CA2375414A1 - Human transcriptional regulator proteins - Google Patents

Human transcriptional regulator proteins Download PDF

Info

Publication number
CA2375414A1
CA2375414A1 CA002375414A CA2375414A CA2375414A1 CA 2375414 A1 CA2375414 A1 CA 2375414A1 CA 002375414 A CA002375414 A CA 002375414A CA 2375414 A CA2375414 A CA 2375414A CA 2375414 A1 CA2375414 A1 CA 2375414A1
Authority
CA
Canada
Prior art keywords
txreg
polynucleotide
polypeptide
seq
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002375414A
Other languages
French (fr)
Inventor
Preeti Lal
Henry Yue
Y. Tom Tang
Mariah R. Baughn
Yalda Azimzai
Bao Tran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Incyte Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2375414A1 publication Critical patent/CA2375414A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Abstract

The invention provides human transcriptional regulator proteins (TXREG) and polynucleotides which identify and encode TXREG. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of TXREG.

Description

HUMAN TRANSCRIPTIONAL REGULATOR PROTEINS
TECHNICAL FIELD
This invention relates to nucleic acid and amino acid sequences of human transcriptional regulator proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative, autoimmune/inflammatory, and developmental disorders.
BACKGROUND OF THE INVENTION
Multicellular organisms are comprised of diverse cell types that differ dramatically both in structure and function. The identity of a cell is determined by its characteristic pattern of gene expression, and different cell types express overlapping but distinctive sets of genes throughout development. Spatial and temporal regulation of gene expression is critical for the control of cell proliferation, cell differentiation, apoptosis, and other processes that contribute to organismal development. Furthermore, gene expression is regulated in response to extracellular signals that mediate cell-cell communication and coordinate the activities of different cell types. Appropriate gene regulation also ensures that cells function efficiently by expressing only those genes whose functions are required at a given time.
Transcription Factors Transcriptional regulatory proteins are essential for the control of gene expression. Some of these proteins function as transcription factors that initiate, activate, repress, or terminate gene transcription. Transcription factors generally bind to the promoter, enhancer, and upstream regulatory regions of a gene in a sequence-specific manner, although some factors bind regulatory elements within or downstream of a gene's coding region. Transcription factors may bind to a specific region of DNA singly or as a complex with other accessory factors.
(Reviewed in Lewin, B.
( 1990) Genes IV, Oxford University Press, New York, NY, and Cell Press, Cambridge, MA, pp. 554-570.) The double helix structure and repeated sequences of DNA create topological and chemical features which can be recognized by transcription factors. These features are hydrogen bond donor and acceptor groups, hydrophobic patches, major and minor grooves, and regular, repeated stretches of sequence which induce distinct bends in the helix. Typically, transcription factors recognize specific DNA sequence motifs of about 20 nucleotides in length. Multiple, adjacent transcription factor-binding motifs may be required for gene regulation.
Many transcription factors incorporate DNA-binding structural motifs which comprise either a helices or Q sheets that bind to the major groove of DNA. Four well-characterized structural motifs are the helix-turn-helix, zinc finger, leucine zipper, and helix-loop-helix.
Proteins containing these motifs may act alone as monomers, or they may form homo- or heterodimers that interact with DNA.
The helix-turn-helix motif consists of two a helices connected at a fixed angle by a short chain of amino acids. One of the helices binds to the major groove. Helix-turn-helix motifs are exemplified by the homeobox motif which is present in homeodomain proteins.
These proteins are critical for specifying the anterior-posterior body axis during development and are conserved throughout the animal kingdom. The Antennapedia and Ultrabithorax proteins of Drosophila melano ag ster are prototypical homeodomain proteins (Pabo, C.O. and R.T.
Sauer (1992) Ann. Rev.
Biochem. 61:1053-1095).
The zinc finger motif, which binds zinc ions, generally contains tandem repeats of about 30 amino acids consisting of periodically spaced cysteine and histidine residues.
Examples of this sequence pattern include the C2H2-type, C4-type, and C3HC4-type ("RING"
finger) zinc fingers, and the PHD domain (Lewin, supra ; Aasland, R. et al. (1995) Trends Biochem. Sci 20:56 - 59). Zinc forger proteins each contain an a helix and an antiparallel Q sheet whose proximity and conformation are maintained by the zinc ion. Contact with DNA is made by the arginine preceding the a helix and by the second, third, and sixth residues of the a helix. The zinc finger motif may be repeated in a tandem array within a protein, such that the a helix of each zinc finger in the protein makes contact with the major groove of the DNA double helix. This repeated contact between the protein and the DNA produces a strong and specific DNA-protein interaction. The strength and specificity of the interaction can be regulated by the number of zinc finger motifs within the protein.
The leucine zipper motif comprises a stretch of amino acids rich in leucine which can form an amphipathic a helix. This structure provides the basis for dimerization of two leucine zipper proteins. The region adjacent to the leucine zipper is usually basic, and upon protein dimerization, is optimally positioned for binding to the major groove. Proteins containing such motifs are generally referred to as bZIP transcription factors. The leucine zipper motif is found in the proto-oncogenes Fos and Jun, which comprise the heterodimeric transcription factor AP1, involved in cell growth and the determination of cell lineage (Papavassiliou, A. G. (1995) N. Engl. J.
Med. 332:45-47).
The helix-loop-helix motif (HLH) consists of a short a helix connected by a loop to a longer a helix. The loop is flexible and allows the two helices to fold back against each other and to bind to DNA. The oncogene Myc, a transcription factor that activates genes required for cellular proliferation, contains a prototypical HLH motif.
Most transcription factors contain characteristic DNA binding motifs, and variations on the above motifs and new motifs have been and are currently being characterized (Faisst, S. and S. Meyer (1992) Nucl. Acids Res. 20:3-26). These include the forkhead motif, found in transcription factors involved in development and oncogenesis (Hacker, U. et al. (1995) EMBO J.
14:5306-5317).
Chromatin Associated Proteins In the nucleus, DNA is packaged into chromatin, the compact organization of which limits the accessibility of DNA to transcription factors and plays a key role in gene regulation (Lewin, supra, pp. 409-410). The compact structure of chromatin is determined and influenced by chromatin-associated proteins such as the histones, the high mobility group (HMG) proteins, helicases, and the chromodomain proteins. There are five classes of histones, H1, H2A, H2B, H3, and H4, all of which are highly basic, low molecular weight proteins. The fundamental unit of chromatin, the nucleosome, consists of 200 base pairs of DNA associated with two copies each of H2A, H2B, H3, and H4. H1 links adjacent nucleosomes. HMG proteins are low molecular weight, non-histone proteins that may play a role in unwinding DNA and stabilizing single-stranded DNA. Helicases, which are DNA-dependent ATPases, unwind DNA, allowing access for transcription factors.
Chromodomain proteins play a key role in the formation of highly compacted heterochromatin, which is. transcriptionally silent.
Diseases and disorders related to , e~guulation Many neoplastic disorders in humans can be attributed to inappropriate gene expression.
Malignant cell growth may result from either excessive expression of tumor promoting genes or insufficient expression of tumor suppressor genes (Cleary, M.L. (1992) Cancer Surv. 15:89-104).
The zinc finger-type transcriptional regulator WT1 is a tumor-suppressor protein that is inactivated in children with Wilm's tumor. The oncogene bcl-6, which plays an important role in large-cell lymphoma, is also a zinc-finger protein (Papavassiliou, supra). Chromosomal translocations may also produce chimeric loci which fuse the coding sequence of a transcriptional regulator with the regulatory regions of a second unrelated gene. In Burkitt's lymphoma, for example, the transcription factor Myc is translocated to the immunoglobulin heavy chain locus, greatly enhancing Myc expression and resulting in rapid cell growth leading to leukemia (Latchman, D. S. (1996) N. Engl. J.
