGAGACACGCTGG TGCTCAAGGCCACAG
TTCCTCGTGTCCGGA AGAGACACGCTGGCG CTCAAGGCCACAGGC
TCCTCGTGTCCGGAG GAGACACGCTGGCGA TCAAGGCCACAGGCA
CCTCGTGTCCGGAGG AGACACGCTGGCGAC CAAGGCCACAGGCAC
CTCGTGTCCGGAGGC GACACGCTGGCGACA AAGGCCACAGGCACA
CGTGTCCGGAGGCAT CACGCTGGCGACACA GGCCACAGGCACACA
GTGTCCGGAGGCATG ACGCTGGCGACACAC GCCACAGGCACACAG
TGTCCGGAGGCATGG CGCTGGCGACACACT CCACAGGCACACAGG
GTCCGGAGGCATGGG GCTGGCGACACACTC CACAGGCACACAGGT
CCGGAGGCATGGGTG TGGCGACACACTCCG CAGGCACACAGGTCT
CGGAGGCATGGGTGA GGCGACACACTCCGT AGGCACACAGGTCTC
GGAGGCATGGGTGAG GCGACACACTCCGTC GGCACACAGGTCTCA
GAGGCATGGGTGAGC CGACACACTCCGTCC GCACACAGGTCTCAT
GGCATGGGTGAGCAT ACACACTCCGTCCAT ACACAGGTCTCATTG
GCATGGGTGAGCATG CACACTCCGTCCATC CACAGGTCTCATTGC
CATGGGTGAGCATGG ACACTCCGTCCATCC ACAGGTCTCATTGCT
ATGGGTGAGCATGGC CACTCCGTCCATCCG CAGGTCTCATTGCTT
GGGTGAGCATGGCAG CTCCGTCCATCCGAC GGTCTCATTGCTTCT
GGTGAGCATGGCAGC TCCGTCCATCCGACT GTCTCATTGCTTCTG
GTGAGCATGGCAGCT CCGTCCATCCGACTG TCTCATTGCTTCTGA
TGAGCATGGCAGCTG CGTCCATCCGACTGC CTCATTGCTTCTGAC
AGCATGGCAGCTGGT TCCATCCGACTGCCC CATTGCTTCTGACTA
ATTGCTTCTGACTAG CTCTCAGTGAAGGTG
TTGCTTCTGACTAGA TCTCAGTGAAGGTGG
TGCTTCTGACTAGAT CTCAGTGAAGGTGGG
GCTTCTGACTAGATT TCAGTGAAGGTGGGG
CTTCTGACTAGATTA CAGTGAAGGTGGGGA
TTCTGACTAGATTAT AGTGAAGGTGGGGAG
TCTGACTAGATTATT GTGAAGGTGGGGAGA
CTGACTAGATTATTA TGAAGGTGGGGAGAA
TGACTAGATTATTAT GAAGGTGGGGAGAAG
ACTAGATTATTATTT AGGTGGGGAGAAGCT
CTAGATTATTATTTG GGTGGGGAGAAGCTG
TAGATTATTATTTGG GTGGGGAGAAGCTGA
AGATTATTATTTGGG TGGGGAGAAGCTGAA
ATTATTATTTGGGGG GGGAGAAGCTGAACC
TTATTATTTGGGGGA GGAGAAGCTGAACCG
TATTATTTGGGGGAA GAGAAGCTGAACCGG
ATTATTTGGGGGAAC AGAAGCTGAACCGGC
TATTTGGGGGAACTG
ATTTGGGGGAACTGG
TTTGGGGGAACTGGA
TTGGGGGAACTGGAC
GGGGGAACTGGACAC
GGGGAACTGGACACA
GGGAACTGGACACAA .
GGAACTGGACACAAT
AACTGGACACAATAG
ACTGGACACAATAGG
CTGGACACAATAGGT
TGGACACAATAGGTC
GACACAATAGGTCTT
ACACAATAGGTCTTT
CACAATAGGTCTTTC
ACAATAGGTCTTTCT
AATAGGTCTTTCTCT
ATAGGTCTTTCTCTC
TAGGTCTTTCTCTCA
AGGTCTTTCTCTCAG
GTCTTTCTCTCAGTG
TCTTTCTCTCAGTGA
CTTTCTCTCAGTGAA
TTTCTCTCAGTGAAG
TCTCTCAGTGAAGGT
Sub-confluent HaCaT cells were treated as described above with phosphorothioate oligonucleotides IGFR.AS (antisense: 5'-ATCTCTCCGCTTCCTTTC-3'; ( < 400 > 10);
ref S 13) and IGFR.S (sense control: 5'-GAAAGGAAGCGGAGAGAT-3'; ( < 400 > 11); ref 13) IGF-I binding to the cell monolayers was then measured as 'zsI_IGF-I.
The results of this experiment are shown in Figures 7 and 8.
HaCaT cells were initially plated in DMEM with 10 % v/v serum, then AS oligo experiments were performed in complete "Keratinocyte-SFM" (Gibco) to exclude the influence of exogenous IGFBPs. Oligos were synthesised as phosphorothioate (nuclease-resistant) derivatives (Bresatec, South Australia) and were as follows: antisense: AS2, 5'-GCGCCCGCTGCATGACGCCTGCAAC-3' (IGFBP-3 start codon); controls: AS2NS, 5'-CGGAGATGCCGCATGCCAGCGCAGG-3'; AS4, 5'-AGGCGGCTGACGGCACTA-3'; AS4NS, 5'-GACAGCGTCGGAGCGATC-3';
IGFRAS, 5'-ATCTCTCCGCTTCCTTTC-3';
IGFRS, 5'-GAAAGGAAGCGGAGAGAT-3'. Oligos to IGFBP-3 were based on the published sequence of Spratt et al [12]. AS oligos were added to HaCaT
monolayers in O.SmI
medium in 24-well plates at the concentrations and addition frequencies indicated. IGFBP-3 measured in cell-conditioned medium using a dot-blot assay, adapted from the Western ligand blot method of Hossenlopp et al [11], in which 100.1 of conditioned medium was applied to nitrocellulose filters with a vacuum dot-blot apparatus. After drying the membranes at 37°C, relative amounts of IGFBP are determined by 'zsI-IGF-I-binding, autoradiography and computerised imaging densitometry. Triplicate wells (except in Figure 7, where duplicate wells were measured as shown) were analysed and corrected for changes in cell number per well. Relative cell number per well was determined using an amido black dye method, developed specifically for cultured monolayers of HaCaT cells [14]. Cell numbers differed by less than 10% after treatment. For oligos to the IGF receptor, receptor quantitation in intact HaCaT monolayers was by overnight incubation with 'ZSI-IGF-I
(30,OOOcpm/well) at 4°C.
Experiments involving ribozymes are generally conducted as described in Internaitonal Patent Application No. WO 89/05852 and in Haselhoff and Gerlach [8]. Ribozymes are constructed with a hybridising region which is complementary in nucleotide sequence to at least part of a target RNA which, in this case, encodes IGFBP-2. Activity of ribozymes is measurable on, for example, Northern blots or using animal models such as in the nude mouse model (15; 16) or the "flaky skin" mouse model (17; 18).
The methods described in Example 11 are used for the screening of ribozymes which inhibit IGFBP-3 production. The activity of the ribozymes is determined as in Example 11.
The methods described in Example 11 are used for the screening of ribozymes which inhibit IGF-1 production. The activity of the ribozymes is determined as in Example 11.
The methods described in Example 11 are used for the screening of ribozymes which inhibit IGF-1 production. The activity of the ribozymes is determined as in Example 11.
Twenty-one antisense oligonucleotides targeted to mRNA sequences enducing the receptor, and four random oligonucleotides were synthesized. The antisense oligonucleotides are CS-propynyl-dU, dC l5mer phosphorothioate oligodeoxyribonucleotides. In these oligonucleotides, a phosphorothioate backbone replaces the phosphodiester backbone of naturally occurring DNA. The positions of the 21 sequence specific antisense oligonucleotides relative to the IGF-1 receptor mRNA structure are shown in Figure 9.
Experiments were performed to determine the uptake of the antisense oligonucleotides of Example 15 into keratinocytes. Cells of the differentiated human keratinocyte cell line, HaCaT, were incubated for 24 hours in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10 % (w/v) fetal calf serum (FCS) containing fluorescently labelled oligonucleotide (R451, a randomized sequence oligonucleotide, 30nM) and cytofectin GSV
(2,ug/ml, Glen Research, 44901 Falcon Place, Sterling, VA 20166, Cat. No. 70-3815-78).
Cells were then transferred to oligonucleotide-free medium and fluorescence microcopy and phase contrast images of the cells were obtained. Figure 10 shows fluorescence microscopy (Panel A) and phase contrast (Panel B) images of uptake of fluorescently labelled oligonucleotide in the majority of cells in a HaCaT monolayer. The degree of uptake obtained with the cationic lipid cytofectin was far greater than the uptake obtained with the next best lipid tried, Tfx-50.
A further experiment was performed to assess the uptake and toxicity associated with the use of cytofectin GSV over five days. Confluent HaCaT keratinocytes were incubated in DMEM
containing fluorescently labelled oligonucleotide 8451 (30nM or 100 nM) plus cytofectin GSV (2,ug/ml or S,ug/ml) over 120 hours, viewed by fluorescence microscopy, tryptan blue stained, and counted. The graphs in Figure 11 depict uptake (Panel A) and toxicity (Panel B). The proportion of cells containing oligonucleotide remained high over the 120 hour period. The combination of 30 nM oligonucleotide and 2,ug/ml GSV provided optimal uptake and minimal toxicity.
The twenty-one oligonucleotides of Example 15 were then screened for their ability to inhibit IGF-I receptor mRNA levels in HaCaT cells, in accordance with the teachings herein. HaCaT
cells were grown to 90 % confluence in DMEM supplemented with 10 % (v/v) FCS.
Antisense oligonucleotides (30nM) were completed with cytofectin GSV (2,ug/ml) and added tot he cells in the presence of serum. HaCaT keratinocytes were treated with the oligonucleotide/GSV complexes or randomized sequence oligonucleotides (R451, R766), liposome alone (GSV), or were left untreated (UT). Duplicate treatments were performed.
Repeat additions of the oligonucleotides/GSV complex were performed at 24, 48 and 76 hours following the first addition. Total RNA was isolated as per the RNAzoIB
protocol (Biotecx Laboratories, Inc. 6023 South Loop East, Houston, TX 77033) 96 hours following the first S addition.
IGF-I receptor mRNA and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA
levels were simultaneously determined by a ribonuclease (RNase) protection assay. The RNase Protection Assay kit, in vitro transcription kit, and IGF-I receptor and GAPDH DNA
templates were obtained from Ambion, Inc. (2130 Woodward St., Houston, TX
78744). The amount of IGF-I receptor mRNA in any given sample was expressed as the amount of IGF-I
receptor mRNA relative to the amount of GAPDH mRNA. Each oligonucleotide was tested in at least two separate experiments.
Figure 12 depicts representative results of the screening process. Panel A
shows an electrophoretic analysis of IGF-I receptor and GAPDH mRNA fragments after RNase protection. Molecular weight markers are shown on the right hand side. The full-length probe is shown on the left hand side; G-probe indicates the IGF-I receptor probe. GAPDH
protected fragments (G) are seen at 316 bases and IGF-I protected fragments (I) are seen at 276 bases. Exhibit E, Panel B provides a graph indicating the relative level of IGF-I receptor mRNA following each treatment.
The results obtaining from the above screening assays are summarized in Figure 13. The graph depicts the relative level of IGF-I receptor mRNA after treatment with oligonucleotides complementary to the human IGF-I receptor mRNA (26-86), four randomized sequence oligonucleotides (R1, R4, R7, R9), liposome alone (GSV), or no treatment (UT).
Asterisks indicate a significant different in relative IGF-I receptor mRNA as compared to GSV treated cells (n=4-10, p < 0.05).
As demonstrated in Figure 13, treatment with eighteen of the twenty-one oligonucleotides resulted in a significant different in levels of IGF-I receptor mRNA relative to GSV treated cells. Three of the antisense oligonucleotides tested in the screening assay reduce IGF-I
receptor mRNA to less than 35 % of GSV-treated cells. These antisense oligonucleotides have the following sequences, presented in the 5' to 3' direction:
#27 UCCGGAGCCAGACUU
#64 CACAGUUGCUGCAAG
#78 UCUCCGCUUCCUUUC
As further demonstrated in Figure 13, six of the antisense oligonucleotides tested in the screening assay reduce IGF-I receptor mRNA to between 35 and 50% of GSV-treated cells.
These antisense oligonucleotides have the following sequences, presented in the 5' to 3' direction:
#28 AGCCCCCACAGCGAG
#32 GCCUUGGAGAUGAGC
#40 UAACAGAGGUCAGCA
#42 GGAUCAGGGACCAGU
#46 CGGCAAGCUACACAG
#50 GGCAGGCAGGCACAC
Another experiment was performed demonstrating that antisense oligonucleotides targeted to genetic sequences encoding the IGFOI receptor and that reduce IGF-I receptor mRNA levels also inhibit the IGF-I receptor level on the surface of the treated cultured keratinocytes.
HaCaT cells were grown to confluence in 24-well plates in DMEM containing 10 %
(v/v) FCS. Oligodeoxynucleotide and cytofectin GSV were mixed together in serum-free DMEM, and incubated at room temperature for 10 minutes before being diluted ten-fold in medium and placed on the cells. Cells were incubated for 72 hours with 30nM random sequence or antisense oligonucleotide and 2,um/ml GSV, or with GSV alone in DMEM
containing 10%
(v/v) FCS with solutions replaced every 24 hours. This was followed by incubation with oligonucleotide/GSV in serum-free DMEM for 48 hours. All incubations were performed at 37°C. Cells were washed twice with lml cold PBS. Serum-free DMEM
containing 10-'°M'ZSI-IGF-I was added with or without the IGF-I analogue, des (1-3) IGF-I, at 10-"M to 10-'M. Cells were incubated at 4°C for 17 hours with gentle shaking, then washed three times with lml cold PBS and lysed in 250~c1 O.SM NaOH/0.1 % (v/v) Triton X-100 at room temperature for 4 hours. Specific binding of the solubilised cell extract was measured using a gamma counter. As shown in Figure 14, treatment of HaCaT keratinocytes with oligonucleotide reduced cell surface IGF-I receptor levels to 30 % of levels in untreated keratinocytes or in keratinocytes treated with liposome alone or a random oligonucleotide, 8766. As shown in Figure 15, treatment with oligonucleotide #27 also significantly reduced cell surface IGF-I receptor levels relative to untreated keratinocytes or treatment with liposome alone or random nucleotide 8451. As demonstrated in Example 17, oligonucleotides #64 and #27 reduce IGF-I receptor mRNA levels in cultured keratinocytes to less than 35% of GSV-treated cells. Accordingly, the ability of an oligonucleotide to reduce IGF-I receptor mRNA levels in correlated with its ability to reduce cell surface IGF-I
receptor levels.
The forgoing Examples demonstrate that antisense oligonucleotides targeted to the IGF-I
receptor can be delivered to human keratinocytes in vitro, can inhibit IGF-I
receptor mRNA
levels in human keratinocytes in vitro, and that inhibition of mRNA levels is correlated with reduction of cell surface IGF-I receptor levels.
Further experiments demonstrated the efficacy of antisense oligonucleotides targeted tot he IGF-I receptor in an in vivo model of psoriasis. An animal model of psoriasis is the human psoriatic skin xenograft model. The skin used in this model contains the true disease state.
In this model, reduction in epidermal thickness of psoriatic grafts in response to treatment is positively correlated with efficacy of treatment. Both normal and psoriatic human skin were grated into a thymic (nude) mice in accordance with a thymic (nude) mice in accordance with the methods of Baker et al (1992) Brit. J. Dermatol. 126:105 and Nanney et al (1992) J.
Invest. Dermatol, 92:296. Successful grafting was achieved, as demonstrated in Figure 16, which shows hemotoxylin and eosin (H&E) stained sections of a 49-day old psoriatic human skin graft (Panel B) compared to the histology of the skin graft prior to grafting (Panel A).
The histological features of psoriasis present in the pregraft section (e.g., parakeratosis, acanthosis and pronounced rete ridges) are present in the grafts more than seven weeks post grafting.
Using the model, oligonucleotide uptake was measured in epidermal keratinocytes in vivo after intradermal injection. Fluorescently labelled oligonucleotide (R451, SO,uI, lO,uM
injection) was intradermally injected into psoriatic and normal skin grafts on a thymic mice.
Live confocal microscopy and fluorescence microscopy of fixed sections was then employed.
Using both techniques, oligonucleotide was found to localize in the nucleus of over 90 % of basal keratinocytes. Figure 17 shows the nuclear localization of oligonucleotide in psoriatic skin cells using conventional fluorescence microscopy of a graft that was removed and sectioned after 24 hours.
After establishing oligonucleotide uptake in the in vivo model, a small number of pilots experiments were performed to determine a schedule for treatment of grated mice with antisense oligonucleotides targeted to genetic sequences encoding the IGF-I
receptor. The treatment schedule was finalized as follows:
Graft Number Treatment Volume ODN Duration of Concentrationof Injection Treatment 1-3 Vehicle (PBS) SO,uI - 20 days 4-6 RandomODN#R451 SO,uI lO,uM 20 days S 7-9 ODN#27 SO,uI 10~M 20 days 10-12 ODN#74 501 lO,uM 20 days 13-15 ODN#50 SO,uI 10~M 20 days As determined above, oligonucleotide #27 (ODN #27) reduced IGF-I receptor mRNA
in vitro to less than 35 % of GSV-treated cells. Oligonucleotide #5O (ODN#50) reduced IGF-I receptor mRNA in vitro to between 35 and 50% of GSV-treated cells.
Oligonucleotide #74 (ODN #74) was not inhibitory to IGF-I receptor mRNA in vitro. In the in vivo model, each mouse received two grafts. Random oligonucleotide or vehicle was injected intradermally in one graft and acted as a control. The second graft was injected with the targeted oligonucleotide. Each graft received an injection every second day for the duration of the treatment.
Histology of representative grafts from each treatment type are shown in Figures 18(a)-(d) and 19(a) - (d). Each sheet shows three images of H&E stained sections: the pregraft histology, the control treated graft, and the targeted oligonucleotide treated graft. Figures 18(a)-(d) are shown at 100x magnification; figures 19(a)-(d) are shown at 400x magnification. The total cross sectional area of epidermis of each graft was assessed using MCID analysis software. The pooled results from all of the treated grafts are shown in Figure 20.
As shown in Figures 18(a)-(d) and 19(a)-(d), the vehicle-treated (control) grafts were marginally thinner than thepregraft sections. The degree of regression in these experiments (ie., less than 10 % ) is not significant. A similar amount of marginal thinning of epidermis compared to pregraft also occurred in pilot experiments in which psoriatic grafts were not injected, and thsu it is unlikely that the vehicle itself has any effect.
Histological features of psoriasis present in skin samples prior to grafting (clubbing of rete ridges, parakeratosis, acanthosis) were present in these grafts.
The random oliognucleotide treated grafts varied in epidermal thickness after 20 days of treatment. Grafts were either a similar thickness to the pregraft histology, or marginally thinner. Random oligonucleotide treated grafts were in each case significantly thicker than their targeted oligonucleotide treated pairs.
As shown in Figure 20, the targeted oligonucleotide treated grafts were significantly thinner than the pregraft sections and showed less parakeratosis and clubbing of rete ridges. Antisense oligonucleotides which were effective at reducing IGF-I
receptor mRNA levels in vitro (#27 and #50) produced greatere epidermal thinning than an oligonucleotide which was not inhibitory to IGF-I receptor mRNA in vitro (#74).
Accordingly, there is a direct correlation between the ability of an oligonucleotide targeted to the IGF-I receptor to inhibit IGF-I receptor mRNA levels in vitro and the efficacy of the oligonucleotide as an anti-psoriasis agent in an in vivo model.
Another experiment demonstrated that treatment of psoriatic grafts with an oligonucleotide targeted to a genetic sequence encoding the IGF-I receptor results in inhibition of proliferation. Pregrafts from psoriatic patients, control grafts treated with 84541, and grafts treated with oligonucleotide #27 were obtained as described in Example 19. An antibody to the cell cycle-specific nuclear antigen Ki67 was used to immunohistochemically detect actively dividing cells and tereby assess proliferation. The aKi67 antibody (DAKO, Glostrup, Denmark) recognizes the Ki67 antigen transiently expressed in nuclei of proliferating cells during late G,, S, M and GZ phases of the cycle and thsu provides a marker for proliferation. Pregraft and graft sections were immunohistochemically processed by standard methods using aKi67 (according to the manufacturer's instructions), peroxidase-conjugated anti-rabbit second stage antibody, and a chromogenic peroxidase substrate.
The results of this experiment are presented in Figure 21 as immunohistochemical sections at 100x magnification. The top panel of Figure 21 depicts a pregraft section obtained from a psoriatic patient. The epidermis is thicker than normal and nucleic are evident in the stratum corneum. Ki67 positive cells, appearing as brown dots, are evidence in the basal and suprabasal layers, and indicate actively proliferating cells. The control (R450-treated) graft in the bottom panel of Figure 21 also exhibits evidence of proliferation, including parakeratosis and Ki67-positive cells appearing as brown-staining nuclei. The center panel of Figure 21 exhibits the oligonucleotide #27-treated graft. This graft exhibits significantly reduced proliferation as evidenced by normal (thin) epidermis, lack of invaginations, and substantial loss of Ki67-positive cells.
These results indicate that treatment of human psoriatic grafts with an oligonucleotide targeted to mRNA encoding the IGF-I receptor results in inhibition of epidermal proliferation.
Topical formulations of complexes of oligonucleotides with cytofectin GSV in aqueous or methylcellulose gel formulations were prepared and assessed foruptake of the oligonucleotide by keratinocytes in vivo. The topical formulations contained oligonucleotides complexed with cytofectin GSV in an aqueous solution or methylcellulose carrier, as taught herein. With both aqueous and methylcellulose gel formulations, locatlization of oligonucleotide 8451 to nuclei and cytoplasm of keratinocytes in normal human skin grafts on nuce mice was observed. Figure 22 shows an image from confocal microscopy demonstrating oligonucleotide locatlization in the nuclei and cytoplasm of keratinocytes in normal human skin grafts after topical application of fluroescently labeled oligonucleotide (lO~cM 8451) complexed with cytofectin GSV (l0,ug/ml). Figure shows an image from confocal microscopy demonstrating that topical application of the same oligonucleotide/GSV concentrations in a 3 % (w/v) methylcellulose gel produced similar uptake in the target keratinocyte population. Using an aqueous formulation of oligonucleotide/GSV complexes, penetration of oligonucleotide into the viable epidermis was observed, whereas application of formulations of oliognucleotide complexed with other cationic lipids resulted in localization of oligonucleotide in the stratum corneum.
Thirteen antisense oligonucleotides targeted to IGFBP-3 were synthesized. The antisense oligonucleotides are CS-propynyl-dU, DclS mer phosphorothioate oligodeoxyribonucleotides. Figure 24 attached hereto is a schematic diagram indicating the position of the thirteen oligonucleotides relative to the IGFBP-3 mRNA
structure.
These oligonucleotides were screened for their ability to inhibit IGFBP-3 mRNA
levels of HaCaT cells in accordance with the teachings herein. HaCaT cells were grown to confluence in DMEM supplemented with 10% (v/v) FCS, then placed in complete keratinocyte serum free medium (KSFM, Gibco), which has a defined amount of EGF, for 24 hours. Oligonucleotides (30nM or 100nM) were complexed with GSV cytofectin (2,ug/ml) and added to cells in complete KSFM to allow oligonucleotides to enter the nucleus before removal of EGF. Repeat additions were performed at three hours (in serum free DMEM, which releases the EGF inhibition of IGFBP-3 mRNA) and again after another 24 hours. HaCaT cells were also treated with randomized sequence oligonucleotides (R121, 8451, 8766 and R961), liposome alone (GSV) or were left untreated (UT). Total RNA was isolated as described in Example 17, 24 hours after the last treatment. Total RNA (l5,ug) was analyzed by Northern analysis and phosphoroimager quantitation for IGFBP-3 and GADPH mRNA. IGFBP-3 mRNA is expressed as the amount of IGFBP-3 mRNA relative to the amount of GAPDH mRNA.
Figures 25(a)-(d) provide graphs which depict results in this screening process. In these graphs, R1 and R12 refer to 8121; R4, R4(0) and R45 rfer to 8451; R7, R7(0) and R76 refer to 8766; and R9 and R96 refer to 8961. The values were standardized to GSV-treated cells, and data was pooled and statistically analyzed by ANOVA
followed by Domet's test to compare each treatment to GSV-treated cells. The pooled data are presented as a bar graph in Figure 26. As demonstrated, at a concentration of 30nM, treatment of HaCaT cells with 8 of the 12 targeted oligonucleotides tested resulted in a statistically significant reduction in levels of IGFBP-3 mRNA relative to GSV-treated cells. At a concentration of 100nM, treatment with 9 fo the 13 targeted oligonucleotides tested resulted in a statistically significant reduction in levels of IGFBP-3 mRNA relative to GSV-treated cells.
These experiments demonstrate that antisense oligonucleotides targeted to genetic sequences encoding IGFBP-3 can inhibit IGFBP-3 mRNA levels in human keratinocytes in vitro.
IGF-I receptor is a potent mitotic signalling molecule for keratinocytes and the human receptor elicits separate intracellular signals that prevent apoptosis (19).
It is proposed in accordance with the present invention that inactivation of IGF-I receptors in epidermal keratinocytes will achieve three important outcomes in subsequent UV treatment of lesions:
(i) Acute epidermal hyperplasia following UV has been suggested to increase the risk of keratinocyte carcinogenic transformation (22). By reducing IGF-I receptor expression in the epidermis, the incidence of epidermal hyperplasia following UV
exposure is likely to be reduced leading to an overall acceleration in normalization of the lesion and reduced carcinogenic risk.
(ii) Inhibition of anti-apoptotic action of IGF-I receptor will enhance the reversal of epidermal thickening and accelerate normalization of differentiation. Topical or injected IGF-I receptor antisense as adjunctive treatment will increase apoptosis in the epidermal layer thereby enhancing the reduction in acanthosis observed in UV
treatments.
(iii) Survival of keratinocytes, ie. those which evade apoptosis is likely to occur when cells have damaged DNA. Such mutations may be in the tumor suppressor region.
Consequently, the use of antisense therapy will result in less frequent selection of mutated keratinocytes and therefore reduced incidence of basal cell carcinomas and squamous.
Accordingly, antisense therapy, especially against IGF-I-receptor is useful in combination with UV therapy in the treatment of epidermal hyperplasia.
HaCaT cells were treated with antisense oligonucleotides directed to IGF-I
receptor mRNA. Levels of IGF-I receptor mRNA were then monitored. In essence, confluent HaCaT cells were treated every 24 hours for four days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM IGF-I receptor specific oligonucleotides (#26 to #86) or random sequence oligonucleotides (R121, 8451 and R76c~. Figure 27(a) is a photographic representation showing representative RNase protection assay gel showing IGF-I
receptor (IGFR) and GAPDH mRNA in untreated or treated HaCaT cells. Figure 27(b) is a densitometric quantification of IGF-I receptor mRNA in a HaCaT cells following treatment with IGF-I receptor specific oligonucleotides (solid black) random sequence oligonucleotides (horizontal striped bar) or GSV alone (shaded bar) compared to untreated cells (UT, vertical striped bar).
In this example, reduction in total cellular IGF-I receptor protein was monitored following antisense oligonucleotide treatment. Confluence HaCaT cells were treated with 24 hours for 4 days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM IGF-I
receptor specific AONS (#27, #50 and #64) or the random sequence oligonucleotide, 8451.
Total cellular protein was isolated and analysed for IGF-I receptor by SDS PAGE
followed by western blotting with antibody specific for the human IGF-I receptor. Figure 28(a) shows duplicate treated cellular extracts following the IGF-I receptor at the predicted size of 110 kD. Figure 28(b) is a densitometric quantification of IGF-I receptor protein.
The reduction in IGF-I receptor numbers was determined on the keratinocyte cell surface after antisense oligonucleotide treatment. HaCaT cells were tranfected with IGF-I receptor specific AONs #27, #50, #64, a random sequence oligonucleotides (R451) or following treatment with GSV a lipid alone every 24 hours for 4 days. Competition binding assays using 'ZSI-IGF-I and the receptor-specific analogue, des(1-3)IGF-I were performed.
Results are shown in Figure 29.
In this example, the apoptotic protecting effects of IGF-I receptor on keratinocyte cells was tested by following the reduction in keratino cell numbers following antisense oligonucleotide treatment. HaCaT cells, initially at 40 % confluence, were transfected with the IGF-I receptor specific AON #64, control sequences 8451 and 6414 or treated with GSV a lipid alone every 24 hours for 2 days. The cell number was measured in culture wells using a dye binding assay. The results are presented in Figure 30. The results clearly confirm that the IGF-I receptor exhibits an anti-apoptotic effect. By reducing IGF-I
receptor levels using antisense oligonucleotide treatment, the anti-apoptotic effect is interrupted and apoptosis results in the reduction in keratinocyte cell number. Results are shown in Figure 30.
This example shows a reversal of epidermal hyperplasia in psoriatic human skin grafts on nude mice following intradermal injection with antisense oligonucleotides.
Grafted psoriasis lesions were injected with IGF-I receptor specific AONs, a random sequence oligonucleotide in PBS, or with PBS alone, every 2 days for 20 days, then analysed histologically. The results are shown in Figure 31. In Figure 31(a), donor A
graft treated with AON #50 showing epidermal thinning compared with the pregraft and control (PBS) treated graft and donor graft treated with AON #27 showing epidermal thinning compared with pregraft and control (R451) treated graft. In Figure 31(b), the mean epidermal cross sectional area over the full width of grafts is shown as determined by digital image analysis. The results show that epidermal hyperplasia is reversed following the intradermal injection of antisense oligonucleotides.
Figure 32 shows the reversal of epidermal hyperplasia correlating with reduced IGF-I
receptor mRNA in grafted psoriasis lesions treated with antisense oligonucleotides. Figure 32(a) shows a psoriasis lesion prior to grafting and after grafting and treatment with IGF-I
receptor specific oligonucleotide #27 (AON #27) or random sequence (R451) immunostained with antibodies to Ki67 to identify proliferating cells.
Proliferating cells 1 S are indicated by a dark brown nucleus (arrows). Figure 32(b) shows the same lesion prior to grafting and after oligonucleotide treatment as in Figure 32(a) but subjected to in situ hybridisation with 35S-labelled cRNA probe complementary to the human IGF-I
receptor mRNA. The presence of IGF-I receptor mRNA is indicated by silver grains which are almost eliminated in the epidermis of the lesion treated with IGF-I receptor specific oligonucleotide # 27 (AON #27). This experiment shows that reversal of epidermal hyperplasia correlates with reduced IGF-I receptor mRNA in grafted psoriasis lesions treated with antisense oligonucleotides.
Figure 33 treatment with oligonucleotides. HaCaT cell monolayers were grown to 90%
confluence in DMEM containing 10 % fetal calf serum treated every 24 hours for two days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM oligonucleotide.
Total RNA was isolated and analysed for IGF-I receptor and GAPDH mRNA using a commercially available ribonuclease protection assay kit. The results show a reduction in IGF-I receptor mRNA in the HaCaT keratinocyte cells.
Figure 34 treatment with oligonucleotides. HaCaT cell monolayers were grown to 90%
confluence in DMEM containing 10 % fetal calf serum treated every 24 hours for 4 days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM oligonucleotide.
Cells were lysed in a buffer containing 50 mM HEPES, 150 mM NaCI, 10 % v/v glycerol, 1 v/v Trison X-100 and 100 ,ug/ml aprotinin on ice for 30 minutes, then 30 ,ug of lysate was loaded onto a denaturing 7 % w/v polyacrylamide gel followed by transfer onto an Immobilon-P membrane. Membranes were then incubated with anti-IGF-I receptor antibodies C20 (available from Santa Cruz Biotechnology Inc., Santa Cruz, California) for 1 hour at room temperature and developed using the Vistra ECF western blotting kit (Amersham). The results shown in Figure 34 confirm that IGF-I receptor protein is reduced in HaCaT keratinocytes following treatment with oligonucleotides.
This example shows a reduction in HaCaT keratinocyte cell number following treatment with oligonucleotides. The results are shown in Figure 35. HaCaT cell monolayers were grown at 40 % confluence in DMEM containing 10 % fetal calf serum treated every 24 hours for 3 days with 2 ~g/ml GSV lipid alone (GSV) or complexed with 15 nM
oligonucleotide. Cell numbers were then measured every 24 hours using the amido black dye binding assay [32]. Results show that HaCaT keratino cells decrease in number following treatment with oligonucleotides due to a reduction in the anti-apoptotic effect of the IGF-I receptor.
Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.
REFERENCES:
1. Sara V Physiological Reviews 70:591-614, 1990.
2. Rechler MM and Brown AL Growth Regulation 2:55-68, 1992.
3. Clemmons DR Growth Regn 2:80, 1992.
4. Oakes SR, KM Haynes, MJ Waters, AC Herington and GA Werther J. Clin Endocrinol Metab 73:1368-1373, 1992.
5. Camacho-Hubner C et al. JBiol Chem 267:11949-11956, 1992.
MEDICAL DISORDERS
FIELD OF THE INVENTION
The present invention relates generally to a method for the prophylaxis and/or treatment of medical disorders, and in particular proliferative and/or inflammatory skin disorders, and to genetic molecules useful for same. The present invention is particularly directed to genetic molecules capable of modulating growth factor interaction with its receptor on cells such as epidermal keratinocytes to inhibit, reduce or otherwise decrease stimulation of this layer of cells.
The present invention contemplates, in a particularly preferred embodiment, a method for the prophylaxis and/or treatment of psoriasis or neovascularization conditions such as neovascularization of the retina. The present invention is further directed to the subject genetic molecules in adjunctive therapy for epidermal hyperplasia, such as in combination with UV
treatment, and to facilitate apoptosis of cancer cells and in particular cancer cells comprising keratinocytes.
BACKGROUND OF THE INVENTION
Bibliographic details of the publications numerically referred to in this specification are collected at the end of the description.
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that that prior art forms part of the common general knowledge in Australia or any other country.
Psoriasis and other similar conditions are common and often distressing proliferative and/or inflammatory skin disorders affecting or having the potential to affect a significant proportion of the population. The condition arises from over proliferation of basal keratinocytes in the epidermal layer of the skin associated with inflammation in the underlying dermis. Whilst a range of treatments have been developed, none is completely effective and free of adverse side effects. Although the underlying cause of psoriasis remains elusive, there is some consensus of opinion that the condition arises at least in part from over expression of local growth factors and their interaction with their receptors supporting keratinocyte proliferation via keratinocyte receptors which appear to be more abundant during psoriasis.
One important group of growth factors are the dermally-derived insulin-like growth factors (IGFs) which support keratinocyte proliferation. In particular, IGF-I and IGF-II are ubiquitous peptides each with potent mitogenic effects on a broad range of cells.
Molecules of the IGF type are also known as "progression factors" promoting "competent" cells through DNA synthesis.
The IGFs act through a common receptor known as the Type I or IGF-I receptor, which is tyrosine kinase linked. They are synthesised in mesenchymal tissues, including the dermis, and act on adjacent cells of mesodermal, endodermal or ectodermal origin. The regulation of their synthesis involves growth hormone (GH) in the liver, but is poorly defined in most tissues [ 1 ].
Particular proteins, referred to as IGF binding proteins (IGFBPs), appear to be involved in autocrine/paracrine regulation of tissue IGF availability [2]. Six IGFBPs have so far been identified. The exact effects of the IGFBPs is not clear and observed effects in vitro have been inhibitory or stimulatory depending on the experimental method employed [3].
There is some evidence, however, that certain IGFBPs are involved in targeting IGF-I to its cell surface receptor.
Skin, comprising epidermis and underlying dermis, has GH receptors on dermal fibroblasts [4].
Fibroblasts synthesize IGF-I as well as IGFBPs-3, -4, -5 and -6 [5] which may be involved in targeting IGF-I to adjacent cells as well as to the overlaying epidermis. The major epidermal cell type, the keratinocyte, does not synthesize IGF-I, but possesses IGF-I
receptors and is responsive to IGF-I [6].
It is apparent, therefore, that IGF-I and other growth promoting molecules, are responsible for or at least participate in a range of skin cell activities. In accordance with the present invention, the inventors have established that aberrations in the normal functioning of these molecules or aberrations in their interaction with their receptors is an important factor in a variety of medical disorders such as proliferative and/or inflammatory skin disorders. It is proposed, therefore, to target these molecules or other molecules which facilitate their functioning or interaction with their receptors to thereby ameliorate the effects of aberrant activity during or leading to skin disease conditions and other medical conditions such as those involving neovascularization.
Furthermore, these molecules may also be used to facilitate apoptosis of target cells and may be useful as adjunctive therapy for epidermal hyperplasia.
SUMMARY OF THE INVENTION
Nucleotide and amino acid sequences are referred to by a sequence identifier, i.e. (<400>1), (<400>2), etc. A sequence listing is provided after the claims.
Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.
Accordingly, one aspect of the present invention contemplates a method for ameliorating the effects of a medical disorder such as a proliferative and/or inflammatory skin disorder in a mammal, said method comprising contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation or a cell otherwise involved in the said medical disorder with an effective amount of a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing a growth factor mediated cell proliferation and/or inflammation and/or other medical disorder.
According to this preferred embodiment, there is provided a method for ameliorating the effects of a medical disorder such as a proliferative and/or inflammatory skin disorder in a mammal, said method comprising contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation or a cell otherwise involved with said medical disorder with an effective amount of a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation and/or inflammation and/or other medical disorder.
According to this embodiment, there is provided a method for ameliorating the effects of a proliferative and/or inflammatory skin disorder such as psoriasis said method comprising contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation with effective amounts of UV treatment and a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation and/or inflammation.
According to this embodiment, there is provided in a particularly preferred aspect a ribozyme comprising a hybridising region and a catalytic region wherein the hybridising region is capable of hybridising to at least part of a target mRNA sequence transcribed from a genomic gene corresponding to <400>1 or <400>2 wherein said catalytic domain is capable of cleaving said target mRNA sequence to reduce or inhibit IGF-I mediated cell proliferation and/or inflammation and/or other medical disorders.
Yet another aspect of the present invention contemplates co-suppression to reduce expression or to inhibit translation of an endogenous gene encoding, for example, IGF-I, its receptor, or IGFBPs such as IGFBP-2 and/or -3. In co-suppression, a second copy of an endogenous gene or a substantially similar copy or analogue of an endogenous gene is introduced into a cell following topical administration. As with antisense molecules, nucleic acid molecules defining a ribozyme or nucleic acid molecules useful in co-suppression may first be protected such as by using a nonionic backbone.
Another aspect of the present invention contemplates a pharmaceutical composition for topical administration which comprises a nucleic acid molecule capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation such as psoriasis and one or more pharmaceutically acceptable Garners and/or diluents.
-$-Yet another aspect of the present invention contemplates the use of a nucleic acid molecule in the manufacture of a medicament for the treatment of proliferative and/or inflammatory skin disorders or other medical disorders mediated by a growth factor.
Still a further aspect of the present invention contemplates an agent comprising a nucleic acid molecule as hereinbefore defined useful in the treatment of proliferative and/or inflammatory skin disorders, such as psoriasis or other medical disorder..
The present invention further contemplates the use of the genetic molecules and in particular the antisense molecules to inhibit the anti-apoptotic activity of IGF-I
receptor.
BRIEF DESCRIPTION OF THE FIGURES
Figure 1 is a representation of the nucleotide sequence of IGFBP-2.
LOCUS HSIGFBP2 1433 by RNA PRI 31-JAN-1990 S DEFINITIONHuman mRNA for insulin-like growth factor binding protein (IGFBP-2) KEYWORDS insulin-like growth factor binding protein.
SOURCE human ORGANISM Homo Sapiens IO Eukaryota; Animalia; Metazoa; Chordata; Vertebrata;
Mammalia;
Theria; Eutheria; Primates; Haplorhini; Catarrhini;
Hominidae.
REFERENCE 1 (bases 1 to 1433) AUTHORS Binkert,C., Landwehr,J., Mary,J.L., Schwander,J.
and Heinrich,G.
TITLE Cloning, sequence analysis and expression of a cDNA
encoding a 1S novel insulin-like growth factor binding protein (IGFBP-2) JOURNAL EMBO J. 8, 2497-2502 (1989) STANDARD full automatic COMMENT NCBI gi: 33009 FEATURES Location/Qualifiers ZO source 1. .1433 /organism="Homo Sapiens"
/dev stage="fetal"
/tissue type="liver"
misc eature 1416. .1420 f _ /note="pot. polyadenylation signal"
ZS
polyA site 1433 /note="polyadenylation site"
CDS 118. .1104 /note="precursor polypeptide; (AA -39 to 289); NCBI
gi:
3O 33010. "
/codon start=1 /translation="MLPRVGCPALPLPPPPLLPLLPLLLLLLGASGGGGGARAEVLFR
CPPCTPERLAACGPPPVAPPAAVAAVAGGARMPCAELVREPGCGCCSVCARLEGEACG
VYTPRCGQGLRCYPHPGSELPLQALVMGEGTCEKRRDAEYGASPEQVADNGDDHSEGG
KKLRPPPARTPCQQELDQVLERISTMRLPDERGPLEHLYSLHIPNCDKHGLYNLKQCK
MSLNGQRGECWCVNPNTGKLIQGAPTIRGDPECHLFYNEQQEACGVHTQRMQ"
(<400>21) CDS 118. .234 4O /note="signal peptide; (AA -39 to -1); NCBI gi: 33011."
/codon start=1 /translation="MLPRVGCPALPLPPPPLLPLLPLLLLLLGASGGGGGARA"
(<400>22) CDS 235. .1101 4S /note="mature IGFBP-2; (AA 1 to 289); NCBI gi: 33012."
/codon start=1 /translation="EVLFRCPPCTPERLAACGPPPVAPPAAVAAVAGGARMPCAELVR
EPGCGCCSVCARLEGEACGVYTPRCGQGLRCYPHPGSELPLQALVMGEGTCEKRRDAE
YGASPEQVADNGDDHSEGGLVENHVDSTMNMLGGGGSAGRKPLKSGMKELAVFREKVT
SO EQHRQMGKGGKHHLGLEEPKKLRPPPARTPCQQELDQVLERISTMRLPDERGPLEHLY
SLHIPNCDKHGLYNLKQCKMSLNGQRGECWCVNPNTGKLIQGAPTIRGDPECHLFYNE
QQEACGVHTQRMQ" (<400>23) BASE COUNT 239 a 466 c 501 g 227 t ORIGIN
SS
_ '7 _ HSIGFBP2 Length: 1433 May 11, 1994 10:06 Type: N Check: 6232 ..
Figure 2 is a representation of the nucleotide sequence of IGFBP-3.
S
LOCUS HUMGFIBPA 2474 by ss-mRNA PRI 15-JUN-1990 DEFINITION Human growth hormone-dependent insulin-like growth factor-binding protein mRNA, complete cds.
1~ KEYWORDS insulin-like growth factor binding protein.
SOURCE Human plasma, cDNA to mRNA, clone BP-53.
ORGANISM Homo sapiens Eukaryota; Animalia; Chordata; Vertebrata; Mammalia; Theria;
Eutheria; Primates; Haplorhini; Catarrhini; Hominidae.
1S REFERENCE 1 (bases 1 to 2474) AUTHORS Wood,W.I., Cachianes,G., Henzel,W.J., Winslow,G.A., Spencer,S.A., Hellmiss,R., Martin,J.L. and Baxter,R.C.
TITLE Cloning and expression of the growth hormone-dependent insulin-like growth factor-binding protein JOURNAL Mol. Endocrinol. 2, 1176-1185 (1988) STANDARD full automatic COMMENT NCBI gi: 183115 FEATURES Location/Qualifiers mRNA <1. .2474 ZS /note="GFIBP mRNA"
CDS 110. .985 /gene="IGFBP1"
/note="insulin-like growth factor-binding protein; NCBI
gi: 183116."
/codon start=1 /translation="MQRARPTLWAAALTLLVLLRGPPVARAGASSGGLGPWRCEPCD
ARALAQCAPPPAVCAELVREPGCGCCLTCALSEGQPCGIYTERCGSGLRCQPSPDEAR
PLQALLDGRGLCVNASAVSRLRAYLLPAPPAPGNASESEEDRSAGSVESPSVSSTHRV
SDPKFHPLHSKIIIIKKGHAKDSQRYKVDYESQSTDTQNFSSESKRETEYGPCRREME
TKGKEDVHCYSMQSK" (<400>24>) source 1. .2474 /organism="Homo sapiens"
BASE COUNT 597 a 646 c 651 g 580 t HUMGFIBPA Length: 2474 May 11, 1994 10:00 Type: N Check: 9946 ..
4S Figure 3 is a representation of the nucleotide sequence of IGF-1-receptor.
LOCUS HSIGFIRR 4989 by RNA PRI 28-MAR-1991 DEFINITION Human mRNA for insulin-like growth factor I receptor $0 KEYWORDS glycoprotein; insulin receptor;
insulin-like growth factor I receptor; membrane glycoprotein;
receptor; tyrosine kinase.
SOURCE human _g_ ORGANISM
Homo sapiens Eukaryota;
Animalia;
Metazoa;
Chordata;
Vertebrata;
Mammalia;
Theria; Eutheria; Primates; Haplorhini; Catarrhini;
Hominidae.
REFERENCE1 (bases 1 to 4989) AUTHORSUllrich,A., ., Gray, A., Tam,A.W., Yang-Feng,T., Tsubokawa,M
Collins,C., Henzel,W., Bon,T.L., Kathuria,S., Chen,E., Jakobs,S., Francke,U., Ramachandran,J.
and Fujita-Yamaguchi,Y.
TITLE Insulin-like growth factor I receptor primarycomparison structure:
with insulin receptor suggests structural dererminants that define 1~ functional specificity JOURNALEMBO 5, 2503-2512 (1986) J.
STANDARDfull automatic gi:
FEATURES Location/Qualifiers IS source 1. .4989 /organism="Homo sapiens"
/tissue type="placenta"
/clone lib="(lamda)gtl0"
/clone="(lambda)IGF-1-R.85, (lambda)IGF-1-R.76"
sig~eptide 32. .121 mat 122. .4132 peptide /note="IGF-I receptor"
misc_ feature 122. .2251 /note="alpha-subunit (AA 1 - 710)"
25 misc_ feature 182. .190 /note="pot.N-linked glycosylation 23)"
site (AA 21 -misc_ feature 335. .343 /note="pot.N-linked glycostlation 74)"
site (AA 72 -misc_ feature 434. .442 /note="pot.N-linked glycostlation - 107)"
site (AA 105 misc_ feature 761. .769 /note="pot.N-linked glycostlation - 216)"
site (AA 214 misc_ feature 971. .979 /note="pot.N-linked glycostlation - 286)"
site (AA 284 35 misc_ feature 1280. .1288 /note="pot.N-linked glycostlation - 389)"
site (AA 387 misc_ feature 1343. .1351 /note="pot.N-linked glycosylation - 410)"
site (AA 408 misc feature 1631. .1639 _ /note="pot.N-linked glycostlation - 506)"
site (AA 504 misc_ feature 1850. .1858 /note="pot.N-linked glycosylation - 579)"
site (AA 577 misc_ feature 1895. .1903 /note="pot.N-linked glycosylation - 594)"
site (AA 592 45 misc_ feature 1949. .1957 /note="pot.N-linked glycosylation - 612)"
site (AA 610 misc_ feature 2240. .2251 /note="putative proreceptor processing707 -site (AA
710)"
$0 misc_ feature 2252. .4132 /note="beta-subunit (AA 711 - 1337)"
misc_ feature 2270. .2278 /note="pot.N-linked glycosylation - 719]"
site (AA 717 misc_ feature 2297. .2305 $S /note="pot.N-linked glycosylation - 728)"
site (AA 726 misc_ feature 2321. .2329 /note="pot.N-linked glycosylation 736)"
site (AA 734 -misc_ feature 2729. .2737 /note="pot.N-linked glycosylation(AA 870 - 872)"
site misc_ feature 2768. .2776 /note="pot.N-linked glycosylation(AA 883 - 885)"
site misc_ feature 2837. .2908 /note="transmembrane region 929)"
(AA 906 -misc_ feature 2918. .2926 /note="pot.N-linked glycosylation(AA 933 - 935)"
site misc feature 3047. .3049 10_ /note="pot. ATP binding site (AA 976)"
misc_ feature 3053. .3055 /note="pot. ATP binding site (AA 978)"
misc_ feature 3062. .3064 /note="pot. ATP binding site (AA 981)"
15misc_ feature 3128. .3130 /note="pot. ATP binding site (AA 1003)"
CDS 32. .4132 /product="IGF-I receptor"
/note="50 stops when translation attempted, frame 1, code 20 0"
BASE 1216 a 1371 c 1320 g 1082 t COUNT
ORIGIN
HSIGFIRR Length: 4989 May 11, 1994 12:10 Type: N Check: 133 ..
Figure 4A is a photographic representation of a Western ligand blot of HaCaT
conditioned medium showing IGFBP-3 secreted in 24 hours after 7 day treatment with phosphorothioate oligonucleotides (BP3AS2, BP3AS3 and BP3S) at O.S~.M and S~,M;
* no oligonucleotide added.
Figure 4B is a graphical representation of a scanning imaging desitometry of Western ligand blot (Figure 4A), showing relative band intensities of IGFBP-3 and the 24kDa IGFBP-4 after treatment with phosphorothioate oligonucleotides;
* no oligonucleotide added.
Figure 5A is a photographic representation of a Western ligand blot of HaCaT
conditioned medium showing IGFBP-3 secreted in 24 hours after 7 day treatment with phosophorothioate oligonucleotide BP3AS2 at O.S~,M compared with several control oligonucleotides at O.S~.M.
(a) oligonucleotide BP3AS2NS; (b) oligonucleotide BP3AS4; (c) oligonucleotide BP3AS4NS; and (untreated), no oligonucleotide added.
Figure 5B is a graphical representation of a scanning imaging densitometry of Western ligand blot (Figure SA), showing relative band intensities of IGFBP-3 after treatment with phosphorothioate oligonucleotides as in Figure SA, showing IGFBP-3 band intensities expressed as a percentage of the average band intensity from conditioned medium of cells not treated with oligonucleotide.
Figure 6 is a graphical representation showing inhibition of IGF-I binding by antisense oligonucleotides to IGF-I receptor. IGFR.AS: antisense; IGFR.S: sense.
Figure 7 is a graphical representation showing inhibition of IGFBP-3 production in culture medium following initial treatment with antisense oligonucleotides once daily over a 2 day period.
Figure 8 is a graphical representation showing optimization of IGFBP-3 antisense oligonucleotide concentration as determined by relative IGFBP-3 concentration in culture medium.
Figure 9 is a diagramatic representation of a map of IGF-1 Receptor mRNA and position of target ODNs.
Figure 10 is a photographical representation showing Lipid-mediated uptake of oligonucleotide in keratinocytes. HaCaT keratinocytes were incubated for 24 hours in medium (DMEM plus 10% v/v FCS) containing fluorescently labelled ODN (R451, 30 nM) and cytofectin GSV (2 ~g/ml). The cells were then transferred to ODN-free medium and fluorescence microscopy (a) and phase contrast (b) images of the cells were obtained.
Figure 11 is a graphical representation of uptake (A) and toxicity (B) of ODN/lipid complexes in keratinocytes. Confluence HaCaT keratinocytes were incubated in DMEM
containing fluoresently labelled ODN (R451) plus liposome over 120 hours, viewed using fluorescene microscopy and trypan blue stained and counted.
Figure 12 is a graphical representation of an IGF-1 Receptor mRNA in ODN
treated (30nM) HaCaT cells (2~cg/ml GSV). HaCaT keratinocytes were treated for 96 hours with propynyl, dU, dC ODNs complexed with cytofectin GSV. Cells were treated with ODNs complementary to the human IGF-I receptor mRNA (27, 32, 74 and 78), 2 randomised sequence ODNs (R451) and R766), liposome alone (GSV) or were left untreated (UT). Total RNA was isolated then analysed for IGF-I receptor mRNA and GAPDH mRNA levels by RNase Protection and Phosphorlmager quantitiation.
(A) Electrophoretic analysis of IGF-I receptor and GAPDH mRNA fragments after RNase Protection. Molecular weight markers are shown on the right hand side. Full length probe is shown on the left hand side (G-probe and I-probe). GAPDH protected fragments (G) are seen at 316 bases and IGF-I receptor protected fragments (I) are seen at 276 bases.
(B) Relative level of IGF-I receptor mRNA following each treatment is shown.
Figure 13 is a graphical representation of an IGF-1 receptor mRNA in ODN
treated (30nM) HaCaT cells (2,ug/ml GSV). Summary of IGF-I receptor ODN screening data. HaCaT
keratinocytes were treated for 96 hours with C-5 propynyl, dU, dC ODNs complexed with cytofectin GSV. Total RNA was isolated then analysed for IGF-I receptor mRNA
and GAPDH mRNA levels by RNase protection and phosphorImager quantitiation.
Relative level of IGF-I receptor mRNA is shown after treatment with ODNs complementary to the human IGF-I receptor mRNA, 4 randomised sequence ODNs and liposome alone. (26-86=IGF-I
receptor ODNs; R1, R4, R7 and R9 = randomised ODNs (R1=8121, R4=8451, R7=8766, R9=R961); GSV=liposome alone; UT=untreated). *indicates a significant difference in relative IGF-I receptor mRNA from GSV treated cells (n=4-10, p < 0.05).
Figure 14 is a graphical representation of the effect of antisense oligonucleotides on IGF-1 receptor levels on the surface of keratinocytes. HaCaT cells were grown to confluence in 24-well plates in DMEM containing 10% v/v FCS. Oligodeoxynucleotide (ODN) and Cytofectin GSV (GSV, Glen Research) were mixed together in serum-free DMEM, incubated at room temperature for 10 minutes before being diluted ten-fold in medium and placed on the cells.
Cells were incubated for 72 hours with 30 nM random sequence or antisense ODN
and 2 ~cg/ml GSV or with GSV alone in DMEM containing 10% v/v FCS with solutions replaced every 24 hours. This was followed by incubation with ODN/GSV in serum-free DMEM for 48 hours. All incubations were performed at 37°C. Wells were washed twice with 1 ml cold PBS. Serum-free DMEM containing 10-'°M 'z5I-IGF-I was added with or without the IGF-I
analogue, des (1-3) IGF-I, at 10-'°M to 10-'M. Cells were incubated at 4°C for 17 hours with gentle shaking then washed three times with 1 ml cold PBS and lysed in 250 ,u1 O.SM
NaOH/0.1 % v/v Triton X-100 at room temperature for 4 hours. Specific binding of the solubilised cell extract was measured using a y counter.
Figure 15 is a graphical representation of the effect of antisense oligonucleotides on IGF-1 receptor levels on the surface of keratinocytes.
Figure 16 is a photographical representation of H & E stained sections of (A) psoriatic skin biopsy prior to grafting and (B) 49 day old psoriatic skin graft using skin from the same donor.
Figure 17 is a photographical representation of uptake of oligonucleotide after intradermal injection into psoriatic skin graft on a nude mouse. Psoriatic skin graft was intradermally injected with ODN (R451, 50 ,u1, 10 ~cM). The graft was removed and sectioned after 24 hours, then viewed using confocal microscopy.
Figure 18(a) is a photographical representation of Pregraft, Donor JH, Donor JH, PBS
treated, SO~cI, Donor JH, #50 treated, SO,uI, lO,uM.
Figure 18(b) is a photographical representation of Donor LB, pregraft, Donor LB, PBS
treated (SO~cI), Donor LB, #74 treated (SO,uI, lO,uM).
Figure 18(c) is a photographical representation of Donor PW, pregraft, Donor PW, R451 treated (50,u1, lO~cM), Donor LB, #74 treated (50,u1, lO,uM).
Figure 18(d) is a photographical representation of Donor GM, pregraft, Donor GB, 8451 treated (50,u1, lO,uM), Donor GM, #27 treated (50,u1, lO,uM).
Figure 19(a) is a photographical representation showing Donor JH pregraft, Donor JH PBS
treated 50,u1, Donor JH #50 treated 50,u1, lO,uM.
Figure 19(b) is a photographical representation Donor LB pregraft, Donor LB
PBS treated 50,u1, Donor LB #74 treated 50,u1, lO,uM.
Figure 19(c) is a photographical representational showing Donor PW pregraft, Donor PW
r451 treated 501, lO,uM, Donor PW #74 treated 50~c1, IO~cM.
Figure 19(d) is a photographical representation showing Donor GM pregraft, Donor GM
8451 treated 501, 10~M, Donor #27 treated 50,u1, 10~M.
Figure 20 is a graphical representation showing suppression of psoriasis after treatment with oligonucleotide (quantification). Oligonucleotide (50 ,u1, lO,uM) was injected every two days for 20 days, as were control treatments. Skin thickness was measured by removing the skin and using computer software (MCID analysis) to measure the exact thickness of each graft.
N=3-4 for each treatment. *indicates a significant difference from the pregraft value (ANOVA, P < 0.05) Figure 21 is a photographic representation of ahKi-67 imunobiological binding.
Figure 22 is a photographical representation showing penetration of oligonucleotide into human skin after topical treatment. Fluorescently labelled oligonucleotide (10 ~cM R451) was applied topically after formulation with cytofectin GSV (10 ,ug/ml) and viewed using confocal microscopy.
Figure 23 is a photographical representation showing penetration of oligonucleotide into human skin after application of topical gel formation. Fluorescently labelled oligonucleotide (10 ,uM R451) was applied topically after complexing with cytofectin GSV (10 ,ug/ml) and formulation into 3 % methylcellulose gel. Image was obtained using confocal microscopy.
Figure 24 is a graphical representation showing IGFBP-3 mRNA.
Figure 25(a) is a graphical representation showing IGFBP-3 mRNA in AON treated ( 100nM) HaCaT cells (2,ug/ml GSV).
Figure 25(b) is a graphical representation showing IGFBP-3 mRNA levels of AON
treated (100nm) HaCaT cells (2~cg/ml GSV).
Figure 25(c) is a graphical representation showing IGFBP-3 mRNA in AON treated (30nM) HaCaT cells (2~cg/ml GSV).
Figure 25(d) is a graphical representation showing IGFBP-3 mRNA in AON treated (30nM) HaCaT cells (2,ug/ml GSV).
Figure 26(a) is a graphical representation showing IGFBP-3 mRNA in ODN treated (30nM) HaCaT cells (2,ug/ml). HaCaT keratinocytes were treated for 51 hours with C-5 propynl, dU, dC ODNs complexed with cytofectin GSV. Total RNA was isolated then analysed for IGFBP-3 mRNA and GAPDH mRNA levels by Northern analysis and phosphorimager quantitation.
Relative level of IGFBP-3 mRNA is shown after treatment with ODNs complementary to the human IGFBP-3 mRNA, 4 randomised sequence ODNs and lipsome alone. (1-24=IGFBP-ODNs; R1, R4, R7 and R9=randomised ODNs (R1=8121, R4=8451, R7=8766, R9 R961); GS=liposome alone; UT=untreated). *indicates a significant different in relative IGFBP-3 mRNA from GSV treated cells (n- 5-8, p < 0.01), **indicates a significant difference in relative IGFBP-3 mRNA from GSV treated cells (n= 5-8, p < 0.05).
Figure 26(b) is a graphical representation showing IGFBP-3 mRNA in ODN treated (100nM) HaCaT cells (2,ug/ml GSV). HaCaT keratinocytes were treated for 51 hours with propynl, dU, dC ODNs complexed with cytofectin GSV. Total RNA was isolated then analysed for IGFBP-3 mRNA and GAPDH mRNA levels by Northern analysis and phosphorimager quantitation. Relative level of IGFBP-3 mRNA is shown after treatment with ODNs complementary to the human IGFBP-3 mRNA, 4 randomised sequence ODNs and liposome alone. (1-24=IGFBP-3 ODNs; R1, R4, R7 and R9 = randomised ODNs (Rl-R121, R4=8451, R7=8766, R9-R961), GS=lipsome alone; UT=untreated). *indicates a significant difference in relative IGFBP-3 mRNA from GSV treated cells (n- 6-8, p < 0.01).
Figure 27 is a representation showing a reduction in IGF-I receptor mRNA in HaCaT cells following treatment with antisense oligonucleotides. Confluent HaCaT cells were treated every 24 h for 4 days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM IGF-I
receptor specific oligonucleotides (#26 to #86) or random sequence oligonucleotides (R121, 8451 and R766). Total RNA was isolated and analysed for IGF-I receptor and GAPDH
mRNA by RNase protection assay. (a). Representative RNase protection assay gel showing IGF-I receptor (IGFR) and GAPDH mRNA in untreated or treated HaCaT cells. In this example, a reduction in IGFR band intensity relative to GAPDH can be seen with AON #27 and #78, but not with #32, #74 or the controls (R4, R7, random oligonucleotides 8451 and 8766, respectively; G, GSV lipid; UT, untreated).
(b) Densitometric quantitation of IGF-I receptor mRNA (normalised to GAPDH
mRNA) in HaCaT cells following treatment with IGF-I receptor specific oligonucleotides (solid black), random sequence oligonucleotides (horizontal striped bar) or GSV alone (shaded bar) compared to untreated cells (UT, vertical striped bar). Each oligonucleotide was assayed in duplicate in at least two separate experiments.
Results are presented as mean t SEM. A one-way ANOVA followed by Tukey's (1) test was performed; 1 indicates a significant difference between cells treated with IGF-I receptor specific AONs and all of the control treatments (p < 0.05). n=4 except for #27 and #32 (n=6), #28 and #68 (n=3), 8766 (n=9), and 8451, GSV and untreated (n=10).
S
Figure 28 is a representation showing a reduction in total cellular IGF-I
receptor protein following antisense oligonucleotide treatment. Confluent HaCaT cells were treated every 24 h for 4 days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM IGF-I
receptor specific AONs (#27, #50 and #64) or the random sequence oligonucleotide, 8451.
Total cellular protein was isolated and analysed for IGF-I receptor by SDS PAGE
followed by western blotting with an antibody specific for the human IGF-I receptor. (a) Duplicate treated cellular extracts showing the IGF-I receptor at the predicted size of 110 kD
(b) Densitometric quantitation of IGF-I receptor protein. Results are presented as mean ~
SEM of four different experiments each performed in duplicate. A one-way ANOVA
followed by a Dunnett's test was performed; * indicates a significant difference from GSV treated cells (p<0.01). GfV, GSV lipid alone; UT, untreated; 8451, random sequence oligonucleotide;
64, S0, 27, IGF-I receptor-specific AONs.
Figure 29 is a representation showing a reduction in IGF-I receptor numbers on the keratinocyte cell surface after antisense oligonucleotide treatment. HaCaT
cells were transfected with IGF-I receptor specific AONs #27 (-1-), #50 (-x-), #64 (---~---), a random sequence oligonucleotide 8451 (-o-), or treated with GSV lipid alone (--~--) every 24 h for four days (untreated cells, --~--). Competition binding assays using l2sl_IGF-I
and the receptor-specific analogue, des(1-3)IGF-I, were performed (inset);
plotted values are means t standard error. The mean values were then subjected to Scatchard analysis.
Figure 30 is a representation showing a reduction in keratinocyte cell number following antisense oligonucleotide treatment. HaCaT cells, initially at 40 %
confluence, were transfected with the IGF-I receptor specific AON #64, control sequences 8451 and 6416, or treated with GSV lipid alone every 24 h for 2 days (UT, untreated cells). Cell number was measured in the culture wells using a dye binding assay (Experimental protocol). Results are presented as mean ~ SD. A one-way ANOVA was performed, followed by a Tukey's multiple comparison test. 1 indicates a significant difference between cells treated with AON #64 and all of the control treatments (p < 0.001).
Figure 31 is a representation showing a reversal of epidermal hyperplasia in psoriatic human skin grafts on nude mice following intradermal injection with antisense oligonucleotides Grafted psoriasis lesions were injected with IGF-I receptor specific AONs, a random sequence oligonucleotide in PBS, or with PBS alone, every 2 days for 20 days, then analysed histologically. (a) Donor A graft treated with AON #50 showing epidermal thinning compared with pregraft and control (PBS) treated graft, and Donor B graft treated with AON #27 showing epidermal thinning compared with pregraft and control (R451) treated graft. E, epidermis; Scale bar, 400 mm; all pictures are at the same magnification. (b) Mean epidermal cross-sectional area over the full width of grafts was determined by digital image analysis.
Results are presented as mean ~ SEM. Shaded bars, control treatments: 8451, random oligonucleotide sequence; solid bars, treatments with oligonucleotides that inhibited IGF-I
receptor expression in vitro. * indicates a significant difference from the vehicle treated graft (p < 0.01, n=5-7), + + indicates a significant difference from the random sequence (R451) treated graft (p<0.01, n=5-7). (c) Parakeratosis (arrow) was absent in grafts treated with IGF-I receptor AONs (AON #50) but persisted in pregraft and control (PBS) treated graft.
Scale bar, 100 mm.
Figure 32 is a representation showing a reversal of epidermal hyperplasia correlates with reduced IGF-I receptor mRNA in grafted psoriasis lesions treated with antisense oligonucleotides (a) A psoriasis lesion prior to grafting, and after grafting and treatment with IGF-I receptor specific oligonucleotide #27 (AON #27) or random sequence (R451) was immunostained with antibodies to Ki67 to identify proliferating cells.
Proliferating cells are indicated by a dark brown nucleus (arrows). Scale bar, 250 mm; all pictures are at the same magnification. (b) The same lesion prior to grafting and after oligonucleotide treatment as in (a) was subjected to in situ hybridisation with a 35S-labeled cRNA probe complementary to the human IGF-I receptor mRNA. The presence of IGF-I receptor mRNA is indicated by silver grains (tiny black speckles), which are almost eliminated in the epidermis of the lesion treated with the IGF-I receptor-specific oligonucleotide #27 (AON #27). Arrows indicate the basal layer of the epidermis with dermis underneath. Scale bar, 50 ,um.
Figure 33 is a representation showing a reduction in IGF-I receptor mRNA in HaCaT
keratinocytes following treatment with oligonucleotides. HaCaT cell monolayers grown to 90 % confluence in DMEM contianing 10 % v/v fetal calf serum were treated with 24 h for two days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM
oligonucleotide.
Total RNA was isolated and analysed for IGF-I receptor and GAPDH mRNA using a commercially availble ribonuclease protection assay kit (RPAII, Ambicon Inc, Austin, Texas).
Band intensity was quantified using ImageQuant software (Molecular Dynamics, Sunnyvale, California).
Figure 34 is a representation showing a reduction in IGF-I receptor protein in HaCaT
keratinocytes following treatment with oligonucleotides. HaCaT cell monolayers grown to 90 % confluence in DMEM containing 10 % v/v fetal calf serum were treated every 24 h for four days with 2 ~g/ml GSV lipid alone (GSV) or complexed with 30 nM
oligonucleotide.
Cells were lyased in a buffer containing 50 mM HEPES, 150 mM NaCI, 10 % v/v gycerol, 1 % v/v Triton X-100 and 100 ~g/ml aprotinin on ice for 30 mins, then 30 ,ug of lysate was loaded onto a denaturing 7 % w/v polyacrylamide gel followed by transfer onto an Immobilon-P membrane (Millipore, Bedford, Massachusetts). Membranes were incubated with the anti-IGF-I receptor antibody C20 (Sanra Cruz Biotechnology Inc., Santa Cruz, California, 25 ng/ml in 150 mM NaCI, 10 mM Tris-HCI, pH 7.4, 0.1 % v/v Tween 20) for 1 h at room temperature and developed using the Vistra ECF western blotting kit (Amersham, Buckinghamshire, England). Band intensity was quantified using ImageQuant software (Molecular Dynamics, Sunnyvale, California).
Figure 35 is a representation showing a reduction in HaCaT keratinocyte cell number following treatment with oligonucleotides. HaCaT cell monolayers grown to 40%
confluence in DMEM containing 10 % fetal calf serum were treated every 24 h for three days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 15 nM oligonucleotide. Cell number was measured every 24 h using the amido black dye binding assay [32].
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is predicated in part on the use of molecules and in particular genetic molecules and more particularly antisense molecules to down-regulate a growth factor, its receptor and/or growth factor expression facilitating sequences.
Accordingly, one aspect of the present invention contemplates a method for ameliorating the effects of a medical disorder such as a proliferative and/or inflammatory skin disorder in a mammal, said method comprising contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation or a cell otherwise involved in the said medical disorder with an effective amount of a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing a growth factor mediated cell proliferation and/or inflammation and/or other medical disorder.
Growth factor mediated cell proliferation and inflammation are also referred to as epidermal hyperplasias and these and other medical disorders may be mediated by any number of molecules such as but not limited to IGF-I, keratinocyte growth factor (KGF), transforming growth factor-a (TGFa), tumour necrosis factor-a (TNFa), interleukin-1, -4, -6 and 8 (IL-1, IL-4, IL-6 and IL-8, respectively), basic fibroblast growth factor (bFGF) or a combination of one or more of the above. The present invention is particularly described and exemplified with reference to IGF-I and its receptor (IGF-I receptor) and to IGF-I
facilitating molecules, IGFBPs, since targeting these molecules according to the methods contemplated herein provides the best results to date. This is done, however, with the understanding that the present invention extends to any growth factor or cytokine-like molecule, a receptor thereof or a facilitating molecule like the IGFBPs involved in skin cell proliferation such as those molecules contemplated above and/or their receptors and/or facilitating molecules therefor.
According to this preferred embodiment, there is provided a method for ameliorating the effects of a medical disorder such as a proliferative and/or inflammatory skin disorder in a mammal, said method comprising contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation or a cell otherwise involved with said medical disorder with an effective amount of a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation and/or inflammation and/or other medical disorder.
The present invention is particularly described by psoriasis as the proliferative skin disorder.
However, the subject invention extends to a range of proliferative and/or inflammatory skin disorders or epidermal hyperplasias such as but not limited to psoriasis, ichthyosis, pityriasis rubra pilaris ("PRP"), seborrhoea, keloids, keratoses, neoplasias and scleroderma, warts, benign growths and cancers of the skin. The present invention extends to a range of other disorders such as neovascularization conditions such as but not limited to hyperneovasularization such as neovascularization of the retina, lining of the brain, skin, hyperproliferation of the inside of blood vessels, kidney disease, atherosclerotic disease, hyperplasias of the gut epithelium or growth factor mediated malignancies such as IGF1-mediated malignancies.
Furthermore, down-regulation of IGF-I receptor is useful as adjunctive therapy for epidermal hyperplasia. In accordance with this aspect of the present invention it is known that IGF-I
receptor elicits separate intracellular signals which prevent apoptosis [19].
In keratinocytes, IGF-I receptor activation has been shown to protect UV-irradiated cells from apoptosis [20].
In another cell type, a number of IGF-I receptors expressed by the cells correlated with tumorigenicity and apoptotic resistance [21]. Consequently, in accordance with the present invention, by inactivating IGF-I receptor on cells such as epidermal keratinocytes will achieve three important outcomes:
(r) Acute epidermal hyperplasia following UV has been suggested to increase the risk of keratinocyte carcinogenic transformation [22]. By reducing IGF-I receptor expression in the epidermis, the incidence of epidermal hyperplasia following UV exposure is likely to be reduced leading to an overall acceleration in normalization of the lesion and reduced carcinogenic risk.
(ii) Inhibition of anti-apoptotic action of IGF-I receptor will enhance the reversal of epidermal thickening and accelerate normalization of differentiation. Topical or injected IGF-I receptor antisense as adjunctive treatment will increase apoptosis in the epidermal layer thereby enhancing the reduction in acanthosis observed in UV
treatments.
(iii) Survival of keratinocytes, ie. those which evade apoptosis is likely to occur when cells have damaged DNA. Such mutations may be in the tumor suppressor region.
Consequently, the use of antisense therapy will result in less frequent selection of mutated keratinocytes and therefore reduced incidence of basal cell carcinomas and squamous.
According to this embodiment, there is provided a method for ameliorating the effects of a proliferative and/or inflammatory skin disorder such as psoriasis said method comprising 1 S contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation with effective amounts of UV treatment and a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation and/or inflammation.
The UV treatment and nucleic acid molecule or its chemical analogue may be administered in any order or may be done simultaneously. This method is particularly useful in treating psoriasis by combination of UV and antisense therapy. Preferably the antisense therapy is directed to the IGF-I receptor.
In a preferred embodiment, the present invention is directed to a method for ameliorating the effects of psoriasis or other medical disorder, said method comprising contacting proliferating skin or skin capable of proliferation or cells associated with said disorder with an effective amount of a nucleic acid molecule or chemical analogue thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation or ameliorating the medical disorder.
The present invention extends to any mammal such as but not limited to humans, livestock animals (e.g. horses, sheep, cows, goats, pigs, donkeys), laboratory test animals (e.g. rabbits, mice, guinea pigs), companion animals (e.g. cats, dogs) and captive wild animals. However, the instant invention is particularly directed to proliferative and/or inflammatory skin disorders such as psoriasis in humans as well as medical disorders contemplated above.
The aspects of the subject invention instantly contemplated are particularly directed to the topical application of one or more suitable nucleic molecules capable of inhibiting, reducing or otherwise interfering with IGF-mediated cell proliferation and/or inflammation. More particularly, the nucleic acid molecule targets IGF-I interaction with its receptor.
Conveniently, therefore, the nucleic acid molecule is an antagonist of IGF-I
interaction with its receptor. Most conveniently, the nucleic acid molecule antagonist is an antisense molecule to the IGF-I receptor, to IGF-I itself or to a molecule capable of facilitating IGF-I interaction with its receptor such as but not limited to an IGFBP.
Insofar as the invention relates to IGFBPs, the preferred molecules are IGFBP-2, -3, -4, -5 and -6. The most preferred molecules are IGFBP-2 and IGFBP-3.
The nucleotide sequences of IGFBP-2 and IGFBP-3 are set forth in Figures 1 ( <
400 > 1) and 2 ( < 400 > 2), respectively. According to a particularly preferred aspect of the present invention, there is provided a nucleic acid molecule comprising at least about ten nucleotides capable of hybridising to, forming a heteroduplex or otherwise interacting with an mRNA
molecule directed from a gene corresponding to a genomic form of < 400 > 1 and/or < 400 > 2 and which thereby reduces or inhibits translation of said mRNA
molecule.
Preferably, the nucleic acid molecule is at least about 15 nucleotides in length and more preferably at least about 20-25 nucleotides in length. However, the instant invention extends to any length nucleic acid molecule including a molecule of 100-200 nucleotides in length to correspond to the full length of or near full length of the subject genes.
The nucleotide sequence of the antisense molecules may correspond exactly to a region or portion of < 400 > 1 or < 400 > 2 or may differ by one or more nucleotide substitutions, deletions and/or additions. It is a requirement, however, that the nucleic acid molecule interact with an mRNA molecule to thereby reduce its translation into active protein.
Examples of potential antisense molecules for IGFBP-2 and IGFBP-3 are those capable of interacting with sequences selected from the lists in Examples 6 and 7, respectively.
The nucleic acid molecules in the form of an antisense molecule may be linear or covalently closed circular and single stranded or partially double stranded. A double stranded molecule may form a triplex with target mRNA or a target gene. The molecule may also be protected from, for example, nucleases, by any number of means such as using a nonionic backbone or a phosphorothioate linkage. A convenient nonionic backbone contemplated herein is ethylphosphotriester linkage or a 2'-O-methylribosyl derivative. A
particularly useful modification modifies the DNA backbone by introducing phosphorothioate internucleotide linkages. Alternatively or in addition to the pyrimidine bases are modified by inclusion of a C-5 propyne substitution which modification is proposed to enhance duplex stability [23]. The present invention extends to any chemical modification to the bases and/or RNA
or DNA
backbone. Reference to a "chemical analogue" of a nucleic acid molecule includes reference to a modified base, nucleotide, nucleoside or phosphate backbone.
Examples of suitable oligonucleotide analogues are conveniently described in Ts' O et al [7] .
Further suitable examples of oligonucleotide analogues and chemical modifications are described in references 25 to 31.
Alternatively, the antisense molecules of the present invention may target the IGF-I gene itself or its receptor or a multivalent antisense molecule may be constructed or separate molecules administered which target at least two or an IGFBP, IGF-I and/or IGF-I-receptor. Examples of suitable antisense molecules capable of targetting the IGF-I receptor are those capable of interacting with sequences selected from the list in Example 8. One particularly useful antisense molecule is 5'- ATCTCTCCGCTTCCTTTC -3' ( < 400 > 10).
Other particularly useful antisense molecules are:
#27 UCCGGAGCCAGACUU
#64 CACAGUUGCUGCAAG
#78 UCUCCGCUUCCUUUC
#28 AGCCCCCACAGCGAG
#32 GCCUUGGAGAUGAGC
#40 UAACAGAGGUCAGCA
#42 GGAUCAGGGACCAGU
#46 CGGCAAGCUACACAG
#50 GGCAGGCAGGCACAC
Particularly useful molecules are selected from #27, #64 and #78. In a preferred embodiment these molecules comprise a C-5 propynyl dU, dC phosphorothioate modification.
A particularly preferred embodiment of the present invention contemplates a method of ameliorating the effects of psoriasis or other medical disorder, said method comprising contacting proliferating skin or skin capable of proliferation or cells associated with said medical disorder with an effective amount of one or more nucleic acid molecules or chemical analogues thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation or ameliorating the medical disorder wherein said one or more molecules comprises a polynucleotide capable of interacting with mRNA directed from an IGF-I gene, an IGF-I
receptor gene or a gene encoding an IGFBP such as IGFBP-2 and/or IGFBP-3.
Preferably, the nucleic acid molecule are antisense molecules. Particularly useful antisense molecules are:
#27 UCCGGAGCCAGACUU
#64 CACAGUUGCUGCAAG
#78 UCUCCGCUUCCUUUC
#28 AGCCCCCACAGCGAG
#32 GCCUUGGAGAUGAGC
#40 UAACAGAGGUCAGCA
#42 GGAUCAGGGACCAGU
#46 CGGCAAGCUACACAG
#50 GGCAGGCAGGCACAC
Even more particularly useful molecules are selected from #27, #64 and #78.
In accordance with one aspect of the present invention the nucleic acid molecule is topically applied in aqueous solution or in conjunction with a cream, ointment, oil or other suitable carrier and/or diluent. A single application may be sufficient depending on the severity or exigencies of the condition although more commonly, multiple applications are required ranging from hourly, multi-hourly, daily, multi-daily, weekly or monthly, or in some other suitable time interval. The treatment might comprise solely the application of the nucleic acid molecule or this may be applied in conjunction with other treatments for the skin proliferation and/or inflammatory disorder being treated or for other associated conditions including microbial infection, bleeding and the formation of a variety of rashes.
As an alternative to or in conjunction with antisense therapy, the subject invention extends to the nucleic acid molecule as, or incorporating, a ribozyme including a minizyme to, for example, IGF-I, its receptor or to molecules such as IGFBPs and in particular IGFBP-2 and -3.
Ribozymes are synthetic nucleic acid molecules which possess highly specific endoribonuclease activity. In particular, they comprise a hybridising region which is complementary in nucleotide sequence to at least part of a target RNA. Ribozymes are well described by Haseloff and Gerlach [8] and in International Patent Application No. WO 89/05852. The present invention extends to ribozymes which target mRNA specified by genes encoding IGF-I, its receptor or one or more IGFBPs such as IGFBP-2 and/or IGFBP-3.
According to this embodiment, there is provided in a particularly preferred aspect a ribozyme comprising a hybridising region and a catalytic region wherein the hybridising region is capable of hybridising to at least part of a target mRNA sequence transcribed from a genomic gene corresponding to (<400>1) or (<400>2) wherein said catalytic domain is capable of cleaving S said target mRNA sequence to reduce or inhibit IGF-I mediated cell proliferation and/or inflammation and/or other medical disorders.
Yet another aspect of the present invention contemplates co-suppression to reduce expression or to inhibit translation of an endogenous gene encoding, for example, IGF-I, its receptor, or IGFBPs such as IGFBP-2 and/or -3. In co-suppression, a second copy of an endogenous gene or a substantially similar copy or analogue of an endogenous gene is introduced into a cell following topical administration. As with antisense molecules, nucleic acid molecules defining a ribozyme or nucleic acid molecules useful in co-suppression may first be protected such as by using a nonionic backbone.
The efficacy of the nucleic acid molecules of the present invention can be conveniently tested and screened using an in vitro system comprising a basal keratinocyte cell line. A particularly useful system comprises the HaCaT cell line described by Boukamp et al [9]. In one assay, IGF-I is added to an oligonucleotide treated HaCaT cell line. Alternatively, growth of oligonucleotide treated HaCaT cells is observed on a feeder layer of irradiated 3T3 fibroblasts.
Using such in vitro assays, it is observed that antisense oligonucleotides to IGFBP-3, for example, inhibit production of IGFBP-3 by HaCaT cells. Other suitable animal models include the nude mouse/human skin graft model (15; 16) and the "flaky skin"
mouse model (17;
18). In the nude mouse model, microdermatome biopsies of psoriasis lesions are taken under local anaesthetic from volunteers then transplanted to congenital athymic (nude) mice. These transplanted human skin grafts maintain the characteristic hyperproliferating epidermis for 6-8 weeks. They are an established model for testing the efficacy of topically applied therapies for psoriasis. In the "flaky skin" mouse model, the fsn/fsn mutation produces mice with skin resembling human psoriasis. This mouse, or another mutant mouse with a similar phenotype is a further in vivo model to test the efficacy of topically applied therapies for psoriasis.
Another aspect of the present invention contemplates a pharmaceutical composition for topical administration which comprises a nucleic acid molecule capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation such as psoriasis and one or more pharmaceutically acceptable carriers and/or diluents. Preferably, the nucleic acid molecule is an antisense S molecule to IGF-I, the IGF-I receptor or an IGFBP such as IGFBP-2 and/or IGFBP-3 or comprises a ribozyme to one or more of these targets or is a molecule suitable for co suppression of one or more of these targets. The composition may comprise a single species of a nucleic acid molecule capable of targeting one of IGF-I, its receptor or an IGFBP, such as IGFBP-2 or IGFBP-3 or may be a multi-valent molecule capable of targeting two or more of IGF-I, its receptor or an IGFBP, such as IGFBP-2 and/or IGFBP-3.
The nucleic acid molecules may be administered in dispersions prepared in creams, ointments, oil or other suitable carrier and/or diluent such as glycerol, liquid polyethylene glycols and/or mixtures thereof. Under ordinary conditions of storage and use, these preparations may contain 1 S a preservative to prevent the growth of microorganisms.
The pharmaceutical forms suitable for topical use include sterile aqueous solutions (where water soluble) or dispersions and powders for the extemporaneous preparation of topical solutions or dispersions. In all cases, the form is preferably sterile although this is not an absolute requirement and is stable under the conditions of manufacture and storage. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of superfactants. The prevention of the action of microorganism can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride.
Topical solutions are prepared by incorporating the nucleic acid molecule compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by where necessary filter sterilization.
The active agent may alternatively be administered by intravenous, subcutaneous, nasal drip, suppository, implant means amongst other suitable routes of administration including intraperitoneal, intramuscular, absorption through epithelial or mucocutaneous linings for example via nasal, oral, vaginal, rectal or gastrointestinal administration.
Reference may conveniently be made to reference 24.
As used herein "pharmaceutically acceptable carriers and/or diluents" include any and all solvents, dispersion media, aqueous solutions, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, use thereof in the pharmaceutical compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions. Conveniently, the nucleic acid molecules of the present invention are stored in freeze-dried form and are reconstituted prior to use.
Yet another aspect of the present invention contemplates the use of a nucleic acid molecule in the manufacture of a medicament for the treatment of proliferative and/or inflammatory skin disorders or other medical disorders mediated by a growth factor. The proliferative and/or inflammatory skin disorder is generally psoriasis or other medical disorders as described above and the nucleic acid molecule targets IGF-I, the IGF-I receptor and/or an IGFBP such as IGFBP-2 and/or IGFBP-3.
Still a further aspect of the present invention contemplates an agent comprising a nucleic acid molecule as hereinbefore defined useful in the treatment of proliferative and/or inflammatory skin disorders, such as psoriasis or other medical disorder..
The present invention further contemplates the use of the genetic molecules and in particular the antisense molecules to inhibit the anti-apoptotic activity of IGF-I
receptor. Such a use is appropriate for the treatment of certain cancers and as adjunct therapy for epidermal hyperplasia such as in combination with UV treatment.
The present invention is further described by the following non-limiting Examples.
The differentiated human keratinocyte cell line, HaCaT [9] was used in the in vitro assay. Cells at passage numbers 33 to 36 were maintained as monolayer cultures in 5% v/v COZ at 37°C in Keratinocyte-SFM (Gibco) containing EGF and bovine pituitary extract as supplied. Media containing foetal calf serum were avoided because of the high content of IGF-I
binding proteins in serum.
Feeder layer plates of lethally irradiated 3T3 fibroblasts were prepared exactly as described by Rheinwald and Green [10].
Cells were grown to 4 days post confluence in 2cm2 wells with daily medium changes of Keratinocyte-SFM, then the medium was changed to DMEM (Cytosystems, Australia), with the following additions: 25mM Hepes, 0.19% w/v, sodium bicarbonate, 0.03% w/v glutamine (Sigma Chemical Co, USA), SOILT/ml penicillin and SO~g/ml streptomycin (Flow Laboratories).
After 24 hours, IGF-I or tIGF-I was added to triplicate wells, at the concentrations indicated, in O.SmI fresh DMEM containing 0.02% v/v bovine serum albumin (Sigma molecular biology grade) and incubated for a further 21 hours. [3H]-Thymidine (0.1 ~.Ci/well) was then added and the cells incubated for a further 3 hours. The medium was then aspirated and the cells washed once with ice-cold PBS and twice with ice-cold 10% v/v TCA. The TCA-precipitated monolayers were then solubilized with 0.25M NaOH (200~1/well), transferred to scintillation vials and radioactivity determined by liquid scintillation counting (Pharmacia Wallac 1410 liquid scintillation counter).
HaCaT conditioned medium (2501) was concentrated by adding 7501 cold ethanol, incubating at -20°C for 2 hours and centrifuging at 16,OOOg for 20 min at 4°C. The resulting pellet was air dried, resuspended thoroughly in non-reducing Laemmli sample buffer, heated to 90°C for 5 minutes and separated on 12% w/v SDS-PAGE according to the method of Laemmli (1970).
Separated proteins were electrophoretically transferred to nitrocellulose membrane (0.45mm, Schleicher and Schuell, Dassel, Germany) in a buffer containing 25mM Tris, 192mM glycine and 20% v/v methanol. IGFBPs were then visualised by the procedure of Hossenlopp et al [ 11 ], using ['ZSI]-IGF-I, followed by autoradiography. Autoradiographs were scanned in a BioRad Model GS-670 Imaging Densitometer and band densities were determined using the Molecular Analyst program.
Phosphorothioate oligodeoxynucleotides were synthesised by Bresatec, Adelaide, South Australia, Australia. The following antisense sequences were used: BP3AS2, 5'-GCG CCC
GCT GCA TGA CGC CTG CAA C -3' (<400>4), a 25mer complementary to the start codon region of the human IGFBP-3 mRNA; BP3AS3, 5'- CGG GCG GCT CAC CTG GAG CTG
GCG -3' (<400>5), a 24mer complementary to the exon 1/intron 1 splice site;
BP3AS4, 5'-AGG CGG CTG ACG GCA CTA -3'(<400>6), an l8mer complementary to a region of the coding sequence lacking RNA secondary structure and oligonucleotide-dimer formation (using the computer software "OLIGO for PC"). Since BP3AS4 was found to be ineffective at inhibiting IGFBP-3 synthesis, it was used as a control. The following additional control oligonucleotide sequences were used: BP3S, 5'- CAG GCG TCA TGC AGC GGG C -3' (<400>7), an l8mer sense control sequence equivalent to the start codon region; BP3AS2NS, S'- CGG AGA TGC CGC ATG CCA GCG CAG G -3' (<400>8), a 25mer randomised sequence with the same GC content as BP3AS2; BP3AS4NS, 5'- GAC AGC GTC GGA GCG
ATC -3' (<400>9), an l8mer randomised sequence with the same GC content as BP3AS4NS.
Design of the oligonucleotides was based on the human IGFBP-3 cDNA sequence of Spratt et al [12].
Cells were grown to one day post confluence in 2cm2 wells with daily medium changes of O.SmI
Keratinocyte-SFM, then subjected to daily medium changes of Keratinocyte-SFM
for a further 4 days. Daily additions of O.SmI fresh Keratinocyte-SFM were then continued for a further 7 days, except that at the time of medium addition, 5~1 oligonucleotide in PBS
was added to give the final concentrations indicated, then the wells were shaken to mix the oligonucleotide. After the final addition, cells were incubated for 24 hours and the medium collected for assay of IGFBPs. Cells were then counted after trypsinisation in a Coulter Industrial D
Counter, Coulter Bedfordshire, UK. Cell numbers after oligonucleotide treatment differed by less than 10%.
HaCaT cells secrete mainly IGFBP-3 (>95%), with the only other IGFBP
detectable in HaCaT
conditioned medium being IGFBP-4 (<5%). The effect on IGFBP-3 and IGFBP-4 synthesis of antisense oligonucleotides at two concentrations, SpM and O.SpM, was tested.
Two S oligonucleotides were used, BP3AS2 and BP3AS3, directed against the start site and the intron 1/exon 1 splice site, respectively of the IGFBP-3 mRNA. As a control, a sense oligonucleotide corresponding to the start site was used. As shown in Figures 4A and 4B, all oligonucleotides at SpM caused a significant reduction of IGFBP-3 synthesis compared with untreated cells, however, the two antisense oligonucleotides inhibited IGFBP-3 synthesis of approximately SO%
compared to the sense control (Figure 4B). The antisense oligonucleotide directed to the start codon appeared to be more effective of the two, the difference being more apparent at the lower concentration of O.SpM. The cells of IGFBP-4 secreted by the HaCaT cells make photographic reproduction of the bands on Western ligand blots difficult, however densitometry measurements provide adequate relative quantitation. This resulted in the significant observation that IGFBP-4 levels were unaffected by oligonucleotide addition to the cells, suggesting that the observed inhibitory effects on IGFBP-3 are specific.
To further investigate the inhibitory effects of the more effective of the two antisense oligonucleotides, BP3AS2, inhibition by this oligonucleotide at O.SpM was compared with a number of control oligonucleotides, including one antisense oligonucleotide to IGFBP-3 that had proved to be ineffective at O.SpM. As shown in Figures SA and SB, BP3AS2 was again inhibitory, resulting in levels of IGFBP-3 of approximately SO% of the most non-specifically inhibitory control oligonucleotide, the randomised equivalent of BP3AS2. The other control oligonucleotides caused no reduction in IGFBP-3 levels at O.SpM, compared to untreated cells.
Of possible significance is the fact that this control oligonucleotide, BP3AS2NS, like BP3AS2 itself, has the highest potential Tm of the three control oligonucleotides used in this experiment, enhancing the probability of non-specific base pairing with non-target mRNAs.
However, the lack of inhibition of IGFBP-4 secretion by BP3AS2 suggests that this oligonucleotide is selective even compared with the most closely related protein likely to be present in this cell line.
Antisense oligonucleotides to IGFBP2 may be selected from molecules capable of interacting with one or more of the following sense oligonucleotides:
ATTCGGGGCGAGGGA CGCAGGGCCGTGCAC CCGCGCCGCGCTGCC
TTCGGGGCGAGGGAG GCAGGGCCGTGCACC CGCGCCGCGCTGCCG
TCGGGGCGAGGGAGG CAGGGCCGTGCACCT GCGCCGCGCTGCCGA
CGGGGCGAGGGAGGA AGGGCCGTGCACCTG CGCCGCGCTGCCGAC
GGGGCGAGGGAGGAG GGGCCGTGCACCTGC GCCGCGCTGCCGACC
GGGCGAGGGAGGAGG GGCCGTGCACCTGCC CCGCGCTGCCGACCG
GCGAGGGAGGAGGAA CCGTGCACCTGCCCG GCGCTGCCGACCGCC
CGAGGGAGGAGGAAG CGTGCACCTGCCCGC CGCTGCCGACCGCCA
GAGGGAGGAGGAAGA GTGCACCTGCCCGCC GCTGCCGACCGCCAG
AGGGAGGAGGAAGAA TGCACCTGCCCGCCC CTGCCGACCGCCAGC
GGAGGAGGAAGAAGC CACCTGCCCGCCCGC GCCGACCGCCAGCAT
GAGGAGGAAGAAGCG ACCTGCCCGCCCGCC CCGACCGCCAGCATG
AGGAGGAAGAAGCGG CCTGCCCGCCCGCCC CGACCGCCAGCATGC
GGAGGAAGAAGCGGA CTGCCCGCCCGCCCG GACCGCCAGCATGCT
AGGAAGAAGCGGAGG GCCCGCCCGCCCGCT CCGCCAGCATGCTGC
GGAAGAAGCGGAGGA CCCGCCCGCCCGCTC CGCCAGCATGCTGCC
GAAGAAGCGGAGGAG CCGCCCGCCCGCTCG GCCAGCATGCTGCCG
AAGAAGCGGAGGAGG CGCCCGCCCGCTCGC CCAGCATGCTGCCGA
GAAGCGGAGGAGGCG CCCGCCCGCTCGCTC AGCATGCTGCCGAGA
AAGCGGAGGAGGCGG CCGCCCGCTCGCTCG GCATGCTGCCGAGAG
AGCGGAGGAGGCGGC CGCCCGCTCGCTCGC CATGCTGCCGAGAGT
GCGGAGGAGGCGGCT GCCCGCTCGCTCGCT ATGCTGCCGAGAGTG
GGAGGAGGCGGCTCC CCGCTCGCTCGCTCG GCTGCCGAGAGTGGG
GAGGAGGCGGCTCCC CGCTCGCTCGCTCGC CTGCCGAGAGTGGGC
AGGAGGCGGCTCCCG GCTCGCTCGCTCGCC TGCCGAGAGTGGGCT
GGAGGCGGCTCCCGC CTCGCTCGCTCGCCC GCCGAGAGTGGGCTG
AGGCGGCTCCCGCTC CGCTCGCTCGCCCGC CGAGAGTGGGCTGCC
GGCGGCTCCCGCTCG GCTCGCTCGCCCGCC GAGAGTGGGCTGCCC
GCGGCTCCCGCTCGC CTCGCTCGCCCGCCG AGAGTGGGCTGCCCC
CGGCTCCCGCTCGCA TCGCTCGCCCGCCGC GAGTGGGCTGCCCCG
GCTCCCGCTCGCAGG GCTCGCCCGCCGCGC GTGGGCTGCCCCGCG
CTCCCGCTCGCAGGG CTCGCCCGCCGCGCC TGGGCTGCCCCGCGC
TCCCGCTCGCAGGGC TCGCCCGCCGCGCCG GGGCTGCCCCGCGCT
CCCGCTCGCAGGGCC CGCCCGCCGCGCCGC GGCTGCCCCGCGCTG
CGCTCGCAGGGCCGT CCCGCCGCGCCGCGC CTGCCCCGCGCTGCC
GCTCGCAGGGCCGTG CCGCCGCGCCGCGCT TGCCCCGCGCTGCCG
CTCGCAGGGCCGTGC CGCCGCGCCGCGCTG GCCCCGCGCTGCCGC
TCGCAGGGCCGTGCA GCCGCGCCGCGCTGC CCCCGCGCTGCCGCT
CCCGCGCTGCCGCTG CTGCTGCTACTGGGC CTGTTCCGCTGCCCG
CCGCGCTGCCGCTGC TGCTGCTACTGGGCG TGTTCCGCTGCCCGC
CGCGCTGCCGCTGCC GCTGCTACTGGGCGC GTTCCGCTGCCCGCC
GCGCTGCCGCTGCCG CTGCTACTGGGCGCG TTCCGCTGCCCGCCC
CGCTGCCGCTGCCGC TGCTACTGGGCGCGA TCCGCTGCCCGCCCT
GCTGCCGCTGCCGCC GCTACTGGGCGCGAG CCGCTGCCCGCCCTG
CTGCCGCTGCCGCCG CTACTGGGCGCGAGT CGCTGCCCGCCCTGC
TGCCGCTGCCGCCGC TACTGGGCGCGAGTG GCTGCCCGCCCTGCA
GCCGCTGCCGCCGCC ACTGGGCGCGAGTGG CTGCCCGCCCTGCAC
CGCTGCCGCCGCCGC TGGGCGCGAGTGGCG GCCCGCCCTGCACAC
GCTGCCGCCGCCGCC GGGCGCGAGTGGCGG CCCGCCCTGCACACC
CTGCCGCCGCCGCCG GGCGCGAGTGGCGGC CCGCCCTGCACACCC
TGCCGCCGCCGCCGC GCGCGAGTGGCGGCG CGCCCTGCACACCCG
CCGCCGCCGCCGCTG GCGAGTGGCGGCGGC CCCTGCACACCCGAG
CGCCGCCGCCGCTGC CGAGTGGCGGCGGCG CCTGCACACCCGAGC
GCCGCCGCCGCTGCT GAGTGGCGGCGGCGG CTGCACACCCGAGCG
CCGCCGCCGCTGCTG AGTGGCGGCGGCGGC TGCACACCCGAGCGC
GCCGCCGCTGCTGCC TGGCGGCGGCGGCGG CACACCCGAGCGCCT
CCGCCGCTGCTGCCG GGCGGCGGCGGCGGG ACACCCGAGCGCCTG
CGCCGCTGCTGCCGC GCGGCGGCGGCGGGG CACCCGAGCGCCTGG
GCCGCTGCTGCCGCT CGGCGGCGGCGGGGC ACCCGAGCGCCTGGC
CGCTGCTGCCGCTGC GCGGCGGCGGGGCGC CCGAGCGCCTGGCCG
GCTGCTGCCGCTGCT CGGCGGCGGGGCGCG CGAGCGCCTGGCCGC
CTGCTGCCGCTGCTG GGCGGCGGGGCGCGC GAGCGCCTGGCCGCC
TGCTGCCGCTGCTGC GCGGCGGGGCGCGCG AGCGCCTGGCCGCCT
CTGCCGCTGCTGCCG ' GGCGGGGCGCGCGCG CGCCTGGCCGCCTGC
TGCCGCTGCTGCCGC GCGGGGCGCGCGCGG GCCTGGCCGCCTGCG
GCCGCTGCTGCCGCT CGGGGCGCGCGCGGA CCTGGCCGCCTGCGG
CCGCTGCTGCCGCTG GGGGCGCGCGCGGAG CTGGCCGCCTGCGGG
GCTGCTGCCGCTGCT GGCGCGCGCGGAGGT GGCCGCCTGCGGGCC
CTGCTGCCGCTGCTG GCGCGCGCGGAGGTG GCCGCCTGCGGGCCC
TGCTGCCGCTGCTGC CGCGCGCGGAGGTGC CCGCCTGCGGGCCCC
GCTGCCGCTGCTGCT GCGCGCGGAGGTGCT CGCCTGCGGGCCCCC
TGCCGCTGCTGCTGC GCGCGGAGGTGCTGT CCTGCGGGCCCCCGC
GCCGCTGCTGCTGCT CGCGGAGGTGCTGTT CTGCGGGCCCCCGCC
CCGCTGCTGCTGCTG GCGGAGGTGCTGTTC TGCGGGCCCCCGCCG
CGCTGCTGCTGCTGC CGGAGGTGCTGTTCC GCGGGCCCCCGCCGG
CTGCTGCTGCTGCTA GAGGTGCTGTTCCGC GGGCCCCCGCCGGTT
TGCTGCTGCTGCTAC AGGTGCTGTTCCGCT GGCCCCCGCCGGTTG
GCTGCTGCTGCTACT GGTGCTGTTCCGCTG GCCCCCGCCGGTTGC
CTGCTGCTGCTACTG GTGCTGTTCCGCTGC CCCCCGCCGGTTGCG
GCTGCTGCTACTGGG GCTGTTCCGCTGCCC CCCGCCGGTTGCGCC
CCGCCGGTTGCGCCG ATGCCATGCGCGGAG TGCGCCCGGCTGGAG
CGCCGGTTGCGCCGC TGCCATGCGCGGAGC GCGCCCGGCTGGAGG
GCCGGTTGCGCCGCC GCCATGCGCGGAGCT CGCCCGGCTGGAGGG
CCGGTTGCGCCGCCC CCATGCGCGGAGCTC GCCCGGCTGGAGGGC
CGGTTGCGCCGCCCG CATGCGCGGAGCTCG CCCGGCTGGAGGGCG
GGTTGCGCCGCCCGC ATGCGCGGAGCTCGT CCGGCTGGAGGGCGA
GTTGCGCCGCCCGCC TGCGCGGAGCTCGTC CGGCTGGAGGGCGAG
TTGCGCCGCCCGCCG GCGCGGAGCTCGTCC GGCTGGAGGGCGAGG
TGCGCCGCCCGCCGC CGCGGAGCTCGTCCG GCTGGAGGGCGAGGC
CGCCGCCCGCCGCGG CGGAGCTCGTCCGGG TGGAGGGCGAGGCGT
GCCGCCCGCCGCGGT GGAGCTCGTCCGGGA GGAGGGCGAGGCGTG
CCGCCCGCCGCGGTG GAGCTCGTCCGGGAG GAGGGCGAGGCGTGC
CGCCCGCCGCGGTGG AGCTCGTCCGGGAGC AGGGCGAGGCGTGCG
CCCGCCGCGGTGGCC CTCGTCCGGGAGCCG GGCGAGGCGTGCGGC
CCGCCGCGGTGGCCG TCGTCCGGGAGCCGG GCGAGGCGTGCGGCG
CGCCGCGGTGGCCGC CGTCCGGGAGCCGGG CGAGGCGTGCGGCGT
GCCGCGGTGGCCGCA GTCCGGGAGCCGGGC GAGGCGTGCGGCGTC
CGCGGTGGCCGCAGT CCGGGAGCCGGGCTG GGCGTGCGGCGTCTA
GCGGTGGCCGCAGTG CGGGAGCCGGGCTGC GCGTGCGGCGTCTAC
CGGTGGCCGCAGTGG GGGAGCCGGGCTGCG CGTGCGGCGTCTACA
GGTGGCCGCAGTGGC GGAGCCGGGCTGCGG GTGCGGCGTCTACAC
TGGCCGCAGTGGCCG AGCCGGGCTGCGGCT GCGGCGTCTACACCC
GGCCGCAGTGGCCGG GCCGGGCTGCGGCTG CGGCGTCTACACCCC
GCCGCAGTGGCCGGA CCGGGCTGCGGCTGC GGCGTCTACACCCCG
CCGCAGTGGCCGGAG CGGGCTGCGGCTGCT GCGTCTACACCCCGC
GCAGTGGCCGGAGGC GGCTGCGGCTGCTGC GTCTACACCCCGCGC
CAGTGGCCGGAGGCG GCTGCGGCTGCTGCT TCTACACCCCGCGCT
AGTGGCCGGAGGCGC CTGCGGCTGCTGCTC CTACACCCCGCGCTG
GTGGCCGGAGGCGCC TGCGGCTGCTGCTCG TACACCCCGCGCTGC
GGCCGGAGGCGCCCG CGGCTGCTGCTCGGT CACCCCGCGCTGCGG
GCCGGAGGCGCCCGC GGCTGCTGCTCGGTG ACCCCGCGCTGCGGC
CCGGAGGCGCCCGCA GCTGCTGCTCGGTGT CCCCGCGCTGCGGCC
CGGAGGCGCCCGCAT CTGCTGCTCGGTGTG CCCGCGCTGCGGCCA
GAGGCGCCCGCATGC GCTGCTCGGTGTGCG CGCGCTGCGGCCAGG
AGGCGCCCGCATGCC CTGCTCGGTGTGCGC GCGCTGCGGCCAGGG
GGCGCCCGCATGCCA TGCTCGGTGTGCGCC CGCTGCGGCCAGGGG
GCGCCCGCATGCCAT GCTCGGTGTGCGCCC GCTGCGGCCAGGGGC
GCCCGCATGCCATGC TCGGTGTGCGCCCGG TGCGGCCAGGGGCTG
CCCGCATGCCATGCG CGGTGTGCGCCCGGC GCGGCCAGGGGCTGC
CCGCATGCCATGCGC GGTGTGCGCCCGGCT CGGCCAGGGGCTGCG
CGCATGCCATGCGCG GTGTGCGCCCGGCTG GGCCAGGGGCTGCGC
CATGCCATGCGCGGA GTGCGCCCGGCTGGA CCAGGGGCTGCGCTG
CAGGGGCTGCGCTGC CTGGTCATGGGCGAG GCCAGCCCGGAGCAG
AGGGGCTGCGCTGCT TGGTCATGGGCGAGG CCAGCCCGGAGCAGG
GGGGCTGCGCTGCTA GGTCATGGGCGAGGG CAGCCCGGAGCAGGT
GGGCTGCGCTGCTAT GTCATGGGCGAGGGC AGCCCGGAGCAGGTT
GGCTGCGCTGCTATC TCATGGGCGAGGGCA GCCCGGAGCAGGTTG
GCTGCGCTGCTATCC CATGGGCGAGGGCAC CCCGGAGCAGGTTGC
CTGCGCTGCTATCCC ATGGGCGAGGGCACT CCGGAGCAGGTTGCA
TGCGCTGCTATCCCC TGGGCGAGGGCACTT CGGAGCAGGTTGCAG
GCGCTGCTATCCCCA GGGCGAGGGCACTTG GGAGCAGGTTGCAGA
GCTGCTATCCCCACC GCGAGGGCACTTGTG AGCAGGTTGCAGACA
CTGCTATCCCCACCC CGAGGGCACTTGTGA GCAGGTTGCAGACAA
TGCTATCCCCACCCG GAGGGCACTTGTGAG CAGGTTGCAGACAAT
GCTATCCCCACCCGG AGGGCACTTGTGAGA AGGTTGCAGACAATG
TATCCCCACCCGGGC GGCACTTGTGAGAAG GTTGCAGACAATGGC
.