Med. 334:28-33).
In addition, the immune system responds to infection or trauma by activating a cascade of events that coordinate the progressive selection, amplification, and mobilization of cellular defense mechanisms. A complex and balanced program of gene activation and repression is involved in this process. However, hyperactivity of the immune system as a result of improper or insufficient regulation of gene expression may result in considerable tissue or organ damage. This damage is well documented in immunological responses associated with arthritis, allergens, heart attack, stroke, and infections (Isselbacher et al. Harrison's Principles of Internal Medicine, 13/e, McGraw Hill, Inc.
and Teton Data Systems Software, 1996). The causative gene for autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) was recently isolated and found to encode a protein with two PHD-type zinc finger motifs (Bjorses, P. et al. (1998) Hum. Mol.
Genet. 7:1547-1553).
Furthermore, the generation of multicellular organisms is based upon the induction and coordination of cell differentiation at the appropriate stages of development.
Central to this process is differential gene expression, which confers the distinct identities of cells and tissues throughout the body. Failure to regulate gene expression during development can result in developmental disorders.
Human developmental disorders caused by mutations in zinc forger-type transcriptional regulators include: urogenital developmental abnormalities associated with WT1; Greig cephalopolysyndactyly, Pallister-Hall syndrome, and postaxial polydactyly type A (GLI3), and Townes-Brocks syndrome, characterized by anal, renal, limb, and ear abnormalities (SALL1) (Engelkamp, D. and V. van Heyningen (1996) Curr. Opin. Genet. Dev. 6:334-342;
Kohlhase, J. et al.
(1999) Am. J. Hum. Genet. 64:435-445).
The discovery of new human transcriptional regulator proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative, autoimmune/inflammatory, and developmental disorders.
SUMMARY OF THE INVENTION
The invention features purified polypeptides, human transcriptional regulator proteins, referred to collectively as "TXREG" and individually as "TXREG-1," "TXREG-2,"
"TXREG-3,"
"TXREG-4," "TXREG-5," "TXREG-6," "TXREG-7," "TXREG-8," "TXREG-9," "TXREG-10,"
"TXREG-11," "TXREG-12," "TXREG-13," "TXREG-14," "TXREG-15," "TXREG-16," "TXREG-17," "TXREG-18," "TXREG-19," "TXREG-20," "TXREG-21," "TXREG-22," "TXREG-23,"
"TXREG-24," "TXREG-25," "TXREG-26," "TXREG-27," "TXREG-28," "TXREG-29," "TXREG-30," "TXREG-31," and "TXREG-32." In one aspect, the invention provides an isolated polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ )D NO:1-32, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ )D NO:1-32.
The invention further provides an isolated polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ
ID NO:1-32, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ )D NO:1-32, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ >D NO:1-32. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ )D NO:1-32. In another alternative, the polynucleotide is selected from the group consisting of SEQ )D N0:33-64.
Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ >l7 NO:1-32, b) a naturally occurring amino acid sequence having at least 90%
sequence identity to an amino acid sequence selected from the group consisting of SEQ )D NO:1-32, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ )D NO:1-32, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ >D NO:1-32. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.
The invention also provides a method for producing a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ >T7 NO:1-32, b) a naturally occurring amino acid sequence having at least 90%
sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ )D NO:1-32, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ )D NO:1-32. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ )D NO:1-32, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ 1D NO:1-32, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:I-32, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ 1D NO:1-32.
The invention further provides an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ >D N0:33-64, b) a naturally occurnng polynucleotide sequence having at least 70% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ )D
N0:33-64, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.
Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID N0:33-64, b) a naturally occurring polynucleotide sequence having at least 70% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ >D
N0:33-64, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.
The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a} a polynucleotide sequence selected from the group consisting of SEQ ID N0:33-64, b) a naturally occurring polynucleotide sequence having at least 70% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ 1D
N0:33-64, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
The invention further provides a pharmaceutical composition comprising an effective amount of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ )D NO:1-32, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ B7 NO:1-32, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ m NO:1-32, and a pharmaceutically acceptable excipient. In one embodiment, the pharmaceutical composition comprises an amino acid sequence selected from the group consisting of SEQ >D NO:1-32. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional TXREG, comprising administering to a patient in need of such treatment the pharmaceutical composition.
The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ )D NO:1-32, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ I1.7 NO:1-32, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ )D NO:1-32, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ
>D NO:1-32. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional TXREG, comprising administering to a patient in need of such treatment the pharmaceutical composition.
Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ m NO:1-32, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ )D NO:1-32, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ 1D NO:1-32, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ
)D NO:1-32. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional TXREG, comprising administering to a patient in need of such treatment the pharmaceutical composition.
The invention further provides a method of screening for a compound that specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ )D NO:1-32, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ II7 NO:1-32, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ )D NO:1-32. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
The invention further provides a method of screening for a compound that modulates the activity of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ
ID NO:1-32. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID N0:33-64, the method comprising a).
exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
BRIEF DESCRIPTION OF THE TABLES
Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ
ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding TXREG.
Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of TXREG.
Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned.
Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding TXREG were isolated.
Table 5 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
DESCRIPTION OF THE INVENTION
Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
It must be noted that as used herein and in the appended claims, the singular forms "a," "an,"
and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs.
Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
DEFINITIONS
"TXREG" refers to the amino acid sequences of substantially purified TXREG
obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
The term "agonist" refers to a molecule which intensifies or mimics the biological activity of TXREG. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TXREG either by directly interacting with TXREG or by acting on components of the biological pathway in which TXREG
participates.
An "allelic variant" is an alternative form of the gene encoding TXREG.
Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides.

Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
"Altered" nucleic acid sequences encoding TXREG include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as TXREG or a polypeptide with at least one functional characteristic of TXREG. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding TXREG, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding TXREG. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent TXREG. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of TXREG is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.
Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
"Amplification" relates to the production of additional copies of a nucleic acid sequence.
Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of TXREG. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TXREG either by directly interacting with TXREG or by acting on components of the biological pathway in which TXREG participates.
The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')2, and Fv fragments, which are capable of binding an epitopic determinant.
Antibodies that bind TXREG polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired.
Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
The term "antisense" refers to any composition capable of base-pairing with the "sense"
(coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA;
RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurnng nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.
The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic"
refers to the capability of the natural, recombinant, or synthetic TXREG, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'.
A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution.
Compositions comprising polynucleotide sequences encoding TXREG or fragments of TXREG may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCI), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (PE Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison Wn or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.
"Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions.
The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded IS as conservative amino acid substitutions.
Original Residue Conservative Substitution Ala Gly, Ser Arg His, Lys Asn Asp, Gln, His Asp Asn, Glu Cys Ala, Ser Gln Asn, Glu, His Glu Asp, Gln, His Gly Ala His Asn, Arg, Gln, Glu Ile Leu, Val Leu Ile, Val Lys Arg, Gln, Glu Met Leu, Ile Phe His, Met, Leu, Trp, Tyr Ser Cys, Thr Thr Ser, Val Trp Phe, Tyr Tyr His, Phe, Trp Val Ile, Leu, Thr Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to a chemically modified polynucleotide or polypeptide.
Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule.
A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
A "fragment" is a unique portion of TXREG or the polynucleotide encoding TXREG
which is identical in sequence to but shorter in length than the parent sequence. A
fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
A fragment of SEQ ID N0:33-64 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID N0:33-64, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID N0:33-64 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID N0:33-64 from related polynucleotide sequences. The precise length of a fragment of SEQ
ID N0:33-64 and the region of SEQ ID N0:33-64 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
A fragment of SEQ ID NO:1-32 is encoded by a fragment of SEQ ID N0:33-64. A
fragment of SEQ ID NO:1-32 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-32. For example, a fragment of SEQ ID NO:1-32 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-32.
The precise length of a fragment of SEQ ID NO:1-32 and the region of SEQ ID NO:1-32 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A "full-length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A
"full-length" polynucleotide sequence encodes a "full-length" polypeptide sequence.
"Homology" refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN
version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison Wn. CLUSTAL V is described in IS Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G.
et al. (1992) CABIOS
8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences.
Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBn Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html.
The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST
programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2Ø12 (April-21-2000) set at default parameters. Such default parameters may be, for example:
Matrix: BLOSUM62 Reward for match: I
Penalty for mismatch: -2 Open Gap: 5 and Extension Gap: 2 penalties Gap x drop-off: 50 Expect: 10 Word Size: 11 Filter: on Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ )D number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions.
Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN
version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.
Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences"
tool Version 2Ø12 (Apr-21-2000) with blastp set at default parameters. Such default parameters may be, for example:
Matrix: BLOSUM62 Open Gap: 71 and Extension Gap: 1 penalties Gap x drop-off:' SO
Expect: 10 Word Size: 3 Filter: on Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ )D number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for chromosome replication, segregation and maintenance.
The term "humanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity.
Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing steps) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity.
Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1 % (w/v) SDS, and about 100 pg/ml sheared, denatured salmon sperm DNA.
Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5.°C to 20°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating Tm and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al., 1989, Molecular Clonine: A Laboratory Manual, 2"~ ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.
High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC
concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1 %.
Typically, blocking reagents are used to block non-specific hybridization.
Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 pg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A
hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
An "immunogenic fragment" is a polypeptide or oligopeptide fragment of TXREG
which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of TXREG which is useful in any of the antibody production methods disclosed herein or known in the art.
The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.
The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
The term "modulate" refers to a change in the activity of TXREG. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of TXREG.
The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition.
PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
"Post-translational modification" of an TXREG may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of TXREG.
"Probe" refers to nucleic acid sequences encoding TXREG, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule.
Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes.
"Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, 2'~
ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et a1.,1987, Current Protocols in Molecular BioloQV, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al., 1990, PCR
Protocols, A Guide to Methods and Anulications, Academic Press, San Diego CA.
PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR
primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases.
Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
A "recombinant nucleic acid" is a sequence that is not naturally occurnng or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence.
This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed,. inducing a protective immunological response in the mammal.
A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and S' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.
"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes;
fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors;
magnetic particles; and other moieties known in the art.