ATCCCCACCCGGGCT GCACTTGTGAGAAGC TTGCAGACAATGGCG
TCCCCACCCGGGCTC CACTTGTGAGAAGCG TGCAGACAATGGCGA
CCCCACCCGGGCTCC ACTTGTGAGAAGCGC GCAGACAATGGCGAT
CCACCCGGGCTCCGA TTGTGAGAAGCGCCG AGACAATGGCGATGA
CACCCGGGCTCCGAG TGTGAGAAGCGCCGG GACAATGGCGATGAC
ACCCGGGCTCCGAGC GTGAGAAGCGCCGGG ACAATGGCGATGACC
CCCGGGCTCCGAGCT TGAGAAGCGCCGGGA CAATGGCGATGACCA
CGGGCTCCGAGCTGC AGAAGCGCCGGGACG ATGGCGATGACCACT
GGGCTCCGAGCTGCC GAAGCGCCGGGACGC TGGCGATGACCACTC
GGCTCCGAGCTGCCC AAGCGCCGGGACGCC GGCGATGACCACTCA
GCTCCGAGCTGCCCC AGCGCCGGGACGCCG GCGATGACCACTCAG
TCCGAGCTGCCCCTG CGCCGGGACGCCGAG GATGACCACTCAGAA
CCGAGCTGCCCCTGC GCCGGGACGCCGAGT ATGACCACTCAGAAG
CGAGCTGCCCCTGCA CCGGGACGCCGAGTA TGACCACTCAGAAGG
GAGCTGCCCCTGCAG CGGGACGCCGAGTAT GACCACTCAGAAGGA
GCTGCCCCTGCAGGC GGACGCCGAGTATGG CCACTCAGAAGGAGG
CTGCCCCTGCAGGCG GACGCCGAGTATGGC CACTCAGAAGGAGGC
TGCCCCTGCAGGCGC ACGCCGAGTATGGCG ACTCAGAAGGAGGCC
GCCCCTGCAGGCGCT CGCCGAGTATGGCGC CTCAGAAGGAGGCCT
CCCTGCAGGCGCTGG CCGAGTATGGCGCCA CAGAAGGAGGCCTGG
CCTGCAGGCGCTGGT CGAGTATGGCGCCAG AGAAGGAGGCCTGGT
CTGCAGGCGCTGGTC GAGTATGGCGCCAGC GAAGGAGGCCTGGTG
TGCAGGCGCTGGTCA AGTATGGCGCCAGCC AAGGAGGCCTGGTGG
CAGGCGCTGGTCATG TATGGCGCCAGCCCG GGAGGCCTGGTGGAG
AGGCGCTGGTCATGG ATGGCGCCAGCCCGG GAGGCCTGGTGGAGA
GGCGCTGGTCATGGG TGGCGCCAGCCCGGA AGGCCTGGTGGAGAA
GCGCTGGTCATGGGC GGCGCCAGCCCGGAG GGCCTGGTGGAGAAC
GCTGGTCATGGGCGA CGCCAGCCCGGAGCA CCTGGTGGAGAACCA
CTGGTGGAGAACCAC AGTGCTGGCCGGAAG CGGGAGAAGGTCACT
TGGTGGAGAACCACG GTGCTGGCCGGAAGC GGGAGAAGGTCACTG
GGTGGAGAACCACGT TGCTGGCCGGAAGCC GGAGAAGGTCACTGA
GTGGAGAACCACGTG GCTGGCCGGAAGCCC GAGAAGGTCACTGAG
TGGAGAACCACGTGG CTGGCCGGAAGCCCC AGAAGGTCACTGAGC
GGAGAACCACGTGGA TGGCCGGAAGCCCCT GAAGGTCACTGAGCA
GAGAACCACGTGGAC GGCCGGAAGCCCCTC AAGGTCACTGAGCAG
AGAACCACGTGGACA GCCGGAAGCCCCTCA AGGTCACTGAGCAGC
GAACCACGTGGACAG CCGGAAGCCCCTCAA GGTCACTGAGCAGCA
ACCACGTGGACAGCA GGAAGCCCCTCAAGT TCACTGAGCAGCACC
CCACGTGGACAGCAC GAAGCCCCTCAAGTC CACTGAGCAGCACCG
CACGTGGACAGCACC AAGCCCCTCAAGTCG ACTGAGCAGCACCGG
ACGTGGACAGCACCA AGCCCCTCAAGTCGG CTGAGCAGCACCGGC
GTGGACAGCACCATG CCCCTCAAGTCGGGT GAGCAGCACCGGCAG
TGGACAGCACCATGA CCCTCAAGTCGGGTA AGCAGCACCGGCAGA
GGACAGCACCATGAA CCTCAAGTCGGGTAT GCAGCACCGGCAGAT
GACAGCACCATGAAC CTCAAGTCGGGTATG CAGCACCGGCAGATG
CAGCACCATGAACAT CAAGTCGGGTATGAA GCACCGGCAGATGGG
AGCACCATGAACATG AAGTCGGGTATGAAG CACCGGCAGATGGGC
GCACCATGAACATGT AGTCGGGTATGAAGG ACCGGCAGATGGGCA
CACCATGAACATGTT GTCGGGTATGAAGGA CCGGCAGATGGGCAA
CCATGAACATGTTGG CGGGTATGAAGGAGC GGCAGATGGGCAAGG
CATGAACATGTTGGG GGGTATGAAGGAGCT GCAGATGGGCAAGGG
ATGAACATGTTGGGC GGTATGAAGGAGCTG CAGATGGGCAAGGGT
TGAACATGTTGGGCG GTATGAAGGAGCTGG AGATGGGCAAGGGTG
AACATGTTGGGCGGG ATGAAGGAGCTGGCC ATGGGCAAGGGTGGC
ACATGTTGGGCGGGG TGAAGGAGCTGGCCG TGGGCAAGGGTGGCA
CATGTTGGGCGGGGG GAAGGAGCTGGCCGT GGGCAAGGGTGGCAA
ATGTTGGGCGGGGGA AAGGAGCTGGCCGTG GGCAAGGGTGGCAAG
GTTGGGCGGGGGAGG GGAGCTGGCCGTGTT CAAGGGTGGCAAGCA
TTGGGCGGGGGAGGC GAGCTGGCCGTGTTC AAGGGTGGCAAGCAT
TGGGCGGGGGAGGCA AGCTGGCCGTGTTCC AGGGTGGCAAGCATC
GGGCGGGGGAGGCAG GCTGGCCGTGTTCCG GGGTGGCAAGCATCA
GCGGGGGAGGCAGTG TGGCCGTGTTCCGGG GTGGCAAGCATCACC
CGGGGGAGGCAGTGC GGCCGTGTTCCGGGA TGGCAAGCATCACCT
GGGGGAGGCAGTGCT GCCGTGTTCCGGGAG GGCAAGCATCACCTT
GGGGAGGCAGTGCTG CCGTGTTCCGGGAGA GCAAGCATCACCTTG
GGAGGCAGTGCTGGC GTGTTCCGGGAGAAG AAGCATCACCTTGGC
GAGGCAGTGCTGGCC TGTTCCGGGAGAAGG AGCATCACCTTGGCC
AGGCAGTGCTGGCCG GTTCCGGGAGAAGGT GCATCACCTTGGCCT
GGCAGTGCTGGCCGG TTCCGGGAGAAGGTC CATCACCTTGGCCTG
CAGTGCTGGCCGGAA CCGGGAGAAGGTCAC TCACCTTGGCCTGGA
CACCTTGGCCTGGAG CCCTGCCAACAGGAA CTTCCGGATGAGCGG
ACCTTGGCCTGGAGG CCTGCCAACAGGAAC TTCCGGATGAGCGGG
CCTTGGCCTGGAGGA CTGCCAACAGGAACT TCCGGATGAGCGGGG
CTTGGCCTGGAGGAG TGCCAACAGGAACTG CCGGATGAGCGGGGC
TTGGCCTGGAGGAGC GCCAACAGGAACTGG CGGATGAGCGGGGCC
TGGCCTGGAGGAGCC CCAACAGGAACTGGA GGATGAGCGGGGCCC
GGCCTGGAGGAGCCC CAACAGGAACTGGAC GATGAGCGGGGCCCT
GCCTGGAGGAGCCCA AACAGGAACTGGACC ATGAGCGGGGCCCTC
CCTGGAGGAGCCCAA ACAGGAACTGGACCA TGAGCGGGGCCCTCT
TGGAGGAGCCCAAGA AGGAACTGGACCAGG AGCGGGGCCCTCTGG
GGAGGAGCCCAAGAA GGAACTGGACCAGGT GCGGGGCCCTCTGGA
GAGGAGCCCAAGAAG GAACTGGACCAGGTC CGGGGCCCTCTGGAG
AGGAGCCCAAGAAGC AACTGGACCAGGTCC GGGGCCCTCTGGAGC
GAGCCCAAGAAGCTG CTGGACCAGGTCCTG GGCCCTCTGGAGCAC
AGCCCAAGAAGCTGC TGGACCAGGTCCTGG GCCCTCTGGAGCACC
GCCCAAGAAGCTGCG GGACCAGGTCCTGGA CCCTCTGGAGCACCT
CCCAAGAAGCTGCGA GACCAGGTCCTGGAG CCTCTGGAGCACCTC
CAAGAAGCTGCGACC CCAGGTCCTGGAGCG TCTGGAGCACCTCTA
AAGAAGCTGCGACCA CAGGTCCTGGAGCGG CTGGAGCACCTCTAC
AGAAGCTGCGACCAC AGGTCCTGGAGCGGA TGGAGCACCTCTACT
GAAGCTGCGACCACC GGTCCTGGAGCGGAT GGAGCACCTCTACTC
AGCTGCGACCACCCC TCCTGGAGCGGATCT AGCACCTCTACTCCC
GCTGCGACCACCCCC CCTGGAGCGGATCTC GCACCTCTACTCCCT
CTGCGACCACCCCCT CTGGAGCGGATCTCC CACCTCTACTCCCTG
TGCGACCACCCCCTG TGGAGCGGATCTCCA ACCTCTACTCCCTGC
CGACCACCCCCTGCC GAGCGGATCTCCACC CTCTACTCCCTGCAC
GACCACCCCCTGCCA AGCGGATCTCCACCA TCTACTCCCTGCACA
ACCACCCCCTGCCAG GCGGATCTCCACCAT CTACTCCCTGCACAT
CCACCCCCTGCCAGG CGGATCTCCACCATG TACTCCCTGCACATC
ACCCCCTGCCAGGAC GATCTCCACCATGCG CTCCCTGCACATCCC
CCCCCTGCCAGGACT ATCTCCACCATGCGC TCCCTGCACATCCCC
CCCCTGCCAGGACTC TCTCCACCATGCGCC CCCTGCACATCCCCA
CCCTGCCAGGACTCC CTCCACCATGCGCCT CCTGCACATCCCCAA
CTGCCAGGACTCCCT CCACCATGCGCCTTC TGCACATCCCCAACT
TGCCAGGACTCCCTG CACCATGCGCCTTCC GCACATCCCCAACTG
GCCAGGACTCCCTGC ACCATGCGCCTTCCG CACATCCCCAACTGT
CCAGGACTCCCTGCC CCATGCGCCTTCCGG ~ACATCCCCAACTGTG
AGGACTCCCTGCCAA ATGCGCCTTCCGGAT ATCCCCAACTGTGAC
GGACTCCCTGCCAAC TGCGCCTTCCGGATG TCCCCAACTGTGACA
GACTCCCTGCCAACA GCGCCTTCCGGATGA CCCCAACTGTGACAA
ACTCCCTGCCAACAG CGCCTTCCGGATGAG CCCAACTGTGACAAG
TCCCTGCCAACAGGA CCTTCCGGATGAGCG CAACTGTGACAAGCA
AACTGTGACAAGCAT AACGGGCAGCGTGGG ATCCAGGGAGCCCCC
ACTGTGACAAGCATG ACGGGCAGCGTGGGG TCCAGGGAGCCCCCA
CTGTGACAAGCATGG CGGGCAGCGTGGGGA CCAGGGAGCCCCCAC
TGTGACAAGCATGGC GGGCAGCGTGGGGAG CAGGGAGCCCCCACC
GTGACAAGCATGGCC GGCAGCGTGGGGAGT AGGGAGCCCCCACCA
TGACAAGCATGGCCT GCAGCGTGGGGAGTG GGGAGCCCCCACCAT
GACAAGCATGGCCTG CAGCGTGGGGAGTGC GGAGCCCCCACCATC
ACAAGCATGGCCTGT AGCGTGGGGAGTGCT GAGCCCCCACCATCC
CAAGCATGGCCTGTA GCGTGGGGAGTGCTG AGCCCCCACCATCCG
AGCATGGCCTGTACA GTGGGGAGTGCTGGT CCCCCACCATCCGGG
GCATGGCCTGTACAA TGGGGAGTGCTGGTG CCCCACCATCCGGGG
CATGGCCTGTACAAC GGGGAGTGCTGGTGT CCCACCATCCGGGGG
ATGGCCTGTACAACC GGGAGTGCTGGTGTG CCACCATCCGGGGGG
GGCCTGTACAACCTC GAGTGCTGGTGTGTG ACCATCCGGGGGGAC
GCCTGTACAACCTCA AGTGCTGGTGTGTGA CCATCCGGGGGGACC
CCTGTACAACCTCAA GTGCTGGTGTGTGAA CATCCGGGGGGACCC
CTGTACAACCTCAAA TGCTGGTGTGTGAAC ATCCGGGGGGACCCC
GTACAACCTCAA~CA CTGGTGTGTGAACCC CCGGGGGGACCCCGA
TACAACCTCAAACAG TGGTGTGTGAACCCC CGGGGGGACCCCGAG
ACAACCTCAAACAGT GGTGTGTGAACCCCA GGGGGGACCCCGAGT
CAACCTCAAACAGTG GTGTGTGAACCCCAA GGGGGACCCCGAGTG
ACCTCAAACAGTGCA GTGTGAACCCCAACA GGGACCCCGAGTGTC
CCTCAAACAGTGCAA TGTGAACCCCAACAC GGACCCCGAGTGTCA
CTCAAACAGTGCAAG GTGAACCCCAACACC GACCCCGAGTGTCAT
TCAAACAGTGCAAGA TGAACCCCAACACCG ACCCCGAGTGTCATC
AAACAGTGCAAGATG AACCCCAACACCGGG CCCGAGTGTCATCTC
AACAGTGCAAGATGT ACCCCAACACCGGGA CCGAGTGTCATCTCT
ACAGTGCAAGATGTC CCCCAACACCGGGAA CGAGTGTCATCTCTT
CAGTGCAAGATGTCT CCCAACACCGGGAAG GAGTGTCATCTCTTC
GTGCAAGATGTCTCT CAACACCGGGAAGCT GTGTCATCTCTTCTA
TGCAAGATGTCTCTG AACACCGGGAAGCTG TGTCATCTCTTCTAC
GCAAGATGTCTCTGA ACACCGGGAAGCTGA GTCATCTCTTCTACA
CAAGATGTCTCTGAA CACCGGGAAGCTGAT TCATCTCTTCTACAA
AGATGTCTCTGAACG CCGGGAAGCTGATCC ATCTCTTCTACAATG
GATGTCTCTGAACGG CGGGAAGCTGATCCA TCTCTTCTACAATGA
ATGTCTCTGAACGGG GGGAAGCTGATCCAG CTCTTCTACAATGAG
TGTCTCTGAACGGGC GGAAGCTGATCCAGG TCTTCTACAATGAGC
TCTCTGAACGGGCAG AAGCTGATCCAGGGA TTCTACAATGAGCAG
CTCTGAACGGGCAGC AGCTGATCCAGGGAG TCTACAATGAGCAGC
TCTGAACGGGCAGCG GCTGATCCAGGGAGC CTACAATGAGCAGCA
CTGAACGGGCAGCGT CTGATCCAGGGAGCC TACAATGAGCAGCAG
GAACGGGCAGCGTGG GATCCAGGGAGCCCC CAATGAGCAGCAGGA
AATGAGCAGCAGGAG GCAGCCAGCCGGTGC GCAGAAAACGGAGAG
ATGAGCAGCAGGAGG CAGCCAGCCGGTGCC CAGAAAACGGAGAGT
TGAGCAGCAGGAGGC AGCCAGCCGGTGCCT AGAAAACGGAGAGTG
GAGCAGCAGGAGGCT GCCAGCCGGTGCCTG GAAAACGGAGAGTGC
AGCAGCAGGAGGCTT CCAGCCGGTGCCTGG AAAACGGAGAGTGCT
GCAGCAGGAGGCTTG CAGCCGGTGCCTGGC AAACGGAGAGTGCTT
CAGCAGGAGGCTTGC AGCCGGTGCCTGGCG AACGGAGAGTGCTTG
AGCAGGAGGCTTGCG GCCGGTGCCTGGCGC ACGGAGAGTGCTTGG
GCAGGAGGCTTGCGG CCGGTGCCTGGCGCC CGGAGAGTGCTTGGG
AGGAGGCTTGCGGGG GGTGCCTGGCGCCCC GAGAGTGCTTGGGTG
GGAGGCTTGCGGGGT GTGCCTGGCGCCCCT AGAGTGCTTGGGTGG
GAGGCTTGCGGGGTG TGCCTGGCGCCCCTG GAGTGCTTGGGTGGT
AGGCTTGCGGGGTGC GCCTGGCGCCCCTGC AGTGCTTGGGTGGTG
GCTTGCGGGGTGCAC CTGGCGCCCCTGCCC TGCTTGGGTGGTGGG
CTTGCGGGGTGCACA TGGCGCCCCTGCCCC GCTTGGGTGGTGGGT
TTGCGGGGTGCACAC GGCGCCCCTGCCCCC CTTGGGTGGTGGGTG
TGCGGGGTGCACACC GCGCCCCTGCCCCCC TTGGGTGGTGGGTGC
CGGGGTGCACACCCA GCCCCTGCCCCCCGC GGGTGGTGGGTGCTG
GGGGTGCACACCCAG CCCCTGCCCCCCGCC GGTGGTGGGTGCTGG
GGGTGCACACCCAGC CCCTGCCCCCCGCCC GTGGTGGGTGCTGGA
GGTGCACACCCAGCG CCTGCCCCCCGCCCC TGGTGGGTGCTGGAG
TGCACACCCAGCGGA TGCCCCCCGCCCCTC GTGGGTGCTGGAGGA
GCACACCCAGCGGAT GCCCCCCGCCCCTCT TGGGTGCTGGAGGAT
CACACCCAGCGGATG CCCCCCGCCCCTCTC GGGTGCTGGAGGATT
ACACCCAGCGGATGC CCCCCGCCCCTCTCC GGTGCTGGAGGATTT
ACCCAGCGGATGCAG CCCGCCCCTCTCCAA TGCTGGAGGATTTTC
CCCAGCGGATGCAGT CCGCCCCTCTCCAAA GCTGGAGGATTTTCC
CCAGCGGATGCAGTA CGCCCCTCTCCAAAC CTGGAGGATTTTCCA
CAGCGGATGCAGTAG GCCCCTCTCCAAACA TGGAGGATTTTCCAG
GCGGATGCAGTAGAC CCCTCTCCAAACACC GAGGATTTTCCAGTT
CGGATGCAGTAGACC CCTCTCCAAACACCG AGGATTTTCCAGTTC
GGATGCAGTAGACCG CTCTCCAAACACCGG GGATTTTCCAGTTCT
GATGCAGTAGACCGC TCTCCAAACACCGGC GATTTTCCAGTTCTG
TGCAGTAGACCGCAG TCCAAACACCGGCAG TTTTCCAGTTCTGAC
GCAGTAGACCGCAGC CCAAACACCGGCAGA TTTCCAGTTCTGACA
CAGTAGACCGCAGCC CAAACACCGGCAGAA TTCCAGTTCTGACAC
AGTAGACCGCAGCCA AAACACCGGCAGAAA TCCAGTTCTGACACA
TAGACCGCAGCCAGC ACACCGGCAGAAAAC CAGTTCTGACACACG
AGACCGCAGCCAGCC CACCGGCAGAAAACG AGTTCTGACACACGT
GACCGCAGCCAGCCG ACCGGCAGAAAACGG GTTCTGACACACGTA
ACCGCAGCCAGCCGG CCGGCAGAAAACGGA TTCTGACACACGTAT
CGCAGCCAGCCGGTG GGCAGAAAACGGAGA CTGACACACGTATTT
TGACACACGTATTTA CCCGGCCTCTCTCTT TCCCCGGGGGAGGAA
GACACACGTATTTAT CCGGCCTCTCTCTTC CCCCGGGGGAGGAAG
ACACACGTATTTATA CGGCCTCTCTCTTCC CCCGGGGGAGGAAGG
CACACGTATTTATAT GGCCTCTCTCTTCCC CCGGGGGAGGAAGGG
ACACGTATTTATATT GCCTCTCTCTTCCCA CGGGGGAGGAAGGGG
CACGTATTTATATTT CCTCTCTCTTCCCAG GGGGGAGGAAGGGGG
ACGTATTTATATTTG CTCTCTCTTCCCAGC GGGGAGGAAGGGGGT
CGTATTTATATTTGG TCTCTCTTCCCAGCT GGGAGGAAGGGGGTT
GTATTTATATTTGGA CTCTCTTCCCAGCTG GGAGGAAGGGGGTTG
ATTTATATTTGGAAA CTCTTCCCAGCTGCA AGGAAGGGGGTTGTG
TTTATATTTGGAAAG TCTTCCCAGCTGCAG GGAAGGGGGTTGTGG
TTATATTTGGAAAGA CTTCCCAGCTGCAGA GAAGGGGGTTGTGGT
TATATTTGGAAAGAG TTCCCAGCTGCAGAT AAGGGGGTTGTGGTC
TATTTGGAAAGAGAC CCCAGCTGCAGATGC GGGGGTTGTGGTCGG
ATTTGGAAAGAGACC CCAGCTGCAGATGCC GGGGTTGTGGTCGGG
TTTGGAAAGAGACCA CAGCTGCAGATGCCA GGGTTGTGGTCGGGG
TTGGAAAGAGACCAG AGCTGCAGATGCCAC GGTTGTGGTCGGGGA
GGAAAGAGACCAGCA CTGCAGATGCCACAC TTGTGGTCGGGGAGC
GAAAGAGACCAGCAC TGCAGATGCCACACC TGTGGTCGGGGAGCT
AAAGAGACCAGCACC GCAGATGCCACACCT GTGGTCGGGGAGCTG
AAGAGACCAGCACCG CAGATGCCACACCTG TGGTCGGGGAGCTGG
GAGACCAGCACCGAG GATGCCACACCTGCT GTCGGGGAGCTGGGG
AGACCAGCACCGAGC ATGCCACACCTGCTC TCGGGGAGCTGGGGT
GACCAGCACCGAGCT TGCCACACCTGCTCC CGGGGAGCTGGGGTA
ACCAGCACCGAGCTC GCCACACCTGCTCCT GGGGAGCTGGGGTAC
CAGCACCGAGCTCGG CACACCTGCTCCTTC GGAGCTGGGGTACAG
AGCACCGAGCTCGGC ACACCTGCTCCTTCT GAGCTGGGGTACAGG
GCACCGAGCTCGGCA CACCTGCTCCTTCTT AGCTGGGGTACAGGT
CACCGAGCTCGGCAC ACCTGCTCCTTCTTG GCTGGGGTACAGGTT
CCGAGCTCGGCACCT CTGCTCCTTCTTGCT TGGGGTACAGGTTTG
CGAGCTCGGCACCTC TGCTCCTTCTTGCTT GGGGTACAGGTTTGG
GAGCTCGGCACCTCC GCTCCTTCTTGCTTT GGGTACAGGTTTGGG
AGCTCGGCACCTCCC CTCCTTCTTGCTTTC GGTACAGGTTTGGGG
CTCGGCACCTCCCCG CCTTCTTGCTTTCCC TACAGGTTTGGGGAG
TCGGCACCTCCCCGG CTTCTTGCTTTCCCC ACAGGTTTGGGGAGG
CGGCACCTCCCCGGC TTCTTGCTTTCCCCG CAGGTTTGGGGAGGG
GGCACCTCCCCGGCC TCTTGCTTTCCCCGG AGGTTTGGGGAGGGG
CACCTCCCCGGCCTC TTGCTTTCCCCGGGG GTTTGGGGAGGGGGA
ACCTCCCCGGCCTCT TGCTTTCCCCGGGGG TTTGGGGAGGGGGAA
CCTCCCCGGCCTCTC GCTTTCCCCGGGGGA TTGGGGAGGGGGAAG
CTCCCCGGCCTCTCT CTTTCCCCGGGGGAG TGGGGAGGGGGAAGA
CCCCGGCCTCTCTCT TTCCCCGGGGGAGGA GGGAGGGGGAAGAGA
GGAGGGGGAAGAGAA AGATTAAAGGAAGGA
GAGGGGGAAGAGAAA GATTAAAGGAAGGAA
AGGGGGAAGAGAAAT ATTAAAGGAAGGAAA
GGGGGAAGAGAAATT TTAAAGGAAGGAAAA
GGGGAAGAGAAATTT TAAAGGAAGGAAAAG
GGGAAGAGAAATTTT AAAGGAAGGAAAAGT
GGAAGAGAAATTTTT
GAAGAGAAATTTTTA
AAGAGAAATTTTTAT
GAGAAATTTTTATTT
AGAAATTTTTATTTT
GAAATTTTTATTTTT
AAATTTTTATTTTTG
ATTTTTATTTTTGAA
TTTTTATTTTTGAAC
TTTTATTTTTGAACC
TTTATTTTTGAACCC
TATTTTTGAACCCCT
ATTTTTGAACCCCTG
TTTTTGAACCCCTGT
TTTTGAACCCCTGTG
TTGAACCCCTGTGTC
TGAACCCCTGTGTCC
GAACCCCTGTGTCCC
AACCCCTGTGTCCCT
CCCCTGTGTCCCTTT
CCCTGTGTCCCTTTT
CCTGTGTCCCTTTTG
CTGTGTCCCTTTTGC
GTGTCCCTTTTGCAT
TGTCCCTTTTGCATA
GTCCCTTTTGCATAA
TCCCTTTTGCATAAG
CCTTTTGCATAAGAT
CTTTTGCATAAGATT
TTTTGCATAAGATTA
TTTGCATAAGATTAA
TGCATAAGATTAAAG
GCATAAGATTAAAGG
CATAAGATTAAAGGA
ATAAGATTAAAGGAA
AAGATTAAAGGAAGG
Antisense oligonucleotides to IGFBP3 may be selected from molecules capable of interacting S with one or more of the following sense oligonucleotides:
CTCAGCGCCCAGCCG GCCGTGTACTGTCGC GCAGCGTGCCCCGGT
TCAGCGCCCAGCCGC CCGTGTACTGTCGCC CAGCGTGCCCCGGTT
CAGCGCCCAGCCGCT CGTGTACTGTCGCCC AGCGTGCCCCGGTTG
GCGCCCAGCCGCTTC TGTACTGTCGCCCCA CGTGCCCCGGTTGCA
CGCCCAGCCGCTTCC GTACTGTCGCCCCAT GTGCCCCGGTTGCAG
GCCCAGCCGCTTCCT TACTGTCGCCCCATC TGCCCCGGTTGCAGG
CCCAGCCGCTTCCTG ACTGTCGCCCCATCC GCCCCGGTTGCAGGC
CAGCCGCTTCCTGCC TGTCGCCCCATCCCT CCCGGTTGCAGGCGT
AGCCGCTTCCTGCCT GTCGCCCCATCCCTG CCGGTTGCAGGCGTC
GCCGCTTCCTGCCTG TCGCCCCATCCCTGC CGGTTGCAGGCGTCA
CCGCTTCCTGCCTGG CGCCCCATCCCTGCG GGTTGCAGGCGTCAT
GCTTCCTGCCTGGAT CCCCATCCCTGCGCG TTGCAGGCGTCATGC
CTTCCTGCCTGGATT CCCATCCCTGCGCGC TGCAGGCGTCATGCA
TTCCTGCCTGGATTC CCATCCCTGCGCGCC GCAGGCGTCATGCAG
TCCTGCCTGGATTCC CATCCCTGCGCGCCC CAGGCGTCATGCAGC
CTGCCTGGATTCCAC TCCCTGCGCGCCCAG GGCGTCATGCAGCGG
TGCCTGGATTCCACA CCCTGCGCGCCCAGC GCGTCATGCAGCGGG
GCCTGGATTCCACAG CCTGCGCGCCCAGCC CGTCATGCAGCGGGC
CCTGGATTCCACAGC CTGCGCGCCCAGCCT GTCATGCAGCGGGCG
TGGATTCCACAGCTT GCGCGCCCAGCCTGC CATGCAGCGGGCGCG
GGATTCCACAGCTTC CGCGCCCAGCCTGCC ATGCAGCGGGCGCGA
GATTCCACAGCTTCG GCGCCCAGCCTGCCA TGCAGCGGGCGCGAC
ATTCCACAGCTTCGC CGCCCAGCCTGCCAA GCAGCGGGCGCGACC
TCCACAGCTTCGCGC CCCAGCCTGCCAAGC AGCGGGCGCGACCCA
CCACAGCTTCGCGCC CCAGCCTGCCAAGCA GCGGGCGCGACCCAC
CACAGCTTCGCGCCG CAGCCTGCCAAGCAG CGGGCGCGACCCACG
ACAGCTTCGCGCCGT AGCCTGCCAAGCAGC GGGCGCGACCCACGC
AGCTTCGCGCCGTGT CCTGCCAAGCAGCGT GCGCGACCCACGCTC
GCTTCGCGCCGTGTA CTGCCAAGCAGCGTG CGCGACCCACGCTCT
CTTCGCGCCGTGTAC TGCCAAGCAGCGTGC GCGACCCACGCTCTG
TTCGCGCCGTGTACT GCCAAGCAGCGTGCC CGACCCACGCTCTGG
CGCGCCGTGTACTGT CAAGCAGCGTGCCCC ACCCACGCTCTGGGC
GCGCCGTGTACTGTC AAGCAGCGTGCCCCG CCCACGCTCTGGGCC
CGCCGTGTACTGTCG AGCAGCGTGCCCCGG CCACGCTCTGGGCCG
CACGCTCTGGGCCGC GGTGGCGCGGGCTGG CGAGCCGTGCGACGC
ACGCTCTGGGCCGCT GTGGCGCGGGCTGGC GAGCCGTGCGACGCG
CGCTCTGGGCCGCTG TGGCGCGGGCTGGCG AGCCGTGCGACGCGC
GCTCTGGGCCGCTGC GGCGCGGGCTGGCGC GCCGTGCGACGCGCG
CTCTGGGCCGCTGCG GCGCGGGCTGGCGCG CCGTGCGACGCGCGT
TCTGGGCCGCTGCGC CGCGGGCTGGCGCGA CGTGCGACGCGCGTG
CTGGGCCGCTGCGCT GCGGGCTGGCGCGAG GTGCGACGCGCGTGC
TGGGCCGCTGCGCTG CGGGCTGGCGCGAGC TGCGACGCGCGTGCA
GGGCCGCTGCGCTGA GGGCTGGCGCGAGCT GCGACGCGCGTGCAC
GCCGCTGCGCTGACT GCTGGCGCGAGCTCG GACGCGCGTGCACTG
CCGCTGCGCTGACTC CTGGCGCGAGCTCGG ACGCGCGTGCACTGG
CGCTGCGCTGACTCT TGGCGCGAGCTCGGG CGCGCGTGCACTGGC
GCTGCGCTGACTCTG GGCGCGAGCTCGGGG GCGCGTGCACTGGCC
TGCGCTGACTCTGCT CGCGAGCTCGGGGGG GCGTGCACTGGCCCA
GCGCTGACTCTGCTG GCGAGCTCGGGGGGC CGTGCACTGGCCCAG
CGCTGACTCTGCTGG CGAGCTCGGGGGGCT GTGCACTGGCCCAGT
GCTGACTCTGCTGGT GAGCTCGGGGGGCTT TGCACTGGCCCAGTG
TGACTCTGCTGGTGC GCTCGGGGGGCTTGG CACTGGCCCAGTGCG
GACTCTGCTGGTGCT CTCGGGGGGCTTGGG ACTGGCCCAGTGCGC
ACTCTGCTGGTGCTG TCGGGGGGCTTGGGT CTGGCCCAGTGCGCG
CTCTGCTGGTGCTGC CGGGGGGCTTGGGTC TGGCCCAGTGCGCGC
CTGCTGGTGCTGCTC GGGGGCTTGGGTCCC GCCCAGTGCGCGCCT
TGCTGGTGCTGCTCC GGGGCTTGGGTCCCG CCCAGTGCGCGCCTC
GCTGGTGCTGCTCCG GGGCTTGGGTCCCGT CCAGTGCGCGCCTCC
CTGGTGCTGCTCCGC GGCTTGGGTCCCGTG CAGTGCGCGCCTCCG
GGTGCTGCTCCGCGG CTTGGGTCCCGTGGT GTGCGCGCCTCCGCC
GTGCTGCTCCGCGGG TTGGGTCCCGTGGTG TGCGCGCCTCCGCCC
TGCTGCTCCGCGGGC TGGGTCCCGTGGTGC GCGCGCCTCCGCCCG
GCTGCTCCGCGGGCC GGGTCCCGTGGTGCG CGCGCCTCCGCCCGC
TGCTCCGCGGGCCGC GTCCCGTGGTGCGCT CGCCTCCGCCCGCCG
GCTCCGCGGGCCGCC TCCCGTGGTGCGCTG GCCTCCGCCCGCCGT
CTCCGCGGGCCGCCG CCCGTGGTGCGCTGC CCTCCGCCCGCCGTG
TCCGCGGGCCGCCGG CCGTGGTGCGCTGCG CTCCGCCCGCCGTGT
CGCGGGCCGCCGGTG GTGGTGCGCTGCGAG CCGCCCGCCGTGTGC
GCGGGCCGCCGGTGG TGGTGCGCTGCGAGC CGCCCGCCGTGTGCG
CGGGCCGCCGGTGGC GGTGCGCTGCGAGCC GCCCGCCGTGTGCGC
GGGCCGCCGGTGGCG GTGCGCTGCGAGCCG CCCGCCGTGTGCGCG
GCCGCCGGTGGCGCG GCGCTGCGAGCCGTG CGCCGTGTGCGCGGA
CCGCCGGTGGCGCGG CGCTGCGAGCCGTGC GCCGTGTGCGCGGAG
CGCCGGTGGCGCGGG GCTGCGAGCCGTGCG CCGTGTGCGCGGAGC
GCCGGTGGCGCGGGC CTGCGAGCCGTGCGA CGTGTGCGCGGAGCT
CGGTGGCGCGGGCTG GCGAGCCGTGCGACG TGTGCGCGGAGCTGG
GTGCGCGGAGCTGGT ACTGAGCGAGGGCCA CCTTCGCTGCCAGCC
TGCGCGGAGCTGGTG CTGAGCGAGGGCCAG CTTCGCTGCCAGCCG
GCGCGGAGCTGGTGC TGAGCGAGGGCCAGC TTCGCTGCCAGCCGT
CGCGGAGCTGGTGCG GAGCGAGGGCCAGCC TCGCTGCCAGCCGTC
GCGGAGCTGGTGCGC AGCGAGGGCCAGCCG CGCTGCCAGCCGTCG
CGGAGCTGGTGCGCG GCGAGGGCCAGCCGT GCTGCCAGCCGTCGC
GGAGCTGGTGCGCGA CGAGGGCCAGCCGTG CTGCCAGCCGTCGCC
GAGCTGGTGCGCGAG GAGGGCCAGCCGTGC TGCCAGCCGTCGCCC
AGCTGGTGCGCGAGC AGGGCCAGCCGTGCG GCCAGCCGTCGCCCG
CTGGTGCGCGAGCCG GGCCAGCCGTGCGGC CAGCCGTCGCCCGAC
TGGTGCGCGAGCCGG GCCAGCCGTGCGGCA AGCCGTCGCCCGACG
GGTGCGCGAGCCGGG CCAGCCGTGCGGCAT GCCGTCGCCCGACGA
GTGCGCGAGCCGGGC CAGCCGTGCGGCATC CCGTCGCCCGACGAG
GCGCGAGCCGGGCTG GCCGTGCGGCATCTA GTCGCCCGACGAGGC
CGCGAGCCGGGCTGC CCGTGCGGCATCTAC TCGCCCGACGAGGCG
GCGAGCCGGGCTGCG ' CGTGCGGCATCTACA CGCCCGACGAGGCGC
CGAGCCGGGCTGCGG GTGCGGCATCTACAC. GCCCGACGAGGCGCG
AGCCGGGCTGCGGCT GCGGCATCTACACCG CCGACGAGGCGCGAC
GCCGGGCTGCGGCTG CGGCATCTACACCGA CGACGAGGCGCGACC
CCGGGCTGCGGCTGC GGCATCTACACCGAG GACGAGGCGCGACCG
CGGGCTGCGGCTGCT GCATCTACACCGAGC ACGAGGCGCGACCGC
GGCTGCGGCTGCTGC ATCTACACCGAGCGC GAGGCGCGACCGCTG
GCTGCGGCTGCTGCC TCTACACCGAGCGCT AGGCGCGACCGCTGC
CTGCGGCTGCTGCCT CTACACCGAGCGCTG GGCGCGACCGCTGCA
TGCGGCTGCTGCCTG TACACCGAGCGCTGT GCGCGACCGCTGCAG
CGGCTGCTGCCTGAC CACCGAGCGCTGTGG GCGACCGCTGCAGGC
GGCTGCTGCCTGACG ACCGAGCGCTGTGGC CGACCGCTGCAGGCG
GCTGCTGCCTGACGT CCGAGCGCTGTGGCT GACCGCTGCAGGCGC
CTGCTGCCTGACGTG CGAGCGCTGTGGCTC ACCGCTGCAGGCGCT
GCTGCCTGACGTGCG AGCGCTGTGGCTCCG CGCTGCAGGCGCTGC
CTGCCTGACGTGCGC GCGCTGTGGCTCCGG GCTGCAGGCGCTGCT
TGCCTGACGTGCGCA CGCTGTGGCTCCGGC CTGCAGGCGCTGCTG
GCCTGACGTGCGCAC GCTGTGGCTCCGGCC TGCAGGCGCTGCTGG
CTGACGTGCGCACTG TGTGGCTCCGGCCTT CAGGCGCTGCTGGAC
TGACGTGCGCACTGA GTGGCTCCGGCCTTC AGGCGCTGCTGGACG
GACGTGCGCACTGAG TGGCTCCGGCCTTCG GGCGCTGCTGGACGG
ACGTGCGCACTGAGC GGCTCCGGCCTTCGC GCGCTGCTGGACGGC
GTGCGCACTGAGCGA CTCCGGCCTTCGCTG GCTGCTGGACGGCCG
TGCGCACTGAGCGAG TCCGGCCTTCGCTGC CTGCTGGACGGCCGC
GCGCACTGAGCGAGG CCGGCCTTCGCTGCC TGCTGGACGGCCGCG
CGCACTGAGCGAGGG CGGCCTTCGCTGCCA GCTGGACGGCCGCGG
SOGCACTGAGCGAGGGC GGCCTTCGCTGCCAG CTGGACGGCCGCGGG
CACTGAGCGAGGGCC GCCTTCGCTGCCAGC TGGACGGCCGCGGGC
GGACGGCCGCGGGCT CTACCTGCTGCCAGC AGACCGCAGCGCCGG
GACGGCCGCGGGCTC TACCTGCTGCCAGCG GACCGCAGCGCCGGC
ACGGCCGCGGGCTCT ACCTGCTGCCAGCGC ACCGCAGCGCCGGCA
CGGCCGCGGGCTCTG CCTGCTGCCAGCGCC CCGCAGCGCCGGCAG
GGCCGCGGGCTCTGC CTGCTGCCAGCGCCG CGCAGCGCCGGCAGT
GCCGCGGGCTCTGCG TGCTGCCAGCGCCGC GCAGCGCCGGCAGTG
CCGCGGGCTCTGCGT GCTGCCAGCGCCGCC CAGCGCCGGCAGTGT
CGCGGGCTCTGCGTC CTGCCAGCGCCGCCA AGCGCCGGCAGTGTG
GCGGGCTCTGCGTCA TGCCAGCGCCGCCAG GCGCCGGCAGTGTGG
GGGCTCTGCGTCAAC CCAGCGCCGCCAGCT GCCGGCAGTGTGGAG
GGCTCTGCGTCAACG CAGCGCCGCCAGCTC CCGGCAGTGTGGAGA
GCTCTGCGTCAACGC AGCGCCGCCAGCTCC CGGCAGTGTGGAGAG
CTCTGCGTCAACGCT GCGCCGCCAGCTCCA GGCAGTGTGGAGAGC
CTGCGTCAACGCTAG GCCGCCAGCTCCAGG CAGTGTGGAGAGCCC
TGCGTCAACGCTAGT CCGCCAGCTCCAGGA AGTGTGGAGAGCCCG
GCGTCAACGCTAGTG CGCCAGCTCCAGGAA GTGTGGAGAGCCCGT
CGTCAACGCTAGTGC GCCAGCTCCAGGAAA TGTGGAGAGCCCGTC
TCAACGCTAGTGCCG CAGCTCCAGGAAATG TGGAGAGCCCGTCCG
CAACGCTAGTGCCGT AGCTCCAGGAAATGC GGAGAGCCCGTCCGT
AACGCTAGTGCCGTC GCTCCAGGAAATGCT GAGAGCCCGTCCGTC
ACGCTAGTGCCGTCA CTCCAGGAAATGCTA AGAGCCCGTCCGTCT
GCTAGTGCCGTCAGC CCAGGAAATGCTAGT AGCCCGTCCGTCTCC
CTAGTGCCGTCAGCC CAGGAAATGCTAGTG GCCCGTCCGTCTCCA
TAGTGCCGTCAGCCG AGGAAATGCTAGTGA CCCGTCCGTCTCCAG
AGTGCCGTCAGCCGC GGAAATGCTAGTGAG CCGTCCGTCTCCAGC
TGCCGTCAGCCGCCT AAATGCTAGTGAGTC GTCCGTCTCCAGCAC
GCCGTCAGCCGCCTG AATGCTAGTGAGTCG TCCGTCTCCAGCACG
CCGTCAGCCGCCTGC ATGCTAGTGAGTCGG CCGTCTCCAGCACGC
CGTCAGCCGCCTGCG TGCTAGTGAGTCGGA CGTCTCCAGCACGCA
TCAGCCGCCTGCGCG CTAGTGAGTCGGAGG TCTCCAGCACGCACC
CAGCCGCCTGCGCGC TAGTGAGTCGGAGGA CTCCAGCACGCACCG
AGCCGCCTGCGCGCC AGTGAGTCGGAGGAA TCCAGCACGCACCGG
GCCGCCTGCGCGCCT GTGAGTCGGAGGAAG CCAGCACGCACCGGG
CGCCTGCGCGCCTAC GAGTCGGAGGAAGAC AGCACGCACCGGGTG
GCCTGCGCGCCTACC AGTCGGAGGAAGACC GCACGCACCGGGTGT
CCTGCGCGCCTACCT GTCGGAGGAAGACCG CACGCACCGGGTGTC
CTGCGCGCCTACCTG TCGGAGGAAGACCGC ACGCACCGGGTGTCT
GCGCGCCTACCTGCT GGAGGAAGACCGCAG GCACCGGGTGTCTGA
CGCGCCTACCTGCTG GAGGAAGACCGCAGC CACCGGGTGTCTGAT
GCGCCTACCTGCTGC AGGAAGACCGCAGCG ACCGGGTGTCTGATC
CGCCTACCTGCTGCC GGAAGACCGCAGCGC CCGGGTGTCTGATCC
CCTACCTGCTGCCAG AAGACCGCAGCGCCG GGGTGTCTGATCCCA
GGTGTCTGATCCCAA GAAAGGGCATGCTAA GAGCACAGATACCCA
GTGTCTGATCCCAAG AAAGGGCATGCTAAA AGCACAGATACCCAG
TGTCTGATCCCAAGT AAGGGCATGCTAAAG GCACAGATACCCAGA
GTCTGATCCCAAGTT AGGGCATGCTAAAGA CACAGATACCCAGAA
TCTGATCCCAAGTTC GGGCATGCTAAAGAC ACAGATACCCAGAAC
CTGATCCCAAGTTCC GGCATGCTAAAGACA CAGATACCCAGAACT
TGATCCCAAGTTCCA GCATGCTAAAGACAG AGATACCCAGAACTT
GATCCCAAGTTCCAC CATGCTAAAGACAGC GATACCCAGAACTTC
ATCCCAAGTTCCACC ATGCTAAAGACAGCC ATACCCAGAACTTCT
CCCAAGTTCCACCCC GCTAAAGACAGCCAG ACCCAGAACTTCTCC
CCAAGTTCCACCCCC CTAAAGACAGCCAGC CCCAGAACTTCTCCT
CAAGTTCCACCCCCT TAAAGACAGCCAGCG CCAGAACTTCTCCTC
AAGTTCCACCCCCTC AAAGACAGCCAGCGC CAGAACTTCTCCTCC
GTTCCACCCCCTCCA AGACAGCCAGCGCTA GAACTTCTCCTCCGA
TTCCACCCCCTCCAT GACAGCCAGCGCTAC AACTTCTCCTCCGAG
TCCACCCCCTCCATT ACAGCCAGCGCTACA ACTTCTCCTCCGAGT
CCACCCCCTCCATTC CAGCCAGCGCTACAA CTTCTCCTCCGAGTC
ACCCCCTCCATTCAA GCCAGCGCTACAAAG TCTCCTCCGAGTCCA
CCCCCTCCATTCAAA CCAGCGCTACAAAGT CTCCTCCGAGTCCAA
CCCCTCCATTCAAAG CAGCGCTACAAAGTT TCCTCCGAGTCCAAG
CCCTCCATTCAAAGA AGCGCTACAAAGTTG CCTCCGAGTCCAAGC
CTCCATTCAAAGATA CGCTACAAAGTTGAC TCCGAGTCCAAGCGG
TCCATTCAAAGATAA GCTACAAAGTTGACT CCGAGTCCAAGCGGG
CCATTCAAAGATAAT CTACAAAGTTGACTA CGAGTCCAAGCGGGA
CATTCAAAGATAATC TACAAAGTTGACTAC GAGTCCAAGCGGGAG
TTCAAAGATAATCAT CAAAGTTGACTACGA GTCCAAGCGGGAGAC
TCAAAGATAATCATC AAAGTTGACTACGAG TCCAAGCGGGAGACA
CAAAGATAATCATCA AAGTTGACTACGAGT CCAAGCGGGAGACAG
AAAGATAATCATCAT AGTTGACTACGAGTC CAAGCGGGAGACAGA
AGATAATCATCATCA TTGACTACGAGTCTC AGCGGGAGACAGAAT
GATAATCATCATCAA TGACTACGAGTCTCA GCGGGAGACAGAATA
ATAATCATCATCAAG GACTACGAGTCTCAG CGGGAGACAGAATAT
TAATCATCATCAAGA ACTACGAGTCTCAGA GGGAGACAGAATATG
ATCATCATCAAGAAA TACGAGTCTCAGAGC GAGACAGAATATGGT
TCATCATCAAGAAAG ACGAGTCTCAGAGCA AGACAGAATATGGTC
CATCATCAAGAAAGG CGAGTCTCAGAGCAC GACAGAATATGGTCC
ATCATCAAGAAAGGG GAGTCTCAGAGCACA ACAGAATATGGTCCC
CATCAAGAAAGGGCA GTCTCAGAGCACAGA AGAATATGGTCCCTG
ATCAAGAAAGGGCAT TCTCAGAGCACAGAT GAATATGGTCCCTGC
TCAAGAAAGGGCATG CTCAGAGCACAGATA AATATGGTCCCTGCC
CAAGAAAGGGCATGC TCAGAGCACAGATAC ATATGGTCCCTGCCG
AGAAAGGGCATGCTA AGAGCACAGATACCC ATGGTCCCTGCCGTA
TGGTCCCTGCCGTAG CAATGTGCTGAGTCC ATTTTATAAGAA.AAA
GGTCCCTGCCGTAGA AATGTGCTGAGTCCC TTTTATAAGAAAAAG
GTCCCTGCCGTAGAG ATGTGCTGAGTCCCA TTTATAAGAAAAAGC
TCCCTGCCGTAGAGA TGTGCTGAGTCCCAG TTATAAGAAAAAGCA
CCCTGCCGTAGAGAA GTGCTGAGTCCCAGG TATAAGAAAAAGCAG
CCTGCCGTAGAGAAA TGCTGAGTCCCAGGG ATAAGAAAAAGCAGT
CTGCCGTAGAGAAAT GCTGAGTCCCAGGGG TAAGAA.AAAGCAGTG
TGCCGTAGAGAAATG CTGAGTCCCAGGGGT AAGAAAAAGCAGTGT
GCCGTAGAGAAATGG TGAGTCCCAGGGGTG AGAAAAAGCAGTGTC
CGTAGAGAAATGGAA AGTCCCAGGGGTGTA AAAAAGCAGTGTCGC
GTAGAGAAATGGAAG GTCCCAGGGGTGTAC AAAAGCAGTGTCGCC
TAGAGAAATGGAAGA TCCCAGGGGTGTACA AAAGCAGTGTCGCCC
AGAGAAATGGAAGAC CCCAGGGGTGTACAC AAGCAGTGTCGCCCT
AGAAATGGAAGACAC CAGGGGTGTACACAT GCAGTGTCGCCCTTC
GAAATGGAAGACACA AGGGGTGTACACATT CAGTGTCGCCCTTCC
AAATGGAAGACACAC GGGGTGTACACATTC AGTGTCGCCCTTCCA
AATGGAAGACACACT GGGTGTACACATTCC GTGTCGCCCTTCCAA
TGGAAGACACACTGA GTGTACACATTCCCA GTCGCCCTTCCAAAG
GGAAGACACACTGAA TGTACACATTCCCAA TCGCCCTTCCAAAGG
GAAGACACACTGAAT GTACACATTCCCAAC CGCCCTTCCAAAGGC
AAGACACACTGAATC TACACATTCCCAACT GCCCTTCCAAAGGCA
GACACACTGAATCAC CACATTCCCAACTGT CCTTCCAAAGGCAGG
ACACACTGAATCACC ACATTCCCAACTGTG CTTCCAAAGGCAGGA
CACACTGAATCACCT CATTCCCAACTGTGA TTCCAAAGGCAGGAA
ACACTGAATCACCTG ATTCCCAACTGTGAC TCCAAAGGCAGGAAG
ACTGAATCACCTGAA TCCCAACTGTGACAA CAAAGGCAGGAAGCG
CTGAATCACCTGAAG CCCAACTGTGACAAG AAAGGCAGGAAGCGG
TGAATCACCTGAAGT CCAACTGTGACAAGA AAGGCAGGAAGCGGG
GAATCACCTGAAGTT CAACTGTGACAAGAA AGGCAGGAAGCGGGG
ATCACCTGAAGTTCC ACTGTGACAAGAAGG GCAGGAAGCGGGGCT
TCACCTGAAGTTCCT CTGTGACAAGAAGGG CAGGAAGCGGGGCTT
CACCTGAAGTTCCTC TGTGACAAGAAGGGA AGGAAGCGGGGCTTC
ACCTGAAGTTCCTCA GTGACAAGAAGGGAT GGAAGCGGGGCTTCT
CTGAAGTTCCTCAAT GACAAGAAGGGATTT AAGCGGGGCTTCTGC
TGAAGTTCCTCAATG ACAAGAAGGGATTTT AGCGGGGCTTCTGCT
GAAGTTCCTCAATGT CAAGAAGGGATTTTA GCGGGGCTTCTGCTG
AAGTTCCTCAATGTG AAGAAGGGATTTTAT CGGGGCTTCTGCTGG
GTTCCTCAATGTGCT GAAGGGATTTTATAA GGGCTTCTGCTGGTG
TTCCTCAATGTGCTG AAGGGATTTTATAAG GGCTTCTGCTGGTGT
TCCTCAATGTGCTGA AGGGATTTTATAAGA GCTTCTGCTGGTGTG
CCTCAATGTGCTGAG GGGATTTTATAAGAA CTTCTGCTGGTGTGT
TCAATGTGCTGAGTC GATTTTATAAGAAAA TCTGCTGGTGTGTGG
CTGCTGGTGTGTGGA GGGGAAGGAGGACGT CGCAAGTTAATGTGG
TGCTGGTGTGTGGAT GGGAAGGAGGACGTG GCAAGTTAATGTGGA
GCTGGTGTGTGGATA GGAAGGAGGACGTGC CAAGTTAATGTGGAG
CTGGTGTGTGGATAA GAAGGAGGACGTGCA AAGTTAATGTGGAGC
S TGGTGTGTGGATAAG AAGGAGGACGTGCAC AGTTAATGTGGAGCT
GGTGTGTGGATAAGT AGGAGGACGTGCACT GTTAATGTGGAGCTC
GTGTGTGGATAAGTA GGAGGACGTGCACTG TTAATGTGGAGCTCA
TGTGTGGATAAGTAT GAGGACGTGCACTGC TAATGTGGAGCTCAA
GTGTGGATAAGTATG AGGACGTGCACTGCT AATGTGGAGCTCAAA
GTGGATAAGTATGGG GACGTGCACTGCTAC TGTGGAGCTCAAATA
TGGATAAGTATGGGC ACGTGCACTGCTACA GTGGAGCTCAAATAT
GGATAAGTATGGGCA CGTGCACTGCTACAG TGGAGCTCAAATATG
GATAAGTATGGGCAG GTGCACTGCTACAGC GGAGCTCAAATATGC
TAAGTATGGGCAGCC GCACTGCTACAGCAT AGCTCAAATATGCCT
AAGTATGGGCAGCCT CACTGCTACAGCATG GCTCAAATATGCCTT
AGTATGGGCAGCCTC ACTGCTACAGCATGC CTCAAATATGCCTTA
GTATGGGCAGCCTCT CTGCTACAGCATGCA TCAAATATGCCTTAT
ATGGGCAGCCTCTCC GCTACAGCATGCAGA AAATATGCCTTATTT
TGGGCAGCCTCTCCC CTACAGCATGCAGAG AATATGCCTTATTTT
GGGCAGCCTCTCCCA TACAGCATGCAGAGC ATATGCCTTATTTTG
GGCAGCCTCTCCCAG ACAGCATGCAGAGCA TATGCCTTATTTTGC
CAGCCTCTCCCAGGC AGCATGCAGAGCAAG TGCCTTATTTTGCAC
AGCCTCTCCCAGGCT GCATGCAGAGCAAGT GCCTTATTTTGCACA
GCCTCTCCCAGGCTA CATGCAGAGCAAGTA CCTTATTTTGCACAA
CCTCTCCCAGGCTAC ATGCAGAGCAAGTAG CTTATTTTGCACAAA
TCTCCCAGGCTACAC GCAGAGCAAGTAGAC TATTTTGCACAAAAG
CTCCCAGGCTACACC CAGAGCAAGTAGACG ATTTTGCACAAAAGA
TCCCAGGCTACACCA AGAGCAAGTAGACGC TTTTGCACAAAAGAC
CCCAGGCTACACCAC GAGCAAGTAGACGCC TTTGCACAAAAGACT
CAGGCTACACCACCA GCAAGTAGACGCCTG TGCACAAAAGACTGC
AGGCTACACCACCAA CAAGTAGACGCCTGC GCACAAAAGACTGCC
GGCTACACCACCAAG AAGTAGACGCCTGCC CACAAAAGACTGCCA
GCTACACCACCAAGG AGTAGACGCCTGCCG ACAAAAGACTGCCAA
TACACCACCAAGGGG TAGACGCCTGCCGCA AAAAGACTGCCAAGG
ACACCACCAAGGGGA AGACGCCTGCCGCAA AAAGACTGCCAAGGA
CACCACCAAGGGGAA GACGCCTGCCGCAAG AAGACTGCCAAGGAC
ACCACCAAGGGGAAG ACGCCTGCCGCAAGT AGACTGCCAAGGACA
CACCAAGGGGAAGGA GCCTGCCGCAAGTTA ACTGCCAAGGACATG
ACCAAGGGGAAGGAG CCTGCCGCAAGTTAA CTGCCAAGGACATGA
CCAAGGGGAAGGAGG CTGCCGCAAGTTAAT TGCCAAGGACATGAC
CAAGGGGAAGGAGGA TGCCGCAAGTTAATG GCCAAGGACATGACC
SOAAGGGGAAGGAGGAC GCCGCAAGTTAATGT CCAAGGACATGACCA
AGGGGAAGGAGGACG CCGCAAGTTAATGTG CAAGGACATGACCAG
AAGGACATGACCAGC GTGAACTGATTTTTT TATGGTTTCTTTGAA
AGGACATGACCAGCA TGAACTGATTTTTTT ATGGTTTCTTTGAAT
GGACATGACCAGCAG GAACTGATTTTTTTT TGGTTTCTTTGAATG
GACATGACCAGCAGC AACTGATTTTTTTTA GGTTTCTTTGAATGG
ACATGACCAGCAGCT ACTGATTTTTTTTAA GTTTCTTTGAATGGT
CATGACCAGCAGCTG CTGATTTTTTTTAAA TTTCTTTGAATGGTA
ATGACCAGCAGCTGG TGATTTTTTTTAAAC TTCTTTGAATGGTAA
TGACCAGCAGCTGGC GATTTTTTTTAAACC TCTTTGAATGGTAAA
GACCAGCAGCTGGCT ATTTTTTTTAAACCA CTTTGAATGGTAAAC
CCAGCAGCTGGCTAC TTTTTTTAAACCAAA TTGAATGGTAAACTT
CAGCAGCTGGCTACA TTTTTTAAACCAAAG TGAATGGTAAACTTG
AGCAGCTGGCTACAG TTTTTAAACCAAAGT GAATGGTAAACTTGA
GCAGCTGGCTACAGC TTTTAAACCAAAGTT AATGGTAAACTTGAG
AGCTGGCTACAGCCT TTAAACCAAAGTTTA TGGTAAACTTGAGCA
GCTGGCTACAGCCTC TAAACCAAAGTTTAG GGTAAACTTGAGCAT
CTGGCTACAGCCTCG AAACCAAAGTTTAGA GTAAACTTGAGCATC
TGGCTACAGCCTCGA AACCAAAGTTTAGAA TAAACTTGAGCATCT
GCTACAGCCTCGATT CCAAAGTTTAGAAAG AACTTGAGCATCTTT
CTACAGCCTCGATTT CAAAGTTTAGAAAGA ACTTGAGCATCTTTT
TACAGCCTCGATTTA AAAGTTTAGAAAGAG CTTGAGCATCTTTTC
ACAGCCTCGATTTAT AAGTTTAGAAAGAGG TTGAGCATCTTTTCA
AGCCTCGATTTATAT GTTTAGAAAGAGGTT GAGCATCTTTTCACT
GCCTCGATTTATATT TTTAGAAAGAGGTTT AGCATCTTTTCACTT
CCTCGATTTATATTT TTAGAAAGAGGTTTT GCATCTTTTCACTTT
CTCGATTTATATTTC TAGAAAGAGGTTTTT CATCTTTTCACTTTC
CGATTTATATTTCTG GAAAGAGGTTTTTGA TCTTTTCACTTTCCA
GATTTATATTTCTGT AAAGAGGTTTTTGAA CTTTTCACTTTCCAG
ATTTATATTTCTGTT AAGAGGTTTTTGAAA TTTTCACTTTCCAGT
TTTATATTTCTGTTT AGAGGTTTTTGAAAT TTTCACTTTCCAGTA
TATATTTCTGTTTGT AGGTTTTTGAAATGC TCACTTTCCAGTAGT
ATATTTCTGTTTGTG GGTTTTTGAAATGCC CACTTTCCAGTAGTC
TATTTCTGTTTGTGG GTTTTTGAAATGCCT ACTTTCCAGTAGTCA
ATTTCTGTTTGTGGT TTTTTGAAATGCCTA CTTTCCAGTAGTCAG
TTCTGTTTGTGGTGA TTTGAAATGCCTATG TTCCAGTAGTCAGCA
TCTGTTTGTGGTGAA TTGAAATGCCTATGG TCCAGTAGTCAGCAA
CTGTTTGTGGTGAAC TGAAATGCCTATGGT CCAGTAGTCAGCAAA
TGTTTGTGGTGAACT GAAATGCCTATGGTT CAGTAGTCAGCAAAG
TTTGTGGTGAACTGA AATGCCTATGGTTTC GTAGTCAGCAAAGAG
TTGTGGTGAACTGAT ATGCCTATGGTTTCT TAGTCAGCAAAGAGC
TGTGGTGAACTGATT TGCCTATGGTTTCTT AGTCAGCAAAGAGCA
GTGGTGAACTGATTT GCCTATGGTTTCTTT GTCAGCAAAGAGCAG
GGTGAACTGATTTTT CTATGGTTTCTTTGA CAGCAAAGAGCAGTT
AGCAAAGAGCAGTTT ACTCGAGCACAGCAC TTGGTCGAAGCGGCC
GCAAAGAGCAGTTTG CTCGAGCACAGCACC TGGTCGAAGCGGCCG
CAAAGAGCAGTTTGA TCGAGCACAGCACCC GGTCGAAGCGGCCGA
AAAGAGCAGTTTGAA CGAGCACAGCACCCA GTCGAAGCGGCCGAC
AAGAGCAGTTTGAAT GAGCACAGCACCCAG TCGAAGCGGCCGACC
AGAGCAGTTTGAATT AGCACAGCACCCAGA CGAAGCGGCCGACCA
GAGCAGTTTGAATTT GCACAGCACCCAGAC GAAGCGGCCGACCAC
AGCAGTTTGAATTTT CACAGCACCCAGACT AAGCGGCCGACCACT
GCAGTTTGAATTTTC ACAGCACCCAGACTT AGCGGCCGACCACTG
AGTTTGAATTTTCTT AGCACCCAGACTTCA CGGCCGACCACTGAC
GTTTGAATTTTCTTG GCACCCAGACTTCAT GGCCGACCACTGACT
TTTGAATTTTCTTGT CACCCAGACTTCATG GCCGACCACTGACTT
TTGAATTTTCTTGTC ACCCAGACTTCATGC CCGACCACTGACTTT
GAATTTTCTTGTCGC CCAGACTTCATGCGC GACCACTGACTTTGT
AATTTTCTTGTCGCT CAGACTTCATGCGCC ACCACTGACTTTGTG
ATTTTCTTGTCGCTT AGACTTCATGCGCCC CCACTGACTTTGTGA
TTTTCTTGTCGCTTC GACTTCATGCGCCCG CACTGACTTTGTGAC
TTCTTGTCGCTTCCT CTTCATGCGCCCGTG CTGACTTTGTGACTT
TCTTGTCGCTTCCTA TTCATGCGCCCGTGG TGACTTTGTGACTTA
CTTGTCGCTTCCTAT TCATGCGCCCGTGGA GACTTTGTGACTTAG
TTGTCGCTTCCTATC CATGCGCCCGTGGAA ACTTTGTGACTTAGG
GTCGCTTCCTATCAA TGCGCCCGTGGAATG TTTGTGACTTAGGCG
TCGCTTCCTATCAAA GCGCCCGTGGAATGC TTGTGACTTAGGCGG
CGCTTCCTATCAAAA CGCCCGTGGAATGCT TGTGACTTAGGCGGC
GCTTCCTATCAAAAT GCCCGTGGAATGCTC GTGACTTAGGCGGCT
TTCCTATCAAAATAT CCGTGGAATGCTCAC GACTTAGGCGGCTGT
TCCTATCAAAATATT CGTGGAATGCTCACC ACTTAGGCGGCTGTG
CCTATCAAAATATTC GTGGAATGCTCACCA CTTAGGCGGCTGTGT
CTATCAAAATATTCA TGGAATGCTCACCAC TTAGGCGGCTGTGTT
ATCAAAATATTCAGA GAATGCTCACCACAT AGGCGGCTGTGTTGC
TCAAAATATTCAGAG AATGCTCACCACATG GGCGGCTGTGTTGCC
CAAAATATTCAGAGA ATGCTCACCACATGT GCGGCTGTGTTGCCT
AAAATATTCAGAGAC TGCTCACCACATGTT CGGCTGTGTTGCCTA
AATATTCAGAGACTC CTCACCACATGTTGG GCTGTGTTGCCTATG
ATATTCAGAGACTCG TCACCACATGTTGGT CTGTGTTGCCTATGT
TATTCAGAGACTCGA CACCACATGTTGGTC TGTGTTGCCTATGTA
ATTCAGAGACTCGAG ACCACATGTTGGTCG GTGTTGCCTATGTAG
TCAGAGACTCGAGCA CACATGTTGGTCGAA GTTGCCTATGTAGAG
CAGAGACTCGAGCAC ACATGTTGGTCGAAG TTGCCTATGTAGAGA
AGAGACTCGAGCACA CATGTTGGTCGAAGC TGCCTATGTAGAGAA
GAGACTCGAGCACAG ATGTTGGTCGAAGCG GCCTATGTAGAGAAC
GACTCGAGCACAGCA GTTGGTCGAAGCGGC CTATGTAGAGAACAC
TATGTAGAGAACACG TATCGAGAATAGGAA ATGCTCCTGGAGCTC
ATGTAGAGAACACGC ATCGAGAATAGGAAA TGCTCCTGGAGCTCA
TGTAGAGAACACGCT TCGAGAATAGGAAAA GCTCCTGGAGCTCAC
GTAGAGAACACGCTT CGAGAATAGGAAAAC CTCCTGGAGCTCACA
TAGAGAACACGCTTC GAGAATAGGAAAACC TCCTGGAGCTCACAG
AGAGAACACGCTTCA AGAATAGGAAAACCT CCTGGAGCTCACAGC
GAGAACACGCTTCAC GAATAGGAAAACCTT CTGGAGCTCACAGCC
AGAACACGCTTCACC AATAGGAAAACCTTT TGGAGCTCACAGCCT
GAACACGCTTCACCC ATAGGAAAACCTTTA GGAGCTCACAGCCTT
ACACGCTTCACCCCC AGGAAAACCTTTAAA AGCTCACAGCCTTCT
CACGCTTCACCCCCA GGAAAACCTTTAAAC GCTCACAGCCTTCTG
ACGCTTCACCCCCAC GAAAACCTTTAAACC CTCACAGCCTTCTGT
CGCTTCACCCCCACT AAAACCTTTAAACCC TCACAGCCTTCTGTG
CTTCACCCCCACTCC AACCTTTAAACCCCG ACAGCCTTCTGTGGT
TTCACCCCCACTCCC ACCTTTAAACCCCGG CAGCCTTCTGTGGTG
TCACCCCCACTCCCC CCTTTAAACCCCGGT AGCCTTCTGTGGTGT
CACCCCCACTCCCCG CTTTAAACCCCGGTC GCCTTCTGTGGTGTC
CCCCCACTCCCCGTA TTAAACCCCGGTCAT CTTCTGTGGTGTCAT
CCCCACTCCCCGTAC TAAACCCCGGTCATC TTCTGTGGTGTCATT
CCCACTCCCCGTACA AAACCCCGGTCATCC TCTGTGGTGTCATTT
CCACTCCCCGTACAG AACCCCGGTCATCCG CTGTGGTGTCATTTC
ACTCCCCGTACAGTG CCCCGGTCATCCGGA GTGGTGTCATTTCTG
CTCCCCGTACAGTGC CCCGGTCATCCGGAC TGGTGTCATTTCTGA
TCCCCGTACAGTGCG CCGGTCATCCGGACA GGTGTCATTTCTGAA
CCCCGTACAGTGCGC CGGTCATCCGGACAT GTGTCATTTCTGAAA
CCGTACAGTGCGCAC GTCATCCGGACATCC GTCATTTCTGAAACA
CGTACAGTGCGCACA TCATCCGGACATCCC TCATTTCTGAAACAA
GTACAGTGCGCACAG CATCCGGACATCCCA CATTTCTGAAACAAG
TACAGTGCGCACAGG ATCCGGACATCCCAA ATTTCTGAAACAAGG
CAGTGCGCACAGGCT CCGGACATCCCAACG TTCTGAAACAAGGGC
AGTGCGCACAGGCTT CGGACATCCCAACGC TCTGAAACAAGGGCG
GTGCGCACAGGCTTT GGACATCCCAACGCA CTGAAACAAGGGCGT
TGCGCACAGGCTTTA GACATCCCAACGCAT TGAAACAAGGGCGTG
CGCACAGGCTTTATC CATCCCAACGCATGC AAACAAGGGCGTGGA
GCACAGGCTTTATCG ATCCCAACGCATGCT AACAAGGGCGTGGAT
CACAGGCTTTATCGA TCCCAACGCATGCTC ACAAGGGCGTGGATC
ACAGGCTTTATCGAG CCCAACGCATGCTCC CAAGGGCGTGGATCC
AGGCTTTATCGAGAA CAACGCATGCTCCTG AGGGCGTGGATCCCT
GGCTTTATCGAGAAT AACGCATGCTCCTGG GGGCGTGGATCCCTC
GCTTTATCGAGAATA ACGCATGCTCCTGGA GGCGTGGATCCCTCA
CTTTATCGAGAATAG CGCATGCTCCTGGAG GCGTGGATCCCTCAA
TTATCGAGAATAGGA CATGCTCCTGGAGCT GTGGATCCCTCAACC
TGGATCCCTCAACCA TTGGGGACTATTGGA GTATCTAAGAATGTT
GGATCCCTCAACCAA TGGGGACTATTGGAG TATCTAAGAATGTTC
GATCCCTCAACCAAG GGGGACTATTGGAGA ATCTAAGAATGTTCT
ATCCCTCAACCAAGA GGGACTATTGGAGAA TCTAAGAATGTTCTA
S TCCCTCAACCAAGAA GGACTATTGGAGAAA CTAAGAATGTTCTAG
CCCTCAACCAAGAAG GACTATTGGAGAAAA TAAGAATGTTCTAGG
CCTCAACCAAGAAGA ACTATTGGAGAAAAT AAGAATGTTCTAGGG
CTCAACCAAGAAGAA CTATTGGAGAAAATA AGAATGTTCTAGGGC
TCAACCAAGAAGAAT TATTGGAGAAAATAA GAATGTTCTAGGGCA
AACCAAGAAGAATGT TTGGAGAAAATAAGG ATGTTCTAGGGCACT
ACCAAGAAGAATGTT TGGAGAAAATAAGGT TGTTCTAGGGCACTC
CCAAGAAGAATGTTT GGAGAAAATAAGGTG GTTCTAGGGCACTCT
CAAGAAGAATGTTTA GAGAAAATAAGGTGG TTCTAGGGCACTCTG
AGAAGAATGTTTATG GAAAATAAGGTGGAG CTAGGGCACTCTGGG
GAAGAATGTTTATGT AAAATAAGGTGGAGT TAGGGCACTCTGGGA
AAGAATGTTTATGTC AAATAAGGTGGAGTC AGGGCACTCTGGGAA
AGAATGTTTATGTCT AATAAGGTGGAGTCC GGGCACTCTGGGAAC
AATGTTTATGTCTTC TAAGGTGGAGTCCTA GCACTCTGGGAACCT
ATGTTTATGTCTTCA AAGGTGGAGTCCTAC CACTCTGGGAACCTA
TGTTTATGTCTTCAA AGGTGGAGTCCTACT ACTCTGGGAACCTAT
GTTTATGTCTTCAAG GGTGGAGTCCTACTT CTCTGGGAACCTATA
TTATGTCTTCAAGTG TGGAGTCCTACTTGT CTGGGAACCTATAAA
TATGTCTTCAAGTGA GGAGTCCTACTTGTT TGGGAACCTATAAAG
ATGTCTTCAAGTGAC GAGTCCTACTTGTTT GGGAACCTATAAAGG
TGTCTTCAAGTGACC AGTCCTACTTGTTTA GGAACCTATAAAGGC
TCTTCAAGTGACCTG TCCTACTTGTTTAAA AACCTATAAAGGCAG
CTTCAAGTGACCTGT CCTACTTGTTTAAAA ACCTATAAAGGCAGG
TTCAAGTGACCTGTA CTACTTGTTTAAAAA CCTATAAAGGCAGGT
TCAAGTGACCTGTAC TACTTGTTTAAAAAA CTATAAAGGCAGGTA
AAGTGACCTGTACTG CTTGTTTAAAAAATA ATAAAGGCAGGTATT
AGTGACCTGTACTGC TTGTTTAAAAAATAT TAAAGGCAGGTATTT
GTGACCTGTACTGCT TGTTTAAAAAATATG AAAGGCAGGTATTTC
TGACCTGTACTGCTT GTTTAAAAAATATGT AAGGCAGGTATTTCG
40GACCTGTACTGCTTG TTTAA.AA.A.ATATGTA AGGCAGGTATTTCGG
ACCTGTACTGCTTGG TTAAAAAATATGTAT GGCAGGTATTTCGGG
CCTGTACTGCTTGGG TAAAAAATATGTATC GCAGGTATTTCGGGC
CTGTACTGCTTGGGG AAAAAATATGTATCT CAGGTATTTCGGGCC
TGTACTGCTTGGGGA AAAAATATGTATCTA AGGTATTTCGGGCCC
TACTGCTTGGGGACT AAATATGTATCTAAG GTATTTCGGGCCCTC
ACTGCTTGGGGACTA AATATGTATCTAAGA TATTTCGGGCCCTCC
CTGCTTGGGGACTAT ATATGT'ATCTAAGAA ATTTCGGGCCCTCCT
TGCTTGGGGACTATT TATGTATCTAAGAAT TTTCGGGCCCTCCTC
SOGCTTGGGGACTATTG ATGTATCTAAGAATG TTCGGGCCCTCCTCT
CTTGGGGACTATTGG TGTATCTAAGAATGT TCGGGCCCTCCTCTT
CGGGCCCTCCTCTTC CAGGATGGCTTTTGC AGAGTCAGCCTCCAC
GGGCCCTCCTCTTCA AGGATGGCTTTTGCT GAGTCAGCCTCCACA
GGCCCTCCTCTTCAG GGATGGCTTTTGCTG AGTCAGCCTCCACAT
GCCCTCCTCTTCAGG GATGGCTTTTGCTGC GTCAGCCTCCACATT
CCCTCCTCTTCAGGA ATGGCTTTTGCTGCG TCAGCCTCCACATTC
CCTCCTCTTCAGGAA TGGCTTTTGCTGCGG CAGCCTCCACATTCA
CTCCTCTTCAGGAAT GGCTTTTGCTGCGGC AGCCTCCACATTCAG
TCCTCTTCAGGAATC GCTTTTGCTGCGGCC GCCTCCACATTCAGA
CCTCTTCAGGAATCT CTTTTGCTGCGGCCC CCTCCACATTCAGAG
TCTTCAGGAATCTTC TTTGCTGCGGCCCCG TCCACATTCAGAGGC
CTTCAGGAATCTTCC TTGCTGCGGCCCCGT CCACATTCAGAGGCA
TTCAGGAATCTTCCT TGCTGCGGCCCCGTG CACATTCAGAGGCAT
TCAGGAATCTTCCTG GCTGCGGCCCCGTGG ACATTCAGAGGCATC
AGGAATCTTCCTGAA TGCGGCCCCGTGGGG ATTCAGAGGCATCAC
GGAATCTTCCTGAAG GCGGCCCCGTGGGGT TTCAGAGGCATCACA
GAATCTTCCTGAAGA CGGCCCCGTGGGGTA TCAGAGGCATCACAA
AATCTTCCTGAAGAC GGCCCCGTGGGGTAG CAGAGGCATCACAAG
TCTTCCTGAAGACAT CCCCGTGGGGTAGGA GAGGCATCACAAGTA
CTTCCTGAAGACATG CCCGTGGGGTAGGAG AGGCATCACAAGTAA
TTCCTGAAGACATGG CCGTGGGGTAGGAGG GGCATCACAAGTAAT
TCCTGAAGACATGGC CGTGGGGTAGGAGGG GCATCACAAGTAATG
CTGAAGACATGGCCC TGGGGTAGGAGGGAC ATCACAAGTAATGGC
TGAAGACATGGCCCA GGGGTAGGAGGGACA TCACAAGTAATGGCA
GAAGACATGGCCCAG GGGTAGGAGGGACAG CACAAGTAATGGCAC
AAGACATGGCCCAGT GGTAGGAGGGACAGA ACAAGTAATGGCACA
GACATGGCCCAGTCG TAGGAGGGACAGAGA AAGTAATGGCACAAT
ACATGGCCCAGTCGA AGGAGGGACAGAGAG AGTAATGGCACAATT
CATGGCCCAGTCGAA GGAGGGACAGAGAGA GTAATGGCACAATTC
ATGGCCCAGTCGAAG GAGGGACAGAGAGAC TAATGGCACAATTCT
GGCCCAGTCGAAGGC GGGACAGAGAGACGG ATGGCACAATTCTTC
GCCCAGTCGAAGGCC GGACAGAGAGACGGG TGGCACAATTCTTCG
CCCAGTCGAAGGCCC GACAGAGAGACGGGA GGCACAATTCTTCGG
CCAGTCGAAGGCCCA ACAGAGAGACGGGAG GCACAATTCTTCGGA
AGTCGAAGGCCCAGG AGAGAGACGGGAGAG ACAATTCTTCGGATG
GTCGAAGGCCCAGGA GAGAGACGGGAGAGT CAATTCTTCGGATGA
TCGAAGGCCCAGGAT AGAGACGGGAGAGTC AATTCTTCGGATGAC
CGAAGGCCCAGGATG GAGACGGGAGAGTCA ATTCTTCGGATGACT
AAGGCCCAGGATGGC GACGGGAGAGTCAGC TCTTCGGATGACTGC
AGGCCCAGGATGGCT ACGGGAGAGTCAGCC CTTCGGATGACTGCA
GGCCCAGGATGGCTT CGGGAGAGTCAGCCT TTCGGATGACTGCAG
GCCCAGGATGGCTTT GGGAGAGTCAGCCTC TCGGATGACTGCAGA
CCAGGATGGCTTTTG GAGAGTCAGCCTCCA GGATGACTGCAGAAA
GATGACTGCAGAAAA ATTTCTGAGGATAAG TTTTGTCCTCCTTAG
ATGACTGCAGAAAAT TTTCTGAGGATAAGC TTTGTCCTCCTTAGC
TGACTGCAGAAAATA TTCTGAGGATAAGCT TTGTCCTCCTTAGCA
GACTGCAGAAAATAG TCTGAGGATAAGCTC TGTCCTCCTTAGCAC
ACTGCAGAAAATAGT CTGAGGATAAGCTCT GTCCTCCTTAGCACA
CTGCAGAAAATAGTG TGAGGATAAGCTCTT TCCTCCTTAGCACAA
TGCAGAAAATAGTGT GAGGATAAGCTCTTT CCTCCTTAGCACAAT
GCAGAAAATAGTGTT AGGATAAGCTCTTTA CTCCTTAGCACAATG
CAGAAAATAGTGTTT GGATAAGCTCTTTAA TCCTTAGCACAATGT
GAAAATAGTGTTTTG ATAAGCTCTTTAAAG CTTAGCACAATGTAA
AAAATAGTGTTTTGT TAAGCTCTTTAAAGG TTAGCACAATGTAAA
AAATAGTGTTTTGTA AAGCTCTTTAAAGGC TAGCACAATGTAAAA
AATAGTGTTTTGTAG AGCTCTTTAAAGGCA AGCACAATGTAAAAA
TAGTGTTTTGTAGTT CTCTTTAAAGGCAAA CACAATGTAAAAAAG
AGTGTTTTGTAGTTC TCTTTAAAGGCAAAG ACAATGTAAAAAAGA
GTGTTTTGTAGTTCA CTTTAAAGGCAAAGC CAATGTAAAAAAGAA
TGTTTTGTAGTTCAA TTTAAAGGCAAAGCT AATGTAAAAAAGAAT
TTTTGTAGTTCAACA TAAAGGCAAAGCTTT TGTAAAAAAGAATAG
TTTGTAGTTCAACAA AAAGGCAAAGCTTTA GTAAAA.AAGAATAGT
TTGTAGTTCAACAAC AAGGCAAAGCTTTAT TAAAAAAGAATAGTA
TGTAGTTCAACAACT AGGCAAAGCTTTATT AAAAAAGAATAGTAA
TAGTTCAACAACTCA GCAAAGCTTTATTTT AAAAGAATAGTAATA
AGTTCAACAACTCAA CAAAGCTTTATTTTC AAAGAATAGTAATAT
GTTCAACAACTCAAG AAAGCTTTATTTTCA AAGAATAGTAATATC
TTCAACAACTCAAGA AAGCTTTATTTTCAT AGAATAGTAATATCA
CAACAACTCAAGACG GCTTTATTTTCATCT AATAGTAATATCAGA
AACAACTCAAGACGA CTTTATTTTCATCTC ATAGTAATATCAGAA
ACAACTCAAGACGAA TTTATTTTCATCTCT TAGTAATATCAGAAC
CAACTCAAGACGAAG TTATTTTCATCTCTC AGTAATATCAGAACA
ACTCAAGACGAAGCT ATTTTCATCTCTCAT TAATATCAGAACAGG
CTCAAGACGAAGCTT TTTTCATCTCTCATC AATATCAGAACAGGA
TCAAGACGAAGCTTA TTTCATCTCTCATCT ATATCAGAACAGGAA
CAAGACGAAGCTTAT TTCATCTCTCATCTT TATCAGAACAGGAAG
AGACGAAGCTTATTT CATCTCTCATCTTTT TCAGAACAGGAAGGA
GACGAAGCTTATTTC ATCTCTCATCTTTTG CAGAACAGGAAGGAG
ACGAAGCTTATTTCT TCTCTCATCTTTTGT AGAACAGGAAGGAGG
CGAAGCTTATTTCTG CTCTCATCTTTTGTC GAACAGGAAGGAGGA
AAGCTTATTTCTGAG CTCATCTTTTGTCCT ACAGGAAGGAGGAAT
AGCTTATTTCTGAGG TCATCTTTTGTCCTC CAGGAAGGAGGAATG
GCTTATTTCTGAGGA CATCTTTTGTCCTCC AGGAAGGAGGAATGG
CTTATTTCTGAGGAT ATCTTTTGTCCTCCT GGAAGGAGGAATGGC
TATTTCTGAGGATAA CTTTTGTCCTCCTTA AAGGAGGAATGGCTT
AGGAGGAATGGCTTG GATTCACCCATGTTT ATTCACACATATATG
GGAGGAATGGCTTGC ATTCACCCATGTTTG TTCACACATATATGC
GAGGAATGGCTTGCT TTCACCCATGTTTGT TCACACATATATGCA
AGGAATGGCTTGCTG TCACCCATGTTTGTT CACACATATATGCAG
GGAATGGCTTGCTGG CACCCATGTTTGTTG ACACATATATGCAGA
GAATGGCTTGCTGGG ACCCATGTTTGTTGA CACATATATGCAGAG
AATGGCTTGCTGGGG CCCATGTTTGTTGAA ACATATATGCAGAGA
ATGGCTTGCTGGGGA CCATGTTTGTTGAAC CATATATGCAGAGAA
TGGCTTGCTGGGGAG CATGTTTGTTGAACT ATATATGCAGAGAAG
GCTTGCTGGGGAGCC TGTTTGTTGAACTTA ATATGCAGAGAAGAT
CTTGCTGGGGAGCCC GTTTGTTGAACTTAG TATGCAGAGAAGATA
TTGCTGGGGAGCCCA TTTGTTGAACTTAGA ATGCAGAGAAGATAT
TGCTGGGGAGCCCAT TTGTTGAACTTAGAG TGCAGAGAAGATATG
CTGGGGAGCCCATCC GTTGAACTTAGAGTC CAGAGAAGATATGTT
TGGGGAGCCCATCCA TTGAACTTAGAGTCA AGAGAAGATATGTTC
GGGGAGCCCATCCAG TGAACTTAGAGTCAT GAGAAGATATGTTCT
GGGAGCCCATCCAGG GAACTTAGAGTCATT AGAAGATATGTTCTT
GAGCCCATCCAGGAC ACTTAGAGTCATTCT AAGATATGTTCTTGT
AGCCCATCCAGGACA CTTAGAGTCATTCTC AGATATGTTCTTGTT
GCCCATCCAGGACAC TTAGAGTCATTCTCA GATATGTTCTTGTTA
CCCATCCAGGACACT TAGAGTCATTCTCAT ATATGTTCTTGTTAA
CATCCAGGACACTGG GAGTCATTCTCATGC ATGTTCTTGTTAACA
ATCCAGGACACTGGG AGTCATTCTCATGCT TGTTCTTGTTAACAT
TCCAGGACACTGGGA GTCATTCTCATGCTT GTTCTTGTTAACATT
CCAGGACACTGGGAG TCATTCTCATGCTTT TTCTTGTTAACATTG
AGGACACTGGGAGCA ATTCTCATGCTTTTC CTTGTTAACATTGTA
GGACACTGGGAGCAC TTCTCATGCTTTTCT TTGTTAACATTGTAT
GACACTGGGAGCACA TCTCATGCTTTTCTT TGTTAACATTGTATA
ACACTGGGAGCACAT CTCATGCTTTTCTTT GTTAACATTGTATAC
ACTGGGAGCACATAG CATGCTTTTCTTTAT TAACATTGTATACAA
CTGGGAGCACATAGA ATGCTTTTCTTTATA AACATTGTATACAAC
TGGGAGCACATAGAG TGCTTTTCTTTATAA ACATTGTATACAACA
GGGAGCACATAGAGA GCTTTTCTTTATAAT CATTGTATACAACAT
GAGCACATAGAGATT TTTTCTTTATAATTC TTGTATACAACATAG
AGCACATAGAGATTC TTTCTTTATAATTCA TGTATACAACATAGC
GCACATAGAGATTCA TTCTTTATAATTCAC GTATACAACATAGCC
CACATAGAGATTCAC TCTTTATAATTCACA TATACAACATAGCCC
CATAGAGATTCACCC TTTATAATTCACACA TACAACATAGCCCCA
ATAGAGATTCACCCA TTATAATTCACACAT ACAACATAGCCCCAA
TAGAGATTCACCCAT TATAATTCACACATA CAACATAGCCCCAAA
AGAGATTCACCCATG ATAATTCACACATAT AACATAGCCCCAAAT
AGATTCACCCATGTT AATTCACACATATAT CATAGCCCCAAATAT
ATAGCCCCAAATATA AGAGATGCTATATGA CCCAGAGACTGGGCT
TAGCCCCAAATATAG GAGATGCTATATGAT CCAGAGACTGGGCTG
AGCCCCAAATATAGT AGATGCTATATGATA CAGAGACTGGGCTGC
GCCCCAAATATAGTA GATGCTATATGATAC AGAGACTGGGCTGCT
CCCCAAATATAGTAA ATGCTATATGATACA GAGACTGGGCTGCTC
CCCAAATATAGTAAG TGCTATATGATACAA AGACTGGGCTGCTCT
CCAAATATAGTAAGA GCTATATGATACAAC GACTGGGCTGCTCTC
CAAATATAGTAAGAT CTATATGATACAACT ACTGGGCTGCTCTCC
AAATATAGTAAGATC TATATGATACAACTG CTGGGCTGCTCTCCC
ATATAGTAAGATCTA TATGATACAACTGTG GGGCTGCTCTCCCGG
TATAGTAAGATCTAT ATGATACAACTGTGG GGCTGCTCTCCCGGA
ATAGTAAGATCTATA TGATACAACTGTGGC GCTGCTCTCCCGGAG
TAGTAAGATCTATAC GATACAACTGTGGCC CTGCTCTCCCGGAGG
GTAAGATCTATACTA TACAACTGTGGCCAT GCTCTCCCGGAGGCC
TAAGATCTATACTAG ACAACTGTGGCCATG CTCTCCCGGAGGCCA
AAGATCTATACTAGA CAACTGTGGCCATGA TCTCCCGGAGGCCAA
AGATCTATACTAGAT AACTGTGGCCATGAC CTCCCGGAGGCCAAA
ATCTATACTAGATAA CTGTGGCCATGACTG CCCGGAGGCCAAACC
TCTATACTAGATAAT TGTGGCCATGACTGA CCGGAGGCCAAACCC
CTATACTAGATAATC GTGGCCATGACTGAG CGGAGGCCAAACCCA
TATACTAGATAATCC TGGCCATGACTGAGG GGAGGCCAAACCCAA
TACTAGATAATCCTA GCCATGACTGAGGAA AGGCCAAACCCAAGA
ACTAGATAATCCTAG CCATGACTGAGGAAA GGCCAAACCCAAGAA
CTAGATAATCCTAGA CATGACTGAGGAAAG GCCAAACCCAAGAAG
TAGATAATCCTAGAT ATGACTGAGGAAAGG CCAAACCCAAGAAGG
GATAATCCTAGATGA GACTGAGGAAAGGAG AAACCCAAGAAGGTC
ATAATCCTAGATGAA ACTGAGGAAAGGAGC AACCCAAGAAGGTCT
TAATCCTAGATGAAA CTGAGGAAAGGAGCT ACCCAAGAAGGTCTG
AATCCTAGATGAAAT TGAGGAAAGGAGCTC CCCAAGAAGGTCTGG
TCCTAGATGAAATGT AGGAAAGGAGCTCAC CAAGAAGGTCTGGCA
CCTAGATGAAATGTT GGAAAGGAGCTCACG AAGAAGGTCTGGCAA
CTAGATGAAATGTTA GAAAGGAGCTCACGC AGAAGGTCTGGCAAA
TAGATGAAATGTTAG AAAGGAGCTCACGCC GAAGGTCTGGCAAAG
GATGAAATGTTAGAG AGGAGCTCACGCCCA AGGTCTGGCAAAGTC
ATGAAATGTTAGAGA GGAGCTCACGCCCAG GGTCTGGCAAAGTCA
TGAAATGTTAGAGAT GAGCTCACGCCCAGA GTCTGGCAAAGTCAG
GAAATGTTAGAGATG AGCTCACGCCCAGAG TCTGGCAAAGTCAGG
AATGTTAGAGATGCT CTCACGCCCAGAGAC TGGCAAAGTCAGGCT
ATGTTAGAGATGCTA TCACGCCCAGAGACT GGCAAAGTCAGGCTC
TGTTAGAGATGCTAT CACGCCCAGAGACTG GCAAAGTCAGGCTCA
GTTAGAGATGCTATA ACGCCCAGAGACTGG CAAAGTCAGGCTCAG
TAGAGATGCTATATG GCCCAGAGACTGGGC AAGTCAGGCTCAGGG
AGTCAGGCTCAGGGA GCTGCATAGAGCTCT CCTATTAGCTTTTCT
GTCAGGCTCAGGGAG CTGCATAGAGCTCTC CTATTAGCTTTTCTT
TCAGGCTCAGGGAGA TGCATAGAGCTCTCC TATTAGCTTTTCTTT
CAGGCTCAGGGAGAC GCATAGAGCTCTCCT ATTAGCTTTTCTTTA
AGGCTCAGGGAGACT CATAGAGCTCTCCTT TTAGCTTTTCTTTAT
GGCTCAGGGAGACTC ATAGAGCTCTCCTTG TAGCTTTTCTTTATT
GCTCAGGGAGACTCT TAGAGCTCTCCTTGA AGCTTTTCTTTATTT
CTCAGGGAGACTCTG AGAGCTCTCCTTGAA GCTTTTCTTTATTTT
TCAGGGAGACTCTGC GAGCTCTCCTTGAAA CTTTTCTTTATTTTT
AGGGAGACTCTGCCC GCTCTCCTTGAAAAC TTTCTTTATTTTTTT
GGGAGACTCTGCCCT CTCTCCTTGAAAACA TTCTTTATTTTTTTA
GGAGACTCTGCCCTG TCTCCTTGAAAACAG TCTTTATTTTTTTAA
GAGACTCTGCCCTGC CTCCTTGAAAACAGA CTTTATTTTTTTAAC
GACTCTGCCCTGCTG CCTTGAAAACAGAGG TTATTTTTTTAACTT
ACTCTGCCCTGCTGC CTTGAAAACAGAGGG TATTTTTTTAACTTT
CTCTGCCCTGCTGCA TTGAAAACAGAGGGG ATTTTTTTAACTTTT
TCTGCCCTGCTGCAG TGAAAACAGAGGGGT TTTTTTTAACTTTTT
TGCCCTGCTGCAGAC AAAACAGAGGGGTCT TTTTTAACTTTTTGG
GCCCTGCTGCAGACC AAACAGAGGGGTCTC TTTTAACTTTTTGGG
CCCTGCTGCAGACCT AACAGAGGGGTCTCA TTTAACTTTTTGGGG
CCTGCTGCAGACCTC ACAGAGGGGTCTCAA TTAACTTTTTGGGGG
TGCTGCAGACCTCGG AGAGGGGTCTCAAGA AACTTTTTGGGGGGA
GCTGCAGACCTCGGT GAGGGGTCTCAAGAC ACTTTTTGGGGGGAA
CTGCAGACCTCGGTG AGGGGTCTCAAGACA CTTTTTGGGGGGAAA
TGCAGACCTCGGTGT GGGGTCTCAAGACAT TTTTTGGGGGGAAAA
CAGACCTCGGTGTGG GGTCTCAAGACATTC TTTGGGGGGAAAAGT
AGACCTCGGTGTGGA GTCTCAAGACATTCT TTGGGGGGAAAAGTA
GACCTCGGTGTGGAC TCTCAAGACATTCTG TGGGGGGAAAAGTAT
ACCTCGGTGTGGACA CTCAAGACATTCTGC GGGGGGAAAAGTATT
CTCGGTGTGGACACA CAAGACATTCTGCCT GGGGAAAAGTATTTT
TCGGTGTGGACACAC AAGACATTCTGCCTA GGGAAAAGTATTTTT
CGGTGTGGACACACG AGACATTCTGCCTAC GGAAAAGTATTTTTG
GGTGTGGACACACGC GACATTCTGCCTACC GAAAAGTATTTTTGA
TGTGGACACACGCTG CATTCTGCCTACCTA AAAGTATTTTTGAGA
GTGGACACACGCTGC ATTCTGCCTACCTAT AAGTATTTTTGAGAA
TGGACACACGCTGCA TTCTGCCTACCTATT AGTATTTTTGAGAAG
GGACACACGCTGCAT TCTGCCTACCTATTA GTATTTTTGAGAAGT
ACACACGCTGCATAG TGCCTACCTATTAGC ATTTTTGAGAAGTTT
CACACGCTGCATAGA GCCTACCTATTAGCT TTTTTGAGAAGTTTG
ACACGCTGCATAGAG CCTACCTATTAGCTT TTTTGAGAAGTTTGT
CACGCTGCATAGAGC CTACCTATTAGCTTT TTTGAGAAGTTTGTC
CGCTGCATAGAGCTC ACCTATTAGCTTTTC TGAGAAGTTTGTCTT
GAGAAGTTTGTCTTG
AGAAGTTTGTCTTGC
GAAGTTTGTCTTGCA
AAGTTTGTCTTGCAA
AGTTTGTCTTGCAAT
GTTTGTCTTGCAATG
TTTGTCTTGCAATGT
TTGTCTTGCAATGTA
TGTCTTGCAATGTAT
GTCTTGCAATGTATT
TCTTGCAATGTATTT
CTTGCAATGTATTTA
TTGCAATGTATTTAT
TGCAATGTATTTATA
GCAATGTATTTATAA
CAATGTATTTATAAA
AATGTATTTATAAAT
ATGTATTTATAAATA
TGTATTTATAAATAG
GTATTTATAAATAGT
TATTTATAAATAGTA
ATTTATAAATAGTAA
TTTATAAATAGTAAA
TTATAAATAGTAAAT
TATAAATAGTAAATA
ATAAATAGTAAATAA
TAAATAGTAAATAAA
AAATAGTAAATAAAG
AATAGTAAATAAAGT
ATAGTAAATAAAGTT
TAGTAAATAAAGTTT
AGTAAATAAAGTTTT
GTAAATAAAGTTTTT
TAAATAAAGTTTTTA
AAATAAAGTTTTTAC
AATAAAGTTTTTACC
ATAAAGTTTTTACCA
TAAAGTTTTTACCAT
AAAGTTTTTACCATT
Antisense oligonucleotides to IGF-I may be selected from molecules capable of interacting with one or more of the following sense oligonucleotides:
TTTTTTTTTTTTTTG TTTTTTTTTTTGAGA TTTTTTTTGAGAAAG
TTTTTTTTTTTTTGA TTTTTTTTTTGAGAA TTTTTTTGAGAAAGG
TTTTTTTTTTTTGAG TTTTTTTTTGAGAAA TTTTTTGAGAAAGGG
TTTTTGAGAAAGGGA GGAGGAGGGTCCCCG CTCTCGCTCTGGCCG
TTTTGAGAAAGGGAA GAGGAGGGTCCCCGA TCTCGCTCTGGCCGA
TTTGAGAAAGGGAAT AGGAGGGTCCCCGAC CTCGCTCTGGCCGAC
TTGAGAAAGGGAATT GGAGGGTCCCCGACC TCGCTCTGGCCGACG
S TGAGAAAGGGAATTT GAGGGTCCCCGACCT CGCTCTGGCCGACGA
GAGAAAGGGAATTTC AGGGTCCCCGACCTC GCTCTGGCCGACGAG
AGAAAGGGAATTTCA GGGTCCCCGACCTCG CTCTGGCCGACGAGT
GAAAGGGAATTTCAT GGTCCCCGACCTCGC TCTGGCCGACGAGTG
AAAGGGAATTTCATC GTCCCCGACCTCGCT CTGGCCGACGAGTGG
AGGGAATTTCATCCC CCCCGACCTCGCTGT GGCCGACGAGTGGAG
GGGAATTTCATCCCA CCCGACCTCGCTGTG GCCGACGAGTGGAGA
GGAATTTCATCCCAA CCGACCTCGCTGTGG CCGACGAGTGGAGAA
GAATTTCATCCCAAA CGACCTCGCTGTGGG CGACGAGTGGAGAAA
ATTTCATCCCAAATA ACCTCGCTGTGGGGG ACGAGTGGAGAAATC
TTTCATCCCAAATAA CCTCGCTGTGGGGGC CGAGTGGAGAAATCT
TTCATCCCAAATAAA CTCGCTGTGGGGGCT GAGTGGAGAAATCTG
TCATCCCAAATAAAA TCGCTGTGGGGGCTC AGTGGAGAAATCTGC
ATCCCAAATAAAAGG GCTGTGGGGGCTCCT TGGAGAAATCTGCGG
TCCCAAATAAAAGGA CTGTGGGGGCTCCTG GGAGAAATCTGCGGG
CCCAAATAAAAGGAA TGTGGGGGCTCCTGT GAGAAATCTGCGGGC
CCAAATAAAAGGAAT GTGGGGGCTCCTGTT AGAAATCTGCGGGCC
25CAAATAAAAGGAAT'G TGGGGGCTCCTGTTT GAAATCTGCGGGCCA
AAATAAAAGGAATGA GGGGGCTCCTGTTTC AAATCTGCGGGCCAG
AATAAAAGGAATGAA GGGGCTCCTGTTTCT AATCTGCGGGCCAGG
ATAAAAGGAATGAAG GGGCTCCTGTTTCTC ATCTGCGGGCCAGGC
TAAAAGGAATGAAGT GGCTCCTGTTTCTCT TCTGCGGGCCAGGCA
AAAGGAATGAAGTCT CTCCTGTTTCTCTCC TGCGGGCCAGGCATC
AAGGAATGAAGTCTG TCCTGTTTCTCTCCG GCGGGCCAGGCATCG
AGGAATGAAGTCTGG CCTGTTTCTCTCCGC CGGGCCAGGCATCGA
GGAATGAAGTCTGGC CTGTTTCTCTCCGCC GGGCCAGGCATCGAC
AATGAAGTCTGGCTC GTTTCTCTCCGCCGC GCCAGGCATCGACAT
ATGAAGTCTGGCTCC TTTCTCTCCGCCGCG CCAGGCATCGACATC
TGAAGTCTGGCTCCG TTCTCTCCGCCGCGC CAGGCATCGACATCC
GAAGTCTGGCTCCGG TCTCTCCGCCGCGCT AGGCATCGACATCCG
AGTCTGGCTCCGGAG TCTCCGCCGCGCTCT GCATCGACATCCGCA
GTCTGGCTCCGGAGG CTCCGCCGCGCTCTC CATCGACATCCGCAA
TCTGGCTCCGGAGGA TCCGCCGCGCTCTCG ATCGACATCCGCAAC
CTGGCTCCGGAGGAG CCGCCGCGCTCTCGC TCGACATCCGCAACG
GGCTCCGGAGGAGGG GCCGCGCTCTCGCTC GACATCCGCAACGAC
GCTCCGGAGGAGGGT CCGCGCTCTCGCTCT ACATCCGCAACGACT
CTCCGGAGGAGGGTC CGCGCTCTCGCTCTG CATCCGCAACGACTA
TCCGGAGGAGGGTCC GCGCTCTCGCTCTGG ATCCGCAACGACTAT
CGGAGGAGGGTCCCC GCTCTCGCTCTGGCC CCGCAACGACTATCA
CGCAACGACTATCAG GGCTACCTCCACATC CGCTTCCCCAAGCTC
GCAACGACTATCAGC GCTACCTCCACATCC GCTTCCCCAAGCTCA
CAACGACTATCAGCA CTACCTCCACATCCT CTTCCCCAAGCTCAC
AACGACTATCAGCAG TACCTCCACATCCTG TTCCCCAAGCTCACG
ACGACTATCAGCAGC ACCTCCACATCCTGC TCCCCAAGCTCACGG
CGACTATCAGCAGCT CCTCCACATCCTGCT CCCCAAGCTCACGGT
GACTATCAGCAGCTG CTCCACATCCTGCTC CCCAAGCTCACGGTC
ACTATCAGCAGCTGA TCCACATCCTGCTCA CCAAGCTCACGGTCA
CTATCAGCAGCTGAA CCACATCCTGCTCAT CAAGCTCACGGTCAT
ATCAGCAGCTGAAGC ACATCCTGCTCATCT AGCTCACGGTCATTA
TCAGCAGCTGAAGCG CATCCTGCTCATCTC GCTCACGGTCATTAC
CAGCAGCTGAAGCGC ATCCTGCTCATCTCC CTCACGGTCATTACC
AGCAGCTGAAGCGCC TCCTGCTCATCTCCA TCACGGTCATTACCG
CAGCTGAAGCGCCTG CTGCTCATCTCCAAG ACGGTCATTACCGAG
AGCTGAAGCGCCTGG TGCTCATCTCCAAGG CGGTCATTACCGAGT
GCTGAAGCGCCTGGA GCTCATCTCCAAGGC . GGTCATTACCGAGTA
CTGAAGCGCCTGGAG CTCATCTCCAAGGCC GTCATTACCGAGTAC
GAAGCGCCTGGAGAA CATCTCCAAGGCCGA CATTACCGAGTACTT
AAGCGCCTGGAGAAC ATCTCCAAGGCCGAG ATTACCGAGTACTTG
AGCGCCTGGAGAACT TCTCCAAGGCCGAGG TTACCGAGTACTTGC
GCGCCTGGAGAACTG CTCCAAGGCCGAGGA TACCGAGTACTTGCT
GCCTGGAGAACTGCA CCAAGGCCGAGGACT CCGAGTACTTGCTGC
CCTGGAGAACTGCAC CAAGGCCGAGGACTA CGAGTACTTGCTGCT
CTGGAGAACTGCACG AAGGCCGAGGACTAC GAGTACTTGCTGCTG
TGGAGAACTGCACGG AGGCCGAGGACTACC AGTACTTGCTGCTGT
GAGAACTGCACGGTG GCCGAGGACTACCGC TACTTGCTGCTGTTC
AGAACTGCACGGTGA CCGAGGACTACCGCA ACTTGCTGCTGTTCC
GAACTGCACGGTGAT CGAGGACTACCGCAG CTTGCTGCTGTTCCG
AACTGCACGGTGATC GAGGACTACCGCAGC TTGCTGCTGTTCCGA
CTGCACGGTGATCGA GGACTACCGCAGCTA GCTGCTGTTCCGAGT
TGCACGGTGATCGAG GACTACCGCAGCTAC CTGCTGTTCCGAGTG
GCACGGTGATCGAGG ACTACCGCAGCTACC TGCTGTTCCGAGTGG
CACGGTGATCGAGGG CTACCGCAGCTACCG GCTGTTCCGAGTGGC
CGGTGATCGAGGGCT ACCGCAGCTACCGCT TGTTCCGAGTGGCTG
GGTGATCGAGGGCTA CCGCAGCTACCGCTT GTTCCGAGTGGCTGG
GTGATCGAGGGCTAC CGCAGCTACCGCTTC TTCCGAGTGGCTGGC
TGATCGAGGGCTACC GCAGCTACCGCTTCC TCCGAGTGGCTGGCC
ATCGAGGGCTACCTC AGCTACCGCTTCCCC CGAGTGGCTGGCCTC
TCGAGGGCTACCTCC GCTACCGCTTCCCCA GAGTGGCTGGCCTCG
CGAGGGCTACCTCCA CTACCGCTTCCCCAA AGTGGCTGGCCTCGA
GAGGGCTACCTCCAC TACCGCTTCCCCAAG GTGGCTGGCCTCGAG
GGGCTACCTCCACAT CCGCTTCCCCAAGCT GGCTGGCCTCGAGAG
GCTGGCCTCGAGAGC GGCTGGAAACTCTTC CTCAAGGATATTGGG
CTGGCCTCGAGAGCC GCTGGAAACTCTTCT TCAAGGATATTGGGC
TGGCCTCGAGAGCCT CTGGAAACTCTTCTA CAAGGATATTGGGCT
GGCCTCGAGAGCCTC TGGAAACTCTTCTAC AAGGATATTGGGCTT
GCCTCGAGAGCCTCG GGAAACTCTTCTACA AGGATATTGGGCTTT
CCTCGAGAGCCTCGG GAAACTCTTCTACAA GGATATTGGGCTTTA
CTCGAGAGCCTCGGA AAACTCTTCTACAAC GATATTGGGCTTTAC
TCGAGAGCCTCGGAG AACTCTTCTACAACT ATATTGGGCTTTACA
CGAGAGCCTCGGAGA ACTCTTCTACAACTA TATTGGGCTTTACAA
AGAGCCTCGGAGACC TCTTCTACAACTACG TTGGGCTTTACAACC
GAGCCTCGGAGACCT CTTCTACAACTACGC TGGGCTTTACAACCT
AGCCTCGGAGACCTC TTCTACAACTACGCC GGGCTTTACAACCTG
GCCTCGGAGACCTCT TCTACAACTACGCCC GGCTTTACAACCTGA
CTCGGAGACCTCTTC TACAACTACGCCCTG CTTTACAACCTGAGG
TCGGAGACCTCTTCC ACAACTACGCCCTGG TTTACAACCTGAGGA
CGGAGACCTCTTCCC CAACTACGCCCTGGT TTACAACCTGAGGAA
GGAGACCTCTTCCCC AACTACGCCCTGGTC TACAACCTGAGGAAC
AGACCTCTTCCCCAA CTACGCCCTGGTCAT CAACCTGAGGAACAT
GACCTCTTCCCCAAC TACGCCCTGGTCATC AACCTGAGGAACATT
ACCTCTTCCCCAACC ACGCCCTGGTCATCT ACCTGAGGAACATTA
CCTCTTCCCCAACCT CGCCCTGGTCATCTT CCTGAGGAACATTAC
TCTTCCCCAACCTCA CCCTGGTCATCTTCG TGAGGAACATTACTC
CTTCCCCAACCTCAC CCTGGTCATCTTCGA GAGGAACATTACTCG
TTCCCCAACCTCACG CTGGTCATCTTCGAG AGGAACATTACTCGG
TCCCCAACCTCACGG TGGTCATCTTCGAGA GGAACATTACTCGGG
CCCAACCTCACGGTC GTCATCTTCGAGATG AACATTACTCGGGGG
CCAACCTCACGGTCA TCATCTTCGAGATGA ACATTACTCGGGGGG
CAACCTCACGGTCAT CATCTTCGAGATGAC CATTACTCGGGGGGC
AACCTCACGGTCATC ATCTTCGAGATGACC ATTACTCGGGGGGCC
CCTCACGGTCATCCG CTTCGAGATGACCAA TACTCGGGGGGCCAT
CTCACGGTCATCCGC TTCGAGATGACCAAT ACTCGGGGGGCCATC
TCACGGTCATCCGCG TCGAGATGACCAATC CTCGGGGGGCCATCA
CACGGTCATCCGCGG CGAGATGACCAATCT TCGGGGGGCCATCAG
CGGTCATCCGCGGCT AGATGACCAATCTCA GGGGGGCCATCAGGA
GGTCATCCGCGGCTG GATGACCAATCTCAA GGGGGCCATCAGGAT
GTCATCCGCGGCTGG ATGACCAATCTCAAG GGGGCCATCAGGATT
TCATCCGCGGCTGGA TGACCAATCTCAAGG GGGCCATCAGGATTG
ATCCGCGGCTGGAAA ACCAATCTCAAGGAT GCCATCAGGATTGAG
TCCGCGGCTGGAAAC CCAATCTCAAGGATA CCATCAGGATTGAGA
CCGCGGCTGGAAACT CAATCTCAAGGATAT CATCAGGATTGAGAA
CGCGGCTGGAAACTC AATCTCAAGGATATT ATCAGGATTGAGAAA
CGGCTGGAAACTCTT TCTCAAGGATATTGG CAGGATTGAGAAAAA
AGGATTGAGAAP~AAT CTGATCCTGGATGCG AAGGAATGTGGGGAC
GGATTGAGAA.P.AATG TGATCCTGGATGCGG AGGAATGTGGGGACC
GATTGAGAAAAATGC GATCCTGGATGCGGT GGAATGTGGGGACCT
ATTGAGAAAAATGCT ATCCTGGATGCGGTG GAATGTGGGGACCTG
S TTGAGAAAAATGCTG TCCTGGATGCGGTGT AATGTGGGGACCTGT
TGAGAAAAATGCTGA CCTGGATGCGGTGTC ATGTGGGGACCTGTG
GAGAAAAATGCTGAC CTGGATGCGGTGTCC TGTGGGGACCTGTGT
AGAAAAATGCTGACC TGGATGCGGTGTCCA GTGGGGACCTGTGTC
GAAAAATGCTGACCT GGATGCGGTGTCCAA TGGGGACCTGTGTCC
10AAAA.ATGCTGACCTC GATGCGGTGTCCAAT GGGGACCTGTGTCCA
AAAATGCTGACCTCT ATGCGGTGTCCAATA GGGACCTGTGTCCAG
AAATGCTGACCTCTG TGCGGTGTCCAATAA GGACCTGTGTCCAGG
AATGCTGACCTCTGT GCGGTGTCCAATAAC GACCTGTGTCCAGGG
ATGCTGACCTCTGTT CGGTGTCCAATAACT ACCTGTGTCCAGGGA
GCTGACCTCTGTTAC GTGTCCAATAACTAC CTGTGTCCAGGGACC
CTGACCTCTGTTACC TGTCCAATAACTACA TGTGTCCAGGGACCA
TGACCTCTGTTACCT GTCCAATAACTACAT GTGTCCAGGGACCAT
GACCTCTGTTACCTC TCCAATAACTACATT TGTCCAGGGACCATG
CCTCTGTTACCTCTC CAATAACTACATTGT TCCAGGGACCATGGA
CTCTGTTACCTCTCC AATAACTACATTGTG CCAGGGACCATGGAG
TCTGTTACCTCTCCA ATAACTACATTGTGG CAGGGACCATGGAGG
CTGTTACCTCTCCAC TAACTACATTGTGGG AGGGACCATGGAGGA
GTTACCTCTCCACTG ACTACATTGTGGGGA GGACCATGGAGGAGA
TTACCTCTCCACTGT CTACATTGTGGGGAA GACCATGGAGGAGAA
TACCTCTCCACTGTG TACATTGTGGGGAAT ACCATGGAGGAGAAG
ACCTCTCCACTGTGG ACATTGTGGGGAATA CCATGGAGGAGAAGC
CTCTCCACTGTGGAC ATTGTGGGGAATAAG ATGGAGGAGAAGCCG
TCTCCACTGTGGACT TTGTGGGGAATAAGC TGGAGGAGAAGCCGA
CTCCACTGTGGACTG TGTGGGGAATAAGCC GGAGGAGAAGCCGAT
TCCACTGTGGACTGG GTGGGGAATAAGCCC GAGGAGAAGCCGATG
CACTGTGGACTGGTC GGGGAATAAGCCCCC GGAGAAGCCGATGTG
ACTGTGGACTGGTCC GGGAATAAGCCCCCA GAGAAGCCGATGTGT
CTGTGGACTGGTCCC GGAATAAGCCCCCAA AGAAGCCGATGTGTG
TGTGGACTGGTCCCT GAATAAGCCCCCAAA GAAGCCGATGTGTGA
TGGACTGGTCCCTGA ATAAGCCCCCAAAGG AGCCGATGTGTGAGA
GGACTGGTCCCTGAT TAAGCCCCCAAAGGA GCCGATGTGTGAGAA
GACTGGTCCCTGATC AAGCCCCCAAAGGAA CCGATGTGTGAGAAG
ACTGGTCCCTGATCC AGCCCCCAAAGGAAT CGATGTGTGAGAAGA
TGGTCCCTGATCCTG CCCCCAAAGGAATGT ATGTGTGAGAAGACC
GGTCCCTGATCCTGG CCCCAAAGGAATGTG TGTGTGAGAAGACCA
GTCCCTGATCCTGGA CCCAAAGGAATGTGG GTGTGAGAAGACCAC
TCCCTGATCCTGGAT CCAAAGGAATGTGGG TGTGAGAAGACCACC
CCTGATCCTGGATGC AAAGGAATGTGGGGA TGAGAAGACCACCAT
GAGAAGACCACCATC CGCTGCCAGAAAATG AACAATGAGTGCTGC
AGAAGACCACCATCA GCTGCCAGAAAATGT ACAATGAGTGCTGCC
GAAGACCACCATCAA CTGCCAGAAAATGTG CAATGAGTGCTGCCA
AAGACCACCATCAAC TGCCAGAAAATGTGC AATGAGTGCTGCCAC
AGACCACCATCAACA GCCAGAAAATGTGCC ATGAGTGCTGCCACC
GACCACCATCAACAA CCAGAAAATGTGCCC TGAGTGCTGCCACCC
ACCACCATCAACAAT CAGAAAATGTGCCCA GAGTGCTGCCACCCC
CCACCATCAACAATG AGAAAATGTGCCCAA AGTGCTGCCACCCCG
CACCATCAACAATGA GAAAATGTGCCCAAG GTGCTGCCACCCCGA
CCATCAACAATGAGT AAATGTGCCCAAGCA GCTGCCACCCCGAGT
CATCAACAATGAGTA AATGTGCCCAAGCAC CTGCCACCCCGAGTG
ATCAACAATGAGTAC ATGTGCCCAAGCACG TGCCACCCCGAGTGC
TCAACAATGAGTACA TGTGCCCAAGCACGT GCCACCCCGAGTGCC
AACAATGAGTACAAC TGCCCAAGCACGTGT CACCCCGAGTGCCTG
ACAATGAGTACAACT GCCCAAGCACGTGTG ACCCCGAGTGCCTGG
CAATGAGTACAACTA CCCAAGCACGTGTGG CCCCGAGTGCCTGGG
AATGAGTACAACTAC CCAAGCACGTGTGGG CCCGAGTGCCTGGGC
TGAGTACAACTACCG AAGCACGTGTGGGAA CGAGTGCCTGGGCAG
GAGTACAACTACCGC AGCACGTGTGGGAAG GAGTGCCTGGGCAGC
AGTACAACTACCGCT GCACGTGTGGGAAGC AGTGCCTGGGCAGCT
GTACAACTACCGCTG CACGTGTGGGAAGCG GTGCCTGGGCAGCTG
ACAACTACCGCTGCT CGTGTGGGAAGCGGG GCCTGGGCAGCTGCA
CAACTACCGCTGCTG GTGTGGGAAGCGGGC CCTGGGCAGCTGCAG
AACTACCGCTGCTGG TGTGGGAAGCGGGCG CTGGGCAGCTGCAGC
ACTACCGCTGCTGGA GTGGGAAGCGGGCGT TGGGCAGCTGCAGCG
TACCGCTGCTGGACC GGGAAGCGGGCGTGC GGCAGCTGCAGCGCG
ACCGCTGCTGGACCA GGAAGCGGGCGTGCA GCAGCTGCAGCGCGC
CCGCTGCTGGACCAC GAAGCGGGCGTGCAC CAGCTGCAGCGCGCC
CGCTGCTGGACCACA AAGCGGGCGTGCACC AGCTGCAGCGCGCCT
CTGCTGGACCACAAA GCGGGCGTGCACCGA CTGCAGCGCGCCTGA
TGCTGGACCACAAAC CGGGCGTGCACCGAG TGCAGCGCGCCTGAC
GCTGGACCACAAACC GGGCGTGCACCGAGA GCAGCGCGCCTGACA
CTGGACCACAAACCG GGCGTGCACCGAGAA CAGCGCGCCTGACAA
GGACCACAAACCGCT CGTGCACCGAGAACA GCGCGCCTGACAACG
GACCACAAACCGCTG GTGCACCGAGAACAA CGCGCCTGACAACGA
ACCACAAACCGCTGC TGCACCGAGAACAAT GCGCCTGACAACGAC
CCACAAACCGCTGCC GCACCGAGAACAATG CGCCTGACAACGACA
ACAAACCGCTGCCAG ACCGAGAACAATGAG CCTGACAACGACACG
CAAACCGCTGCCAGA CCGAGAACAATGAGT CTGACAACGACACGG
AAACCGCTGCCAGAA CGAGAACAATGAGTG TGACAACGACACGGC