An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding TXREG, or fragments thereof, or TXREG itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell;
a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print;
etc.
The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A
and the antibody will reduce the amount of labeled A that binds to the antibody.
The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 7S% free, and most preferably at least 90% free from other components with which they are naturally associated.
A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
A "transcript image" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants, and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.
A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2Ø9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic"
variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternative splicing of exons during mRNA processing.
The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2Ø9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.
THE INVENTION
The invention is based on the discovery of new human transcriptional regulator proteins (TXREG), the polynucleotides encoding TXREG, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, autoimmune/inflammatory, and developmental disorders.
Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding TXREG. Columns 1 and 2 show the sequence identification numbers (SEQ )D NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone )Ds of the Incyte clones in which nucleic acids encoding each TXREG were identified, and column 4 shows the cDNA
libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. The Incyte clones in column 5 were used to assemble the consensus nucleotide sequence of each TXREG and are useful as fragments in hybridization technologies.
The columns of Table 2 show various properties of each of the polypeptides of the invention:
column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows homologous sequences as identified by BLAST analysis; and column 7 shows analytical methods and in some cases, searchable databases to which the analytical methods were applied. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.
The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding TXREG. The first column of Table 3 lists the nucleotide SEQ 117 NOs. Column 2 lists fragments of the nucleotide sequences of column 1. These fragments are useful, for example, in hybridization or amplification technologies to identify SEQ ID
N0:33-64 and to distinguish between SEQ ID N0:33-64 and related polynucleotide sequences. The polypeptides encoded by these fragments are useful, for example, as immunogenic peptides. Column 3 lists tissue categories which express TXREG as a fraction of total tissues expressing TXREG.
Column 4 lists diseases, disorders, or conditions associated with those tissues expressing TXREG as a fraction of total tissues expressing TXREG. Column 5 lists the vectors used to subclone each cDNA
library.
The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding TXREG were isolated. Column 1 references the nucleotide SEQ
)D NOs, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.
SEQ ID N0:33 maps to chromosome 1 within the interval from 199.2 to 203.0 centiMorgans, to chromosome 6 within the interval from 59.6 to 73.9 centiMorgans, and to chromosome 13 within the interval from 112.8 to 117.5 centiMorgans. The interval on chromosome 6 from 59.6 to 73.9 centiMorgans also contains genes associated with methylmalonic CoA mutase deficiency and retinal degeneration. The interval on chromosome 13 from 112.8 to 117.5 centiMorgans also contains genes associated with Oguchi disease (night blindness) and Factor X deficiency. SEQ
ID N0:34 maps to chromosome 13 within the interval from 112.8 to 117.5 centiMorgans. This interval also contains genes associated with Oguchi disease (night blindness) and Factor X
deficiency. SEQ ID N0:35 maps to chromosome 12 within the interval from 113.3 to 126.1 centiMorgans.
This interval also contains genes associated with spinocerebellar ataxia, mevalonate kinase deficiency, alcohol intolerance, and myocardial hypertrophy. SEQ ID N0:36 maps to chromosome 1 within the interval from 155.2 to 157.4 centiMorgans, and to chromosome 16 within the interval from 83.7 to 86.6 centiMorgans. The interval on chromosome 1 from 155.2 to 157.4 centiMorgans also contains genes associated with leukemia and adrenal hyperplasia. The interval on chromosome 16 from 83.7 to 86.6 centiMorgans also contains a gene associated with cortisol 11-beta-keto reductase deficiency. SEQ
ID N0:38 maps to chromosome 9 within the interval from 59.9 to 64.5 centiMorgans. SEQ ID
N0:40 maps to chromosome 18 within the interval from 61.2 to 63.2 centiMorgans. SEQ ID N0:44 maps to chromosome 2 within the interval from 180.6 to 188.2 centiMorgans.
This interval also contains a gene associated with glutamate decarboxylase deficiency. SEQ ID
N0:45 maps to chromosome 13 within the interval from 112.8 to 117.5 centiMorgans. This interval also contains genes associated with Oguchi disease (night blindness) and Factor X
deficiency. SEQ ID N0:47 maps to chromosome 8 within the interval from 75.0 to 90.2 centiMorgans. This interval also contains genes associated with branchiootorenal dysplasia and Zellweger syndrome. SEQ ID N0:61 maps to chromosome 5 within the interval from 63.9 to 69.6 centiMorgans. SEQ
ID N0:62 maps to chromosome 7 within the interval from 120.7 to 123.9 centiMorgans. This interval also contains genes associated with lipoamide dehydrogenase deficiency, neonatal cutis laxa, and tumor suppression. SEQ ID N0:64 maps to chromosome 1 within the interval from 157.4 to 186.4 centiMorgans, to chromosome 5 within the interval from 175.3 to 182.4 centiMorgans, and to chromosome 14 within the interval from 7.5 to 21.9 centiMorgans. The interval on chromosome 1 from 157.4'to 186.4 centiMorgans also contains genes associated with autoimmune diseases, leukemia, and Gaucher disease. The interval on chromosome 14 from 7.5 to 21.9 centiMorgans also contains genes associated with apoptosis, hypertrophic cardiomopathy, and oculopharyngeal muscular dystrophy.
The invention also encompasses TXREG variants. A preferred TXREG variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the TXREG amino acid sequence, and which contains at least one functional or structural characteristic of TXREG.
The invention also encompasses polynucleotides which encode TXREG. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID N0:33-64, which encodes TXREG. The polynucleotide sequences of SEQ >D N0:33-64, as presented in the Sequence Listing, embrace the equivalent RNA
sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
The invention also encompasses a variant of a polynucleotide sequence encoding TXREG. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding TXREG. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ )D
N0:33-64 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID N0:33-64. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TXREG.
It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding TXREG, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring TXREG, and all such variations are to be considered as being specifically disclosed.
Although nucleotide sequences which encode TXREG and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring TXREG
under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding TXREG or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding TXREG and its derivatives without altering the encoded amino acid IS sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.
The invention also encompasses production of DNA sequences which encode TXREG
and TXREG derivatives, or fragments thereof, entirely by synthetic chemistry.
After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding TXREG or any fragment thereof.
Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID
N0:33-64 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol.
152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."
Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (PE
Biosystems, Foster City CA), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD).
Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI

CATALYST 800 thermal cycler (PE Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (PE Biosystems), the MEGABACE 1000 DNA
sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art.
The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular BioloQV, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and BiotechnoloQV, Wiley VCH, New York NY, pp.
856-853.) The nucleic acid sequences encoding TXREG may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. ( 1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA
fragments adjacent to known sequences in human and yeast artificial chromosome DNA.
(See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res.
19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.
When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, PE Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode TXREG may be cloned in recombinant DNA molecules that direct expression of TXREG, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express TXREG.
The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter TXREG-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA
shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat.
Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of TXREG, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial"
breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

In another embodiment, sequences encoding TXREG may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser.
7:225-232.) Alternatively, TXREG itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques.
(See, e.g., Creighton, T. ( 1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; and Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (PE Biosystems).
Additionally, the amino acid sequence of TXREG, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.
The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.) In order to express a biologically active TXREG, the nucleotide sequences encoding TXREG
or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding TXREG. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding TXREG. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding TXREG and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used.
(See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.) Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding TXREG and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A

Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular BioloQV, John Wiley & Sons, New York NY, ch. 9, 13, and 16.) A variety of expression vector/host systems may be utilized to contain and express sequences encoding TXREG. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra;
Ausubel, supra; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Bitter, G.A. et al.
(1987) Methods Enzymol. 153:516-544; Scorer, C.A. et al. (1994) Bio/Technology 12:181-184;
Engelhard, E.K. et al.
(1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum.
Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; Coruzzi, G. et al. (1984) EMBO
J. 3:1671-1680;
Broglie, R. et al. (1984) Science 224:838-843; Winter, J. et al. (1991) Results Probl. Cell Differ.
17:85-105; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA
81:3655-3659; and Harnngton, J.J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al., (1993) Proc. Natl. Acad. Sci.
USA 90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815;
McGregor, D.P. et al.
(1994) Mol. Immunol. 31(3):219-226; and Verma, LM. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed.
In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding TXREG. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding TXREG can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding TXREG into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M.
Schuster (1989) J. Biol.
Chem. 264:5503-5509.) When large quantities of TXREG are needed, e.g. for the production of antibodies, vectors which direct high level expression of TXREG may be used.
For example, vectors containing the strong, inducible TS or T7 bacteriophage promoter may be used.
Yeast expression systems may be used for production of TXREG. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH
promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation.
(See, e.g., Ausubel, 1995, supra; Bitter, supra; and Scorer, supra.) Plant systems may also be used for expression of TXREG. Transcription of sequences encoding TXREG may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in comhination with the omega leader sequence from TMV (Takamatsu, N.
(1987) EMBO J.
6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, su ra; Broglie, supra; and Winter, supra.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technolo~y (1992) McGraw Hill, New York NY, pp. 191-196.) In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding TXREG
may be ligated into an adenovirus transcriptionltranslation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses TXREG in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc.
Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.
Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J.
et al. (1997) Nat. Genet.
15:345-355.) For long term production of recombinant proteins in mammalian systems, stable expression of TXREG in cell lines is preferred. For example, sequences encoding TXREG can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector.
Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
Any number of selection systems may be used to recover transformed cell lines.
These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk- and apr cells, respectively.
(See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418; and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc.
Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), Li glucuronidase and its substrate Q-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system.
(See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.) Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding TXREG is inserted within a marker gene sequence, transformed cells containing sequences encoding TXREG can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding TXREG under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
In general, host cells that contain the nucleic acid sequence encoding TXREG
and that express TXREG may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR
amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
Immunological methods for detecting and measuring the expression of TXREG
using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on TXREG is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. ( 1990) Serological Methods, a Laboratory Manual, APS
Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in ImmunoloQV, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.) A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding TXREG
include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
Alternatively, the sequences encoding TXREG, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison Wn, and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
Host cells transformed with nucleotide sequences encoding TXREG may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode TXREG may be designed to contain signal sequences which direct secretion of TXREG through a prokaryotic or eukaryotic cell membrane.
In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion.
Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity.
Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.
In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding TXREG may be ligated~to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric TXREG protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of TXREG
activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the TXREG encoding sequence and the heterologous protein sequence, so that TXREG may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
In a further embodiment of the invention, synthesis of radiolabeled TXREG may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35S-methionine.
TXREG of the present invention or fragments thereof may be used to screen for compounds that specifically bind to TXREG. At least one and up to a plurality of test compounds may be screened for specific binding to TXREG. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.
In one embodiment, the compound thus identified is closely related to the natural ligand of TXREG, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, Coligan, J.E. et al. (1991) Current Protocols in Immunolo~y 1(2):
Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which TXREG
binds, onto at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express TXREG, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing TXREG or cell membrane fractions which contain TXREG
are then contacted with a test compound and binding, stimulation, or inhibition of activity of either TXREG or the compound is analyzed.
An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with TXREG, either in solution or affixed to a solid support, and detecting the binding of TXREG to the compound.
Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compounds) may be free in solution or affixed to a solid support.
TXREG of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of TXREG. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for TXREG activity, wherein TXREG is combined with at least one test compound, and the activity of TXREG in the presence of a test compound is compared with the activity of TXREG in the absence of the test compound. A change in the activity of TXREG in the presence of the test compound is indicative of a compound that modulates the activity of TXREG. Alternatively, a test compound is combined with an in vitro or cell-free system comprising TXREG under conditions suitable for TXREG activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of TXREG may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.
In another embodiment, polynucleotides encoding TXREG or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al.
(1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
Polynucleotides encoding TXREG may also be manipulated in vitro in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al.
(1998) Science 282:1145-1147).
Polynucleotides encoding TXREG can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding TXREG is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease.
Alternatively, a mammal inbred to overexpress TXREG, e.g., by secreting TXREG
in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).
THERAPEUTICS
Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of TXREG and human transcriptional regulator proteins. In addition, the expression of TXREG is closely associated with cell proliferation and inflammation.
Therefore, TXREG
appears to play a role in cell proliferative, autoimmune/inflammatory, and developmental disorders.
In the treatment of disorders associated with increased TXREG expression or activity, it is desirable to decrease the expression or activity of TXREG. In the treatment of disorders associated with decreased TXREG expression or activity, it is desirable to increase the expression or activity of TXREG.
Therefore, in one embodiment, TXREG or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TXREG. Examples of such disorders include, but are not limited to, a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cinrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an autoimmune/inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a developmental disorder, such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR
syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss.
In another embodiment, a vector capable of expressing TXREG or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TXREG including, but not limited to, those described above.
In a further embodiment, a pharmaceutical composition comprising a substantially purified TXREG in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TXREG including, but not limited to, those provided above.
In still another embodiment, an agonist which modulates the activity of TXREG
may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TXREG including, but not limited to, those listed above.
In a further embodiment, an antagonist of TXREG may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TXREG. Examples of such disorders include, but are not limited to, those cell proliferative, autoimmune/inflammatory, and developmental disorders described above. In one aspect, an antibody which specifically binds TXREG may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express TXREG.
In an additional embodiment, a vector expressing the complement of the polynucleotide encoding TXREG may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TXREG including, but not limited to, those described above.
In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
An antagonist of TXREG may be produced using methods which are generally known in the art. In particular, purified TXREG may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind TXREG.
Antibodies to TXREG may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.
For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with TXREG or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium narvum are especially preferable.
It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to TXREG have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of TXREG amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
Monoclonal antibodies to TXREG may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture.
These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D.
et al. (1985) J.
Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA
80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.) In addition, techniques developed for the production of "chimeric antibodies,"
such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc.
Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce TXREG-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.) Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl.
Acad. Sci. USA
86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.) Antibody fragments which contain specific binding sites for TXREG may also be generated.
For example, such fragments include, but are not limited to, F(ab~2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab~2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.
(See, e.g., Huse, W.D.
et al. (1989) Science 246:1275-1281.) Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between TXREG and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering TXREG epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).
Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for TXREG.
Affinity is expressed as an association constant, Ka, which is defined as the molar concentration of TXREG-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions.
The Ka determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple TXREG epitopes, represents the average affinity, or avidity, of the antibodies for TXREG. The Ka determined for a preparation of monoclonal antibodies, which are monospecific for a particular TXREG epitope, represents a true measure of affinity. High-affinity antibody preparations with Ka ranging from about 109 to 10'z L/mole are preferred for use in immunoassays in which the TXREG-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with Ka ranging from about 106 to 10' L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of TXREG, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical A~nroach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A
Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of TXREG-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al., supra.) In another embodiment of the invention, the polynucleotides encoding TXREG, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding TXREG. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding TXREG. (See, e.g., Agrawal, S., ed. ( 1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.) In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) J. Allergy Clin. Immunol. 102(3):469-475; and Scanlon, K.J. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A:D. (1990) Blood 76:271; Ausubel, supra; Uckert, W. and W. Walther (1994) Pharmacol. Ther.
63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) Br. Med. Bull.
51(1):217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Moms, M.C. et al. (1997) Nucleic Acids Res.
25(14):2730-2736.) In another embodiment of the invention, polynucleotides encoding TXREG may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SC)D)-X1 disease characterized by X

linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX
deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, LM. and Somia, N. (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D.
( 1988) Nature 335:395-396; Poeschla, E. et al. ( 1996) Proc. Natl. Acad. Sci.
USA. 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falc~arum and Trypanosoma cruzi). In the case where a genetic deficiency in TXREG expression or regulation causes disease, the expression of TXREG from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.
In a further embodiment of the invention, diseases or disorders caused by deficiencies in TXREG are treated by constructing mammalian expression vectors encoding TXREG
and introducing these vectors by mechanical means into TXREG-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev.
Biochem. 62:191-217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J-L. and H.
Recipon (1998) Curr.
Opin. Biotechnol. 9:445-450).
Expression vectors that may be effective for the expression of TXREG include, but are not limited to, the PCDNA 3.1, EPTTAG, PRCCMV2, PREP, PVAX vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). TXREG may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ~i-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl.
Acad. Sci. U.S.A.
89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V.
and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX
plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND;
Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V.