AACCGCTGCCAGAAA GAGAACAATGAGTGC GACAACGACACGGCC
CCGCTGCCAGAAAAT GAACAATGAGTGCTG CAACGACACGGCCTG
AACGACACGGCCTGT GTGCCTGCCTGCCCG GACCGTGACTTCTGC
ACGACACGGCCTGTG TGCCTGCCTGCCCGC ACCGTGACTTCTGCG
CGACACGGCCTGTGT GCCTGCCTGCCCGCC CCGTGACTTCTGCGC
GACACGGCCTGTGTA CCTGCCTGCCCGCCC CGTGACTTCTGCGCC
ACACGGCCTGTGTAG CTGCCTGCCCGCCCA GTGACTTCTGCGCCA
CACGGCCTGTGTAGC TGCCTGCCCGCCCAA TGACTTCTGCGCCAA
ACGGCCTGTGTAGCT GCCTGCCCGCCCAAC GACTTCTGCGCCAAC
CGGCCTGTGTAGCTT CCTGCCCGCCCAACA ACTTCTGCGCCAACA
GGCCTGTGTAGCTTG CTGCCCGCCCAACAC CTTCTGCGCCAACAT
CCTGTGTAGCTTGCC GCCCGCCCAACACCT TCTGCGCCAACATCC
CTGTGTAGCTTGCCG CCCGCCCAACACCTA CTGCGCCAACATCCT
TGTGTAGCTTGCCGC CCGCCCAACACCTAC TGCGCCAACATCCTC
GTGTAGCTTGCCGCC CGCCCAACACCTACA GCGCCAACATCCTCA
GTAGCTTGCCGCCAC CCCAACACCTACAGG GCCAACATCCTCAGC
TAGCTTGCCGCCACT CCAACACCTACAGGT CCAACATCCTCAGCG
AGCTTGCCGCCACTA CAACACCTACAGGTT CAACATCCTCAGCGC
GCTTGCCGCCACTAC AACACCTACAGGTTT AACATCCTCAGCGCC
TTGCCGCCACTACTA CACCTACAGGTTTGA CATCCTCAGCGCCGA
TGCCGCCACTACTAC ACCTACAGGTTTGAG ATCCTCAGCGCCGAG
GCCGCCACTACTACT CCTACAGGTTTGAGG TCCTCAGCGCCGAGA
CCGCCACTACTACTA CTACAGGTTTGAGGG CCTCAGCGCCGAGAG
GCCACTACTACTATG ACAGGTTTGAGGGCT TCAGCGCCGAGAGCA
CCACTACTACTATGC CAGGTTTGAGGGCTG CAGCGCCGAGAGCAG
CACTACTACTATGCC AGGTTTGAGGGCTGG AGCGCCGAGAGCAGC
ACTACTACTATGCCG GGTTTGAGGGCTGGC GCGCCGAGAGCAGCG
TACTACTATGCCGGT TTTGAGGGCTGGCGC GCCGAGAGCAGCGAC
ACTACTATGCCGGTG TTGAGGGCTGGCGCT CCGAGAGCAGCGACT
CTACTATGCCGGTGT TGAGGGCTGGCGCTG CGAGAGCAGCGACTC
TACTATGCCGGTGTC GAGGGCTGGCGCTGT GAGAGCAGCGACTCC
CTATGCCGGTGTCTG GGGCTGGCGCTGTGT GAGCAGCGACTCCGA
TATGCCGGTGTCTGT GGCTGGCGCTGTGTG AGCAGCGACTCCGAG
ATGCCGGTGTCTGTG GCTGGCGCTGTGTGG GCAGCGACTCCGAGG
TGCCGGTGTCTGTGT CTGGCGCTGTGTGGA CAGCGACTCCGAGGG
CCGGTGTCTGTGTGC GGCGCTGTGTGGACC GCGACTCCGAGGGGT
CGGTGTCTGTGTGCC GCGCTGTGTGGACCG CGACTCCGAGGGGTT
GGTGTCTGTGTGCCT CGCTGTGTGGACCGT GACTCCGAGGGGTTT
GTGTCTGTGTGCCTG GCTGTGTGGACCGTG ACTCCGAGGGGTTTG
GTCTGTGTGCCTGCC TGTGTGGACCGTGAC TCCGAGGGGTTTGTG
TCTGTGTGCCTGCCT GTGTGGACCGTGACT CCGAGGGGTTTGTGA
CTGTGTGCCTGCCTG TGTGGACCGTGACTT CGAGGGGTTTGTGAT
TGTGTGCCTGCCTGC GTGGACCGTGACTTC GAGGGGTTTGTGATC
TGTGCCTGCCTGCCC GGACCGTGACTTCTG GGGGTTTGTGATCCA
GGGTTTGTGATCCAC ATCCGCAACGGCAGC CCGAAGGTCTGTGAG
GGTTTGTGATCCACG TCCGCAACGGCAGCC CGAAGGTCTGTGAGG
GTTTGTGATCCACGA CCGCAACGGCAGCCA GAAGGTCTGTGAGGA
TTTGTGATCCACGAC CGCAACGGCAGCCAG AAGGTCTGTGAGGAA
TTGTGATCCACGACG GCAACGGCAGCCAGA AGGTCTGTGAGGAAG
TGTGATCCACGACGG CAACGGCAGCCAGAG GGTCTGTGAGGAAGA
GTGATCCACGACGGC AACGGCAGCCAGAGC GTCTGTGAGGAAGAA
TGATCCACGACGGCG ACGGCAGCCAGAGCA TCTGTGAGGAAGAAA
GATCCACGACGGCGA CGGCAGCCAGAGCAT CTGTGAGGAAGAAAA
TCCACGACGGCGAGT GCAGCCAGAGCATGT GTGAGGAAGAAAAGA
CCACGACGGCGAGTG CAGCCAGAGCATGTA TGAGGAAGAAAAGAA
CACGACGGCGAGTGC AGCCAGAGCATGTAC GAGGAAGAAAAGAAA
ACGACGGCGAGTGCA GCCAGAGCATGTACT AGGAAGAAAAGAAAA
GACGGCGAGTGCATG CAGAGCATGTACTGC GAAGAAAAGAAAACA
ACGGCGAGTGCATGC AGAGCATGTACTGCA AAGAAAAGAAAACAA
CGGCGAGTGCATGCA GAGCATGTACTGCAT AGAAAAGAAAACAAA
GGCGAGTGCATGCAG AGCATGTACTGCATC GAAAAGAAAACAAAG
CGAGTGCATGCAGGA CATGTACTGCATCCC AAAGAAAACAAAGAC
GAGTGCATGCAGGAG ATGTACTGCATCCCT AAGAAAACAAAGACC
AGTGCATGCAGGAGT TGTACTGCATCCCTT AGAAAACAAAGACCA
GTGCATGCAGGAGTG GTACTGCATCCCTTG GAAAACAAAGACCAT
GCATGCAGGAGTGCC ACTGCATCCCTTGTG AAACAAAGACCATTG
CATGCAGGAGTGCCC CTGCATCCCTTGTGA AACAAAGACCATTGA
ATGCAGGAGTGCCCC TGCATCCCTTGTGAA ACAAAGACCATTGAT
TGCAGGAGTGCCCCT GCATCCCTTGTGAAG CAAAGACCATTGATT
CAGGAGTGCCCCTCG ATCCCTTGTGAAGGT AAGACCATTGATTCT
AGGAGTGCCCCTCGG TCCCTTGTGAAGGTC AGACCATTGATTCTG
GGAGTGCCCCTCGGG CCCTTGTGAAGGTCC GACCATTGATTCTGT
GAGTGCCCCTCGGGC CCTTGTGAAGGTCCT ACCATTGATTCTGTT
GTGCCCCTCGGGCTT TTGTGAAGGTCCTTG CATTGATTCTGTTAC
TGCCCCTCGGGCTTC TGTGAAGGTCCTTGC ATTGATTCTGTTACT
GCCCCTCGGGCTTCA GTGAAGGTCCTTGCC TTGATTCTGTTACTT
CCCCTCGGGCTTCAT TGAAGGTCCTTGCCC TGATTCTGTTACTTC
CCTCGGGCTTCATCC AAGGTCCTTGCCCGA ATTCTGTTACTTCTG
CTCGGGCTTCATCCG AGGTCCTTGCCCGAA TTCTGTTACTTCTGC
TCGGGCTTCATCCGC GGTCCTTGCCCGAAG TCTGTTACTTCTGCT
CGGGCTTCATCCGCA GTCCTTGCCCGAAGG CTGTTACTTCTGCTC
GGCTTCATCCGCAAC CCTTGCCCGAAGGTC GTTACTTCTGCTCAG
GCTTCATCCGCAACG CTTGCCCGAAGGTCT TTACTTCTGCTCAGA
CTTCATCCGCAACGG TTGCCCGAAGGTCTG TACTTCTGCTCAGAT
TTCATCCGCAACGGC TGCCCGAAGGTCTGT ACTTCTGCTCAGATG
CATCCGCAACGGCAG CCCGAAGGTCTGTGA TTCTGCTCAGATGCT
TCTGCTCAGATGCTC AACATCCGACGGGGG CTCATCGAGGTGGTG
CTGCTCAGATGCTCC ACATCCGACGGGGGA TCATCGAGGTGGTGA
TGCTCAGATGCTCCA CATCCGACGGGGGAA CATCGAGGTGGTGAC
GCTCAGATGCTCCAA ATCCGACGGGGGAAT ATCGAGGTGGTGACG
CTCAGATGCTCCAAG TCCGACGGGGGAATA TCGAGGTGGTGACGG
TCAGATGCTCCAAGG CCGACGGGGGAATAA CGAGGTGGTGACGGG
CAGATGCTCCAAGGA CGACGGGGGAATAAC GAGGTGGTGACGGGC
AGATGCTCCAAGGAT GACGGGGGAATAACA AGGTGGTGACGGGCT
GATGCTCCAAGGATG ACGGGGGAATAACAT GGTGGTGACGGGCTA
TGCTCCAAGGATGCA GGGGGAATAACATTG TGGTGACGGGCTACG
GCTCCAAGGATGCAC GGGGAATAACATTGC GGTGACGGGCTACGT
CTCCAAGGATGCACC GGGAATAACATTGCT GTGACGGGCTACGTG
TCCAAGGATGCACCA GGAATAACATTGCTT TGACGGGCTACGTGA
CAAGGATGCACCATC AATAACATTGCTTCA ACGGGCTACGTGAAG
AAGGATGCACCATCT ATAACATTGCTTCAG CGGGCTACGTGAAGA
AGGATGCACCATCTT TAACATTGCTTCAGA GGGCTACGTGAAGAT
GGATGCACCATCTTC AACATTGCTTCAGAG GGCTACGTGAAGATC
ATGCACCATCTTCAA CATTGCTTCAGAGCT CTACGTGAAGATCCG
TGCACCATCTTCAAG ATTGCTTCAGAGCTG TACGTGAAGATCCGC
GCACCATCTTCAAGG TTGCTTCAGAGCTGG ACGTGAAGATCCGCC
CACCATCTTCAAGGG TGCTTCAGAGCTGGA CGTGAAGATCCGCCA
CCATCTTCAAGGGCA CTTCAGAGCTGGAGA TGAAGATCCGCCATT
CATCTTCAAGGGCAA TTCAGAGCTGGAGAA GAAGATCCGCCATTC
ATCTTCAAGGGCAAT TCAGAGCTGGAGAAC AAGATCCGCCATTCT
TCTTCAAGGGCAATT CAGAGCTGGAGAACT AGATCCGCCATTCTC
TTCAAGGGCAATTTG GAGCTGGAGAACTTC ATCCGCCATTCTCAT
TCAAGGGCAATTTGC AGCTGGAGAACTTCA TCCGCCATTCTCATG
CAAGGGCAATTTGCT GCTGGAGAACTTCAT CCGCCATTCTCATGC
AAGGGCAATTTGCTC CTGGAGAACTTCATG CGCCATTCTCATGCC
GGGCAATTTGCTCAT GGAGAACTTCATGGG CCATTCTCATGCCTT
GGCAATTTGCTCATT GAGAACTTCATGGGG CATTCTCATGCCTTG
GCAATTTGCTCATTA AGAACTTCATGGGGC ATTCTCATGCCTTGG
CAATTTGCTCATTAA GAACTTCATGGGGCT TTCTCATGCCTTGGT
ATTTGCTCATTAACA ACTTCATGGGGCTCA CTCATGCCTTGGTCT
TTTGCTCATTAACAT CTTCATGGGGCTCAT TCATGCCTTGGTCTC
TTGCTCATTAACATC TTCATGGGGCTCATC CATGCCTTGGTCTCC
TGCTCATTAACATCC TCATGGGGCTCATCG ATGCCTTGGTCTCCT
CTCATTAACATCCGA ATGGGGCTCATCGAG GCCTTGGTCTCCTTG
TCATTAACATCCGAC TGGGGCTCATCGAGG CCTTGGTCTCCTTGT
CATTAACATCCGACG GGGGCTCATCGAGGT CTTGGTCTCCTTGTC
ATTAACATCCGACGG GGGCTCATCGAGGTG TTGGTCTCCTTGTCC
TAACATCCGACGGGG GCTCATCGAGGTGGT GGTCTCCTTGTCCTT
GTCTCCTTGTCCTTC CTAGAAGGGAATTAC CTGTGGGACTGGGAC
TCTCCTTGTCCTTCC TAGAAGGGAATTACT TGTGGGACTGGGACC
CTCCTTGTCCTTCCT AGAAGGGAATTACTC GTGGGACTGGGACCA
TCCTTGTCCTTCCTA GAAGGGAATTACTCC TGGGACTGGGACCAC
CCTTGTCCTTCCTAA AAGGGAATTACTCCT GGGACTGGGACCACC
CTTGTCCTTCCTAAA AGGGAATTACTCCTT GGACTGGGACCACCG
TTGTCCTTCCTAAAA GGGAATTACTCCTTC GACTGGGACCACCGC
TGTCCTTCCTAAAAA GGAATTACTCCTTCT ACTGGGACCACCGCA
GTCCTTCCTAAAAAA GAATTACTCCTTCTA CTGGGACCACCGCAA
10TCCTTCCTAAAP~AAC AATTACTCCTTCTAC TGGGACCACCGCAAC
CCTTCCTAAAAAACC ATTACTCCTTCTACG GGGACCACCGCAACC
CTTCCTAAAAAACCT TTACTCCTTCTACGT GGACCACCGCAACCT
TTCCTAAAAAACCTT TACTCCTTCTACGTC GACCACCGCAACCTG
TCCTAAAAAACCTTC ACTCCTTCTACGTCC ACCACCGCAACCTGA
15CCTAAP.A.A.ACCTTCG CTCCTTCTACGTCCT CCACCGCAACCTGAC
CTP.AAP.AACCTTCGC TCCTTCTACGTCCTC CACCGCAACCTGACC
TAA.A.A.A.ACCTTCGCCCCTTCTACGTCCTCG ACCGCAACCTGACCA
AAAAAACCTTCGCCT CTTCTACGTCCTCGA CCGCAACCTGACCAT
P.AAAACCTTCGCCTC TTCTACGTCCTCGAC CGCAACCTGACCATC
AAACCTTCGCCTCAT CTACGTCCTCGACAA CAACCTGACCATCAA
AACCTTCGCCTCATC TACGTCCTCGACAAC AACCTGACCATCAAA
ACCTTCGCCTCATCC ACGTCCTCGACAACC ACCTGACCATCAAAG
CCTTCGCCTCATCCT CGTCCTCGACAACCA CCTGACCATCAAAGC
TTCGCCTCATCCTAG TCCTCGACAACCAGA TGACCATCAAAGCAG
TCGCCTCATCCTAGG CCTCGACAACCAGAA GACCATCAAAGCAGG
CGCCTCATCCTAGGA CTCGACAACCAGAAC ACCATCAAAGCAGGG
GCCTCATCCTAGGAG TCGACAACCAGAACT CCATCAAAGCAGGGA
CTCATCCTAGGAGAG GACAACCAGAACTTG ATCAAAGCAGGGAAA
TCATCCTAGGAGAGG ACAACCAGAACTTGC TCAAAGCAGGGAAAA
CATCCTAGGAGAGGA CAACCAGAACTTGCA CAAAGCAGGGAAAAT
ATCCTAGGAGAGGAG AACCAGAACTTGCAG AAAGCAGGGAAAATG
CCTAGGAGAGGAGCA CCAGAACTTGCAGCA AGCAGGGAAAATGTA
CTAGGAGAGGAGCAG CAGAACTTGCAGCAA GCAGGGAAAATGTAC
TAGGAGAGGAGCAGC AGAACTTGCAGCAAC CAGGGAAAATGTACT
AGGAGAGGAGCAGCT GAACTTGCAGCAACT AGGGAAAATGTACTT
GAGAGGAGCAGCTAG ACTTGCAGCAACTGT GGAAAATGTACTTTG
AGAGGAGCAGCTAGA CTTGCAGCAACTGTG GAAAATGTACTTTGC
GAGGAGCAGCTAGAA TTGCAGCAACTGTGG AAAATGTACTTTGCT
AGGAGCAGCTAGAAG TGCAGCAACTGTGGG AAATGTACTTTGCTT
GAGCAGCTAGAAGGG CAGCAACTGTGGGAC ATGTACTTTGCTTTC
AGCAGCTAGAAGGGA AGCAACTGTGGGACT TGTACTTTGCTTTCA
GCAGCTAGAAGGGAA GCAACTGTGGGACTG GTACTTTGCTTTCAA
CAGCTAGAAGGGAAT CAACTGTGGGACTGG TACTTTGCTTTCAAT
GCTAGAAGGGAATTA ACTGTGGGACTGGGA CTTTGCTTTCAATCC
TTTGCTTTCAATCCC GTGACGGGGACTAAA AACGGGGAGAGAGCC
TTGCTTTCAATCCCA TGACGGGGACTAAAG ACGGGGAGAGAGCCT
TGCTTTCAATCCCAA GACGGGGACTAAAGG CGGGGAGAGAGCCTC
GCTTTCAATCCCAAA ACGGGGACTAAAGGG GGGGAGAGAGCCTCC
CTTTCAATCCCAAAT CGGGGACTAAAGGGC GGGAGAGAGCCTCCT
TTTCAATCCCAAATT GGGGACTAAAGGGCG GGAGAGAGCCTCCTG
TTCAATCCCAAATTA GGGACTAAAGGGCGC GAGAGAGCCTCCTGT
TCAATCCCAAATTAT GGACTAAAGGGCGCC AGAGAGCCTCCTGTG
CAATCCCAAATTATG GACTAAAGGGCGCCA GAGAGCCTCCTGTGA
ATCCCAAATTATGTG CTAAAGGGCGCCAAA GAGCCTCCTGTGAAA
TCCCAAATTATGTGT TAAAGGGCGCCAAAG AGCCTCCTGTGAAAG
CCCAAATTATGTGTT AAAGGGCGCCAAAGC GCCTCCTGTGAAAGT
CCAAATTATGTGTTT AAGGGCGCCAAAGCA CCTCCTGTGAAAGTG
AAATTATGTGTTTCC GGGCGCCAAAGCAAA TCCTGTGAAAGTGAC
AATTATGTGTTTCCG GGCGCCAAAGCAAAG CCTGTGAAAGTGACG
ATTATGTGTTTCCGA GCGCCAAAGCAAAGG CTGTGAAAGTGACGT
TTATGTGTTTCCGAA CGCCAAAGCAAAGGG TGTGAAAGTGACGTC
ATGTGTTTCCGAAAT CCAAAGCAAAGGGGA TGAAAGTGACGTCCT
TGTGTTTCCGAAATT CAAAGCAAAGGGGAC GAAAGTGACGTCCTG
GTGTTTCCGAAATTT AAAGCAAAGGGGACA AAAGTGACGTCCTGC
TGTTTCCGAAATTTA AAGCAAAGGGGACAT AAGTGACGTCCTGCA
TTTCCGAAATTTACC GCAAAGGGGACATAA GTGACGTCCTGCATT
TTCCGAAATTTACCG CAAAGGGGACATAAA TGACGTCCTGCATTT
TCCGAAATTTACCGC AAAGGGGACATAAAC GACGTCCTGCATTTC
CCGAAATTTACCGCA AAGGGGACATAAACA ACGTCCTGCATTTCA
GAAATTTACCGCATG GGGGACATAAACACC GTCCTGCATTTCACC
AAATTTACCGCATGG GGGACATAAACACCA TCCTGCATTTCACCT
AATTTACCGCATGGA GGACATAAACACCAG CCTGCATTTCACCTC
ATTTACCGCATGGAG GACATAAACACCAGG CTGCATTTCACCTCC
TTACCGCATGGAGGA CATAAACACCAGGAA GCATTTCACCTCCAC
TACCGCATGGAGGAA ATAAACACCAGGAAC CATTTCACCTCCACC
ACCGCATGGAGGAAG TAAACACCAGGAACA ATTTCACCTCCACCA
CCGCATGGAGGAAGT AAACACCAGGAACAA TTTCACCTCCACCAC
GCATGGAGGAAGTGA ACACCAGGAACAACG TCACCTCCACCACCA
CATGGAGGAAGTGAC CACCAGGAACAACGG CACCTCCACCACCAC
ATGGAGGAAGTGACG ACCAGGAACAACGGG ACCTCCACCACCACG
TGGAGGAAGTGACGG CCAGGAACAACGGGG CCTCCACCACCACGT
GAGGAAGTGACGGGG AGGAACAACGGGGAG TCCACCACCACGTCG
AGGAAGTGACGGGGA GGAACAACGGGGAGA CCACCACCACGTCGA
GGAAGTGACGGGGAC GAACAACGGGGAGAG CACCACCACGTCGAA
GAAGTGACGGGGACT AACAACGGGGAGAGA ACCACCACGTCGAAG
AGTGACGGGGACTAA CAACGGGGAGAGAGC CACCACGTCGAAGAA
ACCACGTCGAAGAAT GACTACAGGGATCTC AAGAATGTCACAGAG
CCACGTCGAAGAATC ACTACAGGGATCTCA AGAATGTCACAGAGT
CACGTCGAAGAATCG CTACAGGGATCTCAT GAATGTCACAGAGTA
ACGTCGAAGAATCGC TACAGGGATCTCATC AATGTCACAGAGTAT
CGTCGAAGAATCGCA ACAGGGATCTCATCA ATGTCACAGAGTATG
GTCGAAGAATCGCAT CAGGGATCTCATCAG TGTCACAGAGTATGA
TCGAAGAATCGCATC AGGGATCTCATCAGC GTCACAGAGTATGAT
CGAAGAATCGCATCA GGGATCTCATCAGCT TCACAGAGTATGATG
GAAGAATCGCATCAT GGATCTCATCAGCTT CACAGAGTATGATGG
AGAATCGCATCATCA ATCTCATCAGCTTCA CAGAGTATGATGGGC
GAATCGCATCATCAT TCTCATCAGCTTCAC AGAGTATGATGGGCA
AATCGCATCATCATA CTCATCAGCTTCACC GAGTATGATGGGCAG
ATCGCATCATCATAA TCATCAGCTTCACCG AGTATGATGGGCAGG
CGCATCATCATAACC ATCAGCTTCACCGTT TATGATGGGCAGGAT
GCATCATCATAACCT TCAGCTTCACCGTTT ATGATGGGCAGGATG
CATCATCATAACCTG CAGCTTCACCGTTTA TGATGGGCAGGATGC
ATCATCATAACCTGG AGCTTCACCGTTTAC GATGGGCAGGATGCC
CATCATAACCTGGCA CTTCACCGTTTACTA TGGGCAGGATGCCTG
ATCATAACCTGGCAC TTCACCGTTTACTAC GGGCAGGATGCCTGC
TCATAACCTGGCACC TCACCGTTTACTACA GGCAGGATGCCTGCG
CATAACCTGGCACCG CACCGTTTACTACAA GCAGGATGCCTGCGG
TAACCTGGCACCGGT CCGTTTACTACAAGG AGGATGCCTGCGGCT
AACCTGGCACCGGTA CGTTTACTACAAGGA GGATGCCTGCGGCTC
ACCTGGCACCGGTAC GTTTACTACAAGGAA GATGCCTGCGGCTCC
CCTGGCACCGGTACC TTTACTACAAGGAAG ATGCCTGCGGCTCCA
TGGCACCGGTACCGG TACTACAAGGAAGCA GCCTGCGGCTCCAAC
GGCACCGGTACCGGC ACTACAAGGAAGCAC CCTGCGGCTCCAACA
GCACCGGTACCGGCC CTACAAGGAAGCACC CTGCGGCTCCAACAG
CACCGGTACCGGCCC TACAAGGAAGCACCC TGCGGCTCCAACAGC
CCGGTACCGGCCCCC CAAGGAAGCACCCTT CGGCTCCAACAGCTG
CGGTACCGGCCCCCT AAGGAAGCACCCTTT GGCTCCAACAGCTGG
GGTACCGGCCCCCTG AGGAAGCACCCTTTA GCTCCAACAGCTGGA
GTACCGGCCCCCTGA GGAAGCACCCTTTAA CTCCAACAGCTGGAA
ACCGGCCCCCTGACT AAGCACCCTTTAAGA CCAACAGCTGGAACA
CCGGCCCCCTGACTA AGCACCCTTTAAGAA CAACAGCTGGAACAT
CGGCCCCCTGACTAC GCACCCTTTAAGAAT AACAGCTGGAACATG
GGCCCCCTGACTACA CACCCTTTAAGAATG ACAGCTGGAACATGG
CCCCCTGACTACAGG CCCTTTAAGAATGTC AGCTGGAACATGGTG
CCCCTGACTACAGGG CCTTTAAGAATGTCA GCTGGAACATGGTGG
CCCTGACTACAGGGA CTTTAAGAATGTCAC CTGGAACATGGTGGA
CCTGACTACAGGGAT TTTAAGAATGTCACA TGGAACATGGTGGAC
TGACTACAGGGATCT TAAGAATGTCACAGA GAACATGGTGGACGT
AACATGGTGGACGTG TTACTACATGGGCTG GTGACCCTCACCATG
ACATGGTGGACGTGG TACTACATGGGCTGA TGACCCTCACCATGG
CATGGTGGACGTGGA ACTACATGGGCTGAA GACCCTCACCATGGT
ATGGTGGACGTGGAC CTACATGGGCTGAAG ACCCTCACCATGGTG
TGGTGGACGTGGACC TACATGGGCTGAAGC CCCTCACCATGGTGG
GGTGGACGTGGACCT ACATGGGCTGAAGCC CCTCACCATGGTGGA
GTGGACGTGGACCTC CATGGGCTGAAGCCC CTCACCATGGTGGAG
TGGACGTGGACCTCC ATGGGCTGAAGCCCT TCACCATGGTGGAGA
GGACGTGGACCTCCC TGGGCTGAAGCCCTG CACCATGGTGGAGAA
ACGTGGACCTCCCGC GGCTGAAGCCCTGGA CCATGGTGGAGAACG
CGTGGACCTCCCGCC GCTGAAGCCCTGGAC CATGGTGGAGAACGA
GTGGACCTCCCGCCC CTGAAGCCCTGGACT ATGGTGGAGAACGAC
TGGACCTCCCGCCCA TGAAGCCCTGGACTC TGGTGGAGAACGACC
GACCTCCCGCCCAAC AAGCCCTGGACTCAG GTGGAGAACGACCAT
ACCTCCCGCCCAACA AGCCCTGGACTCAGT TGGAGAACGACCATA
CCTCCCGCCCAACAA GCCCTGGACTCAGTA GGAGAACGACCATAT
CTCCCGCCCAACAAG CCCTGGACTCAGTAC GAGAACGACCATATC
CCCGCCCAACAAGGA CTGGACTCAGTACGC GAACGACCATATCCG
CCGCCCAACAAGGAC TGGACTCAGTACGCC AACGACCATATCCGT
CGCCCAACAAGGACG GGACTCAGTACGCCG ACGACCATATCCGTG
GCCCAACAAGGACGT GACTCAGTACGCCGT CGACCATATCCGTGG
CCAACAAGGACGTGG CTCAGTACGCCGTTT ACCATATCCGTGGGG
CAACAAGGACGTGGA TCAGTACGCCGTTTA CCATATCCGTGGGGC
AACAAGGACGTGGAG CAGTACGCCGTTTAC CATATCCGTGGGGCC
ACAAGGACGTGGAGC AGTACGCCGTTTACG ATATCCGTGGGGCCA
AAGGACGTGGAGCCC TACGCCGTTTACGTC ATCCGTGGGGCCAAG
AGGACGTGGAGCCCG ACGCCGTTTACGTCA TCCGTGGGGCCAAGA
GGACGTGGAGCCCGG CGCCGTTTACGTCAA CCGTGGGGCCAAGAG
GACGTGGAGCCCGGC GCCGTTTACGTCAAG CGTGGGGCCAAGAGT
CGTGGAGCCCGGCAT CGTTTACGTCAAGGC TGGGGCCAAGAGTGA
GTGGAGCCCGGCATC GTTTACGTCAAGGCT GGGGCCAAGAGTGAG
TGGAGCCCGGCATCT TTTACGTCAAGGCTG GGGCCAAGAGTGAGA
GGAGCCCGGCATCTT TTACGTCAAGGCTGT GGCCAAGAGTGAGAT
AGCCCGGCATCTTAC ACGTCAAGGCTGTGA CCAAGAGTGAGATCT
GCCCGGCATCTTACT CGTCAAGGCTGTGAC CAAGAGTGAGATCTT
CCCGGCATCTTACTA GTCAAGGCTGTGACC AAGAGTGAGATCTTG
CCGGCATCTTACTAC TCAAGGCTGTGACCC AGAGTGAGATCTTGT
GGCATCTTACTACAT AAGGCTGTGACCCTC AGTGAGATCTTGTAC
GCATCTTACTACATG AGGCTGTGACCCTCA GTGAGATCTTGTACA
CATCTTACTACATGG GGCTGTGACCCTCAC TGAGATCTTGTACAT
ATCTTACTACATGGG GCTGTGACCCTCACC GAGATCTTGTACATT
CTTACTACATGGGCT TGTGACCCTCACCAT GATCTTGTACATTCG
ATCTTGTACATTCGC CTTTCAGCATCGAAC TCTCTGCCCAACGGC
TCTTGTACATTCGCA TTTCAGCATCGAACT CTCTGCCCAACGGCA
CTTGTACATTCGCAC TTCAGCATCGAACTC TCTGCCCAACGGCAA
TTGTACATTCGCACC TCAGCATCGAACTCC CTGCCCAACGGCAAC
S TGTACATTCGCACCA CAGCATCGAACTCCT TGCCCAACGGCAACC
GTACATTCGCACCAA AGCATCGAACTCCTC GCCCAACGGCAACCT
TACATTCGCACCAAT GCATCGAACTCCTCT CCCAACGGCAACCTG
ACATTCGCACCAATG CATCGAACTCCTCTT CCAACGGCAACCTGA
CATTCGCACCAATGC ATCGAACTCCTCTTC CAACGGCAACCTGAG
TTCGCACCAATGCTT CGAACTCCTCTTCTC ACGGCAACCTGAGTT
TCGCACCAATGCTTC GAACTCCTCTTCTCA CGGCAACCTGAGTTA
CGCACCAATGCTTCA AACTCCTCTTCTCAG GGCAACCTGAGTTAC
GCACCAATGCTTCAG ACTCCTCTTCTCAGT GCAACCTGAGTTACT
ACCAATGCTTCAGTT TCCTCTTCTCAGTTA AACCTGAGTTACTAC
CCAATGCTTCAGTTC CCTCTTCTCAGTTAA ACCTGAGTTACTACA
CAATGCTTCAGTTCC CTCTTCTCAGTTAAT CCTGAGTTACTACAT
AATGCTTCAGTTCCT TCTTCTCAGTTAATC CTGAGTTACTACATT
TGCTTCAGTTCCTTC TTCTCAGTTAATCGT GAGTTACTACATTGT
GCTTCAGTTCCTTCC TCTCAGTTAATCGTG AGTTACTACATTGTG
CTTCAGTTCCTTCCA CTCAGTTAATCGTGA GTTACTACATTGTGC
TTCAGTTCCTTCCAT TCAGTTAATCGTGAA TTACTACATTGTGCG
CAGTTCCTTCCATTC AGTTAATCGTGAAGT ACTACATTGTGCGCT
AGTTCCTTCCATTCC GTTAATCGTGAAGTG CTACATTGTGCGCTG
GTTCCTTCCATTCCC TTAATCGTGAAGTGG TACATTGTGCGCTGG
TTCCTTCCATTCCCT TAATCGTGAAGTGGA ACATTGTGCGCTGGC
CCTTCCATTCCCTTG ATCGTGAAGTGGAAC ATTGTGCGCTGGCAG
CTTCCATTCCCTTGG TCGTGAAGTGGAACC TTGTGCGCTGGCAGC
TTCCATTCCCTTGGA CGTGAAGTGGAACCC TGTGCGCTGGCAGCG
TCCATTCCCTTGGAC GTGAAGTGGAACCCT GTGCGCTGGCAGCGG
CATTCCCTTGGACGT GAAGTGGAACCCTCC GCGCTGGCAGCGGCA
ATTCCCTTGGACGTT AAGTGGAACCCTCCC CGCTGGCAGCGGCAG
TTCCCTTGGACGTTC AGTGGAACCCTCCCT GCTGGCAGCGGCAGC
TCCCTTGGACGTTCT GTGGAACCCTCCCTC CTGGCAGCGGCAGCC
CCTTGGACGTTCTTT GGAACCCTCCCTCTC GGCAGCGGCAGCCTC
CTTGGACGTTCTTTC GAACCCTCCCTCTCT GCAGCGGCAGCCTCA
TTGGACGTTCTTTCA AACCCTCCCTCTCTG CAGCGGCAGCCTCAG
TGGACGTTCTTTCAG ACCCTCCCTCTCTGC AGCGGCAGCCTCAGG
GACGTTCTTTCAGCA CCTCCCTCTCTGCCC CGGCAGCCTCAGGAC
ACGTTCTTTCAGCAT CTCCCTCTCTGCCCA GGCAGCCTCAGGACG
CGTTCTTTCAGCATC TCCCTCTCTGCCCAA GCAGCCTCAGGACGG
GTTCTTTCAGCATCG CCCTCTCTGCCCAAC CAGCCTCAGGACGGC
TCTTTCAGCATCGAA CTCTCTGCCCAACGG GCCTCAGGACGGCTA
CCTCAGGACGGCTAC CCCATCAGGAAGTAT AACCCCAAGACTGAG
CTCAGGACGGCTACC CCATCAGGAAGTATG ACCCCAAGACTGAGG
TCAGGACGGCTACCT CATCAGGAAGTATGC CCCCAAGACTGAGGT
CAGGACGGCTACCTT ATCAGGAAGTATGCC CCCAAGACTGAGGTG
AGGACGGCTACCTTT TCAGGAAGTATGCCG CCAAGACTGAGGTGT
GGACGGCTACCTTTA CAGGAAGTATGCCGA CAAGACTGAGGTGTG
GACGGCTACCTTTAC AGGAAGTATGCCGAC AAGACTGAGGTGTGT
ACGGCTACCTTTACC GGAAGTATGCCGACG AGACTGAGGTGTGTG
CGGCTACCTTTACCG GAAGTATGCCGACGG GACTGAGGTGTGTGG
GCTACCTTTACCGGC AGTATGCCGACGGCA CTGAGGTGTGTGGTG
CTACCTTTACCGGCA GTATGCCGACGGCAC TGAGGTGTGTGGTGG
TACCTTTACCGGCAC TATGCCGACGGCACC GAGGTGTGTGGTGGG
ACCTTTACCGGCACA ATGCCGACGGCACCA AGGTGTGTGGTGGGG
CTTTACCGGCACAAT GCCGACGGCACCATC GTGTGTGGTGGGGAG
TTTACCGGCACAATT CCGACGGCACCATCG TGTGTGGTGGGGAGA
TTACCGGCACAATTA CGACGGCACCATCGA GTGTGGTGGGGAGAA
TACCGGCACAATTAC GACGGCACCATCGAC TGTGGTGGGGAGAAA
CCGGCACAATTACTG CGGCACCATCGACAT TGGTGGGGAGAAAGG
CGGCACAATTACTGC GGCACCATCGACATT GGTGGGGAGAAAGGG
GGCACAATTACTGCT GCACCATCGACATTG GTGGGGAGAAAGGGC
GCACAATTACTGCTC CACCATCGACATTGA TGGGGAGAAAGGGCC
ACAATTACTGCTCCA CCATCGACATTGAGG GGGAGAAAGGGCCTT
CAATTACTGCTCCAA CATCGACATTGAGGA GGAGAAAGGGCCTTG
AATTACTGCTCCAAA ATCGACATTGAGGAG GAGAAAGGGCCTTGC
ATTACTGCTCCAAAG TCGACATTGAGGAGG AGAAAGGGCCTTGCT
TACTGCTCCAAAGAC GACATTGAGGAGGTC AAAGGGCCTTGCTGC
ACTGCTCCAAAGACA ACATTGAGGAGGTCA AAGGGCCTTGCTGCG
CTGCTCCAAAGACAA CATTGAGGAGGTCAC AGGGCCTTGCTGCGC
TGCTCCAAAGACAAA ATTGAGGAGGTCACA GGGCCTTGCTGCGCC
CTCCAAAGACAAAAT TGAGGAGGTCACAGA GCCTTGCTGCGCCTG
TCCAAAGACAAAATC GAGGAGGTCACAGAG CCTTGCTGCGCCTGC
CCAAAGACAAAATCC AGGAGGTCACAGAGA CTTGCTGCGCCTGCC
CAAAGACAAAATCCC GGAGGTCACAGAGAA TTGCTGCGCCTGCCC
AAGACAAAATCCCCA AGGTCACAGAGAACC GCTGCGCCTGCCCCA
AGACAAAATCCCCAT GGTCACAGAGAACCC CTGCGCCTGCCCCAA
GACAAAATCCCCATC GTCACAGAGAACCCC TGCGCCTGCCCCAAA
ACAAAATCCCCATCA TCACAGAGAACCCCA GCGCCTGCCCCAAAA
AAAATCCCCATCAGG ACAGAGAACCCCAAG GCCTGCCCCAAAACT
AAATCCCCATCAGGA CAGAGAACCCCAAGA CCTGCCCCAAAACTG
AATCCCCATCAGGAA AGAGAACCCCAAGAC CTGCCCCAAAACTGA
ATCCCCATCAGGAAG GAGAACCCCAAGACT TGCCCCAAAACTGAA
CCCCATCAGGAAGTA GAACCCCAAGACTGA CCCCAAAACTGAAGC
CCCAAAACTGAAGCC AAAGTCTTTGAGAAT AGGAAGCGGAGAGAT
CCAAAACTGAAGCCG AAGTCTTTGAGAATT GGAAGCGGAGAGATG
CAAAACTGAAGCCGA AGTCTTTGAGAATTT GAAGCGGAGAGATGT
AAAACTGAAGCCGAG GTCTTTGAGAATTTC AAGCGGAGAGATGTC
AAACTGAAGCCGAGA TCTTTGAGAATTTCC AGCGGAGAGATGTCA
AACTGAAGCCGAGAA CTTTGAGAATTTCCT GCGGAGAGATGTCAT
ACTGAAGCCGAGAAG TTTGAGAATTTCCTG CGGAGAGATGTCATG
CTGAAGCCGAGAAGC TTGAGAATTTCCTGC GGAGAGATGTCATGC
TGAAGCCGAGAAGCA TGAGAATTTCCTGCA GAGAGATGTCATGCA
AAGCCGAGAAGCAGG AGAATTTCCTGCACA GAGATGTCATGCAAG
AGCCGAGAAGCAGGC GAATTTCCTGCACAA AGATGTCATGCAAGT
GCCGAGAAGCAGGCC AATTTCCTGCACAAC GATGTCATGCAAGTG
CCGAGAAGCAGGCCG ATTTCCTGCACAACT ATGTCATGCAAGTGG
GAGAAGCAGGCCGAG TTCCTGCACAACTCC GTCATGCAAGTGGCC
AGAAGCAGGCCGAGA TCCTGCACAACTCCA TCATGCAAGTGGCCA
GAAGCAGGCCGAGAA CCTGCACAACTCCAT CATGCAAGTGGCCAA
AAGCAGGCCGAGAAG CTGCACAACTCCATC ATGCAAGTGGCCAAC
GCAGGCCGAGAAGGA GCACAACTCCATCTT GCAAGTGGCCAACAC
CAGGCCGAGAAGGAG CACAACTCCATCTTC CAAGTGGCCAACACC
AGGCCGAGAAGGAGG ACAACTCCATCTTCG AAGTGGCCAACACCA
GGCCGAGAAGGAGGA CAACTCCATCTTCGT AGTGGCCAACACCAC
CCGAGAAGGAGGAGG ACTCCATCTTCGTGC TGGCCAACACCACCA
CGAGAAGGAGGAGGC CTCCATCTTCGTGCC GGCCAACACCACCAT
GAGAAGGAGGAGGCT TCCATCTTCGTGCCC GCCAACACCACCATG
AGAAGGAGGAGGCTG CCATCTTCGTGCCCA CCAACACCACCATGT
AAGGAGGAGGCTGAA ATCTTCGTGCCCAGA AACACCACCATGTCC
AGGAGGAGGCTGAAT TCTTCGTGCCCAGAC ACACCACCATGTCCA
GGAGGAGGCTGAATA CTTCGTGCCCAGACC CACCACCATGTCCAG
GAGGAGGCTGAATAC TTCGTGCCCAGACCT ACCACCATGTCCAGC
GGAGGCTGAATACCG CGTGCCCAGACCTGA CACCATGTCCAGCCG
GAGGCTGAATACCGC GTGCCCAGACCTGAA ACCATGTCCAGCCGA
AGGCTGAATACCGCA TGCCCAGACCTGAAA CCATGTCCAGCCGAA
GGCTGAATACCGCAA GCCCAGACCTGAAAG CATGTCCAGCCGAAG
CTGAATACCGCAAAG CCAGACCTGAAAGGA TGTCCAGCCGAAGCA
TGAATACCGCAAAGT CAGACCTGAAAGGAA GTCCAGCCGAAGCAG
GAATACCGCAAAGTC AGACCTGAAAGGAAG TCCAGCCGAAGCAGG
AATACCGCAAAGTCT GACCTGAAAGGAAGC CCAGCCGAAGCAGGA
TACCGCAAAGTCTTT CCTGAAAGGAAGCGG AGCCGAAGCAGGAAC
ACCGCAAAGTCTTTG CTGAAAGGAAGCGGA GCCGAAGCAGGAACA
CCGCAAAGTCTTTGA TGAAAGGAAGCGGAG CCGAAGCAGGAACAC
CGCAAAGTCTTTGAG GAAAGGAAGCGGAGA CGAAGCAGGAACACC
CAAAGTCTTTGAGAA AAGGAAGCGGAGAGA AAGCAGGAACACCAC
AGCAGGAACACCACG CTGGAGACAGAGTAC ACTGTCATTTCTAAC
GCAGGAACACCACGG TGGAGACAGAGTACC CTGTCATTTCTAACC
CAGGAACACCACGGC GGAGACAGAGTACCC TGTCATTTCTAACCT
AGGAACACCACGGCC GAGACAGAGTACCCT GTCATTTCTAACCTT
GGAACACCACGGCCG AGACAGAGTACCCTT TCATTTCTAACCTTC
GAACACCACGGCCGC GACAGAGTACCCTTT CATTTCTAACCTTCG
AACACCACGGCCGCA ACAGAGTACCCTTTC ATTTCTAACCTTCGG
ACACCACGGCCGCAG CAGAGTACCCTTTCT TTTCTAACCTTCGGC
CACCACGGCCGCAGA AGAGTACCCTTTCTT TTCTAACCTTCGGCC
CCACGGCCGCAGACA AGTACCCTTTCTTTG CTAACCTTCGGCCTT
CACGGCCGCAGACAC GTACCCTTTCTTTGA TAACCTTCGGCCTTT
ACGGCCGCAGACACC TACCCTTTCTTTGAG AACCTTCGGCCTTTC
CGGCCGCAGACACCT ACCCTTTCTTTGAGA ACCTTCGGCCTTTCA
GCCGCAGACACCTAC CCTTTCTTTGAGAGC CTTCGGCCTTTCACA
CCGCAGACACCTACA CTTTCTTTGAGAGCA TTCGGCCTTTCACAT
CGCAGACACCTACAA TTTCTTTGAGAGCAG TCGGCCTTTCACATT
GCAGACACCTACAAC TTCTTTGAGAGCAGA CGGCCTTTCACATTG
AGACACCTACAACAT CTTTGAGAGCAGAGT GCCTTTCACATTGTA
GACACCTACAACATC TTTGAGAGCAGAGTG CCTTTCACATTGTAC
ACACCTACAACATCA TTGAGAGCAGAGTGG CTTTCACATTGTACC
CACCTACAACATCAC TGAGAGCAGAGTGGA TTTCACATTGTACCG
CCTACAACATCACCG AGAGCAGAGTGGATA TCACATTGTACCGCA
CTACAACATCACCGA GAGCAGAGTGGATAA CACATTGTACCGCAT
TACAACATCACCGAC AGCAGAGTGGATAAC ACATTGTACCGCATC
ACAACATCACCGACC GCAGAGTGGATAACA CATTGTACCGCATCG
AACATCACCGACCCG AGAGTGGATAACAAG TTGTACCGCATCGAT
ACATCACCGACCCGG GAGTGGATAACAAGG TGTACCGCATCGATA
CATCACCGACCCGGA AGTGGATAACAAGGA GTACCGCATCGATAT
ATCACCGACCCGGAA GTGGATAACAAGGAG TACCGCATCGATATC
CACCGACCCGGAAGA GGATAACAAGGAGAG CCGCATCGATATCCA
ACCGACCCGGAAGAG GATAACAAGGAGAGA CGCATCGATATCCAC
CCGACCCGGAAGAGC ATAACAAGGAGAGAA GCATCGATATCCACA
CGACCCGGAAGAGCT TAACAAGGAGAGAAC CATCGATATCCACAG
ACCCGGAAGAGCTGG ACAAGGAGAGAACTG TCGATATCCACAGCT
CCCGGAAGAGCTGGA CAAGGAGAGAACTGT CGATATCCACAGCTG
CCGGAAGAGCTGGAG AAGGAGAGAACTGTC GATATCCACAGCTGC
CGGAAGAGCTGGAGA AGGAGAGAACTGTCA ATATCCACAGCTGCA
GAAGAGCTGGAGACA GAGAGAACTGTCATT ATCCACAGCTGCAAC
AAGAGCTGGAGACAG AGAGAACTGTCATTT TCCACAGCTGCAACC
AGAGCTGGAGACAGA GAGAACTGTCATTTC CCACAGCTGCAACCA
GAGCTGGAGACAGAG AGAACTGTCATTTCT CACAGCTGCAACCAC
GCTGGAGACAGAGTA AACTGTCATTTCTAA CAGCTGCAACCACGA
_77_ AGCTGCAACCACGAG TTTGCAAGGACTATG ACCTGGGAGCCAAGG
GCTGCAACCACGAGG TTGCAAGGACTATGC CCTGGGAGCCAAGGC
CTGCAACCACGAGGC TGCAAGGACTATGCC CTGGGAGCCAAGGCC
TGCAACCACGAGGCT GCAAGGACTATGCCC TGGGAGCCAAGGCCT
GCAACCACGAGGCTG CAAGGACTATGCCCG GGGAGCCAAGGCCTG
CAACCACGAGGCTGA AAGGACTATGCCCGC GGAGCCAAGGCCTGA
AACCACGAGGCTGAG AGGACTATGCCCGCA GAGCCAAGGCCTGAA
ACCACGAGGCTGAGA GGACTATGCCCGCAG AGCCAAGGCCTGAAA
CCACGAGGCTGAGAA GACTATGCCCGCAGA GCCAAGGCCTGAAAA
ACGAGGCTGAGAAGC CTATGCCCGCAGAAG CAAGGCCTGAAAACT
CGAGGCTGAGAAGCT TATGCCCGCAGAAGG AAGGCCTGAAAACTC
GAGGCTGAGAAGCTG ATGCCCGCAGAAGGA AGGCCTGAAAACTCC
AGGCTGAGAAGCTGG TGCCCGCAGAAGGAG GGCCTGAAAACTCCA
GCTGAGAAGCTGGGC CCCGCAGAAGGAGCA CCTGAAAACTCCATC
CTGAGAAGCTGGGCT CCGCAGAAGGAGCAG CTGAAAACTCCATCT
TGAGAAGCTGGGCTG CGCAGAAGGAGCAGA TGAAAACTCCATCTT
GAGAAGCTGGGCTGC GCAGAAGGAGCAGAT GAAAACTCCATCTTT
GAAGCTGGGCTGCAG AGAAGGAGCAGATGA AAACTCCATCTTTTT
AAGCTGGGCTGCAGC GAAGGAGCAGATGAC AACTCCATCTTTTTA
AGCTGGGCTGCAGCG AAGGAGCAGATGACA ACTCCATCTTTTTAA
GCTGGGCTGCAGCGC AGGAGCAGATGACAT CTCCATCTTTTTAAA
TGGGCTGCAGCGCCT GAGCAGATGACATTC CCATCTTTTTAAAGT
GGGCTGCAGCGCCTC AGCAGATGACATTCC CATCTTTTTAAAGTG
GGCTGCAGCGCCTCC GCAGATGACATTCCT ATCTTTTTAAAGTGG
GCTGCAGCGCCTCCA CAGATGACATTCCTG TCTTTTTAAAGTGGC
TGCAGCGCCTCCAAC GATGACATTCCTGGG TTTTTAAAGTGGCCG
GCAGCGCCTCCAACT ATGACATTCCTGGGC TTTTAAAGTGGCCGG
CAGCGCCTCCAACTT TGACATTCCTGGGCC TTTAAAGTGGCCGGA
AGCGCCTCCAACTTC GACATTCCTGGGCCA TTAAAGTGGCCGGA.A
CGCCTCCAACTTCGT CATTCCTGGGCCAGT AAAGTGGCCGGAACC
GCCTCCAACTTCGTC ATTCCTGGGCCAGTG AAGTGGCCGGAACCT
CCTCCAACTTCGTCT TTCCTGGGCCAGTGA AGTGGCCGGAACCTG
CTCCAACTTCGTCTT TCCTGGGCCAGTGAC GTGGCCGGAACCTGA
CCAACTTCGTCTTTG CTGGGCCAGTGACCT GGCCGGAACCTGAGA
CAACTTCGTCTTTGC TGGGCCAGTGACCTG GCCGGAACCTGAGAA
AACTTCGTCTTTGCA GGGCCAGTGACCTGG CCGGAACCTGAGAAT
ACTTCGTCTTTGCAA GGCCAGTGACCTGGG CGGAACCTGAGAATC
TTCGTCTTTGCAAGG CCAGTGACCTGGGAG GAACCTGAGAATCCC
TCGTCTTTGCAAGGA CAGTGACCTGGGAGC AACCTGAGAATCCCA
CGTCTTTGCAAGGAC AGTGACCTGGGAGCC ACCTGAGAATCCCAA
GTCTTTGCAAGGACT GTGACCTGGGAGCCA CCTGAGAATCCCAAT
CTTTGCAAGGACTAT GACCTGGGAGCCAAG TGAGAATCCCAATGG
_7g_ GAGAATCCCAATGGA GTTGAGGATCAGCGA GGGGCCAAGCTAAAC
AGAATCCCAATGGAT TTGAGGATCAGCGAG GGGCCAAGCTAAACC
GAATCCCAATGGATT TGAGGATCAGCGAGA GGCCAAGCTAA.P.CCG
AATCCCAATGGATTG GAGGATCAGCGAGAA GCCAAGCTAAACCGG
ATCCCAATGGATTGA AGGATCAGCGAGAAT CCAAGCTAAACCGGC
TCCCAATGGATTGAT GGATCAGCGAGAATG CAAGCTAAACCGGCT
CCCAATGGATTGATT GATCAGCGAGAATGT AAGCTAAACCGGCTA
CCAATGGATTGATTC ATCAGCGAGAATGTG AGCTAAACCGGCTAA
CAATGGATTGATTCT TCAGCGAGAATGTGT GCTAAACCGGCTAAA
ATGGATTGATTCTAA AGCGAGAATGTGTGT TAAACCGGCTAAACC
TGGATTGATTCTAAT GCGAGAATGTGTGTC AAACCGGCTAAACCC
GGATTGATTCTAATG CGAGAATGTGTGTCC AACCGGCTAAACCCG
GATTGATTCTAATGT GAGAATGTGTGTCCA ACCGGCTAAACCCGG
TTGATTCTAATGTAT GAATGTGTGTCCAGA CGGCTAA.ACCCGGGG
TGATTCTAATGTATG AATGTGTGTCCAGAC GGCTAAACCCGGGGA
GATTCTAATGTATGA ATGTGTGTCCAGACA GCTAAACCCGGGGAA
ATTCTAATGTATGAA TGTGTGTCCAGACAG CTAAACCCGGGGAAC
TCTAATGTATGAAAT TGTGTCCAGACAGGA AAACCCGGGGAACTA
CTAATGTATGAAATA GTGTCCAGACAGGAA AACCCGGGGAACTAC
TAATGTATGAAATAA TGTCCAGACAGGAAT ACCCGGGGAACTACA
AATGTATGAAATAAA GTCCAGACAGGAATA CCCGGGGAACTACAC
TGTATGAAATAAAAT CCAGACAGGAATACA CGGGGAACTACACAG
GTATGAAATAAAATA CAGACAGGAATACAG GGGGAACTACACAGC
TATGAA.ATAAAATAC AGACAGGAATACAGG GGGAACTACACAGCC
ATGAAATAAAATACG GACAGGAATACAGGA GGAACTACACAGCCC
GAAATAAAATACGGA CAGGAATACAGGAAG AACTACACAGCCCGG
AAATAAAATACGGAT AGGAATACAGGAAGT ACTACACAGCCCGGA
AATAAAATACGGATC GGAATACAGGAAGTA CTACACAGCCCGGAT
ATAAAATACGGATCA GAATACAGGAAGTAT TACACAGCCCGGATT
AAAATACGGATCACA ATACAGGAAGTATGG CACAGCCCGGATTCA
AAATACGGATCACAA TACAGGAAGTATGGA ACAGCCCGGATTCAG
AATACGGATCACAAG ACAGGAAGTATGGAG CAGCCCGGATTCAGG
ATACGGATCACAAGT CAGGAAGTATGGAGG AGCCCGGATTCAGGC
ACGGATCACAAGTTG GGAAGTATGGAGGGG CCCGGATTCAGGCCA
CGGATCACAAGTTGA GAAGTATGGAGGGGC CCGGATTCAGGCCAC
GGATCACAAGTTGAG AAGTATGGAGGGGCC CGGATTCAGGCCACA
GATCACAAGTTGAGG AGTATGGAGGGGCCA GGATTCAGGCCACAT
TCACAAGTTGAGGAT TATGGAGGGGCCAAG ATTCAGGCCACATCT
CACAAGTTGAGGATC ATGGAGGGGCCAAGC TTCAGGCCACATCTC
ACAAGTTGAGGATCA TGGAGGGGCCAAGCT TCAGGCCACATCTCT
CAAGTTGAGGATCAG GGAGGGGCCAAGCTA CAGGCCACATCTCTC
AGTTGAGGATCAGCG AGGGGCCAAGCTAAA GGCCACATCTCTCTC
GCCACATCTCTCTCT GTCCAGGCCAAAACA CCCGTCGCTGTCCTG
CCACATCTCTCTCTG TCCAGGCCAAAACAG CCGTCGCTGTCCTGT
CACATCTCTCTCTGG CCAGGCCAAAACAGG CGTCGCTGTCCTGTT
ACATCTCTCTCTGGG CAGGCCAAAACAGGA GTCGCTGTCCTGTTG
CATCTCTCTCTGGGA AGGCCAAAACAGGAT TCGCTGTCCTGTTGA
ATCTCTCTCTGGGAA GGCCAAAACAGGATA CGCTGTCCTGTTGAT
TCTCTCTCTGGGAAT GCCAAAACAGGATAT GCTGTCCTGTTGATC
CTCTCTCTGGGAATG CCAAAACAGGATATG CTGTCCTGTTGATCG
TCTCTCTGGGAATGG CAAAACAGGATATGA TGTCCTGTTGATCGT
TCTCTGGGAATGGGT AAACAGGATATGAAA TCCTGTTGATCGTGG
CTCTGGGAATGGGTC AACAGGATATGAAAA CCTGTTGATCGTGGG
TCTGGGAATGGGTCG ACAGGATATGAAAAC CTGTTGATCGTGGGA
CTGGGAATGGGTCGT CAGGATATGAAAACT TGTTGATCGTGGGAG
GGGAATGGGTCGTGG GGATATGAAAACTTC TTGATCGTGGGAGGG
GGAATGGGTCGTGGA GATATGAAAACTTCA TGATCGTGGGAGGGT
GAATGGGTCGTGGAC ATATGAAAACTTCAT GATCGTGGGAGGGTT
AATGGGTCGTGGACA TATGAAAACTTCATC ATCGTGGGAGGGTTG
TGGGTCGTGGACAGA TGAAAACTTCATCCA CGTGGGAGGGTTGGT
GGGTCGTGGACAGAT GAAAACTTCATCCAT GTGGGAGGGTTGGTG
GGTCGTGGACAGATC AAAACTTCATCCATC TGGGAGGGTTGGTGA
GTCGTGGACAGATCC AAACTTCATCCATCT GGGAGGGTTGGTGAT
CGTGGACAGATCCTG ACTTCATCCATCTGA GAGGGTTGGTGATTA
GTGGACAGATCCTGT CTTCATCCATCTGAT AGGGTTGGTGATTAT
TGGACAGATCCTGTG TTCATCCATCTGATC GGGTTGGTGATTATG
GGACAGATCCTGTGT TCATCCATCTGATCA GGTTGGTGATTATGC
ACAGATCCTGTGTTC ATCCATCTGATCATC TTGGTGATTATGCTG
CAGATCCTGTGTTCT TCCATCTGATCATCG TGGTGATTATGCTGT
AGATCCTGTGTTCTT CCATCTGATCATCGC GGTGATTATGCTGTA
GATCCTGTGTTCTTC CATCTGATCATCGCT GTGATTATGCTGTAC
TCCTGTGTTCTTCTA TCTGATCATCGCTCT GATTATGCTGTACGT
CCTGTGTTCTTCTAT CTGATCATCGCTCTG ATTATGCTGTACGTC
CTGTGTTCTTCTATG TGATCATCGCTCTGC TTATGCTGTACGTCT
TGTGTTCTTCTATGT GATCATCGCTCTGCC TATGCTGTACGTCTT
TGTTCTTCTATGTCC TCATCGCTCTGCCCG TGCTGTACGTCTTCC
GTTCTTCTATGTCCA CATCGCTCTGCCCGT GCTGTACGTCTTCCA
TTCTTCTATGTCCAG ATCGCTCTGCCCGTC CTGTACGTCTTCCAT
TCTTCTATGTCCAGG TCGCTCTGCCCGTCG TGTACGTCTTCCATA
TTCTATGTCCAGGCC GCTCTGCCCGTCGCT TACGTCTTCCATAGA
TCTATGTCCAGGCCA CTCTGCCCGTCGCTG ACGTCTTCCATAGAA
CTATGTCCAGGCCAA TCTGCCCGTCGCTGT CGTCTTCCATAGAAA
TATGTCCAGGCCAAA CTGCCCGTCGCTGTC GTCTTCCATAGAAAG
TGTCCAGGCCAAAAC GCCCGTCGCTGTCCT CTTCCATAGAAAGAG
TTCCATAGAAAGAGA TCTGTGAACCCGGAG TGGGAGGTGGCTCGG
TCCATAGAAAGAGAA CTGTGAACCCGGAGT GGGAGGTGGCTCGGG
CCATAGAAAGAGAAA TGTGAACCCGGAGTA GGAGGTGGCTCGGGA
CATAGAAAGAGAAAT GTGAACCCGGAGTAC GAGGTGGCTCGGGAG
ATAGAAAGAGAAATA TGAACCCGGAGTACT AGGTGGCTCGGGAGA
TAGAAAGAGAAATAA GAACCCGGAGTACTT GGTGGCTCGGGAGAA
AGAAAGAGAAATAAC AACCCGGAGTACTTC GTGGCTCGGGAGAAG
GAAAGAGAAATAACA ACCCGGAGTACTTCA TGGCTCGGGAGAAGA
AAAGAGAAATAACAG CCCGGAGTACTTCAG GGCTCGGGAGAAGAT
AGAGAAATAACAGCA CGGAGTACTTCAGCG CTCGGGAGAAGATCA
GAGAAATAACAGCAG GGAGTACTTCAGCGC TCGGGAGAAGATCAC
AGAAATAACAGCAGG GAGTACTTCAGCGCT CGGGAGAAGATCACC
GAAATAACAGCAGGC AGTACTTCAGCGCTG GGGAGAAGATCACCA
AATAACAGCAGGCTG TACTTCAGCGCTGCT GAGAAGATCACCATG
ATAACAGCAGGCTGG ACTTCAGCGCTGCTG AGAAGATCACCATGA
TAACAGCAGGCTGGG CTTCAGCGCTGCTGA GAAGATCACCATGAG
AACAGCAGGCTGGGG TTCAGCGCTGCTGAT AAGATCACCATGAGC
CAGCAGGCTGGGGAA CAGCGCTGCTGATGT GATCACCATGAGCCG
AGCAGGCTGGGGAAT AGCGCTGCTGATGTG ATCACCATGAGCCGG
GCAGGCTGGGGAATG GCGCTGCTGATGTGT TCACCATGAGCCGGG
CAGGCTGGGGAATGG CGCTGCTGATGTGTA CACCATGAGCCGGGA
GGCTGGGGAATGGAG CTGCTGATGTGTACG CCATGAGCCGGGAAC
GCTGGGGAATGGAGT TGCTGATGTGTACGT CATGAGCCGGGAACT
CTGGGGAATGGAGTG GCTGATGTGTACGTT ATGAGCCGGGAACTT
TGGGGAATGGAGTGC CTGATGTGTACGTTC TGAGCCGGGAACTTG
GGGAATGGAGTGCTG GATGTGTACGTTCCT AGCCGGGAACTTGGG
GGAATGGAGTGCTGT ATGTGTACGTTCCTG GCCGGGAACTTGGGC
GAATGGAGTGCTGTA TGTGTACGTTCCTGA CCGGGAACTTGGGCA
AATGGAGTGCTGTAT GTGTACGTTCCTGAT CGGGAACTTGGGCAG
TGGAGTGCTGTATGC GTACGTTCCTGATGA GGAACTTGGGCAGGG
GGAGTGCTGTATGCC TACGTTCCTGATGAG GAACTTGGGCAGGGG
GAGTGCTGTATGCCT ACGTTCCTGATGAGT AACTTGGGCAGGGGT
AGTGCTGTATGCCTC CGTTCCTGATGAGTG ACTTGGGCAGGGGTC
TGCTGTATGCCTCTG TTCCTGATGAGTGGG TTGGGCAGGGGTCGT
GCTGTATGCCTCTGT TCCTGATGAGTGGGA TGGGCAGGGGTCGTT
CTGTATGCCTCTGTG CCTGATGAGTGGGAG GGGCAGGGGTCGTTT
TGTATGCCTCTGTGA CTGATGAGTGGGAGG GGCAGGGGTCGTTTG
TATGCCTCTGTGAAC GATGAGTGGGAGGTG CAGGGGTCGTTTGGG
ATGCCTCTGTGAACC ATGAGTGGGAGGTGG AGGGGTCGTTTGGGA
TGCCTCTGTGAACCC TGAGTGGGAGGTGGC GGGGTCGTTTGGGAT
GCCTCTGTGAACCCG GAGTGGGAGGTGGCT GGGTCGTTTGGGATG
SOCCTCTGTGAACCCGG AGTGGGAGGTGGCTC GGTCGTTTGGGATGG
CTCTGTGAACCCGGA GTGGGAGGTGGCTCG GTCGTTTGGGATGGT
TCGTTTGGGATGGTC CCTGAAACCAGAGTG GAGAGGATTGAGTTT
CGTTTGGGATGGTCT CTGAAACCAGAGTGG AGAGGATTGAGTTTC
GTTTGGGATGGTCTA TGAAACCAGAGTGGC GAGGATTGAGTTTCT
TTTGGGATGGTCTAT GAAACCAGAGTGGCC AGGATTGAGTTTCTC
TTGGGATGGTCTATG AAACCAGAGTGGCCA GGATTGAGTTTCTCA
TGGGATGGTCTATGA AACCAGAGTGGCCAT GATTGAGTTTCTCAA
GGGATGGTCTATGAA ACCAGAGTGGCCATT ATTGAGTTTCTCAAC
GGATGGTCTATGAAG CCAGAGTGGCCATTA TTGAGTTTCTCAACG
GATGGTCTATGAAGG CAGAGTGGCCATTAA TGAGTTTCTCAACGA
TGGTCTATGAAGGAG GAGTGGCCATTAAAA AGTTTCTCAACGAAG
GGTCTATGAAGGAGT AGTGGCCATTAAAAC GTTTCTCAACGAAGC
GTCTATGAAGGAGTT GTGGCCATTAAAACA TTTCTCAACGAAGCT
TCTATGAAGGAGTTG TGGCCATTAAAACAG TTCTCAACGAAGCTT
TATGAAGGAGTTGCC GCCATTAAAACAGTG CTCAACGAAGCTTCT
ATGAAGGAGTTGCCA CCATTAAAACAGTGA TCAACGAAGCTTCTG
TGAAGGAGTTGCCAA CATTAAAACAGTGAA CAACGAAGCTTCTGT
GAAGGAGTTGCCAAG ATTAAAACAGTGAAC AACGAAGCTTCTGTG
AGGAGTTGCCAAGGG TAAAACAGTGAACGA CGAAGCTTCTGTGAT
GGAGTTGCCAAGGGT AAAACAGTGAACGAG GAAGCTTCTGTGATG
GAGTTGCCAAGGGTG AAACAGTGAACGAGG AAGCTTCTGTGATGA
AGTTGCCAAGGGTGT AACAGTGAACGAGGC AGCTTCTGTGATGAA
TTGCCAAGGGTGTGG CAGTGAACGAGGCCG CTTCTGTGATGAAGG
TGCCAAGGGTGTGGT AGTGAACGAGGCCGC TTCTGTGATGAAGGA
GCCAAGGGTGTGGTG GTGAACGAGGCCGCA TCTGTGATGAAGGAG
CCAAGGGTGTGGTGA TGAACGAGGCCGCAA CTGTGATGAAGGAGT
AAGGGTGTGGTGAAA AACGAGGCCGCAAGC GTGATGAAGGAGTTC
AGGGTGTGGTGAAAG ACGAGGCCGCAAGCA TGATGAAGGAGTTCA
GGGTGTGGTGAAAGA CGAGGCCGCAAGCAT GATGAAGGAGTTCAA
GGTGTGGTGAAAGAT GAGGCCGCAAGCATG ATGAAGGAGTTCAAT
TGTGGTGAAAGATGA GGCCGCAAGCATGCG GAAGGAGTTCAATTG
GTGGTGAAAGATGAA GCCGCAAGCATGCGT AAGGAGTTCAATTGT
TGGTGAAAGATGAAC CCGCAAGCATGCGTG AGGAGTTCAATTGTC
GGTGAAAGATGAACC CGCAAGCATGCGTGA GGAGTTCAATTGTCA
TGAAAGATGAACCTG CAAGCATGCGTGAGA AGTTCAATTGTCACC
GAAAGATGAACCTGA AAGCATGCGTGAGAG GTTCAATTGTCACCA
AAAGATGAACCTGAA AGCATGCGTGAGAGG TTCAATTGTCACCAT
AAGATGAACCTGAAA GCATGCGTGAGAGGA TCAATTGTCACCATG
GATGAACCTGAAACC ATGCGTGAGAGGATT AATTGTCACCATGTG
ATGAACCTGAAACCA TGCGTGAGAGGATTG ATTGTCACCATGTGG
TGAACCTGAAACCAG GCGTGAGAGGATTGA TTGTCACCATGTGGT
GAACCTGAAACCAGA CGTGAGAGGATTGAG TGTCACCATGTGGTG
ACCTGAAACCAGAGT TGAGAGGATTGAGTT TCACCATGTGGTGCG
CACCATGTGGTGCGA GTCATCATGGAACTG CTGAGGCCAGAAATG
ACCATGTGGTGCGAT TCATCATGGAACTGA TGAGGCCAGAAATGG
CCATGTGGTGCGATT CATCATGGAACTGAT GAGGCCAGAAATGGA
CATGTGGTGCGATTG ATCATGGAACTGATG AGGCCAGAAATGGAG
ATGTGGTGCGATTGC TCATGGAACTGATGA GGCCAGAAATGGAGA
TGTGGTGCGATTGCT CATGGAACTGATGAC GCCAGAAATGGAGAA
GTGGTGCGATTGCTG ATGGAACTGATGACA CCAGAAATGGAGAAT
TGGTGCGATTGCTGG TGGAACTGATGACAC CAGAAATGGAGAATA
GGTGCGATTGCTGGG GGAACTGATGACACG AGAAATGGAGAATAA
TGCGATTGCTGGGTG AACTGATGACACGGG AAATGGAGAATAATC
GCGATTGCTGGGTGT ACTGATGACACGGGG AATGGAGAATAATCC
CGATTGCTGGGTGTG CTGATGACACGGGGC ATGGAGAATAATCCA
GATTGCTGGGTGTGG TGATGACACGGGGCG TGGAGAATAATCCAG
TTGCTGGGTGTGGTG ATGACACGGGGCGAT GAGAATAATCCAGTC
TGCTGGGTGTGGTGT TGACACGGGGCGATC AGAATAATCCAGTCC
GCTGGGTGTGGTGTC GACACGGGGCGATCT GAATAATCCAGTCCT
CTGGGTGTGGTGTCC ACACGGGGCGATCTC AATAATCCAGTCCTA
GGGTGTGGTGTCCCA ACGGGGCGATCTCAA TAATCCAGTCCTAGC
GGTGTGGTGTCCCAA CGGGGCGATCTCAAA AATCCAGTCCTAGCA
GTGTGGTGTCCCAAG GGGGCGATCTCAAAA ATCCAGTCCTAGCAC
TGTGGTGTCCCAAGG GGGCGATCTCAAAAG TCCAGTCCTAGCACC
TGGTGTCCCAAGGCC GCGATCTCAAAAGTT CAGTCCTAGCACCTC
GGTGTCCCAAGGCCA CGATCTCAAAAGTTA AGTCCTAGCACCTCC
GTGTCCCAAGGCCAG GATCTCAAAAGTTAT GTCCTAGCACCTCCA
TGTCCCAAGGCCAGC ATCTCAAAAGTTATC TCCTAGCACCTCCAA
TCCCAAGGCCAGCCA CTCAAAAGTTATCTC CTAGCACCTCCAAGC
CCCAAGGCCAGCCAA TCAAAAGTTATCTCC TAGCACCTCCAAGCC
CCAAGGCCAGCCAAC CAAAAGTTATCTCCG AGCACCTCCAAGCCT
CAAGGCCAGCCAACA AAAAGTTATCTCCGG GCACCTCCAAGCCTG
AGGCCAGCCAACACT AAGTTATCTCCGGTC ACCTCCAAGCCTGAG
GGCCAGCCAACACTG AGTTATCTCCGGTCT CCTCCAAGCCTGAGC
GCCAGCCAACACTGG GTTATCTCCGGTCTC CTCCAAGCCTGAGCA
CCAGCCAACACTGGT TTATCTCCGGTCTCT TCCAAGCCTGAGCAA
AGCCAACACTGGTCA ATCTCCGGTCTCTGA CAAGCCTGAGCAAGA
GCCAACACTGGTCAT TCTCCGGTCTCTGAG AAGCCTGAGCAAGAT
CCAACACTGGTCATC CTCCGGTCTCTGAGG AGCCTGAGCAAGATG
CAACACTGGTCATCA TCCGGTCTCTGAGGC GCCTGAGCAAGATGA
ACACTGGTCATCATG CGGTCTCTGAGGCCA CTGAGCAAGATGATT
CACTGGTCATCATGG GGTCTCTGAGGCCAG TGAGCAAGATGATTC
ACTGGTCATCATGGA GTCTCTGAGGCCAGA GAGCAAGATGATTCA
CTGGTCATCATGGAA TCTCTGAGGCCAGAA AGCAAGATGATTCAG
SOTGGTCATCATGGAAC CTCTGAGGCCAGAAA GCAAGATGATTCAGA
GGTCATCATGGAACT TCTGAGGCCAGAAAT CAAGATGATTCAGAT
AAGATGATTCAGATG GCCAATAAGTTCGTC GAAGATTTCACAGTC
AGATGATTCAGATGG CCAATAAGTTCGTCC AAGATTTCACAGTCA
GATGATTCAGATGGC CAATAAGTTCGTCCA AGATTTCACAGTCAA
ATGATTCAGATGGCC AATAAGTTCGTCCAC GATTTCACAGTCAAA
TGATTCAGATGGCCG ATAAGTTCGTCCACA ATTTCACAGTCAAAA
GATTCAGATGGCCGG TAAGTTCGTCCACAG TTTCACAGTCAAAAT
ATTCAGATGGCCGGA AAGTTCGTCCACAGA TTCACAGTCAAAATC
TTCAGATGGCCGGAG AGTTCGTCCACAGAG TCACAGTCAAAATCG
TCAGATGGCCGGAGA GTTCGTCCACAGAGA CACAGTCAAAATCGG
AGATGGCCGGAGAGA TCGTCCACAGAGACC CAGTCAAAATCGGAG
GATGGCCGGAGAGAT CGTCCACAGAGACCT AGTCAAAATCGGAGA
ATGGCCGGAGAGATT GTCCACAGAGACCTT GTCAAAATCGGAGAT
TGGCCGGAGAGATTG TCCACAGAGACCTTG TCAAAATCGGAGATT
GCCGGAGAGATTGCA CACAGAGACCTTGCT AAAATCGGAGATTTT
CCGGAGAGATTGCAG ACAGAGACCTTGCTG AAATCGGAGATTTTG
CGGAGAGATTGCAGA CAGAGACCTTGCTGC AATCGGAGATTTTGG
GGAGAGATTGCAGAC AGAGACCTTGCTGCC ATCGGAGATTTTGGT
AGAGATTGCAGACGG AGACCTTGCTGCCCG CGGAGATTTTGGTAT
GAGATTGCAGACGGC GACCTTGCTGCCCGG GGAGATTTTGGTATG
AGATTGCAGACGGCA ACCTTGCTGCCCGGA GAGATTTTGGTATGA
GATTGCAGACGGCAT CCTTGCTGCCCGGAA AGATTTTGGTATGAC
TTGCAGACGGCATGG TTGCTGCCCGGAATT ATTTTGGTATGACGC
TGCAGACGGCATGGC TGCTGCCCGGAATTG TTTTGGTATGACGCG
GCAGACGGCATGGCA GCTGCCCGGAATTGC TTTGGTATGACGCGA
CAGACGGCATGGCAT CTGCCCGGAATTGCA TTGGTATGACGCGAG
GACGGCATGGCATAC GCCCGGAATTGCATG GGTATGACGCGAGAT
ACGGCATGGCATACC CCCGGAATTGCATGG GTATGACGCGAGATA
CGGCATGGCATACCT CCGGAATTGCATGGT TATGACGCGAGATAT
GGCATGGCATACCTC CGGAATTGCATGGTA ATGACGCGAGATATC
CATGGCATACCTCAA GAATTGCATGGTAGC GACGCGAGATATCTA
ATGGCATACCTCAAC AATTGCATGGTAGCC ACGCGAGATATCTAT
TGGCATACCTCAACG ATTGCATGGTAGCCG CGCGAGATATCTATG
GGCATACCTCAACGC TTGCATGGTAGCCGA GCGAGATATCTATGA
CATACCTCAACGCCA GCATGGTAGCCGAAG GAGATATCTATGAGA
ATACCTCAACGCCAA CATGGTAGCCGAAGA AGATATCTATGAGAC
TACCTCAACGCCAAT ATGGTAGCCGAAGAT GATATCTATGAGACA
ACCTCAACGCCAATA TGGTAGCCGAAGATT ATATCTATGAGACAG
CTCAACGCCAATAAG GTAGCCGAAGATTTC ATCTATGAGACAGAC
TCAACGCCAATAAGT TAGCCGAAGATTTCA TCTATGAGACAGACT
CAACGCCAATAAGTT AGCCGAAGATTTCAC CTATGAGACAGACTA
AACGCCAATAAGTTC GCCGAAGATTTCACA TATGAGACAGACTAT
CGCCAATAAGTTCGT CGAAGATTTCACAGT TGAGACAGACTATTA
GAGACAGACTATTAC ATGTCTCCTGAGTCC TGGTCCTTCGGGGTC
AGACAGACTATTACC TGTCTCCTGAGTCCC GGTCCTTCGGGGTCG
GACAGACTATTACCG GTCTCCTGAGTCCCT GTCCTTCGGGGTCGT
ACAGACTATTACCGG TCTCCTGAGTCCCTC TCCTTCGGGGTCGTC
CAGACTATTACCGGA CTCCTGAGTCCCTCA CCTTCGGGGTCGTCC
AGACTATTACCGGAA TCCTGAGTCCCTCAA CTTCGGGGTCGTCCT
GACTATTACCGGAAA CCTGAGTCCCTCAAG TTCGGGGTCGTCCTC
ACTATTACCGGAAAG CTGAGTCCCTCAAGG TCGGGGTCGTCCTCT
CTATTACCGGAAAGG TGAGTCCCTCAAGGA CGGGGTCGTCCTCTG
ATTACCGGAAAGGAG AGTCCCTCAAGGATG GGGTCGTCCTCTGGG
TTACCGGAAAGGAGG GTCCCTCAAGGATGG GGTCGTCCTCTGGGA
TACCGGAAAGGAGGC TCCCTCAAGGATGGA GTCGTCCTCTGGGAG
ACCGGAAAGGAGGCA CCCTCAAGGATGGAG TCGTCCTCTGGGAGA
CGGAAAGGAGGCAAA CTCAAGGATGGAGTC GTCCTCTGGGAGATC
GGAAAGGAGGCAAAG TCAAGGATGGAGTCT TCCTCTGGGAGATCG
GAAAGGAGGCAAAGG CAAGGATGGAGTCTT CCTCTGGGAGATCGC
AAAGGAGGCAAAGGG AAGGATGGAGTCTTC CTCTGGGAGATCGCC
AGGAGGCAAAGGGCT GGATGGAGTCTTCAC CTGGGAGATCGCCAC
GGAGGCAAAGGGCTG GATGGAGTCTTCACC TGGGAGATCGCCACA
GAGGCAAAGGGCTGC ATGGAGTCTTCACCA GGGAGATCGCCACAC
AGGCAAAGGGCTGCT TGGAGTCTTCACCAC GGAGATCGCCACACT
GCAAAGGGCTGCTGC GAGTCTTCACCACTT AGATCGCCACACTGG
CAAAGGGCTGCTGCC AGTCTTCACCACTTA GATCGCCACACTGGC
AAAGGGCTGCTGCCC GTCTTCACCACTTAC ATCGCCACACTGGCC
AAGGGCTGCTGCCCG TCTTCACCACTTACT TCGCCACACTGGCCG
GGGCTGCTGCCCGTG TTCACCACTTACTCG GCCACACTGGCCGAG
GGCTGCTGCCCGTGC TCACCACTTACTCGG CCACACTGGCCGAGC
GCTGCTGCCCGTGCG CACCACTTACTCGGA CACACTGGCCGAGCA
CTGCTGCCCGTGCGC ACCACTTACTCGGAC ACACTGGCCGAGCAG
GCTGCCCGTGCGCTG CACTTACTCGGACGT ACTGGCCGAGCAGCC
CTGCCCGTGCGCTGG ACTTACTCGGACGTC CTGGCCGAGCAGCCC
TGCCCGTGCGCTGGA CTTACTCGGACGTCT TGGCCGAGCAGCCCT
GCCCGTGCGCTGGAT TTACTCGGACGTCTG GGCCGAGCAGCCCTA
CCGTGCGCTGGATGT ACTCGGACGTCTGGT CCGAGCAGCCCTACC
CGTGCGCTGGATGTC CTCGGACGTCTGGTC CGAGCAGCCCTACCA
GTGCGCTGGATGTCT TCGGACGTCTGGTCC GAGCAGCCCTACCAG
TGCGCTGGATGTCTC CGGACGTCTGGTCCT AGCAGCCCTACCAGG
CGCTGGATGTCTCCT GACGTCTGGTCCTTC CAGCCCTACCAGGGC
GCTGGATGTCTCCTG ACGTCTGGTCCTTCG AGCCCTACCAGGGCT
CTGGATGTCTCCTGA CGTCTGGTCCTTCGG GCCCTACCAGGGCTT
TGGATGTCTCCTGAG GTCTGGTCCTTCGGG CCCTACCAGGGCTTG
GATGTCTCCTGAGTC CTGGTCCTTCGGGGT CTACCAGGGCTTGTC
TACCAGGGCTTGTCC CTTCTGGACAAGCCA ATGTGCTGGCAGTAT
ACCAGGGCTTGTCCA TTCTGGACAAGCCAG TGTGCTGGCAGTATA
CCAGGGCTTGTCCAA TCTGGACAAGCCAGA GTGCTGGCAGTATAA
CAGGGCTTGTCCAAC CTGGACAAGCCAGAC TGCTGGCAGTATAAC
AGGGCTTGTCCAACG TGGACAAGCCAGACA GCTGGCAGTATAACC
GGGCTTGTCCAACGA GGACAAGCCAGACAA CTGGCAGTATAACCC
GGCTTGTCCAACGAG GACAAGCCAGACAAC TGGCAGTATAACCCC
GCTTGTCCAACGAGC ACAAGCCAGACAACT GGCAGTATAACCCCA
CTTGTCCAACGAGCA CAAGCCAGACAACTG GCAGTATAACCCCAA
TGTCCAACGAGCAAG AGCCAGACAACTGTC AGTATAACCCCAAGA
GTCCAACGAGCAAGT GCCAGACAACTGTCC GTATAACCCCAAGAT
TCCAACGAGCAAGTC CCAGACAACTGTCCT TATAACCCCAAGATG
CCAACGAGCAAGTCC CAGACAACTGTCCTG ATAACCCCAAGATGA
AACGAGCAAGTCCTT GACAACTGTCCTGAC AACCCCAAGATGAGG
ACGAGCAAGTCCTTC ACAACTGTCCTGACA ACCCCAAGATGAGGC
CGAGCAAGTCCTTCG CAACTGTCCTGACAT CCCCAAGATGAGGCC
GAGCAAGTCCTTCGC AACTGTCCTGACATG CCCAAGATGAGGCCT
GCAAGTCCTTCGCTT CTGTCCTGACATGCT CAAGATGAGGCCTTC
CAAGTCCTTCGCTTC TGTCCTGACATGCTG AAGATGAGGCCTTCC
AAGTCCTTCGCTTCG GTCCTGACATGCTGT AGATGAGGCCTTCCT
AGTCCTTCGCTTCGT TCCTGACATGCTGTT GATGAGGCCTTCCTT
TCCTTCGCTTCGTCA CTGACATGCTGTTTG TGAGGCCTTCCTTCC
CCTTCGCTTCGTCAT TGACATGCTGTTTGA GAGGCCTTCCTTCCT
CTTCGCTTCGTCATG GACATGCTGTTTGAA AGGCCTTCCTTCCTG
TTCGCTTCGTCATGG ACATGCTGTTTGAAC GGCCTTCCTTCCTGG
CGCTTCGTCATGGAG ATGCTGTTTGAACTG CCTTCCTTCCTGGAG
GCTTCGTCATGGAGG TGCTGTTTGAACTGA CTTCCTTCCTGGAGA
CTTCGTCATGGAGGG GCTGTTTGAACTGAT TTCCTTCCTGGAGAT
TTCGTCATGGAGGGC CTGTTTGAACTGATG TCCTTCCTGGAGATC
CGTCATGGAGGGCGG GTTTGAACTGATGCG CTTCCTGGAGATCAT
GTCATGGAGGGCGGC TTTGAACTGATGCGC TTCCTGGAGATCATC
TCATGGAGGGCGGCC TTGAACTGATGCGCA TCCTGGAGATCATCA
CATGGAGGGCGGCCT TGAACTGATGCGCAT CCTGGAGATCATCAG
TGGAGGGCGGCCTTC AACTGATGCGCATGT TGGAGATCATCAGCA
GGAGGGCGGCCTTCT ACTGATGCGCATGTG GGAGATCATCAGCAG
GAGGGCGGCCTTCTG CTGATGCGCATGTGC GAGATCATCAGCAGC
AGGGCGGCCTTCTGG TGATGCGCATGTGCT AGATCATCAGCAGCA
GGCGGCCTTCTGGAC ATGCGCATGTGCTGG ATCATCAGCAGCATC
GCGGCCTTCTGGACA TGCGCATGTGCTGGC TCATCAGCAGCATCA
CGGCCTTCTGGACAA GCGCATGTGCTGGCA CATCAGCAGCATCAA
GGCCTTCTGGACAAG CGCATGTGCTGGCAG ATCAGCAGCATCAAA
CCTTCTGGACAAGCC CATGTGCTGGCAGTA CAGCAGCATCAAAGA
AGCAGCATCAAAGAG TACAGCGAGGAGAAC GAGAACATGGAGAGC
GCAGCATCAAAGAGG ACAGCGAGGAGAACA AGAACATGGAGAGCG
CAGCATCAAAGAGGA CAGCGAGGAGAACAA GAACATGGAGAGCGT
AGCATCAAAGAGGAG AGCGAGGAGAACAAG AACATGGAGAGCGTC
GCATCAAAGAGGAGA GCGAGGAGAACAAGC ACATGGAGAGCGTCC
CATCAAAGAGGAGAT CGAGGAGAACAAGCT CATGGAGAGCGTCCC
ATCAAAGAGGAGATG GAGGAGAACAAGCTG ATGGAGAGCGTCCCC
TCAAAGAGGAGATGG AGGAGAACAAGCTGC TGGAGAGCGTCCCCC
CAAAGAGGAGATGGA GGAGAACAAGCTGCC GGAGAGCGTCCCCCT
AAGAGGAGATGGAGC AGAACAAGCTGCCCG AGAGCGTCCCCCTGG
AGAGGAGATGGAGCC GAACAAGCTGCCCGA GAGCGTCCCCCTGGA
GAGGAGATGGAGCCT AACAAGCTGCCCGAG AGCGTCCCCCTGGAC
AGGAGATGGAGCCTG ACAAGCTGCCCGAGC GCGTCCCCCTGGACC
GAGATGGAGCCTGGC AAGCTGCCCGAGCCG GTCCCCCTGGACCCC
AGATGGAGCCTGGCT AGCTGCCCGAGCCGG TCCCCCTGGACCCCT
GATGGAGCCTGGCTT GCTGCCCGAGCCGGA CCCCCTGGACCCCTC
ATGGAGCCTGGCTTC CTGCCCGAGCCGGAG CCCCTGGACCCCTCG
GGAGCCTGGCTTCCG GCCCGAGCCGGAGGA CCTGGACCCCTCGGC
GAGCCTGGCTTCCGG CCCGAGCCGGAGGAG CTGGACCCCTCGGCC
AGCCTGGCTTCCGGG CCGAGCCGGAGGAGC TGGACCCCTCGGCCT
GCCTGGCTTCCGGGA CGAGCCGGAGGAGCT GGACCCCTCGGCCTC
CTGGCTTCCGGGAGG AGCCGGAGGAGCTGG ACCCCTCGGCCTCCT
TGGCTTCCGGGAGGT GCCGGAGGAGCTGGA CCCCTCGGCCTCCTC
GGCTTCCGGGAGGTC CCGGAGGAGCTGGAC CCCTCGGCCTCCTCG
GCTTCCGGGAGGTCT CGGAGGAGCTGGACC CCTCGGCCTCCTCGT
TTCCGGGAGGTCTCC GAGGAGCTGGACCTG TCGGCCTCCTCGTCC
TCCGGGAGGTCTCCT AGGAGCTGGACCTGG CGGCCTCCTCGTCCT
CCGGGAGGTCTCCTT GGAGCTGGACCTGGA GGCCTCCTCGTCCTC
CGGGAGGTCTCCTTC GAGCTGGACCTGGAG GCCTCCTCGTCCTCC
GGAGGTCTCCTTCTA GCTGGACCTGGAGCC CTCCTCGTCCTCCCT
GAGGTCTCCTTCTAC CTGGACCTGGAGCCA TCCTCGTCCTCCCTG
AGGTCTCCTTCTACT TGGACCTGGAGCCAG CCTCGTCCTCCCTGC
GGTCTCCTTCTACTA GGACCTGGAGCCAGA CTCGTCCTCCCTGCC
TCTCCTTCTACTACA ACCTGGAGCCAGAGA CGTCCTCCCTGCCAC
CTCCTTCTACTACAG CCTGGAGCCAGAGAA GTCCTCCCTGCCACT
TCCTTCTACTACAGC CTGGAGCCAGAGAAC TCCTCCCTGCCACTG
CCTTCTACTACAGCG TGGAGCCAGAGAACA CCTCCCTGCCACTGC
TTCTACTACAGCGAG GAGCCAGAGAACATG TCCCTGCCACTGCCC
TCTACTACAGCGAGG AGCCAGAGAACATGG CCCTGCCACTGCCCG
CTACTACAGCGAGGA GCCAGAGAACATGGA CCTGCCACTGCCCGA
TACTACAGCGAGGAG CCAGAGAACATGGAG CTGCCACTGCCCGAC
SOACTACAGCGAGGAGA CAGAGAACATGGAGA TGCCACTGCCCGACA
CTACAGCGAGGAGAA AGAGAACATGGAGAG GCCACTGCCCGACAG
_g7_ CCACTGCCCGACAGA GGGGTGCTGGTCCTC ATGAACGGGGGCCGC
CACTGCCCGACAGAC GGGTGCTGGTCCTCC TGAACGGGGGCCGCA
ACTGCCCGACAGACA GGTGCTGGTCCTCCG GAACGGGGGCCGCAA
CTGCCCGACAGACAC GTGCTGGTCCTCCGC AACGGGGGCCGCAAG
TGCCCGACAGACACT TGCTGGTCCTCCGCG ACGGGGGCCGCAAGA
GCCCGACAGACACTC GCTGGTCCTCCGCGC CGGGGGCCGCAAGAA
CCCGACAGACACTCA CTGGTCCTCCGCGCC GGGGGCCGCAAGAAC
CCGACAGACACTCAG TGGTCCTCCGCGCCA GGGGCCGCAAGAACG
CGACAGACACTCAGG GGTCCTCCGCGCCAG GGGCCGCAAGAACGA
ACAGACACTCAGGAC TCCTCCGCGCCAGCT GCCGCAAGAACGAGC
CAGACACTCAGGACA CCTCCGCGCCAGCTT CCGCAAGAACGAGCG
AGACACTCAGGACAC CTCCGCGCCAGCTTC CGCAAGAACGAGCGG
GACACTCAGGACACA TCCGCGCCAGCTTCG GCAAGAACGAGCGGG
CACTCAGGACACAAG CGCGCCAGCTTCGAC AAGAACGAGCGGGCC
ACTCAGGACACAAGG GCGCCAGCTTCGACG AGAACGAGCGGGCCT
CTCAGGACACAAGGC CGCCAGCTTCGACGA GAACGAGCGGGCCTT
TCAGGACACAAGGCC GCCAGCTTCGACGAG AACGAGCGGGCCTTG
AGGACACAAGGCCGA CAGCTTCGACGAGAG CGAGCGGGCCTTGCC
GGACACAAGGCCGAG AGCTTCGACGAGAGA GAGCGGGCCTTGCCG
GACACAAGGCCGAGA GCTTCGACGAGAGAC AGCGGGCCTTGCCGC
ACACAAGGCCGAGAA CTTCGACGAGAGACA GCGGGCCTTGCCGCT
ACAAGGCCGAGAACG TCGACGAGAGACAGC GGGCCTTGCCGCTGC
CAAGGCCGAGAACGG CGACGAGAGACAGCC GGCCTTGCCGCTGCC
AAGGCCGAGAACGGC GACGAGAGACAGCCT GCCTTGCCGCTGCCC
AGGCCGAGAACGGCC ACGAGAGACAGCCTT CCTTGCCGCTGCCCC
GCCGAGAACGGCCCC GAGAGACAGCCTTAC TTGCCGCTGCCCCAG
CCGAGAACGGCCCCG AGAGACAGCCTTACG TGCCGCTGCCCCAGT
CGAGAACGGCCCCGG GAGACAGCCTTACGC GCCGCTGCCCCAGTC
GAGAACGGCCCCGGC AGACAGCCTTACGCC CCGCTGCCCCAGTCT
GAACGGCCCCGGCCC ACAGCCTTACGCCCA GCTGCCCCAGTCTTC
AACGGCCCCGGCCCT CAGCCTTACGCCCAC CTGCCCCAGTCTTCG
ACGGCCCCGGCCCTG AGCCTTACGCCCACA TGCCCCAGTCTTCGA
CGGCCCCGGCCCTGG GCCTTACGCCCACAT GCCCCAGTCTTCGAC
GCCCCGGCCCTGGGG CTTACGCCCACATGA CCCAGTCTTCGACCT
CCCCGGCCCTGGGGT TTACGCCCACATGAA CCAGTCTTCGACCTG
CCCGGCCCTGGGGTG TACGCCCACATGAAC CAGTCTTCGACCTGC
CCGGCCCTGGGGTGC ACGCCCACATGAACG AGTCTTCGACCTGCT
GGCCCTGGGGTGCTG GCCCACATGAACGGG TCTTCGACCTGCTGA
GCCCTGGGGTGCTGG CCCACATGAACGGGG CTTCGACCTGCTGAT
CCCTGGGGTGCTGGT CCACATGAACGGGGG TTCGACCTGCTGATC
CCTGGGGTGCTGGTC CACATGAACGGGGGC TCGACCTGCTGATCC
TGGGGTGCTGGTCCT CATGAACGGGGGCCG GACCTGCTGATCCTT
_$g_ ACCTGCTGATCCTTG GCGCAGCGGGGTGGG TCCTGTACCTCAGTG
CCTGCTGATCCTTGG CGCAGCGGGGTGGGG CCTGTACCTCAGTGG
CTGCTGATCCTTGGA GCAGCGGGGTGGGGG CTGTACCTCAGTGGA
TGCTGATCCTTGGAT CAGCGGGGTGGGGGG TGTACCTCAGTGGAT
GCTGATCCTTGGATC AGCGGGGTGGGGGGG GTACCTCAGTGGATC
CTGATCCTTGGATCC GCGGGGTGGGGGGGG TACCTCAGTGGATCT
TGATCCTTGGATCCT CGGGGTGGGGGGGGA ACCTCAGTGGATCTT
GATCCTTGGATCCTG GGGGTGGGGGGGGAG CCTCAGTGGATCTTC
ATCCTTGGATCCTGA GGGTGGGGGGGGAGA CTCAGTGGATCTTCA
CCTTGGATCCTGAAT GTGGGGGGGGAGAGA CAGTGGATCTTCAGT
CTTGGATCCTGAATC TGGGGGGGGAGAGAG AGTGGATCTTCAGTT
TTGGATCCTGAATCT GGGGGGGGAGAGAGA GTGGATCTTCAGTTC
TGGATCCTGAATCTG GGGGGGGAGAGAGAG TGGATCTTCAGTTCT
GATCCTGAATCTGTG GGGGGAGAGAGAGTT GATCTTCAGTTCTGC
ATCCTGAATCTGTGC GGGGAGAGAGAGTTT ATCTTCAGTTCTGCC
TCCTGAATCTGTGCA GGGAGAGAGAGTTTT TCTTCAGTTCTGCCC
CCTGAATCTGTGCAA GGAGAGAGAGTTTTA CTTCAGTTCTGCCCT
TGAATCTGTGCAAAC AGAGAGAGTTTTAAC TCAGTTCTGCCCTTG
GAATCTGTGCAAACA GAGAGAGTTTTAACA CAGTTCTGCCCTTGC
AATCTGTGCAAACAG AGAGAGTTTTAACAA AGTTCTGCCCTTGCT
ATCTGTGCAAACAGT GAGAGTTTTAACAAT GTTCTGCCCTTGCTG
~
CTGTGCAAACAGTAA GAGTTTTAACAATCC TCTGCCCTTGCTGCC
TGTGCAAACAGTAAC AGTTTTAACAATCCA CTGCCCTTGCTGCCC
GTGCAAACAGTAACG GTTTTAACAATCCAT TGCCCTTGCTGCCCG
TGCAAACAGTAACGT TTTTAACAATCCATT GCCCTTGCTGCCCGC
CAAACAGTAACGTGT TTAACAATCCATTCA CCTTGCTGCCCGCGG
AAACAGTAACGTGTG TAACAATCCATTCAC CTTGCTGCCCGCGGG
AACAGTAACGTGTGC AACAATCCATTCACA TTGCTGCCCGCGGGA
ACAGTAACGTGTGCG ACAATCCATTCACAA TGCTGCCCGCGGGAG
AGTAACGTGTGCGCA AATCCATTCACAAGC CTGCCCGCGGGAGAC
GTAACGTGTGCGCAC ATCCATTCACAAGCC TGCCCGCGGGAGACA
TAACGTGTGCGCACG TCCATTCACAAGCCT GCCCGCGGGAGACAG
AACGTGTGCGCACGC CCATTCACAAGCCTC . CCCGCGGGAGACAGC
CGTGTGCGCACGCGC ATTCACAAGCCTCCT CGCGGGAGACAGCTT
GTGTGCGCACGCGCA TTCACAAGCCTCCTG GCGGGAGACAGCTTC
TGTGCGCACGCGCAG TCACAAGCCTCCTGT CGGGAGACAGCTTCT
GTGCGCACGCGCAGC CACAAGCCTCCTGTA GGGAGACAGCTTCTC
GCGCACGCGCAGCGG CAAGCCTCCTGTACC GAGACAGCTTCTCTG
CGCACGCGCAGCGGG AAGCCTCCTGTACCT AGACAGCTTCTCTGC
GCACGCGCAGCGGGG AGCCTCCTGTACCTC GACAGCTTCTCTGCA
CACGCGCAGCGGGGT GCCTCCTGTACCTCA ACAGCTTCTCTGCAG
CGCGCAGCGGGGTGG CTCCTGTACCTCAGT AGCTTCTCTGCAGTA
GCTTCTCTGCAGTAA CAGCTTTTTATTCCC CTTAATGACAACACT
CTTCTCTGCAGTAAA AGCTTTTTATTCCCT TTAATGACAACACTT
TTCTCTGCAGTAAAA GCTTTTTATTCCCTG TAATGACAACACTTA
TCTCTGCAGTAAAAC CTTTTTATTCCCTGC AATGACAACACTTAA
CTCTGCAGTAAAACA TTTTTATTCCCTGCC ATGACAACACTTAAT
TCTGCAGTAAAACAC TTTTATTCCCTGCCC TGACAACACTTAATA
CTGCAGTAAAACACA TTTATTCCCTGCCCA GACAACACTTAATAG
TGCAGTAAAACACAT TTATTCCCTGCCCAA ACAACACTTAATAGC
GCAGTAAAACACATT TATTCCCTGCCCAAA CAACACTTAATAGCA
AGTAAAACACATTTG TTCCCTGCCCAAACC ACACTTAATAGCAAC
GTAAAACACATTTGG TCCCTGCCCAAACCC CACTTAATAGCAACA
TAAAACACATTTGGG CCCTGCCCAAACCCT ACTTAATAGCAACAG
AAAACACATTTGGGA CCTGCCCAAACCCTT CTTAATAGCAACAGA
AACACATTTGGGATG TGCCCAAACCCTTAA TAATAGCAACAGAGC
ACACATTTGGGATGT GCCCAAACCCTTAAC AATAGCAACAGAGCA
CACATTTGGGATGTT CCCAAACCCTTAACT ATAGCAACAGAGCAC
ACATTTGGGATGTTC CCAAACCCTTAACTG TAGCAACAGAGCACT
ATTTGGGATGTTCCT AAACCCTTAACTGAC GCAACAGAGCACTTG
TTTGGGATGTTCCTT AACCCTTAACTGACA CAACAGAGCACTTGA
TTGGGATGTTCCTTT ACCCTTAACTGACAT AACAGAGCACTTGAG
TGGGATGTTCCTTTT CCCTTAACTGACATG ACAGAGCACTTGAGA
GGATGTTCCTTTTTT CTTAACTGACATGGG AGAGCACTTGAGAAC
GATGTTCCTTTTTTC TTAACTGACATGGGC GAGCACTTGAGAACC
ATGTTCCTTTTTTCA TAACTGACATGGGCC AGCACTTGAGAACCA
TGTTCCTTTTTTCAA AACTGACATGGGCCT GCACTTGAGAACCAG
TTCCTTTTTTCAATA CTGACATGGGCCTTT ACTTGAGAACCAGTC
TCCTTTTTTCAATAT TGACATGGGCCTTTA CTTGAGAACCAGTCT
CCTTTTTTCAATATG GACATGGGCCTTTAA TTGAGAACCAGTCTC
CTTTTTTCAATATGC ACATGGGCCTTTAAG TGAGAACCAGTCTCC
TTTTTCAATATGCAA ATGGGCCTTTAAGAA AGAACCAGTCTCCTC
TTTTCAATATGCAAG TGGGCCTTTAAGAAC GAACCAGTCTCCTCA
TTTCAATATGCAAGC GGGCCTTTAAGAACC AACCAGTCTCCTCAC
TTCAATATGCAAGCA GGCCTTTAAGAACCT ACCAGTCTCCTCACT
CAATATGCAAGCAGC CCTTTAAGAACCTTA CAGTCTCCTCACTCT
AATATGCAAGCAGCT CTTTAAGAACCTTAA AGTCTCCTCACTCTG
ATATGCAAGCAGCTT TTTAAGAACCTTAAT GTCTCCTCACTCTGT
TATGCAAGCAGCTTT TTAAGAACCTTAATG TCTCCTCACTCTGTC
TGCAAGCAGCTTTTT AAGAACCTTAATGAC TCCTCACTCTGTCCC
GCAAGCAGCTTTTTA AGAACCTTAATGACA CCTCACTCTGTCCCT
CAAGCAGCTTTTTAT GAACCTTAATGACAA CTCACTCTGTCCCTG
AAGCAGCTTTTTATT AACCTTAATGACAAC TCACTCTGTCCCTGT
GCAGCTTTTTATTCC CCTTAATGACAACAC ACTCTGTCCCTGTCC
CTCTGTCCCTGTCCT AACGGAAAAATAATT TGAGGAAGTGGCTGT
TCTGTCCCTGTCCTT ACGGAAA.AATAATTG GAGGAAGTGGCTGTC
CTGTCCCTGTCCTTC CGGAAAA.ATAATTGC AGGAAGTGGCTGTCC
TGTCCCTGTCCTTCC GGAAAAATAATTGCC GGAAGTGGCTGTCCC
S GTCCCTGTCCTTCCC GAAAAATAATTGCCA GAAGTGGCTGTCCCT
TCCCTGTCCTTCCCT AAAAATAATTGCCAC AAGTGGCTGTCCCTG
CCCTGTCCTTCCCTG AAAATAATTGCCACA AGTGGCTGTCCCTGT
CCTGTCCTTCCCTGT AAATAATTGCCACAA GTGGCTGTCCCTGTG
CTGTCCTTCCCTGTT AATAATTGCCACAAG TGGCTGTCCCTGTGG
GTCCTTCCCTGTTCT TAATTGCCACAAGTC GCTGTCCCTGTGGCC
TCCTTCCCTGTTCTC AATTGCCACAAGTCC CTGTCCCTGTGGCCC
CCTTCCCTGTTCTCC ATTGCCACAAGTCCA TGTCCCTGTGGCCCC
CTTCCCTGTTCTCCC TTGCCACAAGTCCAG GTCCCTGTGGCCCCA
TCCCTGTTCTCCCTT GCCACAAGTCCAGCT CCCTGTGGCCCCATC
CCCTGTTCTCCCTTT CCACAAGTCCAGCTG CCTGTGGCCCCATCC
CCTGTTCTCCCTTTC CACAAGTCCAGCTGG CTGTGGCCCCATCCA
CTGTTCTCCCTTTCT ACAAGTCCAGCTGGG TGTGGCCCCATCCAA
GTTCTCCCTTTCTCT AAGTCCAGCTGGGAA TGGCCCCATCCAACC
TTCTCCCTTTCTCTC AGTCCAGCTGGGAAG GGCCCCATCCAACCA
TCTCCCTTTCTCTCT GTCCAGCTGGGAAGC GCCCCATCCAACCAC
CTCCCTTTCTCTCTC TCCAGCTGGGAAGCC CCCCATCCAACCACT
CCCTTTCTCTCTCCT CAGCTGGGAAGCCCT CCATCCAACCACTGT
CCTTTCTCTCTCCTC AGCTGGGAAGCCCTT CATCCAACCACTGTA
CTTTCTCTCTCCTCT GCTGGGAAGCCCTTT ATCCAACCACTGTAC
TTTCTCTCTCCTCTC CTGGGAAGCCCTTTT TCCAACCACTGTACA
TCTCTCTCCTCTCTG GGGAAGCCCTTTTTA CAACCACTGTACACA
CTCTCTCCTCTCTGC GGAAGCCCTTTTTAT AACCACTGTACACAC
TCTCTCCTCTCTGCT GAAGCCCTTTTTATC ACCACTGTACACACC
CTCTCCTCTCTGCTT AAGCCCTTTTTATCA CCACTGTACACACCC
CTCCTCTCTGCTTCA GCCCTTTTTATCAGT ACTGTACACACCCGC
TCCTCTCTGCTTCAT CCCTTTTTATCAGTT CTGTACACACCCGCC
CCTCTCTGCTTCATA CCTTTTTATCAGTTT TGTACACACCCGCCT
CTCTCTGCTTCATAA CTTTTTATCAGTTTG GTACACACCCGCCTG
CTCTGCTTCATAACG TTTTATCAGTTTGAG ACACACCCGCCTGAC
TCTGCTTCATAACGG TTTATCAGTTTGAGG CACACCCGCCTGACA
CTGCTTCATAACGGA TTATCAGTTTGAGGA ACACCCGCCTGACAC
TGCTTCATAACGGAA TATCAGTTTGAGGAA CACCCGCCTGACACC
CTTCATAACGGAAAA TCAGTTTGAGGAAGT CCCGCCTGACACCGT
TTCATAACGGAAAAA CAGTTTGAGGAAGTG CCGCCTGACACCGTG
TCATAACGGAAAA.AT AGTTTGAGGAAGTGG CGCCTGACACCGTGG
CATAACGGAAAAATA GTTTGAGGAAGTGGC GCCTGACACCGTGGG
TAACGGAAAAATAAT TTGAGGAAGTGGCTG CTGACACCGTGGGTC
TGACACCGTGGGTCA TTATCTTTCACCTTT CCAAGGCTGTTACCA
GACACCGTGGGTCAT TATCTTTCACCTTTC CAAGGCTGTTACCAT
ACACCGTGGGTCATT ATCTTTCACCTTTCT AAGGCTGTTACCATT
CACCGTGGGTCATTA TCTTTCACCTTTCTA AGGCTGTTACCATTT
ACCGTGGGTCATTAC CTTTCACCTTTCTAG GGCTGTTACCATTTT
CCGTGGGTCATTACA TTTCACCTTTCTAGG GCTGTTACCATTTTA
CGTGGGTCATTACAA TTCACCTTTCTAGGG CTGTTACCATTTTAA
GTGGGTCATTACAAA TCACCTTTCTAGGGA TGTTACCATTTTAAC
TGGGTCATTACAAAA CACCTTTCTAGGGAC GTTACCATTTTAACG
GGTCATTACAAAAAA CCTTTCTAGGGACAT TACCATTTTAACGCT
GTCATTACAAAAAAA CTTTCTAGGGACATG ACCATTTTAACGCTG
TCATTACAAAAAAAC TTTCTAGGGACATGA CCATTTTAACGCTGC
CATTACAAAAAAACA TTCTAGGGACATGAA CATTTTAACGCTGCC
TTACAA.AA.AA.ACACG CTAGGGACATGAAAT TTTTAACGCTGCCTA
TACAAAAAAACACGT TAGGGACATGAAATT TTTAACGCTGCCTAA
ACAA.AAAA.ACACGTG AGGGACATGAAATTT TTAACGCTGCCTAAT
CAAAAAAACACGTGG GGGACATGAAATTTA TAACGCTGCCTAATT
AAAAAACACGTGGAG GACATGAAATTTACA ACGCTGCCTAATTTT
AAAAACACGTGGAGA ACATGAAATTTACAA CGCTGCCTAATTTTG
AAAACACGTGGAGAT CATGAAATTTACAAA GCTGCCTAATTTTGC
AAACACGTGGAGATG ATGAAATTTACAAAG CTGCCTAATTTTGCC
ACACGTGGAGATGGA GAAATTTACAAAGGG GCCTAATTTTGCCAA
CACGTGGAGATGGAA AAATTTACAAAGGGC CCTAATTTTGCCAAA
ACGTGGAGATGGAAA AATTTACAAAGGGCC CTAATTTTGCCAAAA
CGTGGAGATGGAAAT ATTTACAAAGGGCCA TAATTTTGCCAAAAT
TGGAGATGGAAATTT TTACAAAGGGCCATC ATTTTGCCAAAATCC
GGAGATGGAAATTTT TACAAAGGGCCATCG TTTTGCCAAAATCCT
GAGATGGAAATTTTT ACAAAGGGCCATCGT TTTGCCAAAATCCTG
AGATGGAAATTTTTA CAAAGGGCCATCGTT TTGCCAAAATCCTGA
ATGGAAATTTTTACC AAGGGCCATCGTTCA GCCAAAATCCTGAAC
TGGAAATTTTTACCT AGGGCCATCGTTCAT CCAAAATCCTGAACT
GGAAATTTTTACCTT GGGCCATCGTTCATC CAAAATCCTGAACTT
GAAATTTTTACCTTT GGCCATCGTTCATCC AAAATCCTGAACTTT
AATTTTTACCTTTAT CCATCGTTCATCCAA AATCCTGAACTTTCT
ATTTTTACCTTTATC CATCGTTCATCCAAG ATCCTGAACTTTCTC
TTTTTACCTTTATCT ATCGTTCATCCAAGG TCCTGAACTTTCTCC
TTTTACCTTTATCTT TCGTTCATCCAAGGC CCTGAACTTTCTCCC
TTACCTTTATCTTTC GTTCATCCAAGGCTG TGAACTTTCTCCCTC
TACCTTTATCTTTCA TTCATCCAAGGCTGT GAACTTTCTCCCTCA
ACCTTTATCTTTCAC TCATCCAAGGCTGTT AACTTTCTCCCTCAT
CCTTTATCTTTCACC CATCCAAGGCTGTTA ACTTTCTCCCTCATC
TTTATCTTTCACCTT TCCAAGGCTGTTACC TTTCTCCCTCATCGG
TTCTCCCTCATCGGC GCATGGCAGCTGGTT CCATCCGACTGCCCC
TCTCCCTCATCGGCC CATGGCAGCTGGTTG CATCCGACTGCCCCT
CTCCCTCATCGGCCC ATGGCAGCTGGTTGC ATCCGACTGCCCCTG
TCCCTCATCGGCCCG TGGCAGCTGGTTGCT TCCGACTGCCCCTGC
CCCTCATCGGCCCGG GGCAGCTGGTTGCTC CCGACTGCCCCTGCT
CCTCATCGGCCCGGC GCAGCTGGTTGCTCC CGACTGCCCCTGCTG
CTCATCGGCCCGGCG CAGCTGGTTGCTCCA GACTGCCCCTGCTGT
TCATCGGCCCGGCGC AGCTGGTTGCTCCAT ACTGCCCCTGCTGTG
CATCGGCCCGGCGCT GCTGGTTGCTCCATT CTGCCCCTGCTGTGC
TCGGCCCGGCGCTGA TGGTTGCTCCATTTG GCCCCTGCTGTGCTG
CGGCCCGGCGCTGAT GGTTGCTCCATTTGA CCCCTGCTGTGCTGC
GGCCCGGCGCTGATT GTTGCTCCATTTGAG CCCTGCTGTGCTGCT
GCCCGGCGCTGATTC TTGCTCCATTTGAGA CCTGCTGTGCTGCTC
CCGGCGCTGATTCCT GCTCCATTTGAGAGA TGCTGTGCTGCTCAA
CGGCGCTGATTCCTC CTCCATTTGAGAGAC GCTGTGCTGCTCAAG
GGCGCTGATTCCTCG TCCATTTGAGAGACA CTGTGCTGCTCAAGG
GCGCTGATTCCTCGT CCATTTGAGAGACAC TGTGCTGCTCAAGGC
GCTGATTCCTCGTGT ATTTGAGAGACACGC TGCTGCTCAAGGCCA
CTGATTCCTCGTGTC TTTGAGAGACACGCT GCTGCTCAAGGCCAC
TGATTCCTCGTGTCC TTGAGAGACACGCTG CTGCTCAAGGCCACA
GATTCCTCGTGTCCG TGAGAGACACGCTGG TGCTCAAGGCCACAG
TTCCTCGTGTCCGGA AGAGACACGCTGGCG CTCAAGGCCACAGGC
TCCTCGTGTCCGGAG GAGACACGCTGGCGA TCAAGGCCACAGGCA
CCTCGTGTCCGGAGG AGACACGCTGGCGAC CAAGGCCACAGGCAC
CTCGTGTCCGGAGGC GACACGCTGGCGACA AAGGCCACAGGCACA
CGTGTCCGGAGGCAT CACGCTGGCGACACA GGCCACAGGCACACA
GTGTCCGGAGGCATG ACGCTGGCGACACAC GCCACAGGCACACAG
TGTCCGGAGGCATGG CGCTGGCGACACACT CCACAGGCACACAGG
GTCCGGAGGCATGGG GCTGGCGACACACTC CACAGGCACACAGGT
CCGGAGGCATGGGTG TGGCGACACACTCCG CAGGCACACAGGTCT
CGGAGGCATGGGTGA GGCGACACACTCCGT AGGCACACAGGTCTC
GGAGGCATGGGTGAG GCGACACACTCCGTC GGCACACAGGTCTCA
GAGGCATGGGTGAGC CGACACACTCCGTCC GCACACAGGTCTCAT
GGCATGGGTGAGCAT ACACACTCCGTCCAT ACACAGGTCTCATTG
GCATGGGTGAGCATG CACACTCCGTCCATC CACAGGTCTCATTGC
CATGGGTGAGCATGG ACACTCCGTCCATCC ACAGGTCTCATTGCT
ATGGGTGAGCATGGC CACTCCGTCCATCCG CAGGTCTCATTGCTT
GGGTGAGCATGGCAG CTCCGTCCATCCGAC GGTCTCATTGCTTCT
GGTGAGCATGGCAGC TCCGTCCATCCGACT GTCTCATTGCTTCTG
GTGAGCATGGCAGCT CCGTCCATCCGACTG TCTCATTGCTTCTGA
TGAGCATGGCAGCTG CGTCCATCCGACTGC CTCATTGCTTCTGAC
AGCATGGCAGCTGGT TCCATCCGACTGCCC CATTGCTTCTGACTA
ATTGCTTCTGACTAG CTCTCAGTGAAGGTG
TTGCTTCTGACTAGA TCTCAGTGAAGGTGG
TGCTTCTGACTAGAT CTCAGTGAAGGTGGG
GCTTCTGACTAGATT TCAGTGAAGGTGGGG
CTTCTGACTAGATTA CAGTGAAGGTGGGGA
TTCTGACTAGATTAT AGTGAAGGTGGGGAG
TCTGACTAGATTATT GTGAAGGTGGGGAGA
CTGACTAGATTATTA TGAAGGTGGGGAGAA
TGACTAGATTATTAT GAAGGTGGGGAGAAG
ACTAGATTATTATTT AGGTGGGGAGAAGCT
CTAGATTATTATTTG GGTGGGGAGAAGCTG
TAGATTATTATTTGG GTGGGGAGAAGCTGA
AGATTATTATTTGGG TGGGGAGAAGCTGAA
ATTATTATTTGGGGG GGGAGAAGCTGAACC
TTATTATTTGGGGGA GGAGAAGCTGAACCG
TATTATTTGGGGGAA GAGAAGCTGAACCGG
ATTATTTGGGGGAAC AGAAGCTGAACCGGC
TATTTGGGGGAACTG
ATTTGGGGGAACTGG
TTTGGGGGAACTGGA
TTGGGGGAACTGGAC
GGGGGAACTGGACAC
GGGGAACTGGACACA
GGGAACTGGACACAA .
GGAACTGGACACAAT
AACTGGACACAATAG
ACTGGACACAATAGG
CTGGACACAATAGGT
TGGACACAATAGGTC
GACACAATAGGTCTT
ACACAATAGGTCTTT
CACAATAGGTCTTTC
ACAATAGGTCTTTCT
AATAGGTCTTTCTCT
ATAGGTCTTTCTCTC
TAGGTCTTTCTCTCA
AGGTCTTTCTCTCAG
GTCTTTCTCTCAGTG
TCTTTCTCTCAGTGA
CTTTCTCTCAGTGAA
TTTCTCTCAGTGAAG
TCTCTCAGTGAAGGT
Sub-confluent HaCaT cells were treated as described above with phosphorothioate oligonucleotides IGFR.AS (antisense: 5'-ATCTCTCCGCTTCCTTTC-3'; ( < 400 > 10);
ref S 13) and IGFR.S (sense control: 5'-GAAAGGAAGCGGAGAGAT-3'; ( < 400 > 11); ref 13) IGF-I binding to the cell monolayers was then measured as 'zsI_IGF-I.
The results of this experiment are shown in Figures 7 and 8.
HaCaT cells were initially plated in DMEM with 10 % v/v serum, then AS oligo experiments were performed in complete "Keratinocyte-SFM" (Gibco) to exclude the influence of exogenous IGFBPs. Oligos were synthesised as phosphorothioate (nuclease-resistant) derivatives (Bresatec, South Australia) and were as follows: antisense: AS2, 5'-GCGCCCGCTGCATGACGCCTGCAAC-3' (IGFBP-3 start codon); controls: AS2NS, 5'-CGGAGATGCCGCATGCCAGCGCAGG-3'; AS4, 5'-AGGCGGCTGACGGCACTA-3'; AS4NS, 5'-GACAGCGTCGGAGCGATC-3';
IGFRAS, 5'-ATCTCTCCGCTTCCTTTC-3';
IGFRS, 5'-GAAAGGAAGCGGAGAGAT-3'. Oligos to IGFBP-3 were based on the published sequence of Spratt et al [12]. AS oligos were added to HaCaT
monolayers in O.SmI
medium in 24-well plates at the concentrations and addition frequencies indicated. IGFBP-3 measured in cell-conditioned medium using a dot-blot assay, adapted from the Western ligand blot method of Hossenlopp et al [11], in which 100.1 of conditioned medium was applied to nitrocellulose filters with a vacuum dot-blot apparatus. After drying the membranes at 37°C, relative amounts of IGFBP are determined by 'zsI-IGF-I-binding, autoradiography and computerised imaging densitometry. Triplicate wells (except in Figure 7, where duplicate wells were measured as shown) were analysed and corrected for changes in cell number per well. Relative cell number per well was determined using an amido black dye method, developed specifically for cultured monolayers of HaCaT cells [14]. Cell numbers differed by less than 10% after treatment. For oligos to the IGF receptor, receptor quantitation in intact HaCaT monolayers was by overnight incubation with 'ZSI-IGF-I
(30,OOOcpm/well) at 4°C.
Experiments involving ribozymes are generally conducted as described in Internaitonal Patent Application No. WO 89/05852 and in Haselhoff and Gerlach [8]. Ribozymes are constructed with a hybridising region which is complementary in nucleotide sequence to at least part of a target RNA which, in this case, encodes IGFBP-2. Activity of ribozymes is measurable on, for example, Northern blots or using animal models such as in the nude mouse model (15; 16) or the "flaky skin" mouse model (17; 18).
The methods described in Example 11 are used for the screening of ribozymes which inhibit IGFBP-3 production. The activity of the ribozymes is determined as in Example 11.
The methods described in Example 11 are used for the screening of ribozymes which inhibit IGF-1 production. The activity of the ribozymes is determined as in Example 11.
The methods described in Example 11 are used for the screening of ribozymes which inhibit IGF-1 production. The activity of the ribozymes is determined as in Example 11.
Twenty-one antisense oligonucleotides targeted to mRNA sequences enducing the receptor, and four random oligonucleotides were synthesized. The antisense oligonucleotides are CS-propynyl-dU, dC l5mer phosphorothioate oligodeoxyribonucleotides. In these oligonucleotides, a phosphorothioate backbone replaces the phosphodiester backbone of naturally occurring DNA. The positions of the 21 sequence specific antisense oligonucleotides relative to the IGF-1 receptor mRNA structure are shown in Figure 9.
Experiments were performed to determine the uptake of the antisense oligonucleotides of Example 15 into keratinocytes. Cells of the differentiated human keratinocyte cell line, HaCaT, were incubated for 24 hours in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10 % (w/v) fetal calf serum (FCS) containing fluorescently labelled oligonucleotide (R451, a randomized sequence oligonucleotide, 30nM) and cytofectin GSV
(2,ug/ml, Glen Research, 44901 Falcon Place, Sterling, VA 20166, Cat. No. 70-3815-78).
Cells were then transferred to oligonucleotide-free medium and fluorescence microcopy and phase contrast images of the cells were obtained. Figure 10 shows fluorescence microscopy (Panel A) and phase contrast (Panel B) images of uptake of fluorescently labelled oligonucleotide in the majority of cells in a HaCaT monolayer. The degree of uptake obtained with the cationic lipid cytofectin was far greater than the uptake obtained with the next best lipid tried, Tfx-50.
A further experiment was performed to assess the uptake and toxicity associated with the use of cytofectin GSV over five days. Confluent HaCaT keratinocytes were incubated in DMEM
containing fluorescently labelled oligonucleotide 8451 (30nM or 100 nM) plus cytofectin GSV (2,ug/ml or S,ug/ml) over 120 hours, viewed by fluorescence microscopy, tryptan blue stained, and counted. The graphs in Figure 11 depict uptake (Panel A) and toxicity (Panel B). The proportion of cells containing oligonucleotide remained high over the 120 hour period. The combination of 30 nM oligonucleotide and 2,ug/ml GSV provided optimal uptake and minimal toxicity.
The twenty-one oligonucleotides of Example 15 were then screened for their ability to inhibit IGF-I receptor mRNA levels in HaCaT cells, in accordance with the teachings herein. HaCaT
cells were grown to 90 % confluence in DMEM supplemented with 10 % (v/v) FCS.
Antisense oligonucleotides (30nM) were completed with cytofectin GSV (2,ug/ml) and added tot he cells in the presence of serum. HaCaT keratinocytes were treated with the oligonucleotide/GSV complexes or randomized sequence oligonucleotides (R451, R766), liposome alone (GSV), or were left untreated (UT). Duplicate treatments were performed.
Repeat additions of the oligonucleotides/GSV complex were performed at 24, 48 and 76 hours following the first addition. Total RNA was isolated as per the RNAzoIB
protocol (Biotecx Laboratories, Inc. 6023 South Loop East, Houston, TX 77033) 96 hours following the first S addition.
IGF-I receptor mRNA and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA
levels were simultaneously determined by a ribonuclease (RNase) protection assay. The RNase Protection Assay kit, in vitro transcription kit, and IGF-I receptor and GAPDH DNA
templates were obtained from Ambion, Inc. (2130 Woodward St., Houston, TX
78744). The amount of IGF-I receptor mRNA in any given sample was expressed as the amount of IGF-I
receptor mRNA relative to the amount of GAPDH mRNA. Each oligonucleotide was tested in at least two separate experiments.
Figure 12 depicts representative results of the screening process. Panel A
shows an electrophoretic analysis of IGF-I receptor and GAPDH mRNA fragments after RNase protection. Molecular weight markers are shown on the right hand side. The full-length probe is shown on the left hand side; G-probe indicates the IGF-I receptor probe. GAPDH
protected fragments (G) are seen at 316 bases and IGF-I protected fragments (I) are seen at 276 bases. Exhibit E, Panel B provides a graph indicating the relative level of IGF-I receptor mRNA following each treatment.
The results obtaining from the above screening assays are summarized in Figure 13. The graph depicts the relative level of IGF-I receptor mRNA after treatment with oligonucleotides complementary to the human IGF-I receptor mRNA (26-86), four randomized sequence oligonucleotides (R1, R4, R7, R9), liposome alone (GSV), or no treatment (UT).
Asterisks indicate a significant different in relative IGF-I receptor mRNA as compared to GSV treated cells (n=4-10, p < 0.05).
As demonstrated in Figure 13, treatment with eighteen of the twenty-one oligonucleotides resulted in a significant different in levels of IGF-I receptor mRNA relative to GSV treated cells. Three of the antisense oligonucleotides tested in the screening assay reduce IGF-I
receptor mRNA to less than 35 % of GSV-treated cells. These antisense oligonucleotides have the following sequences, presented in the 5' to 3' direction:
#27 UCCGGAGCCAGACUU
#64 CACAGUUGCUGCAAG
#78 UCUCCGCUUCCUUUC
As further demonstrated in Figure 13, six of the antisense oligonucleotides tested in the screening assay reduce IGF-I receptor mRNA to between 35 and 50% of GSV-treated cells.
These antisense oligonucleotides have the following sequences, presented in the 5' to 3' direction:
#28 AGCCCCCACAGCGAG
#32 GCCUUGGAGAUGAGC
#40 UAACAGAGGUCAGCA
#42 GGAUCAGGGACCAGU
#46 CGGCAAGCUACACAG
#50 GGCAGGCAGGCACAC
Another experiment was performed demonstrating that antisense oligonucleotides targeted to genetic sequences encoding the IGFOI receptor and that reduce IGF-I receptor mRNA levels also inhibit the IGF-I receptor level on the surface of the treated cultured keratinocytes.
HaCaT cells were grown to confluence in 24-well plates in DMEM containing 10 %
(v/v) FCS. Oligodeoxynucleotide and cytofectin GSV were mixed together in serum-free DMEM, and incubated at room temperature for 10 minutes before being diluted ten-fold in medium and placed on the cells. Cells were incubated for 72 hours with 30nM random sequence or antisense oligonucleotide and 2,um/ml GSV, or with GSV alone in DMEM
containing 10%
(v/v) FCS with solutions replaced every 24 hours. This was followed by incubation with oligonucleotide/GSV in serum-free DMEM for 48 hours. All incubations were performed at 37°C. Cells were washed twice with lml cold PBS. Serum-free DMEM
containing 10-'°M'ZSI-IGF-I was added with or without the IGF-I analogue, des (1-3) IGF-I, at 10-"M to 10-'M. Cells were incubated at 4°C for 17 hours with gentle shaking, then washed three times with lml cold PBS and lysed in 250~c1 O.SM NaOH/0.1 % (v/v) Triton X-100 at room temperature for 4 hours. Specific binding of the solubilised cell extract was measured using a gamma counter. As shown in Figure 14, treatment of HaCaT keratinocytes with oligonucleotide reduced cell surface IGF-I receptor levels to 30 % of levels in untreated keratinocytes or in keratinocytes treated with liposome alone or a random oligonucleotide, 8766. As shown in Figure 15, treatment with oligonucleotide #27 also significantly reduced cell surface IGF-I receptor levels relative to untreated keratinocytes or treatment with liposome alone or random nucleotide 8451. As demonstrated in Example 17, oligonucleotides #64 and #27 reduce IGF-I receptor mRNA levels in cultured keratinocytes to less than 35% of GSV-treated cells. Accordingly, the ability of an oligonucleotide to reduce IGF-I receptor mRNA levels in correlated with its ability to reduce cell surface IGF-I
receptor levels.
The forgoing Examples demonstrate that antisense oligonucleotides targeted to the IGF-I
receptor can be delivered to human keratinocytes in vitro, can inhibit IGF-I
receptor mRNA
levels in human keratinocytes in vitro, and that inhibition of mRNA levels is correlated with reduction of cell surface IGF-I receptor levels.
Further experiments demonstrated the efficacy of antisense oligonucleotides targeted tot he IGF-I receptor in an in vivo model of psoriasis. An animal model of psoriasis is the human psoriatic skin xenograft model. The skin used in this model contains the true disease state.
In this model, reduction in epidermal thickness of psoriatic grafts in response to treatment is positively correlated with efficacy of treatment. Both normal and psoriatic human skin were grated into a thymic (nude) mice in accordance with a thymic (nude) mice in accordance with the methods of Baker et al (1992) Brit. J. Dermatol. 126:105 and Nanney et al (1992) J.
Invest. Dermatol, 92:296. Successful grafting was achieved, as demonstrated in Figure 16, which shows hemotoxylin and eosin (H&E) stained sections of a 49-day old psoriatic human skin graft (Panel B) compared to the histology of the skin graft prior to grafting (Panel A).
The histological features of psoriasis present in the pregraft section (e.g., parakeratosis, acanthosis and pronounced rete ridges) are present in the grafts more than seven weeks post grafting.
Using the model, oligonucleotide uptake was measured in epidermal keratinocytes in vivo after intradermal injection. Fluorescently labelled oligonucleotide (R451, SO,uI, lO,uM
injection) was intradermally injected into psoriatic and normal skin grafts on a thymic mice.
Live confocal microscopy and fluorescence microscopy of fixed sections was then employed.
Using both techniques, oligonucleotide was found to localize in the nucleus of over 90 % of basal keratinocytes. Figure 17 shows the nuclear localization of oligonucleotide in psoriatic skin cells using conventional fluorescence microscopy of a graft that was removed and sectioned after 24 hours.
After establishing oligonucleotide uptake in the in vivo model, a small number of pilots experiments were performed to determine a schedule for treatment of grated mice with antisense oligonucleotides targeted to genetic sequences encoding the IGF-I
receptor. The treatment schedule was finalized as follows:
Graft Number Treatment Volume ODN Duration of Concentrationof Injection Treatment 1-3 Vehicle (PBS) SO,uI - 20 days 4-6 RandomODN#R451 SO,uI lO,uM 20 days S 7-9 ODN#27 SO,uI 10~M 20 days 10-12 ODN#74 501 lO,uM 20 days 13-15 ODN#50 SO,uI 10~M 20 days As determined above, oligonucleotide #27 (ODN #27) reduced IGF-I receptor mRNA
in vitro to less than 35 % of GSV-treated cells. Oligonucleotide #5O (ODN#50) reduced IGF-I receptor mRNA in vitro to between 35 and 50% of GSV-treated cells.
Oligonucleotide #74 (ODN #74) was not inhibitory to IGF-I receptor mRNA in vitro. In the in vivo model, each mouse received two grafts. Random oligonucleotide or vehicle was injected intradermally in one graft and acted as a control. The second graft was injected with the targeted oligonucleotide. Each graft received an injection every second day for the duration of the treatment.
Histology of representative grafts from each treatment type are shown in Figures 18(a)-(d) and 19(a) - (d). Each sheet shows three images of H&E stained sections: the pregraft histology, the control treated graft, and the targeted oligonucleotide treated graft. Figures 18(a)-(d) are shown at 100x magnification; figures 19(a)-(d) are shown at 400x magnification. The total cross sectional area of epidermis of each graft was assessed using MCID analysis software. The pooled results from all of the treated grafts are shown in Figure 20.
As shown in Figures 18(a)-(d) and 19(a)-(d), the vehicle-treated (control) grafts were marginally thinner than thepregraft sections. The degree of regression in these experiments (ie., less than 10 % ) is not significant. A similar amount of marginal thinning of epidermis compared to pregraft also occurred in pilot experiments in which psoriatic grafts were not injected, and thsu it is unlikely that the vehicle itself has any effect.
Histological features of psoriasis present in skin samples prior to grafting (clubbing of rete ridges, parakeratosis, acanthosis) were present in these grafts.
The random oliognucleotide treated grafts varied in epidermal thickness after 20 days of treatment. Grafts were either a similar thickness to the pregraft histology, or marginally thinner. Random oligonucleotide treated grafts were in each case significantly thicker than their targeted oligonucleotide treated pairs.
As shown in Figure 20, the targeted oligonucleotide treated grafts were significantly thinner than the pregraft sections and showed less parakeratosis and clubbing of rete ridges. Antisense oligonucleotides which were effective at reducing IGF-I
receptor mRNA levels in vitro (#27 and #50) produced greatere epidermal thinning than an oligonucleotide which was not inhibitory to IGF-I receptor mRNA in vitro (#74).
Accordingly, there is a direct correlation between the ability of an oligonucleotide targeted to the IGF-I receptor to inhibit IGF-I receptor mRNA levels in vitro and the efficacy of the oligonucleotide as an anti-psoriasis agent in an in vivo model.
Another experiment demonstrated that treatment of psoriatic grafts with an oligonucleotide targeted to a genetic sequence encoding the IGF-I receptor results in inhibition of proliferation. Pregrafts from psoriatic patients, control grafts treated with 84541, and grafts treated with oligonucleotide #27 were obtained as described in Example 19. An antibody to the cell cycle-specific nuclear antigen Ki67 was used to immunohistochemically detect actively dividing cells and tereby assess proliferation. The aKi67 antibody (DAKO, Glostrup, Denmark) recognizes the Ki67 antigen transiently expressed in nuclei of proliferating cells during late G,, S, M and GZ phases of the cycle and thsu provides a marker for proliferation. Pregraft and graft sections were immunohistochemically processed by standard methods using aKi67 (according to the manufacturer's instructions), peroxidase-conjugated anti-rabbit second stage antibody, and a chromogenic peroxidase substrate.
The results of this experiment are presented in Figure 21 as immunohistochemical sections at 100x magnification. The top panel of Figure 21 depicts a pregraft section obtained from a psoriatic patient. The epidermis is thicker than normal and nucleic are evident in the stratum corneum. Ki67 positive cells, appearing as brown dots, are evidence in the basal and suprabasal layers, and indicate actively proliferating cells. The control (R450-treated) graft in the bottom panel of Figure 21 also exhibits evidence of proliferation, including parakeratosis and Ki67-positive cells appearing as brown-staining nuclei. The center panel of Figure 21 exhibits the oligonucleotide #27-treated graft. This graft exhibits significantly reduced proliferation as evidenced by normal (thin) epidermis, lack of invaginations, and substantial loss of Ki67-positive cells.
These results indicate that treatment of human psoriatic grafts with an oligonucleotide targeted to mRNA encoding the IGF-I receptor results in inhibition of epidermal proliferation.
Topical formulations of complexes of oligonucleotides with cytofectin GSV in aqueous or methylcellulose gel formulations were prepared and assessed foruptake of the oligonucleotide by keratinocytes in vivo. The topical formulations contained oligonucleotides complexed with cytofectin GSV in an aqueous solution or methylcellulose carrier, as taught herein. With both aqueous and methylcellulose gel formulations, locatlization of oligonucleotide 8451 to nuclei and cytoplasm of keratinocytes in normal human skin grafts on nuce mice was observed. Figure 22 shows an image from confocal microscopy demonstrating oligonucleotide locatlization in the nuclei and cytoplasm of keratinocytes in normal human skin grafts after topical application of fluroescently labeled oligonucleotide (lO~cM 8451) complexed with cytofectin GSV (l0,ug/ml). Figure shows an image from confocal microscopy demonstrating that topical application of the same oligonucleotide/GSV concentrations in a 3 % (w/v) methylcellulose gel produced similar uptake in the target keratinocyte population. Using an aqueous formulation of oligonucleotide/GSV complexes, penetration of oligonucleotide into the viable epidermis was observed, whereas application of formulations of oliognucleotide complexed with other cationic lipids resulted in localization of oligonucleotide in the stratum corneum.
Thirteen antisense oligonucleotides targeted to IGFBP-3 were synthesized. The antisense oligonucleotides are CS-propynyl-dU, DclS mer phosphorothioate oligodeoxyribonucleotides. Figure 24 attached hereto is a schematic diagram indicating the position of the thirteen oligonucleotides relative to the IGFBP-3 mRNA
structure.
These oligonucleotides were screened for their ability to inhibit IGFBP-3 mRNA
levels of HaCaT cells in accordance with the teachings herein. HaCaT cells were grown to confluence in DMEM supplemented with 10% (v/v) FCS, then placed in complete keratinocyte serum free medium (KSFM, Gibco), which has a defined amount of EGF, for 24 hours. Oligonucleotides (30nM or 100nM) were complexed with GSV cytofectin (2,ug/ml) and added to cells in complete KSFM to allow oligonucleotides to enter the nucleus before removal of EGF. Repeat additions were performed at three hours (in serum free DMEM, which releases the EGF inhibition of IGFBP-3 mRNA) and again after another 24 hours. HaCaT cells were also treated with randomized sequence oligonucleotides (R121, 8451, 8766 and R961), liposome alone (GSV) or were left untreated (UT). Total RNA was isolated as described in Example 17, 24 hours after the last treatment. Total RNA (l5,ug) was analyzed by Northern analysis and phosphoroimager quantitation for IGFBP-3 and GADPH mRNA. IGFBP-3 mRNA is expressed as the amount of IGFBP-3 mRNA relative to the amount of GAPDH mRNA.
Figures 25(a)-(d) provide graphs which depict results in this screening process. In these graphs, R1 and R12 refer to 8121; R4, R4(0) and R45 rfer to 8451; R7, R7(0) and R76 refer to 8766; and R9 and R96 refer to 8961. The values were standardized to GSV-treated cells, and data was pooled and statistically analyzed by ANOVA
followed by Domet's test to compare each treatment to GSV-treated cells. The pooled data are presented as a bar graph in Figure 26. As demonstrated, at a concentration of 30nM, treatment of HaCaT cells with 8 of the 12 targeted oligonucleotides tested resulted in a statistically significant reduction in levels of IGFBP-3 mRNA relative to GSV-treated cells. At a concentration of 100nM, treatment with 9 fo the 13 targeted oligonucleotides tested resulted in a statistically significant reduction in levels of IGFBP-3 mRNA relative to GSV-treated cells.
These experiments demonstrate that antisense oligonucleotides targeted to genetic sequences encoding IGFBP-3 can inhibit IGFBP-3 mRNA levels in human keratinocytes in vitro.
IGF-I receptor is a potent mitotic signalling molecule for keratinocytes and the human receptor elicits separate intracellular signals that prevent apoptosis (19).
It is proposed in accordance with the present invention that inactivation of IGF-I receptors in epidermal keratinocytes will achieve three important outcomes in subsequent UV treatment of lesions:
(i) Acute epidermal hyperplasia following UV has been suggested to increase the risk of keratinocyte carcinogenic transformation (22). By reducing IGF-I receptor expression in the epidermis, the incidence of epidermal hyperplasia following UV
exposure is likely to be reduced leading to an overall acceleration in normalization of the lesion and reduced carcinogenic risk.
(ii) Inhibition of anti-apoptotic action of IGF-I receptor will enhance the reversal of epidermal thickening and accelerate normalization of differentiation. Topical or injected IGF-I receptor antisense as adjunctive treatment will increase apoptosis in the epidermal layer thereby enhancing the reduction in acanthosis observed in UV
treatments.
(iii) Survival of keratinocytes, ie. those which evade apoptosis is likely to occur when cells have damaged DNA. Such mutations may be in the tumor suppressor region.
Consequently, the use of antisense therapy will result in less frequent selection of mutated keratinocytes and therefore reduced incidence of basal cell carcinomas and squamous.
Accordingly, antisense therapy, especially against IGF-I-receptor is useful in combination with UV therapy in the treatment of epidermal hyperplasia.
HaCaT cells were treated with antisense oligonucleotides directed to IGF-I
receptor mRNA. Levels of IGF-I receptor mRNA were then monitored. In essence, confluent HaCaT cells were treated every 24 hours for four days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM IGF-I receptor specific oligonucleotides (#26 to #86) or random sequence oligonucleotides (R121, 8451 and R76c~. Figure 27(a) is a photographic representation showing representative RNase protection assay gel showing IGF-I
receptor (IGFR) and GAPDH mRNA in untreated or treated HaCaT cells. Figure 27(b) is a densitometric quantification of IGF-I receptor mRNA in a HaCaT cells following treatment with IGF-I receptor specific oligonucleotides (solid black) random sequence oligonucleotides (horizontal striped bar) or GSV alone (shaded bar) compared to untreated cells (UT, vertical striped bar).
In this example, reduction in total cellular IGF-I receptor protein was monitored following antisense oligonucleotide treatment. Confluence HaCaT cells were treated with 24 hours for 4 days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM IGF-I
receptor specific AONS (#27, #50 and #64) or the random sequence oligonucleotide, 8451.
Total cellular protein was isolated and analysed for IGF-I receptor by SDS PAGE
followed by western blotting with antibody specific for the human IGF-I receptor. Figure 28(a) shows duplicate treated cellular extracts following the IGF-I receptor at the predicted size of 110 kD. Figure 28(b) is a densitometric quantification of IGF-I receptor protein.
The reduction in IGF-I receptor numbers was determined on the keratinocyte cell surface after antisense oligonucleotide treatment. HaCaT cells were tranfected with IGF-I receptor specific AONs #27, #50, #64, a random sequence oligonucleotides (R451) or following treatment with GSV a lipid alone every 24 hours for 4 days. Competition binding assays using 'ZSI-IGF-I and the receptor-specific analogue, des(1-3)IGF-I were performed.
Results are shown in Figure 29.
In this example, the apoptotic protecting effects of IGF-I receptor on keratinocyte cells was tested by following the reduction in keratino cell numbers following antisense oligonucleotide treatment. HaCaT cells, initially at 40 % confluence, were transfected with the IGF-I receptor specific AON #64, control sequences 8451 and 6414 or treated with GSV a lipid alone every 24 hours for 2 days. The cell number was measured in culture wells using a dye binding assay. The results are presented in Figure 30. The results clearly confirm that the IGF-I receptor exhibits an anti-apoptotic effect. By reducing IGF-I
receptor levels using antisense oligonucleotide treatment, the anti-apoptotic effect is interrupted and apoptosis results in the reduction in keratinocyte cell number. Results are shown in Figure 30.
This example shows a reversal of epidermal hyperplasia in psoriatic human skin grafts on nude mice following intradermal injection with antisense oligonucleotides.
Grafted psoriasis lesions were injected with IGF-I receptor specific AONs, a random sequence oligonucleotide in PBS, or with PBS alone, every 2 days for 20 days, then analysed histologically. The results are shown in Figure 31. In Figure 31(a), donor A
graft treated with AON #50 showing epidermal thinning compared with the pregraft and control (PBS) treated graft and donor graft treated with AON #27 showing epidermal thinning compared with pregraft and control (R451) treated graft. In Figure 31(b), the mean epidermal cross sectional area over the full width of grafts is shown as determined by digital image analysis. The results show that epidermal hyperplasia is reversed following the intradermal injection of antisense oligonucleotides.
Figure 32 shows the reversal of epidermal hyperplasia correlating with reduced IGF-I
receptor mRNA in grafted psoriasis lesions treated with antisense oligonucleotides. Figure 32(a) shows a psoriasis lesion prior to grafting and after grafting and treatment with IGF-I
receptor specific oligonucleotide #27 (AON #27) or random sequence (R451) immunostained with antibodies to Ki67 to identify proliferating cells.
Proliferating cells 1 S are indicated by a dark brown nucleus (arrows). Figure 32(b) shows the same lesion prior to grafting and after oligonucleotide treatment as in Figure 32(a) but subjected to in situ hybridisation with 35S-labelled cRNA probe complementary to the human IGF-I
receptor mRNA. The presence of IGF-I receptor mRNA is indicated by silver grains which are almost eliminated in the epidermis of the lesion treated with IGF-I receptor specific oligonucleotide # 27 (AON #27). This experiment shows that reversal of epidermal hyperplasia correlates with reduced IGF-I receptor mRNA in grafted psoriasis lesions treated with antisense oligonucleotides.
Figure 33 treatment with oligonucleotides. HaCaT cell monolayers were grown to 90%
confluence in DMEM containing 10 % fetal calf serum treated every 24 hours for two days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM oligonucleotide.
Total RNA was isolated and analysed for IGF-I receptor and GAPDH mRNA using a commercially available ribonuclease protection assay kit. The results show a reduction in IGF-I receptor mRNA in the HaCaT keratinocyte cells.
Figure 34 treatment with oligonucleotides. HaCaT cell monolayers were grown to 90%
confluence in DMEM containing 10 % fetal calf serum treated every 24 hours for 4 days with 2 ,ug/ml GSV lipid alone (GSV) or complexed with 30 nM oligonucleotide.
Cells were lysed in a buffer containing 50 mM HEPES, 150 mM NaCI, 10 % v/v glycerol, 1 v/v Trison X-100 and 100 ,ug/ml aprotinin on ice for 30 minutes, then 30 ,ug of lysate was loaded onto a denaturing 7 % w/v polyacrylamide gel followed by transfer onto an Immobilon-P membrane. Membranes were then incubated with anti-IGF-I receptor antibodies C20 (available from Santa Cruz Biotechnology Inc., Santa Cruz, California) for 1 hour at room temperature and developed using the Vistra ECF western blotting kit (Amersham). The results shown in Figure 34 confirm that IGF-I receptor protein is reduced in HaCaT keratinocytes following treatment with oligonucleotides.
This example shows a reduction in HaCaT keratinocyte cell number following treatment with oligonucleotides. The results are shown in Figure 35. HaCaT cell monolayers were grown at 40 % confluence in DMEM containing 10 % fetal calf serum treated every 24 hours for 3 days with 2 ~g/ml GSV lipid alone (GSV) or complexed with 15 nM
oligonucleotide. Cell numbers were then measured every 24 hours using the amido black dye binding assay [32]. Results show that HaCaT keratino cells decrease in number following treatment with oligonucleotides due to a reduction in the anti-apoptotic effect of the IGF-I receptor.
Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.
REFERENCES:
1. Sara V Physiological Reviews 70:591-614, 1990.
2. Rechler MM and Brown AL Growth Regulation 2:55-68, 1992.
3. Clemmons DR Growth Regn 2:80, 1992.
4. Oakes SR, KM Haynes, MJ Waters, AC Herington and GA Werther J. Clin Endocrinol Metab 73:1368-1373, 1992.
5. Camacho-Hubner C et al. JBiol Chem 267:11949-11956, 1992.
6. Neely KE et al. Jlnv Derm 96:104, 1991.
7. Ts'O POP, Aurelian L, Chang E and Miller PS. Nonionic oligonucleotide analogs (Matagen TM) as anticodic agents in duplex and triplex formation. in "Antisense Strategies", Annals of the New York Academy of Sciences 660:159-177 (Baserga R
and Denhardt DT, eds.), 1993.
and Denhardt DT, eds.), 1993.
8. Haseloff J and Gerlach L Nature 334:586-591, 1988.
9. Boukamp P, Petrussevska RT, Breitkreuz D, Hornung J, Markham A, Fusenig NE.
J
Cell Biol 106:761-771, 1988.
J
Cell Biol 106:761-771, 1988.
10. Rheinwald and Green Cell 6:331-344, 1975.
11. Hossenlopp P, Seurin D, Segovia-Quinson B, Hardouin S, Binoux M. Anal Biochem 154:138-143, 1986.
12. Spratt SK, Tatsuno GP, Yamanaka MK, Ark BC, Detmer J, Mascarenhas D, Flynn J, Talkington-Verser C, Spencer EM. Growth Factors 3:63-72, 1990.
13. Pietrzkowski, Z, Sell C, Lammers R, Ullrich A and Baserga R. Mol. Cell.
Biol. 12:
3883-3889, 1992.
Biol. 12:
3883-3889, 1992.
14. Schulz J, Dettlaff S, Fritzsche U, Harms U, Schiebel H, Derer W, Fusenig NE, Hulsen A and Bohm M. J. Immunol. Meth. 167:1-13, 1994.
15. Baker BS, Brent L, Valdimarsson H, Powles AV, Al-Imam L, Walker M and Fry L.
Brit. J. Bermatol 126:105-110, 1992.
Brit. J. Bermatol 126:105-110, 1992.
16. Nanney LB et al J. Invest. Bermatol 98:296-301, 1992.
17. Sundberg JP et al Immunol. Investigations 22:389-401, 1993.
18. Sundberg JP et al J. Invest. Dermatol 102:781-788, 1994.
19. O'Connor et al Mol Cell Biol 17:427-435, 1997.
20. Kuhn et al Int J Cancer 80:431-438, 1999.
21. Resnicoff et al Cancer Res 55:3739-3741, 1995.
22. Ouhtit et al Am JPathol 156:201-207, 2000.
23. Froehler et al Tetrahedrin Lett 34:1003-1006, 1992.
24. Gennaro (Ed) Remington's Pharmaceutical Sciences 18th Edition Mack Publishing Co., Easton PA USA, 1990.
25. Flanagan et al Nat Biotechnol 14:1139-1145, 1996.
26. Flanagan et al Nucleic Acids Res 24:2936-2941, 1996.
27. Flanagan et al Mol Cell Biochem 172:213-225, 1997.
28. Gutierrez et al Biochemistry 36:743-748, 1997.
29. Moulds et al Biochemistry 34:5044-5053, 1995.
30. Wagner et al Science 260:1510-1513, 1993.
31. Wagner et al Nature 372:333-335, 1994.
32. Schultz et al Jlmmunol Meth 167:1-13, 1994.
SEQUENCE LISTING
<110> MURDOCH CHILDREN'S RESEARCH INSTITUTE
<120> A METHOD FOR THE PROPHYLAXIS AND/OR TREATMENT OF
MEDICAL DISORDERS
<130> 2288267/EJH
<140> INTERNATIONAL
<141> 2000-06-21 <150> 60/140345 <151> 1999-06-21 <160> 24 <170> PatentIn Ver. 2.1 <210> 1 <211> 1433 <212> DNA
<213> synthetic construct <400> 1 attcggggcg agggaggagg aagaagcgga ggaggcggct cccgctcgca gggccgtgca 60 cctgcccgcc cgcccgctcg ctcgctcgcc cgccgcgccg cgctgccgac cgccagcatg 120 ctgccgagag tgggctgccc cgcgctgccg ctgccgccgc cgccgctgct gccgctgctg 180 ccgctgctgc tgctgctact gggcgcgagt ggcggcggcg gcggggcgcg cgcggaggtg 240 ctgttccgct gcccgccctg cacacccgag cgcctggccg cctgcgggcc cccgccggtt 300 gcgccgcccg ccgcggtggc cgcagtggcc ggaggcgccc gcatgccatg cgcggagctc 360 gtccgggagc cgggctgcgg ctgctgctcg gtgtgcgccc ggctggaggg cgaggcgtgc 420 ggcgtctaca ccccgcgctg cggccagggg ctgcgctgct atccccaccc gggctccgag 480 ctgcccctgc aggcgctggt catgggcgag ggcacttgtg agaagcgccg ggacgccgag 540 tatggcgcca gcccggagca ggttgcagac aatggcgatg accactcaga aggaggcctg 600 gtggagaacc acgtggacag caccatgaac atgttgggcg ggggaggcag tgctggccgg 660 aagcccctca agtcgggtat gaaggagctg gccgtgttcc gggagaaggt cactgagcag 720 caccggcaga tgggcaaggg tggcaagcat caccttggcc tggaggagcc caagaagctg 780 cgaccacccc ctgccaggac tccctgccaa caggaactgg accaggtcct ggagcggatc 840 tccaccatgc gccttccgga tgagcggggc cctctggagc acctctactc cctgcacatc 900 cccaactgtg acaagcatgg cctgtacaac ctcaaacagt gcaagatgtc tctgaacggg 960 cagcgtgggg agtgctggtg tgtgaacccc aacaccggga agctgatcca gggagccccc 1020 accatccggg gggaccccga gtgtcatctc ttctacaatg agcagcagga ggcttgcggg 1080 gtgcacaccc agcggatgca gtagaccgca gccagccggt gcctggcgcc cctgcccccc 1140 gcccctctcc aaacaccggc agaaaacgga gagtgcttgg gtggtgggtg ctggaggatt 1200 ttccagttct gacacacgta tttatatttg gaaagagacc agcaccgagc tcggcacctc 1260 cccggcctct ctcttcccag ctgcagatgc cacacctgct ccttcttgct ttccccgggg 1320 gaggaagggg gttgtggtcg gggagctggg gtacaggttt ggggaggggg aagagaaatt 1380 tttatttttg aacccctgtg tcccttttgc ataagattaa aggaaggaaa agt 1433 <210> 2 <211> 2474 <212> DNA
<213> synthetic construct <400> 2 ctcagcgccc agccgcttcc tgcctggatt ccacagcttc gcgccgtgta ctgtcgcccc 60 atccctgcgc gcccagcctg ccaagcagcg tgccccggtt gcaggcgtca tgcagcgggc 120 gcgacccacg ctctgggccg ctgcgctgac tctgctggtg ctgctccgcg ggccgccggt 180 ggcgcgggct ggcgcgagct cggggggctt gggtcccgtg gtgcgctgcg agccgtgcga 240 cgcgcgtgca ctggcccagt gcgcgcctcc gcccgccgtg tgcgcggagc tggtgcgcga 300 gccgggctgc ggctgctgcc tgacgtgcgc actgagcgag ggccagccgt gcggcatcta 360 caccgagcgc tgtggctccg gccttcgctg ccagccgtcg cccgacgagg cgcgaccgct 420 gcaggcgctg ctggacggcc gcgggctctg cgtcaacgct agtgccgtca gccgcctgcg 480 cgcctacctg ctgccagcgc cgccagctcc aggaaatgct agtgagtcgg aggaagaccg 540 cagcgccggc agtgtggaga gcccgtccgt ctccagcacg caccgggtgt ctgatcccaa 600 gttccacccc ctccattcaa agataatcat catcaagaaa gggcatgcta aagacagcca 660 gcgctacaaa gttgactacg agtctcagag cacagatacc cagaacttct cctccgagtc 720 caagcgggag acagaatatg gtccctgccg tagagaaatg gaagacacac tgaatcacct 780 gaagttcctc aatgtgctga gtcccagggg tgtacacatt cccaactgtg acaagaaggg 840 attttataag aaaaagcagt gtcgcccttc caaaggcagg aagcggggct tctgctggtg 900 tgtggataag tatgggcagc ctctcccagg ctacaccacc aaggggaagg aggacgtgca 960 ctgctacagc atgcagagca agtagacgcc tgccgcaagt taatgtggag ctcaaatatg 1020 ccttattttg cacaaaagac tgccaaggac atgaccagca gctggctaca gcctcgattt 1080 atatttctgt ttgtggtgaa ctgatttttt ttaaaccaaa gtttagaaag aggtttttga 1140 aatgcctatg gtttctttga atggtaaact tgagcatctt ttcactttcc agtagtcagc 1200 aaagagcagt ttgaattttc ttgtcgcttc ctatcaaaat attcagagac tcgagcacag 1260 cacccagact tcatgcgccc gtggaatgct caccacatgt tggtcgaagc ggccgaccac 1320 tgactttgtg acttaggcgg ctgtgttgcc tatgtagaga acacgcttca cccccactcc 1380 ccgtacagtg cgcacaggct ttatcgagaa taggaaaacc tttaaacccc ggtcatccgg 1440 acatcccaac gcatgctcct ggagctcaca gccttctgtg gtgtcatttc tgaaacaagg 1500 gcgtggatcc ctcaaccaag aagaatgttt atgtcttcaa gtgacctgta ctgcttgggg 1560 actattggag aaaataaggt ggagtcctac ttgtttaaaa aatatgtatc taagaatgtt 1620 ctagggcact ctgggaacct ataaaggcag gtatttcggg ccctcctctt caggaatctt 1680 cctgaagaca tggcccagtc gaaggcccag gatggctttt gctgcggccc cgtggggtag 1740 gagggacaga gagacgggag agtcagcctc cacattcaga ggcatcacaa gtaatggcac 1800 aattcttcgg atgactgcag aaaatagtgt tttgtagttc aacaactcaa gacgaagctt 1860 atttctgagg ataagctctt taaaggcaaa gctttatttt catctctcat cttttgtcct 1920 ccttagcaca atgtaaaaaa gaatagtaat atcagaacag gaaggaggaa tggcttgctg 1980 gggagcccat ccaggacact gggagcacat agagattcac ccatgtttgt tgaacttaga 2040 gtcattctca tgcttttctt tataattcac acatatatgc agagaagata tgttcttgtt 2100 aacattgtat acaacatagc cccaaatata gtaagatcta tactagataa tcctagatga 2160 aatgttagag atgctatatg atacaactgt ggccatgact gaggaaagga gctcacgccc 2220 agagactggg ctgctctccc ggaggccaaa cccaagaagg tctggcaaag tcaggctcag 2280 ggagactctg ccctgctgca gacctcggtg tggacacacg ctgcatagag ctctccttga 2340 aaacagaggg gtctcaagac attctgccta cctattagct tttctttatt tttttaactt 2400 tttgggggga aaagtatttt tgagaagttt gtcttgcaat gtatttataa atagtaaata 2460 aagtttttac catt 2474 <210> 3 <211> 4989 <212> DNA
<213> synthetic construct <400> 3 tttttttttt ttttgagaaa gggaatttca tcccaaataa aaggaatgaa gtctggctcc 60 ggaggagggt ccccgacctc gctgtggggg ctcctgtttc tctccgccgc gctctcgctc 120 tggccgacga gtggagaaat ctgcgggcca ggcatcgaca tccgcaacga ctatcagcag 180 ctgaagcgcc tggagaactg cacggtgatc gagggctacc tccacatcct gctcatctcc 240 aaggccgagg actaccgcag ctaccgcttc cccaagctca cggtcattac cgagtacttg 300 ctgctgttcc gagtggctgg cctcgagagc ctcggagacc tcttccccaa cctcacggtc 360 atccgcggct ggaaactctt ctacaactac gccctggtca tcttcgagat gaccaatctc 420 aaggatattg ggctttacaa cctgaggaac attactcggg gggccatcag gattgagaaa 480 aatgctgacc tctgttacct ctccactgtg gactggtccc tgatcctgga tgcggtgtcc 540 aataactaca ttgtggggaa taagccccca aaggaatgtg gggacctgtg tccagggacc 600 atggaggaga agccgatgtg tgagaagacc accatcaaca atgagtacaa ctaccgctgc 660 tggaccacaa accgctgcca gaaaatgtgc ccaagcacgt gtgggaagcg ggcgtgcacc 720 gagaacaatg agtgctgcca ccccgagtgc ctgggcagct gcagcgcgcc tgacaacgac 780 acggcctgtg tagcttgccg ccactactac tatgccggtg tctgtgtgcc tgcctgcccg 840 cccaacacct acaggtttga gggctggcgc tgtgtggacc gtgacttctg cgccaacatc 900 ctcagcgccg agagcagcga ctccgagggg tttgtgatcc acgacggcga gtgcatgcag 960 gagtgcccct cgggcttcat ccgcaacggc agccagagca tgtactgcat cccttgtgaa 1020 ggtccttgcc cgaaggtctg tgaggaagaa aagaaaacaa agaccattga ttctgttact 1080 tctgctcaga tgctccaagg atgcaccatc ttcaagggca atttgctcat taacatccga 1140 cgggggaata acattgcttc agagctggag aacttcatgg ggctcatcga ggtggtgacg 1200 ggctacgtga agatccgcca ttctcatgcc ttggtctcct tgtccttcct aaaaaacctt 1260 cgcctcatcc taggagagga gcagctagaa gggaattact ccttctacgt cctcgacaac 1320 cagaacttgc agcaactgtg ggactgggac caccgcaacc tgaccatcaa agcagggaaa 1380 atgtactttg ctttcaatcc caaattatgt gtttccgaaa tttaccgcat ggaggaagtg 1440 acggggacta aagggcgcca aagcaaaggg gacataaaca ccaggaacaa cggggagaga 1500 gcctcctgtg aaagtgacgt cctgcatttc acctccacca ccacgtcgaa gaatcgcatc 1560 atcataacct ggcaccggta ccggccccct gactacaggg atctcatcag cttcaccgtt 1620 tactacaagg aagcaccctt taagaatgtc acagagtatg atgggcagga tgcctgcggc 1680 tccaacagct ggaacatggt ggacgtggac ctcccgccca acaaggacgt ggagcccggc 1740 atcttactac atgggctgaa gccctggact cagtacgccg tttacgtcaa ggctgtgacc 1800 ctcaccatgg tggagaacga ccatatccgt ggggccaaga gtgagatctt gtacattcgc 1860 accaatgctt cagttccttc cattcccttg gacgttcttt cagcatcgaa ctcctcttct 1920 cagttaatcg tgaagtggaa ccctccctct ctgcccaacg gcaacctgag ttactacatt 1980 gtgcgctggc agcggcagcc tcaggacggc tacctttacc ggcacaatta ctgctccaaa 2040 gacaaaatcc ccatcaggaa gtatgccgac ggcaccatcg acattgagga ggtcacagag 2100 aaccccaaga ctgaggtgtg tggtggggag aaagggcctt gctgcgcctg ccccaaaact 2160 gaagccgaga agcaggccga gaaggaggag gctgaatacc gcaaagtctt tgagaatttc 2220 ctgcacaact ccatcttcgt gcccagacct gaaaggaagc ggagagatgt catgcaagtg 2280 gccaacacca ccatgtccag ccgaagcagg aacaccacgg ccgcagacac ctacaacatc 2340 accgacccgg aagagctgga gacagagtac cctttctttg agagcagagt ggataacaag 2400 gagagaactg tcatttctaa ccttcggcct ttcacattgt accgcatcga tatccacagc 2460 tgcaaccacg aggctgagaa gctgggctgc agcgcctcca acttcgtctt tgcaaggact 2520 atgcccgcag aaggagcaga tgacattcct gggccagtga cctgggagcc aaggcctgaa 2580 aactccatct ttttaaagtg gccggaacct gagaatccca atggattgat tctaatgtat 2640 gaaataaaat acggatcaca agttgaggat cagcgagaat gtgtgtccag acaggaatac 2700 aggaagtatg gaggggccaa gctaaaccgg ctaaacccgg ggaactacac agcccggatt 2760 caggccacat ctctctctgg gaatgggtcg tggacagatc ctgtgttctt ctatgtccag 2820 gccaaaacag gatatgaaaa cttcatccat ctgatcatcg ctctgcccgt cgctgtcctg 2880 ttgatcgtgg gagggttggt gattatgctg tacgtcttcc atagaaagag aaataacagc 2940 aggctgggga atggagtgct gtatgcctct gtgaacccgg agtacttcag cgctgctgat 3000 gtgtacgttc ctgatgagtg ggaggtggct cgggagaaga tcaccatgag ccgggaactt 3060 gggcaggggt cgtttgggat ggtctatgaa ggagttgcca agggtgtggt gaaagatgaa 3120 cctgaaacca gagtggccat taaaacagtg aacgaggccg caagcatgcg tgagaggatt 3180 gagtttctca acgaagcttc tgtgatgaag gagttcaatt gtcaccatgt ggtgcgattg 3240 ctgggtgtgg tgtcccaagg ccagccaaca ctggtcatca tggaactgat gacacggggc 3300 gatctcaaaa gttatctccg gtctctgagg ccagaaatgg agaataatcc agtcctagca 3360 cctccaagcc tgagcaagat gattcagatg gccggagaga ttgcagacgg catggcatac 3420 ctcaacgcca ataagttcgt ccacagagac cttgctgccc ggaattgcat ggtagccgaa 3480 gatttcacag tcaaaatcgg agattttggt atgacgcgag atatctatga gacagactat 3540 taccggaaag gaggcaaagg gctgctgccc gtgcgctgga tgtctcctga gtccctcaag 3600 gatggagtct tcaccactta ctcggacgtc tggtccttcg gggtcgtcct ctgggagatc 3660 gccacactgg ccgagcagcc ctaccagggc ttgtccaacg agcaagtcct tcgcttcgtc 3720 atggagggcg gccttctgga caagccagac aactgtcctg acatgctgtt tgaactgatg 3780 cgcatgtgct ggcagtataa ccccaagatg aggccttcct tcctggagat catcagcagc 3840 atcaaagagg agatggagcc tggcttccgg gaggtctcct tctactacag cgaggagaac 3900 aagctgcccg agccggagga gctggacctg gagccagaga acatggagag cgtccccctg 3960 gacccctcgg cctcctcgtc ctccctgcca ctgcccgaca gacactcagg acacaaggcc 4020 gagaacggcc ccggccctgg ggtgctggtc ctccgcgcca gcttcgacga gagacagcct 4080 tacgcccaca tgaacggggg ccgcaagaac gagcgggcct tgccgctgcc ccagtcttcg 4140 acctgctgat ccttggatcc tgaatctgtg caaacagtaa cgtgtgcgca cgcgcagcgg 4200 ggtggggggg gagagagagt tttaacaatc cattcacaag cctcctgtac ctcagtggat 4260 cttcagttct gcccttgctg cccgcgggag acagcttctc tgcagtaaaa cacatttggg 4320 atgttccttt tttcaatatg caagcagctt tttattccct gcccaaaccc ttaactgaca 4380 tgggccttta agaaccttaa tgacaacact taatagcaac agagcacttg agaaccagtc 4440 tcctcactct gtccctgtcc ttccctgttc tccctttctc tctcctctct gcttcataac 4500 ggaaaaataa ttgccacaag tccagctggg aagccctttt tatcagtttg aggaagtggc 4560 tgtccctgtg gccccatcca accactgtac acacccgcct gacaccgtgg gtcattacaa 4620 aaaaacacgt ggagatggaa atttttacct ttatctttca cctttctagg gacatgaaat 4680 ttacaaaggg ccatcgttca tccaaggctg ttaccatttt aacgctgcct aattttgcca 4740 aaatcctgaa ctttctccct catcggcccg gcgctgattc ctcgtgtccg gaggcatggg 4800 tgagcatggc agctggttgc tccatttgag agacacgctg gcgacacact ccgtccatcc 4860 gactgcccct gctgtgctgc tcaaggccac aggcacacag gtctcattgc ttctgactag 4920 attattattt gggggaactg gacacaatag gtctttctct cagtgaaggt ggggagaagc 4980 tgaaccggc 4989 <210> 4 <211> 25 <212> DNA
<213> synthetic construct <400> 4 gcgcccgctg catgacgcct gcaac 25 <210> 5 <211> 24 <212> DNA
<213> synthetic construct <400> 5 cgggcggctc acctggagct ggcg 24 <210> 6 <211> 18 <212> DNA
<213> synthetic construct <400> 6 aggcggctga cggcacta 18 <210> 7 <211> 19 <212> DNA
<213> synthetic construct <400> 7 caggcgtcat gcagcgggc 19 <210> 8 <211> 25 <212> DNA
<213> synthetic construct <400> 8 cggagatgcc gcatgccagc gcagg 25 <210> 9 <211> 18 <212> DNA
<213> synthetic construct <400> 9 gacagcgtcg gagcgatc 18 <210> 10 <211> 18 <212> DNA
<213> synthetic construct <400> 10 atctctccgc ttcctttc 18 <210> 11 <211> 18 <212> DNA
<213> synthetic construct <400> 11 gaaaggaagc ggagagat 18 <210> 12 <211> 12 <212> DNA
<213> synthetic construct <400> 12 ccggagccag ac 12 <210> 13 <211> 12 <212> DNA
<213> synthetic construct <400> 13 cacaggcgca ag 12 <210> 14 <211> 8 <212> DNA
<213> synthetic construct _g_ <400> 14 cccgcccc 8 <210> 15 <211> 15 <212> DNA
<213> synthetic construct <400> 15 agcccccaca gcgag 15 <210> 16 <211> 12 <212> DNA
<213> synthetic construct <400> 16 gccggagaga gc 12 <210> 17 <211> 13 <212> DNA
<213> synthetic construct <400> 17 aacagaggca gca 13 <210> 18 <211> 13 <212> DNA
<213> synthetic construct <400> 18 ggacagggac cag 13 <210> 19 <211> 14 <212> DNA
<213> synthetic construct <400> 19 cggcaagcac acag 14 <210> 20 <211> 15 <212> DNA
<213> synthetic construct <400> 20 ggcaggcagg cacac 15 <210> 21 <211> 328 <212> PRT
<213> human <400> 21 Met Leu Pro Arg Val Gly Cys Pro Ala Leu Pro Leu Pro Pro Pro Pro Leu Leu Pro Leu Leu Pro Leu Leu Leu Leu Leu Leu Gly Ala Ser Gly Gly Gly Gly Gly Ala Arg Ala Glu Val Leu Phe Arg Cys Pro Pro Cys Thr Pro Glu Arg Leu Ala Ala Cys Gly Pro Pro Pro Val Ala Pro Pro Ala Ala Val Ala Ala Val Ala Gly Gly Ala Arg Met Pro Cys Ala Glu Leu Val Arg Glu Pro Gly Cys Gly Cys Cys Ser Val Cys Ala Arg Leu Glu Gly Glu Ala Cys Gly Val Tyr Thr Pro Arg Cys Gly Gln Gly Leu Arg Cys Tyr Pro His Pro Gly Ser Glu Leu Pro Leu Gln Ala Leu Val Met Gly Glu Gly Thr Cys Glu Lys Arg Arg Asp Ala Glu Tyr Gly Ala Ser Pro Glu Gln Val Ala Asp Asn Gly Asp Asp His Ser Glu Gly Gly Leu Val Glu Asn His Val Asp Ser Thr Met Asn Met Leu Gly Gly Gly Gly Ser Ala Gly Arg Lys Pro Leu Lys Ser Gly Met Lys Glu Leu Ala Val Phe Arg Glu Lys Val Thr Glu Gln His Arg Gln Met Gly Lys Gly Gly Lys His His Leu Gly Leu Glu Glu Pro Lys Lys Leu Arg Pro Pro Pro Ala Arg Thr Pro Cys Gln Gln Glu Leu Asp Gln Val Leu Glu Arg Ile Ser Thr Met Arg Leu Pro Asp Glu Arg Gly Pro Leu Glu His Leu Tyr Ser Leu His Ile Pro Asn Cys Asp Lys His Gly Leu Tyr Asn Leu Lys Gln Cys Lys Met Ser Leu Asn Gly Gln Arg Gly Glu Cys Trp Cys Val Asn Pro Asn Thr Gly Lys Leu Ile Gln Gly Ala Pro Thr Ile Arg Gly Asp Pro Glu Cys His Leu Phe Tyr Asn Glu Gln Gln Glu Ala Cys Gly Val His Thr Gln Arg Met Gln <210> 22 <211> 39 <212> PRT
<213> human <400> 22 Met Leu Pro Arg Val Gly Cys Pro Ala Leu Pro Leu Pro Pro Pro Pro Leu Leu Pro Leu Leu Pro Leu Leu Leu Leu Leu Leu Gly Ala Ser Gly Gly Gly Gly Gly Ala Arg Ala <210> 23 <211> 289 <212> PRT
<213> human <400> 23 Glu Val Leu Phe Arg Cys Pro Pro Cys Thr Pro Glu Arg Leu Ala Ala Cys Gly Pro Pro Pro Val Ala Pro Pro Ala Ala Val Ala Ala Val Ala Gly Gly Ala Arg Met Pro Cys Ala Glu Leu Val Arg Glu Pro Gly Cys Gly Cys Cys Ser Val Cys Ala Arg Leu Glu Gly Glu Ala Cys Gly Val Tyr Thr Pro Arg Cys Gly Gln Gly Leu Arg Cys Tyr Pro His Pro Gly Ser Glu Leu Pro Leu Gln Ala Leu Val Met Gly Glu Gly Thr Cys Glu Lys Arg Arg Asp Ala Glu Tyr Gly Ala Ser Pro Glu Gln Val Ala Asp Asn Gly Asp Asp His Ser Glu Gly Gly Leu Val Glu Asn His Val Asp Ser Thr Met Asn Met Leu Gly Gly Gly Gly Ser Ala Gly Arg Lys Pro Leu Lys Ser Gly Met Lys Glu Leu Ala Val Phe Arg Glu Lys Val Thr Glu Gln His Arg Gln Met Gly Lys Gly Gly Lys His His Leu Gly Leu Glu Glu Pro Lys Lys Leu Arg Pro Pro Pro Ala Arg Thr Pro Cys Gln Gln Glu Leu Asp Gln Val Leu Glu Arg Ile Ser Thr Met Arg Leu Pro Asp Glu Arg Gly Pro Leu Glu His Leu Tyr Ser Leu His Ile Pro Asn Cys Asp Lys His Gly Leu Tyr Asn Leu Lys Gln Cys Lys Met Ser Leu Asn Gly Gln Arg Gly Glu Cys Trp Cys Val Asn Pro Asn Thr Gly Lys Leu Ile Gln Gly Ala Pro Thr Ile Arg Gly Asp Pro Glu Cys His Leu Phe Tyr Asn Glu Gln Gln Glu Ala Cys Gly Val His Thr Gln Arg Met Gln <210> 24 <211> 291 <212> PRT
<213> human <400> 24 Met Gln Arg Ala Arg Pro Thr Leu Trp Ala Ala Ala Leu Thr Leu Leu Val Leu Leu Arg Gly Pro Pro Val Ala Arg Ala Gly Ala Ser Ser Gly Gly Leu Gly Pro Val Val Arg Cys Glu Pro Cys Asp Ala Arg Ala Leu Ala Gln Cys Ala Pro Pro Pro Ala Val Cys Ala Glu Leu Val Arg Glu Pro Gly Cys Gly Cys Cys Leu Thr Cys Ala Leu Ser Glu Gly Gln Pro Cys Gly Ile Tyr Thr Glu Arg Cys Gly Ser Gly Leu Arg Cys Gln Pro Ser Pro Asp Glu Ala Arg Pro Leu Gln Ala Leu Leu Asp Gly Arg Gly Leu Cys Val Asn Ala Ser Ala Val Ser Arg Leu Arg Ala Tyr Leu Leu Pro Ala Pro Pro Ala Pro Gly Asn Ala Ser Glu Ser Glu Glu Asp Arg Ser Ala Gly Ser Val Glu Ser Pro Ser Val Ser Ser Thr His Arg Val Ser Asp Pro Lys Phe His Pro Leu His Ser Lys Ile Ile Ile Ile Lys Lys Gly His Ala Lys Asp Ser Gln Arg Tyr Lys Val Asp Tyr Glu Ser Gln Ser Thr Asp Thr Gln Asn Phe Ser Ser Glu Ser Lys Arg Glu Thr Glu Tyr Gly Pro Cys Arg Arg Glu Met Glu Asp Thr Leu Asn His Leu Lys Phe Leu Asn Val Leu Ser Pro Arg Gly Val His Ile Pro Asn Cys Asp Lys Lys Gly Phe Tyr Lys Lys Lys Gln Cys Arg Pro Ser Lys Gly Arg Lys Arg Gly Phe Cys Trp Cys Val Asp Lys Tyr Gly Gln Pro Leu Pro Gly Tyr Thr Thr Lys Gly Lys Glu Asp Val His Cys Tyr Ser Met Gln Ser Lys
SEQUENCE LISTING
<110> MURDOCH CHILDREN'S RESEARCH INSTITUTE
<120> A METHOD FOR THE PROPHYLAXIS AND/OR TREATMENT OF
MEDICAL DISORDERS
<130> 2288267/EJH
<140> INTERNATIONAL
<141> 2000-06-21 <150> 60/140345 <151> 1999-06-21 <160> 24 <170> PatentIn Ver. 2.1 <210> 1 <211> 1433 <212> DNA
<213> synthetic construct <400> 1 attcggggcg agggaggagg aagaagcgga ggaggcggct cccgctcgca gggccgtgca 60 cctgcccgcc cgcccgctcg ctcgctcgcc cgccgcgccg cgctgccgac cgccagcatg 120 ctgccgagag tgggctgccc cgcgctgccg ctgccgccgc cgccgctgct gccgctgctg 180 ccgctgctgc tgctgctact gggcgcgagt ggcggcggcg gcggggcgcg cgcggaggtg 240 ctgttccgct gcccgccctg cacacccgag cgcctggccg cctgcgggcc cccgccggtt 300 gcgccgcccg ccgcggtggc cgcagtggcc ggaggcgccc gcatgccatg cgcggagctc 360 gtccgggagc cgggctgcgg ctgctgctcg gtgtgcgccc ggctggaggg cgaggcgtgc 420 ggcgtctaca ccccgcgctg cggccagggg ctgcgctgct atccccaccc gggctccgag 480 ctgcccctgc aggcgctggt catgggcgag ggcacttgtg agaagcgccg ggacgccgag 540 tatggcgcca gcccggagca ggttgcagac aatggcgatg accactcaga aggaggcctg 600 gtggagaacc acgtggacag caccatgaac atgttgggcg ggggaggcag tgctggccgg 660 aagcccctca agtcgggtat gaaggagctg gccgtgttcc gggagaaggt cactgagcag 720 caccggcaga tgggcaaggg tggcaagcat caccttggcc tggaggagcc caagaagctg 780 cgaccacccc ctgccaggac tccctgccaa caggaactgg accaggtcct ggagcggatc 840 tccaccatgc gccttccgga tgagcggggc cctctggagc acctctactc cctgcacatc 900 cccaactgtg acaagcatgg cctgtacaac ctcaaacagt gcaagatgtc tctgaacggg 960 cagcgtgggg agtgctggtg tgtgaacccc aacaccggga agctgatcca gggagccccc 1020 accatccggg gggaccccga gtgtcatctc ttctacaatg agcagcagga ggcttgcggg 1080 gtgcacaccc agcggatgca gtagaccgca gccagccggt gcctggcgcc cctgcccccc 1140 gcccctctcc aaacaccggc agaaaacgga gagtgcttgg gtggtgggtg ctggaggatt 1200 ttccagttct gacacacgta tttatatttg gaaagagacc agcaccgagc tcggcacctc 1260 cccggcctct ctcttcccag ctgcagatgc cacacctgct ccttcttgct ttccccgggg 1320 gaggaagggg gttgtggtcg gggagctggg gtacaggttt ggggaggggg aagagaaatt 1380 tttatttttg aacccctgtg tcccttttgc ataagattaa aggaaggaaa agt 1433 <210> 2 <211> 2474 <212> DNA
<213> synthetic construct <400> 2 ctcagcgccc agccgcttcc tgcctggatt ccacagcttc gcgccgtgta ctgtcgcccc 60 atccctgcgc gcccagcctg ccaagcagcg tgccccggtt gcaggcgtca tgcagcgggc 120 gcgacccacg ctctgggccg ctgcgctgac tctgctggtg ctgctccgcg ggccgccggt 180 ggcgcgggct ggcgcgagct cggggggctt gggtcccgtg gtgcgctgcg agccgtgcga 240 cgcgcgtgca ctggcccagt gcgcgcctcc gcccgccgtg tgcgcggagc tggtgcgcga 300 gccgggctgc ggctgctgcc tgacgtgcgc actgagcgag ggccagccgt gcggcatcta 360 caccgagcgc tgtggctccg gccttcgctg ccagccgtcg cccgacgagg cgcgaccgct 420 gcaggcgctg ctggacggcc gcgggctctg cgtcaacgct agtgccgtca gccgcctgcg 480 cgcctacctg ctgccagcgc cgccagctcc aggaaatgct agtgagtcgg aggaagaccg 540 cagcgccggc agtgtggaga gcccgtccgt ctccagcacg caccgggtgt ctgatcccaa 600 gttccacccc ctccattcaa agataatcat catcaagaaa gggcatgcta aagacagcca 660 gcgctacaaa gttgactacg agtctcagag cacagatacc cagaacttct cctccgagtc 720 caagcgggag acagaatatg gtccctgccg tagagaaatg gaagacacac tgaatcacct 780 gaagttcctc aatgtgctga gtcccagggg tgtacacatt cccaactgtg acaagaaggg 840 attttataag aaaaagcagt gtcgcccttc caaaggcagg aagcggggct tctgctggtg 900 tgtggataag tatgggcagc ctctcccagg ctacaccacc aaggggaagg aggacgtgca 960 ctgctacagc atgcagagca agtagacgcc tgccgcaagt taatgtggag ctcaaatatg 1020 ccttattttg cacaaaagac tgccaaggac atgaccagca gctggctaca gcctcgattt 1080 atatttctgt ttgtggtgaa ctgatttttt ttaaaccaaa gtttagaaag aggtttttga 1140 aatgcctatg gtttctttga atggtaaact tgagcatctt ttcactttcc agtagtcagc 1200 aaagagcagt ttgaattttc ttgtcgcttc ctatcaaaat attcagagac tcgagcacag 1260 cacccagact tcatgcgccc gtggaatgct caccacatgt tggtcgaagc ggccgaccac 1320 tgactttgtg acttaggcgg ctgtgttgcc tatgtagaga acacgcttca cccccactcc 1380 ccgtacagtg cgcacaggct ttatcgagaa taggaaaacc tttaaacccc ggtcatccgg 1440 acatcccaac gcatgctcct ggagctcaca gccttctgtg gtgtcatttc tgaaacaagg 1500 gcgtggatcc ctcaaccaag aagaatgttt atgtcttcaa gtgacctgta ctgcttgggg 1560 actattggag aaaataaggt ggagtcctac ttgtttaaaa aatatgtatc taagaatgtt 1620 ctagggcact ctgggaacct ataaaggcag gtatttcggg ccctcctctt caggaatctt 1680 cctgaagaca tggcccagtc gaaggcccag gatggctttt gctgcggccc cgtggggtag 1740 gagggacaga gagacgggag agtcagcctc cacattcaga ggcatcacaa gtaatggcac 1800 aattcttcgg atgactgcag aaaatagtgt tttgtagttc aacaactcaa gacgaagctt 1860 atttctgagg ataagctctt taaaggcaaa gctttatttt catctctcat cttttgtcct 1920 ccttagcaca atgtaaaaaa gaatagtaat atcagaacag gaaggaggaa tggcttgctg 1980 gggagcccat ccaggacact gggagcacat agagattcac ccatgtttgt tgaacttaga 2040 gtcattctca tgcttttctt tataattcac acatatatgc agagaagata tgttcttgtt 2100 aacattgtat acaacatagc cccaaatata gtaagatcta tactagataa tcctagatga 2160 aatgttagag atgctatatg atacaactgt ggccatgact gaggaaagga gctcacgccc 2220 agagactggg ctgctctccc ggaggccaaa cccaagaagg tctggcaaag tcaggctcag 2280 ggagactctg ccctgctgca gacctcggtg tggacacacg ctgcatagag ctctccttga 2340 aaacagaggg gtctcaagac attctgccta cctattagct tttctttatt tttttaactt 2400 tttgggggga aaagtatttt tgagaagttt gtcttgcaat gtatttataa atagtaaata 2460 aagtttttac catt 2474 <210> 3 <211> 4989 <212> DNA
<213> synthetic construct <400> 3 tttttttttt ttttgagaaa gggaatttca tcccaaataa aaggaatgaa gtctggctcc 60 ggaggagggt ccccgacctc gctgtggggg ctcctgtttc tctccgccgc gctctcgctc 120 tggccgacga gtggagaaat ctgcgggcca ggcatcgaca tccgcaacga ctatcagcag 180 ctgaagcgcc tggagaactg cacggtgatc gagggctacc tccacatcct gctcatctcc 240 aaggccgagg actaccgcag ctaccgcttc cccaagctca cggtcattac cgagtacttg 300 ctgctgttcc gagtggctgg cctcgagagc ctcggagacc tcttccccaa cctcacggtc 360 atccgcggct ggaaactctt ctacaactac gccctggtca tcttcgagat gaccaatctc 420 aaggatattg ggctttacaa cctgaggaac attactcggg gggccatcag gattgagaaa 480 aatgctgacc tctgttacct ctccactgtg gactggtccc tgatcctgga tgcggtgtcc 540 aataactaca ttgtggggaa taagccccca aaggaatgtg gggacctgtg tccagggacc 600 atggaggaga agccgatgtg tgagaagacc accatcaaca atgagtacaa ctaccgctgc 660 tggaccacaa accgctgcca gaaaatgtgc ccaagcacgt gtgggaagcg ggcgtgcacc 720 gagaacaatg agtgctgcca ccccgagtgc ctgggcagct gcagcgcgcc tgacaacgac 780 acggcctgtg tagcttgccg ccactactac tatgccggtg tctgtgtgcc tgcctgcccg 840 cccaacacct acaggtttga gggctggcgc tgtgtggacc gtgacttctg cgccaacatc 900 ctcagcgccg agagcagcga ctccgagggg tttgtgatcc acgacggcga gtgcatgcag 960 gagtgcccct cgggcttcat ccgcaacggc agccagagca tgtactgcat cccttgtgaa 1020 ggtccttgcc cgaaggtctg tgaggaagaa aagaaaacaa agaccattga ttctgttact 1080 tctgctcaga tgctccaagg atgcaccatc ttcaagggca atttgctcat taacatccga 1140 cgggggaata acattgcttc agagctggag aacttcatgg ggctcatcga ggtggtgacg 1200 ggctacgtga agatccgcca ttctcatgcc ttggtctcct tgtccttcct aaaaaacctt 1260 cgcctcatcc taggagagga gcagctagaa gggaattact ccttctacgt cctcgacaac 1320 cagaacttgc agcaactgtg ggactgggac caccgcaacc tgaccatcaa agcagggaaa 1380 atgtactttg ctttcaatcc caaattatgt gtttccgaaa tttaccgcat ggaggaagtg 1440 acggggacta aagggcgcca aagcaaaggg gacataaaca ccaggaacaa cggggagaga 1500 gcctcctgtg aaagtgacgt cctgcatttc acctccacca ccacgtcgaa gaatcgcatc 1560 atcataacct ggcaccggta ccggccccct gactacaggg atctcatcag cttcaccgtt 1620 tactacaagg aagcaccctt taagaatgtc acagagtatg atgggcagga tgcctgcggc 1680 tccaacagct ggaacatggt ggacgtggac ctcccgccca acaaggacgt ggagcccggc 1740 atcttactac atgggctgaa gccctggact cagtacgccg tttacgtcaa ggctgtgacc 1800 ctcaccatgg tggagaacga ccatatccgt ggggccaaga gtgagatctt gtacattcgc 1860 accaatgctt cagttccttc cattcccttg gacgttcttt cagcatcgaa ctcctcttct 1920 cagttaatcg tgaagtggaa ccctccctct ctgcccaacg gcaacctgag ttactacatt 1980 gtgcgctggc agcggcagcc tcaggacggc tacctttacc ggcacaatta ctgctccaaa 2040 gacaaaatcc ccatcaggaa gtatgccgac ggcaccatcg acattgagga ggtcacagag 2100 aaccccaaga ctgaggtgtg tggtggggag aaagggcctt gctgcgcctg ccccaaaact 2160 gaagccgaga agcaggccga gaaggaggag gctgaatacc gcaaagtctt tgagaatttc 2220 ctgcacaact ccatcttcgt gcccagacct gaaaggaagc ggagagatgt catgcaagtg 2280 gccaacacca ccatgtccag ccgaagcagg aacaccacgg ccgcagacac ctacaacatc 2340 accgacccgg aagagctgga gacagagtac cctttctttg agagcagagt ggataacaag 2400 gagagaactg tcatttctaa ccttcggcct ttcacattgt accgcatcga tatccacagc 2460 tgcaaccacg aggctgagaa gctgggctgc agcgcctcca acttcgtctt tgcaaggact 2520 atgcccgcag aaggagcaga tgacattcct gggccagtga cctgggagcc aaggcctgaa 2580 aactccatct ttttaaagtg gccggaacct gagaatccca atggattgat tctaatgtat 2640 gaaataaaat acggatcaca agttgaggat cagcgagaat gtgtgtccag acaggaatac 2700 aggaagtatg gaggggccaa gctaaaccgg ctaaacccgg ggaactacac agcccggatt 2760 caggccacat ctctctctgg gaatgggtcg tggacagatc ctgtgttctt ctatgtccag 2820 gccaaaacag gatatgaaaa cttcatccat ctgatcatcg ctctgcccgt cgctgtcctg 2880 ttgatcgtgg gagggttggt gattatgctg tacgtcttcc atagaaagag aaataacagc 2940 aggctgggga atggagtgct gtatgcctct gtgaacccgg agtacttcag cgctgctgat 3000 gtgtacgttc ctgatgagtg ggaggtggct cgggagaaga tcaccatgag ccgggaactt 3060 gggcaggggt cgtttgggat ggtctatgaa ggagttgcca agggtgtggt gaaagatgaa 3120 cctgaaacca gagtggccat taaaacagtg aacgaggccg caagcatgcg tgagaggatt 3180 gagtttctca acgaagcttc tgtgatgaag gagttcaatt gtcaccatgt ggtgcgattg 3240 ctgggtgtgg tgtcccaagg ccagccaaca ctggtcatca tggaactgat gacacggggc 3300 gatctcaaaa gttatctccg gtctctgagg ccagaaatgg agaataatcc agtcctagca 3360 cctccaagcc tgagcaagat gattcagatg gccggagaga ttgcagacgg catggcatac 3420 ctcaacgcca ataagttcgt ccacagagac cttgctgccc ggaattgcat ggtagccgaa 3480 gatttcacag tcaaaatcgg agattttggt atgacgcgag atatctatga gacagactat 3540 taccggaaag gaggcaaagg gctgctgccc gtgcgctgga tgtctcctga gtccctcaag 3600 gatggagtct tcaccactta ctcggacgtc tggtccttcg gggtcgtcct ctgggagatc 3660 gccacactgg ccgagcagcc ctaccagggc ttgtccaacg agcaagtcct tcgcttcgtc 3720 atggagggcg gccttctgga caagccagac aactgtcctg acatgctgtt tgaactgatg 3780 cgcatgtgct ggcagtataa ccccaagatg aggccttcct tcctggagat catcagcagc 3840 atcaaagagg agatggagcc tggcttccgg gaggtctcct tctactacag cgaggagaac 3900 aagctgcccg agccggagga gctggacctg gagccagaga acatggagag cgtccccctg 3960 gacccctcgg cctcctcgtc ctccctgcca ctgcccgaca gacactcagg acacaaggcc 4020 gagaacggcc ccggccctgg ggtgctggtc ctccgcgcca gcttcgacga gagacagcct 4080 tacgcccaca tgaacggggg ccgcaagaac gagcgggcct tgccgctgcc ccagtcttcg 4140 acctgctgat ccttggatcc tgaatctgtg caaacagtaa cgtgtgcgca cgcgcagcgg 4200 ggtggggggg gagagagagt tttaacaatc cattcacaag cctcctgtac ctcagtggat 4260 cttcagttct gcccttgctg cccgcgggag acagcttctc tgcagtaaaa cacatttggg 4320 atgttccttt tttcaatatg caagcagctt tttattccct gcccaaaccc ttaactgaca 4380 tgggccttta agaaccttaa tgacaacact taatagcaac agagcacttg agaaccagtc 4440 tcctcactct gtccctgtcc ttccctgttc tccctttctc tctcctctct gcttcataac 4500 ggaaaaataa ttgccacaag tccagctggg aagccctttt tatcagtttg aggaagtggc 4560 tgtccctgtg gccccatcca accactgtac acacccgcct gacaccgtgg gtcattacaa 4620 aaaaacacgt ggagatggaa atttttacct ttatctttca cctttctagg gacatgaaat 4680 ttacaaaggg ccatcgttca tccaaggctg ttaccatttt aacgctgcct aattttgcca 4740 aaatcctgaa ctttctccct catcggcccg gcgctgattc ctcgtgtccg gaggcatggg 4800 tgagcatggc agctggttgc tccatttgag agacacgctg gcgacacact ccgtccatcc 4860 gactgcccct gctgtgctgc tcaaggccac aggcacacag gtctcattgc ttctgactag 4920 attattattt gggggaactg gacacaatag gtctttctct cagtgaaggt ggggagaagc 4980 tgaaccggc 4989 <210> 4 <211> 25 <212> DNA
<213> synthetic construct <400> 4 gcgcccgctg catgacgcct gcaac 25 <210> 5 <211> 24 <212> DNA
<213> synthetic construct <400> 5 cgggcggctc acctggagct ggcg 24 <210> 6 <211> 18 <212> DNA
<213> synthetic construct <400> 6 aggcggctga cggcacta 18 <210> 7 <211> 19 <212> DNA
<213> synthetic construct <400> 7 caggcgtcat gcagcgggc 19 <210> 8 <211> 25 <212> DNA
<213> synthetic construct <400> 8 cggagatgcc gcatgccagc gcagg 25 <210> 9 <211> 18 <212> DNA
<213> synthetic construct <400> 9 gacagcgtcg gagcgatc 18 <210> 10 <211> 18 <212> DNA
<213> synthetic construct <400> 10 atctctccgc ttcctttc 18 <210> 11 <211> 18 <212> DNA
<213> synthetic construct <400> 11 gaaaggaagc ggagagat 18 <210> 12 <211> 12 <212> DNA
<213> synthetic construct <400> 12 ccggagccag ac 12 <210> 13 <211> 12 <212> DNA
<213> synthetic construct <400> 13 cacaggcgca ag 12 <210> 14 <211> 8 <212> DNA
<213> synthetic construct _g_ <400> 14 cccgcccc 8 <210> 15 <211> 15 <212> DNA
<213> synthetic construct <400> 15 agcccccaca gcgag 15 <210> 16 <211> 12 <212> DNA
<213> synthetic construct <400> 16 gccggagaga gc 12 <210> 17 <211> 13 <212> DNA
<213> synthetic construct <400> 17 aacagaggca gca 13 <210> 18 <211> 13 <212> DNA
<213> synthetic construct <400> 18 ggacagggac cag 13 <210> 19 <211> 14 <212> DNA
<213> synthetic construct <400> 19 cggcaagcac acag 14 <210> 20 <211> 15 <212> DNA
<213> synthetic construct <400> 20 ggcaggcagg cacac 15 <210> 21 <211> 328 <212> PRT
<213> human <400> 21 Met Leu Pro Arg Val Gly Cys Pro Ala Leu Pro Leu Pro Pro Pro Pro Leu Leu Pro Leu Leu Pro Leu Leu Leu Leu Leu Leu Gly Ala Ser Gly Gly Gly Gly Gly Ala Arg Ala Glu Val Leu Phe Arg Cys Pro Pro Cys Thr Pro Glu Arg Leu Ala Ala Cys Gly Pro Pro Pro Val Ala Pro Pro Ala Ala Val Ala Ala Val Ala Gly Gly Ala Arg Met Pro Cys Ala Glu Leu Val Arg Glu Pro Gly Cys Gly Cys Cys Ser Val Cys Ala Arg Leu Glu Gly Glu Ala Cys Gly Val Tyr Thr Pro Arg Cys Gly Gln Gly Leu Arg Cys Tyr Pro His Pro Gly Ser Glu Leu Pro Leu Gln Ala Leu Val Met Gly Glu Gly Thr Cys Glu Lys Arg Arg Asp Ala Glu Tyr Gly Ala Ser Pro Glu Gln Val Ala Asp Asn Gly Asp Asp His Ser Glu Gly Gly Leu Val Glu Asn His Val Asp Ser Thr Met Asn Met Leu Gly Gly Gly Gly Ser Ala Gly Arg Lys Pro Leu Lys Ser Gly Met Lys Glu Leu Ala Val Phe Arg Glu Lys Val Thr Glu Gln His Arg Gln Met Gly Lys Gly Gly Lys His His Leu Gly Leu Glu Glu Pro Lys Lys Leu Arg Pro Pro Pro Ala Arg Thr Pro Cys Gln Gln Glu Leu Asp Gln Val Leu Glu Arg Ile Ser Thr Met Arg Leu Pro Asp Glu Arg Gly Pro Leu Glu His Leu Tyr Ser Leu His Ile Pro Asn Cys Asp Lys His Gly Leu Tyr Asn Leu Lys Gln Cys Lys Met Ser Leu Asn Gly Gln Arg Gly Glu Cys Trp Cys Val Asn Pro Asn Thr Gly Lys Leu Ile Gln Gly Ala Pro Thr Ile Arg Gly Asp Pro Glu Cys His Leu Phe Tyr Asn Glu Gln Gln Glu Ala Cys Gly Val His Thr Gln Arg Met Gln <210> 22 <211> 39 <212> PRT
<213> human <400> 22 Met Leu Pro Arg Val Gly Cys Pro Ala Leu Pro Leu Pro Pro Pro Pro Leu Leu Pro Leu Leu Pro Leu Leu Leu Leu Leu Leu Gly Ala Ser Gly Gly Gly Gly Gly Ala Arg Ala <210> 23 <211> 289 <212> PRT
<213> human <400> 23 Glu Val Leu Phe Arg Cys Pro Pro Cys Thr Pro Glu Arg Leu Ala Ala Cys Gly Pro Pro Pro Val Ala Pro Pro Ala Ala Val Ala Ala Val Ala Gly Gly Ala Arg Met Pro Cys Ala Glu Leu Val Arg Glu Pro Gly Cys Gly Cys Cys Ser Val Cys Ala Arg Leu Glu Gly Glu Ala Cys Gly Val Tyr Thr Pro Arg Cys Gly Gln Gly Leu Arg Cys Tyr Pro His Pro Gly Ser Glu Leu Pro Leu Gln Ala Leu Val Met Gly Glu Gly Thr Cys Glu Lys Arg Arg Asp Ala Glu Tyr Gly Ala Ser Pro Glu Gln Val Ala Asp Asn Gly Asp Asp His Ser Glu Gly Gly Leu Val Glu Asn His Val Asp Ser Thr Met Asn Met Leu Gly Gly Gly Gly Ser Ala Gly Arg Lys Pro Leu Lys Ser Gly Met Lys Glu Leu Ala Val Phe Arg Glu Lys Val Thr Glu Gln His Arg Gln Met Gly Lys Gly Gly Lys His His Leu Gly Leu Glu Glu Pro Lys Lys Leu Arg Pro Pro Pro Ala Arg Thr Pro Cys Gln Gln Glu Leu Asp Gln Val Leu Glu Arg Ile Ser Thr Met Arg Leu Pro Asp Glu Arg Gly Pro Leu Glu His Leu Tyr Ser Leu His Ile Pro Asn Cys Asp Lys His Gly Leu Tyr Asn Leu Lys Gln Cys Lys Met Ser Leu Asn Gly Gln Arg Gly Glu Cys Trp Cys Val Asn Pro Asn Thr Gly Lys Leu Ile Gln Gly Ala Pro Thr Ile Arg Gly Asp Pro Glu Cys His Leu Phe Tyr Asn Glu Gln Gln Glu Ala Cys Gly Val His Thr Gln Arg Met Gln <210> 24 <211> 291 <212> PRT
<213> human <400> 24 Met Gln Arg Ala Arg Pro Thr Leu Trp Ala Ala Ala Leu Thr Leu Leu Val Leu Leu Arg Gly Pro Pro Val Ala Arg Ala Gly Ala Ser Ser Gly Gly Leu Gly Pro Val Val Arg Cys Glu Pro Cys Asp Ala Arg Ala Leu Ala Gln Cys Ala Pro Pro Pro Ala Val Cys Ala Glu Leu Val Arg Glu Pro Gly Cys Gly Cys Cys Leu Thr Cys Ala Leu Ser Glu Gly Gln Pro Cys Gly Ile Tyr Thr Glu Arg Cys Gly Ser Gly Leu Arg Cys Gln Pro Ser Pro Asp Glu Ala Arg Pro Leu Gln Ala Leu Leu Asp Gly Arg Gly Leu Cys Val Asn Ala Ser Ala Val Ser Arg Leu Arg Ala Tyr Leu Leu Pro Ala Pro Pro Ala Pro Gly Asn Ala Ser Glu Ser Glu Glu Asp Arg Ser Ala Gly Ser Val Glu Ser Pro Ser Val Ser Ser Thr His Arg Val Ser Asp Pro Lys Phe His Pro Leu His Ser Lys Ile Ile Ile Ile Lys Lys Gly His Ala Lys Asp Ser Gln Arg Tyr Lys Val Asp Tyr Glu Ser Gln Ser Thr Asp Thr Gln Asn Phe Ser Ser Glu Ser Lys Arg Glu Thr Glu Tyr Gly Pro Cys Arg Arg Glu Met Glu Asp Thr Leu Asn His Leu Lys Phe Leu Asn Val Leu Ser Pro Arg Gly Val His Ile Pro Asn Cys Asp Lys Lys Gly Phe Tyr Lys Lys Lys Gln Cys Arg Pro Ser Lys Gly Arg Lys Arg Gly Phe Cys Trp Cys Val Asp Lys Tyr Gly Gln Pro Leu Pro Gly Tyr Thr Thr Lys Gly Lys Glu Asp Val His Cys Tyr Ser Met Gln Ser Lys
Claims (40)
1. A method for ameliorating the effects of a proliferative and/or inflammatory skin disorder in a mammal, said method comprising contacting the proliferating and/or inflamed skin or skin capable of proliferation and/or inflammation with an effective amount of a nucleic acid molecule selected from the group consisting of 5'-UCCGGAGCCAGACUU-3' (SEQ ID NO:12); 5'-CACAGUUGCUGCAAG-3' (SEQ ID
NO:13); 5'-UCUCCGCUUCCUUUC-3' (SEQ ID NO:14); 5'-AGCCCCCACAGCGAG-3' (SEQ ID NO:15); 5'-GCCUUGGAGAUGAGC-3' (SEQ ID NO:16); 5'-UAACAGAGGUCAGCA-3' (SEQ ID NO:17); 5'-GGAUCAGGGACCAGU-3' (SEQ ID
NO:18); 5'-CGGCAAGCUACACAG-5' (SEQ ID NO:19); 5'-GGCAGGCAGGCACAC-3' (SEQ ID NO:20) or chemical analogue of any one of said nucleic acid molecules wherein said nucleic acid molecule or its chemical analogue is capable of inhibiting or otherwise reducing growth factor mediated cell proliferation and/or inflammation and/or other medical disorders.
NO:13); 5'-UCUCCGCUUCCUUUC-3' (SEQ ID NO:14); 5'-AGCCCCCACAGCGAG-3' (SEQ ID NO:15); 5'-GCCUUGGAGAUGAGC-3' (SEQ ID NO:16); 5'-UAACAGAGGUCAGCA-3' (SEQ ID NO:17); 5'-GGAUCAGGGACCAGU-3' (SEQ ID
NO:18); 5'-CGGCAAGCUACACAG-5' (SEQ ID NO:19); 5'-GGCAGGCAGGCACAC-3' (SEQ ID NO:20) or chemical analogue of any one of said nucleic acid molecules wherein said nucleic acid molecule or its chemical analogue is capable of inhibiting or otherwise reducing growth factor mediated cell proliferation and/or inflammation and/or other medical disorders.
2. A method according to Claim 1 wherein the mammal is a human.
3. A method according to Claim 1 or 2 wherein cell proliferation and/or inflammation is mediated by at least one of insulin-like growth factor I (IGF-I), keratinocyte growth factor (KGF), transforming growth factor-.alpha.
(TGF.alpha.), tumour necrosis factor-.alpha. (TNF.alpha.), interleukin (IL) -1 (IL-1), IL-4, IL-6, IL-8 and/or basic fibroblast growth factor (bFGF).
(TGF.alpha.), tumour necrosis factor-.alpha. (TNF.alpha.), interleukin (IL) -1 (IL-1), IL-4, IL-6, IL-8 and/or basic fibroblast growth factor (bFGF).
4. A method according to Claim 3 wherein cell proliferation and/or inflammation is mediated by IGF-I.
5. A method according to Claim 1 or 2 wherein the proliferative or inflammatory skin disorder is psoriasis, eczema, ichthyosis, pityriasis, rubra, pilaris, serborrhoea, keloids, keratosis, neoplasias, scleroderma, warts, benign growths or cancers of the skin.
6. A method according to Claim 5 wherein the skin condition is psoriasis.
7. A method according to Claim 1 or 4 or 6 wherein the nucleic acid molecule is 5'-UCCGGAGCCAGACUU-3' (SEQ ID NO:12) or chemical analogue thereof.
8. A method according to Claim 1 or 4 or 6 wherein the nucleic acid molecule is 5'-CACAGUUGCUGCAAG-3' (SEQ ID NO:13) or chemical analogue thereof.
9. A method according to Claim 1 or 4 or 6 wherein the nucleic acid molecule is 5'-UCUCCGCUUCCUUUC-3' (SEQ ID NO:14) or chemical analogue thereof.
10. A method according to Claim 1 or 4 or 6 wherein the nucleic acid molecule is 5'-AGCCCCCACAGCGAG-3' (SEQ ID NO:15) or chemical analogue thereof.
11. A method according to Claim 1 or 4 or 6 wherein the nucleic acid molecule is 5'-GCCUUGGAGAUGAGC-3' (SEQ ID NO:16) or chemical analogue thereof.
12. A method according to Claim 1 or 4 or 6 wherein the nucleic acid molecule is 5'-UAACAGAGGUCAGCA-3' (SEQ 1D NO:17) or chemical analogue thereof.
13. A method according to Claim 1 or 4 or 6 wherein the nucleic acid molecule is 5'-GGAUCAGGGACCAGU-3' (SEQ 1D NO:18) or chemical analogue thereof.
14. A method according to Claim 1 or 4 or 6 wherein the nucleic acid molecule is 5'-CGGCAAGCUACACAG-5' (SEQ ID NO:19) or chemical analogue thereof.
15. A method according to Claim 1 or 4 or 6 wherein the nucleic acid molecule is 5'-GGCAGGCAGGCACAC-3' (SEQ ID NO:20) or chemical analogue thereof.
16. A nucleic acid molecule comprising at least about 15 nucleotides capable of hybridizing to or forming a heteroduplex or otherwise interacting with a complementary form of SEQID ID NO:12 to SEQ ID NO:20 inclusive.
17. A nucleic acid molecule comprising at least about 15 nucleotides capable of hybridizing to or forming a heteroduplex or otherwise interacting with a complementary form of SEQ ID NO:12 to SEQ ID NO:20 inclusive.
18. A nucleic acid molecule comprising at least about 15 nucleotides capable of hybridizing to or forming a heteroduplex or otherwise interacting with a complementary form of SEQ ID NO:12 to SEQ ID NO:14 or SEQ ID NO:20 inclusive.
19. A method of ameliorating the effects of psoriasis in a mammal, said method comprising contacting proliferating skin or skin capable of proliferation with an effective amount of one or more nucleic acid molecules or chemical analogues thereof capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation wherein said one or more molecules comprises a polynucleotide selected from the group consisting of 5'-UCCGGAGCCAGACUU-3' (SEQ ID NO:12); 5'-CACAGUUGCUGCAAG-3' (SEQ ID
NO:13); 5'-UCUCCGCUUCCUUUC-3' (SEQ ID NO:14); 5'-AGCCCCCACAGCGAG-3' (SEQ ID NO:15); 5'-GCCUUGGAGAUGAGC-3' (SEQ ID NO:16); 5'-UAACAGAGGUCAGCA-3' (SEQ ID NO:17); 5'-GGAUCAGGGACCAGU-3' (SEQ ID
NO:18); 5'-CGGCAAGCUACACAG-5' (SEQ ID NO:19); 5'-GGCAGGCAGGCACAC-3' (SEQ ID NO:20) or chemical analogue of any one of said nucleic acid molecules which is capable of interacting with mRNA directed from an IGF-I gene, an IGF-I
receptor gene or a gene encoding an IGFBP.
NO:13); 5'-UCUCCGCUUCCUUUC-3' (SEQ ID NO:14); 5'-AGCCCCCACAGCGAG-3' (SEQ ID NO:15); 5'-GCCUUGGAGAUGAGC-3' (SEQ ID NO:16); 5'-UAACAGAGGUCAGCA-3' (SEQ ID NO:17); 5'-GGAUCAGGGACCAGU-3' (SEQ ID
NO:18); 5'-CGGCAAGCUACACAG-5' (SEQ ID NO:19); 5'-GGCAGGCAGGCACAC-3' (SEQ ID NO:20) or chemical analogue of any one of said nucleic acid molecules which is capable of interacting with mRNA directed from an IGF-I gene, an IGF-I
receptor gene or a gene encoding an IGFBP.
20. A method according to Claim 19 wherein the mammal is a human.
21. A method according to Claim 19 or 20 wherein the nucleic acid molecule is 5'-UCCGGAGCCAGACUU-3' (SEQ ID NO:12) or chemical analogue thereof.
22. A method according to Claim 19 or 20 wherein the nucleic acid molecule is 5'-CACAGUUGCUGCAAG-3' (SEQ ID NO:13) or chemical analogue thereof.
23. A method according to Claim 19 or 20 wherein the nucleic acid molecule is 5'-UCUCCGCUUCCUUUC-3' (SEQ ID NO:14) or chemical analogue thereof.
24. A method according to Claim 19 or 20 wherein the nucleic acid molecule is 5'-AGCCCCCACAGCGAG-3' (SEQ ID NO:15) or chemical analogue thereof.
25. A method according to Claim 19 or 20 wherein the nucleic acid molecule is 5'-GCCUUGGAGAUGAGC-3' (SEQ ID NO:16) or chemical analogue thereof.
26. A method according to Claim 19 or 20 wherein the nucleic acid molecule is 5'-UAACAGAGGUCAGCA-3' (SEQ ID NO:17) or chemical analogue thereof.
27. A method according to Claim 19 or 20 wherein the nucleic acid molecule is 5'-GGAUCAGGGACCAGU-3' (SEQ ID NO:18) or chemical analogue thereof.
28. A method according to Claim 19 or 20 wherein the nucleic acid molecule is 5'-CGGCAAGCUACACAG-5' (SEQ ID NO:19) or chemical analogue thereof.
29. A method according to Claim 19 or 20 wherein the nucleic acid molecule is 5'-GGCAGGCAGGCACAC-3' (SEQ ID NO:20) or chemical analogue thereof.
30. A composition comprising a nucleic acid molecule capable of inhibiting or otherwise reducing IGF-I mediated cell proliferation, said composition comprising a nucleic acid molecule selected from the group consisting of 5'-UCCGGAGCCAGACUU-3' (SEQ ID NO:12); 5'-CACAGUUGCUGCAAG-3' (SEQ ID NO:13); 5'-UCUCCGCUUCCUUUC-3' (SEQ ID NO:14); 5'-AGCCCCCACAGCGAG-3' (SEQ ID
NO:15); 5'-GCCUUGGAGAUGAGC-3' (SEQ ID NO:16); 5'-UAACAGAGGUCAGCA-3' (SEQ ID NO:17); 5'-GGAUCAGGGACCAGU-3' (SEQ ID NO:18); 5'-CGGCAAGCUACACAG-5' (SEQ ID NO:19); 5'-GGCAGGCAGGCACAC-3' (SEQ ID
NO:20) or chemical analogue of any one of said nucleic acid molecules, said composition further comprising one or more pharmaceutically acceptable carriers and/or diluents.
NO:15); 5'-GCCUUGGAGAUGAGC-3' (SEQ ID NO:16); 5'-UAACAGAGGUCAGCA-3' (SEQ ID NO:17); 5'-GGAUCAGGGACCAGU-3' (SEQ ID NO:18); 5'-CGGCAAGCUACACAG-5' (SEQ ID NO:19); 5'-GGCAGGCAGGCACAC-3' (SEQ ID
NO:20) or chemical analogue of any one of said nucleic acid molecules, said composition further comprising one or more pharmaceutically acceptable carriers and/or diluents.
31. A method according to Claim 30 wherein the mammal is a human.
32. A method according to Claim 30 or 31 wherein the nucleic acid molecule is 5'-UCCGGAGCCAGACUU-3' (SEQ ID NO:12) or chemical analogue thereof.
33. A method according to Claim 30 or 31 wherein the nucleic acid molecule is 5'-CACAGUUGCUGCAAG-3' (SEQ ID NO:13) or chemical analogue thereof.
34. A method according to Claim 30 or 31 wherein the nucleic acid molecule is 5'-UCUCCGCUUCCUUUC-3' (SEQ ID NO:14) or chemical analogue thereof.
35. A method according to Claim 30 or 31 wherein the nucleic acid molecule is 5'-AGCCCCCACAGCGAG-3' (SEQ ID NO:15) or chemical analogue thereof.
36. A method according to Claim 30 or 31 wherein the nucleic acid molecule is 5'-GCCUUGGAGAUGAGC-3' (SEQ ID NO:16) or chemical analogue thereof.
37. A method according to Claim 30 or 31 wherein the nucleic acid molecule is 5'-UAACAGAGGUCAGCA-3' (SEQ ID NO:17) or chemical analogue thereof.
38. A method according to Claim 30 or 31 wherein the nucleic acid molecule is 5'-GGAUCAGGGACCAGU-3' (SEQ ID NO:18) or chemical analogue thereof.
39. A method according to Claim 30 or 31 wherein the nucleic acid molecule is 5'-CGGCAAGCUACACAG-5' (SEQ ID NO:19) or chemical analogue thereof.
40. A method according to Claim 30 or 31 wherein the nucleic acid molecule is 5'-GGCAGGCAGGCACAC-3' (SEQ ID NO:20) or chemical analogue thereof.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14034599P | 1999-06-21 | 1999-06-21 | |
US60/140,345 | 1999-06-21 | ||
PCT/AU2000/000693 WO2000078341A1 (en) | 1999-06-21 | 2000-06-21 | A method for the prophylaxis and/or treatment of medical disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2376284A1 true CA2376284A1 (en) | 2000-12-28 |
Family
ID=22490818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002376284A Abandoned CA2376284A1 (en) | 1999-06-21 | 2000-06-21 | A method for the prophylaxis and/or treatment of medical disorders |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1191941A4 (en) |
JP (1) | JP2003502383A (en) |
AU (1) | AU768904B2 (en) |
CA (1) | CA2376284A1 (en) |
NZ (1) | NZ515964A (en) |
WO (1) | WO2000078341A1 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020165196A1 (en) * | 2001-05-07 | 2002-11-07 | Eric Wickstrom | Oligonucleotide inhibitors of cancer cell proliferation |
WO2003045440A1 (en) * | 2001-11-28 | 2003-06-05 | Angiogenetics Sweden Ab | Regulation of hypoxia-inducible gene expression with antisense inhibitory pas domain protein |
EP1465995B1 (en) | 2002-01-17 | 2008-07-30 | The University of British Columbia | Bispecific antisense olignucleotides that inhibit igfbp-2 and igfbp-5 and methods of using same |
AU2003207708A1 (en) * | 2002-02-20 | 2003-09-09 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of map kinase genes |
EP2264172B1 (en) | 2002-04-05 | 2017-09-27 | Roche Innovation Center Copenhagen A/S | Oligomeric compounds for the modulation of hif-1alpha expression |
US7960148B2 (en) * | 2003-07-02 | 2011-06-14 | Verenium Corporation | Glucanases, nucleic acids encoding them and methods for making and using them |
AU2004276226B2 (en) | 2003-08-05 | 2009-07-30 | Avi Biopharma, Inc. | Oligonucleotide analog and method for treating flavivirus infections |
WO2005030260A1 (en) | 2003-10-01 | 2005-04-07 | The University Of British Columbia | Bispecific oligonucleotide for the treatment of cns malignancies |
US8618054B2 (en) | 2004-05-05 | 2013-12-31 | Valorisation-Rechereche Société en Commandite | Interleukin-1 receptor antagonists, compositions, and methods of treatment |
EP2206781B1 (en) | 2004-06-28 | 2015-12-02 | The University Of Western Australia | Antisense oligonucleotides for inducing exon skipping and methods of use thereof |
EP1833840B9 (en) | 2004-11-09 | 2010-11-10 | Santaris Pharma A/S | Potent lna oligonucleotides for the inhibition of hif-1a |
US9447138B2 (en) | 2004-11-09 | 2016-09-20 | Roche Innovation Center Copenhagen A/S | Potent LNA oligonucleotides for the inhibition of HIF-1a expression |
EP2366786A3 (en) | 2005-05-05 | 2012-08-29 | VALORISATION HSJ, Société en Commandite | Cytokine receptor modulators and uses thereof |
EP1966368B1 (en) * | 2005-12-29 | 2012-08-22 | Alcon Research, Ltd. | RNAi-MEDIATED INHIBITION OF IGF-1R FOR TREATMENT OF OCULAR ANGIOGENESIS |
EP2032989B2 (en) * | 2006-06-30 | 2015-10-28 | Merck Sharp & Dohme Corp. | Igfbp2 biomarker |
EP2152873A2 (en) * | 2007-03-16 | 2010-02-17 | Biorigen S.r.l | Gene expression regulation technology and noncoding rnas for diagnosis and therapy |
SI3133160T1 (en) | 2008-10-24 | 2019-05-31 | Sarepta Therapeutics, Inc. | Exon skipping compositions for dmd |
HUE026280T2 (en) * | 2009-02-12 | 2016-06-28 | Curna Inc | Treatment of brain derived neurotrophic factor (bdnf) related diseases by inhibition of natural antisense transcript to bdnf |
CN102712925B (en) * | 2009-07-24 | 2017-10-27 | 库尔纳公司 | It is diseases related that SIRTUIN (SIRT) is treated by suppressing SIRTUIN (SIRT) natural antisense transcript |
CA2771228C (en) * | 2009-08-21 | 2020-12-29 | Opko Curna, Llc | Treatment of 'c terminus of hsp70-interacting protein' (chip) related diseases by inhibition of natural antisense transcript to chip |
ES2693459T3 (en) | 2009-11-12 | 2018-12-11 | The University Of Western Australia | Antisense molecules and methods for the treatment of pathologies |
ES2842938T3 (en) | 2012-01-11 | 2021-07-15 | Ionis Pharmaceuticals Inc | Compositions and Methods for IKBKAP Splice Modulation |
EP3633035A1 (en) | 2013-03-14 | 2020-04-08 | Sarepta Therapeutics, Inc. | Exon skipping compositions for treating muscular dystrophy |
BR112015022998A2 (en) | 2013-03-15 | 2017-11-14 | Sarepta Therapeutics Inc | improved compositions for treating muscular dystrophy |
NO344051B1 (en) * | 2017-05-04 | 2019-08-26 | Patogen As | Novel virus in Fish and Method for detection |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995008567A1 (en) * | 1993-09-20 | 1995-03-30 | Celtrix Pharmaceuticals, Inc. | Treatment of immunologic and hematologic disorders with igfbp alone or complexed with igf |
AUPM672594A0 (en) * | 1994-07-08 | 1994-08-04 | Royal Children's Hospital Research Foundation | A method for the prophylaxis and/or treatment of proliferative and/or inflammatory skin disorders |
AU692278B2 (en) * | 1994-07-08 | 1998-06-04 | Murdoch Childrens Research Institute, The | A method for the prophylaxis and/or treatment of proliferative and/or inflammatory skin disorders |
SE9501472D0 (en) * | 1995-04-21 | 1995-04-21 | Pharmacia Ab | Truncated IGF-I |
-
2000
- 2000-06-21 NZ NZ515964A patent/NZ515964A/en unknown
- 2000-06-21 CA CA002376284A patent/CA2376284A1/en not_active Abandoned
- 2000-06-21 EP EP00936560A patent/EP1191941A4/en not_active Withdrawn
- 2000-06-21 JP JP2001504403A patent/JP2003502383A/en active Pending
- 2000-06-21 WO PCT/AU2000/000693 patent/WO2000078341A1/en not_active Application Discontinuation
- 2000-06-21 AU AU52020/00A patent/AU768904B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
AU5202000A (en) | 2001-01-09 |
NZ515964A (en) | 2004-03-26 |
AU768904B2 (en) | 2004-01-08 |
JP2003502383A (en) | 2003-01-21 |
EP1191941A1 (en) | 2002-04-03 |
WO2000078341A8 (en) | 2001-03-22 |
WO2000078341A1 (en) | 2000-12-28 |
EP1191941A4 (en) | 2006-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU768904B2 (en) | A method for the prophylaxis and/or treatment of medical disorders | |
US20030096769A1 (en) | Method for the prophylaxis and/or treatment of proliferative and/or inflammatory skin disorders | |
JP6837963B2 (en) | MIR-29 imitations and their use | |
Yokoi et al. | Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis | |
Yang et al. | Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors | |
JP6140120B2 (en) | Visfatin treatment for treating pressure ulcers and other conditions | |
JP7323229B2 (en) | Composition for prevention or treatment of keloid or hypertrophic scar | |
JP2009518022A (en) | Anti-myosin VasiRNA and skin decolorization | |
Devi et al. | Inhibition of human chorionic gonadotropin β‐subunit modulates the mitogenic effect of c‐myc in human prostate cancer cells | |
KR20170103841A (en) | Mir-92 inhibitors and uses thereof | |
Gattone II et al. | Renal expression of a transforming growth factor-α transgene accelerates the progression of inherited, slowly progressive polycystic kidney disease in the mouse | |
Montuenga et al. | Coordinate expression of transforming growth factor-β1 and adrenomedullin in rodent embryogenesis | |
EP1513859A2 (en) | Kinase suppressor of ras inactivation for therapy of ras mediated tumorigenesis | |
DE60038680T2 (en) | ANTISENSE THERAPY FOR HORMONE-REGULATED TUMORS | |
US20050261230A1 (en) | Method for the prophylaxis and/or treatment of medical disorders | |
Le Provost et al. | SOCS3 promotes apoptosis of mammary differentiated cells | |
DE69936141T2 (en) | USE OF DNA PK | |
CA2905337A1 (en) | Compositions and methods for targeting o-linked n-acetylglucosamine transferase and promoting wound healing | |
AU692278B2 (en) | A method for the prophylaxis and/or treatment of proliferative and/or inflammatory skin disorders | |
US20050250123A1 (en) | Reducing galectin-12 activity to reduce formation of adipocytes | |
JP2021534799A (en) | How to Target Kits Using Splice Switching Oligonucleotides to Induce Mast Cell Apoptosis | |
JP4484556B2 (en) | Methods and pharmaceutical compositions for the treatment of psoriasis and squamous cell carcinoma | |
US10907156B2 (en) | MiR-127 agents for use in the treatment of renal fibrosis | |
US20070297985A1 (en) | Method and composition for enhancing bone formation | |
Ricker | EGF and c-myc in cpk-induced murine autosomal recessive polycystic kidney disease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Dead |