and H.M. Blau, supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding TXREG from a normal individual.
Commercially available liposome transformation kits (e.g., the PERFECT LIPID
TRANSFECTION KTT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al.
(1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.
In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to TXREG expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding TXREG under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cis-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc.
Natl. Acad..Sci. U.S.A. 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al.
(1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol.
72:8463-8471; Zufferey, R.
et al. (1998) J. Virol. 72:9873-9880). U.S. Patent Number 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4+ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J.
Virol. 71:4707-4716;
Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95:1201-1206; Su, L.
(1997) Blood 89:2283-2290).
In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding TXREG to cells which have one or more genetic abnormalities with respect to the expression of TXREG. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. ( 1999) Annu. Rev. Nutr. 19:511-544; and Verma, LM. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.
In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding TXREG to target cells which have one or more genetic abnormalities with respect to the expression of TXREG. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing TXREG to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al.
(1999) Exp. Eye Res.169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S.
Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent Number 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol.
73:519-532 and Xu, H. et al.
(1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.
In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding TXREG to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotech. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full-length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for TXREG into the alphavirus genome in place of the capsid-coding region results in the production of a large number of TXREG-coding RNAs and the synthesis of high levels of TXREG in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of TXREG into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction.
The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA
transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.
Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E.
and B.I. Carr, Molecular and Immunoloeic Approaches, Futura Publishing, Mt.
Kisco NY, pp. 163- , 177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding TXREG.
Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable.
The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules.
These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis.
Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA
sequences encoding TXREG. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6.
Alternatively, these cDNA

constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.
RNA molecules may be modified to increase intracellular stability and half life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.
An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding TXREG.
Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased TXREG expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding TXREG may be therapeutically useful, and in the treament of disorders associated with decreased TXREG expression or activity, a compound which specifically promotes expression of the polynucleotide encoding TXREG may be therapeutically useful.
At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide;
and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding TXREG is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding TXREG are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding TXREG. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5.932,435; Arndt, G.M. et al.
(2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al.
(2000) Biochem. Biophys.
Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W.
et al. (2000) U.S.
Patent No. 6,022,691 ).
Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient.
Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat.
Biotechnol. 15:462-466.) Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
An additional embodiment of the invention relates to the administration of a pharmaceutical composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).
Such pharmaceutical compositions may consist of TXREG, antibodies to TXREG, and mimetics, agonists, antagonists, or inhibitors of TXREG.
The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
Pharmaceutical compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g.
larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.
Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.
Specialized forms of pharmaceutical compositions may be prepared for direct intracellular delivery of macromolecules comprising TXREG or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, TXREG or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. ( 1999) Science 285:1569-1572).
For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
A therapeutically effective dose refers to that amount of active ingredient, for example TXREG or fragments thereof, antibodies of TXREG, and agonists, antagonists or inhibitors of TXREG, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the EDSO (the dose therapeutically effective in 50% of the population) or LDso (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LDSO/EDso ratio.
Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the EDso with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.
The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
Normal dosage amounts may vary from about 0.1 ~cg to 100,000 fig, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art.
Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
DIAGNOSTICS
In another embodiment, antibodies which specifically bind TXREG may be used for the diagnosis of disorders characterized by expression of TXREG, or in assays to monitor patients being treated with TXREG or agonists, antagonists, or inhibitors of TXREG.
Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics.
Diagnostic assays for TXREG include methods which utilize the antibody and a label to detect TXREG in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
A variety of protocols for measuring TXREG, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of TXREG expression.
Normal or standard values for TXREG expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibody to TXREG under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means.
Quantities of TXREG
expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.
In another embodiment of the invention, the polynucleotides encoding TXREG may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of TXREG
may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of TXREG, and to monitor regulation of TXREG levels during therapeutic intervention.
In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding TXREG or closely related molecules may be used to identify nucleic acid sequences which encode TXREG. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5'regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurnng sequences encoding TXREG, allelic variants, or related sequences.
Probes may also be used for the detection of related sequences, and may have at least 50°l0 sequence identity to any of the TXREG encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID
N0:33-64 or from genomic sequences including promoters, enhancers, and introns of the TXREG
gene.
Means for producing specific hybridization probes for DNAs encoding TXREG
include the , cloning of polynucleotide sequences encoding TXREG or TXREG derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA
polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or'SS, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
Polynucleotide sequences encoding TXREG may be used for the diagnosis of disorders associated with expression of TXREG. Examples of such disorders include, but are not limited to, a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an autoimmune/inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a developmental disorder, such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwa~sm, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss. The polynucleotide sequences encoding TXREG may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR
technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered TXREG expression. Such qualitative or quantitative methods are well known in the art.
In a particular aspect, the nucleotide sequences encoding TXREG may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding TXREG may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding TXREG in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
In order to provide a basis for the diagnosis of a disorder associated with expression of TXREG, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding TXREG, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder.
Deviation from standard values is used to establish the presence of a disorder.
Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
Additional diagnostic uses for oligonucleotides designed from the sequences encoding TXREG may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding TXREG, or a fragment of a polynucleotide complementary to the polynucleotide encoding TXREG, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding TXREG may be used to detect single nucleotide polymorphisms (SNPs).
SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding TXREG are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like.
SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed in silico SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).
Methods which may also be used to quantify the expression of TXREG include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C.
et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described in Seilhamer, J.J. et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484, incorporated herein by reference. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
In another embodiment, antibodies specific for TXREG, or TXREG or fragments thereof may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.
Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al.
(1996) Proc. Natl. Acad. Sci.
USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application W095/251116;
Shalom D. et al.
(1995) PCT application W095/35505; Heller, R.A. et al. (1997) Proc. Natl.
Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are well known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed.
(1999) Oxford University Press, London, hereby expressly incorporated by reference.
In another embodiment of the invention, nucleic acid sequences encoding TXREG
may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence.
Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J.
et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134;
and Trask, B.J.
(1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, e.g., Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci.
USA 83:7353-7357.) Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding TXREG on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps.
Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to l 1q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
In another embodiment of the invention, TXREG, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between TXREG and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. ( 1984) PCT
application W084/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with TXREG, or fragments thereof, and washed. Bound TXREG is then detected by methods well known in the art.
Purified TXREG
can also be coated directly onto plates for use in the aforementioned drug screening techniques.
Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding TXREG specifically compete with a test compound for binding TXREG. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with TXREG.
In additional embodiments, the nucleotide sequences which encode TXREG may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
The disclosures of all patents, applications, and publications mentioned above and below, in particular U.S. Ser. No.60/140,109 are hereby expressly incorporated by reference.
EXAMPLES
I. Construction of cDNA Libraries RNA was purchased from Clontech or isolated from tissues described in Table 4.
Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL
(Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCI cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA
purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA
purification kit (Ambion, Austin TX).
In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA
libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP
vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, su ra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA
was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S 1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), pcDNA2.1 plasmid (Invitrogen, Carlsbad CA), or pINCY plasmid (Incyte Genomics, Palo Alto CA).
Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BIueMRF, or SOLR from Stratagene or DHSa, DH10B, or ElectroMAX DH10B from Life Technologies.
II. Isolation of cDNA Clones Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis.
Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL
8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.
Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSICAN II
fluorescence scanner (Labsystems Oy, Helsinki, Finland).
III. Sequencing and Analysis Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows.
Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (PE Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ
Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB

2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI
PRISM BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems).
Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carned out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI

or 377 sequencing system (PE Biosystems) in conjunction with standard ABI
protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VI.
The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences). Sequences were analyzed using MACDNASIS PRO
software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE
software (DNASTAR). Polynucleotide and polypeptide sequence alignments were generated using the default parameters specified by the clustal algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.
The polynucleotide sequences were validated by removing vector, linker, and polyA
sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA.
The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.) The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ )D
N0:33-64. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.
IV. Analysis of Polynucleotide Expression Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, s_ unra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.) Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:
BLAST Score x Percent Identity 5 x minimum { length(Seq. 1 ), length(Seq. 2) }
The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP
(separated by gaps). If there is more than one HSP, then the pair with the highest BLAST
score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100%
identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50%
overlap at one end, or 79%
identity and 100% overlap.
The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding TXREG occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation, trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories.
Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.
V. Chromosomal Mapping of TXREG Encoding Polynucleotides The cDNA sequences which were used to assemble SEQ ID N0:33-64 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID N0:33-64 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 5). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.
The genetic map locations of SEQ ID N0:33, SEQ ID N0:34, SEQ ID N0:35, SEQ ID
N0:36, SEQ ID N0:38, SEQ ID N0:40, SEQ ID N0:44, SEQ ID N0:45, SEQ ID N0:47, SEQ ID
N0:61, SEQ ID N0:62, and SEQ ID N0:64 are described in The Invention as ranges, or intervals, of human chromosomes. More than one map location is reported for SEQ ID N0:33, SEQ ID N0:36, and SEQ ID N0:64, indicating that previously mapped sequences having similarity, but not complete identity, to SEQ ID N0:33, SEQ ID N0:36, and SEQ ID N0:64 were assembled into their respective .
clusters. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to I megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Diseases associated with the public and Incyte sequences located within the indicated intervals are also reported in the Invention where applicable.
VI. Extension of TXREG Encoding Polynucleotides The full length nucleic acid sequences of SEQ ID N0:33-64 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
High fidelity amplification was obtained by PCR using methods well known ~in the art. PCR
was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg2', (NH4)zS04, and ~i-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec;
Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2:
94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min;
Step 5: Steps 2, 3, and 4 repeated 20 times;
Step 6: 68°C, 5 min; Step 7: storage at 4°C.
The concentration of DNA in each well was determined by dispensing 100 p1 PICOGREEN
quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE
and 0.5 p1 of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II
(Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 ~1 to 10 /.d aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.
The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison Wn, and sonicated or sheared prior to relegation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE
(Promega). Extended clones were relegated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3:
60°C, 1 min; Step 4: 72°C, 2 min;
Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA
recoveries were reamplified using the same conditions as described above.
Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI
PRISM
BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems).
In like manner, the polynucleotide sequences of SEQ ID N0:33-64 are used to obtain 5' regulatory sequences using the procedure above, along with oligonucleotides designed for such extension, and an appropriate genomic library.
VII. Labeling and Use of Individual Hybridization Probes Hybridization probes derived from SEQ 1D N0:33-64 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 ~Ci of [y-3zP] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech).
An aliquot containing 10' counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases:
Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).
The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH}. Hybridization is carned out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5%
sodium dodecyl sulfate.
Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.
VIII. Microarrays The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink jet printing, See, e.g., Baldeschweiler, supra), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena ( 1999), supra). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers.
Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, W, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalom D. et al. (1996) Genome Res. 6:639-645;
Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.) Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection.
After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element.
Alternatively, laser desorbtion and mass spectrometry may be used for detection of hybridization.
The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.
Tissue or Cell Sample Pr~aration Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)+ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)+
RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/lrl oligo-(dT) primer (2lmer), 1X
first strand buffer, 0.03 units/lil RNase inhibitor, 500 E,~M dATP, 500 liM
dGTP, 500 l~M dTTP, 40 pM dCTP, 40 E.~M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)+ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)+ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37 °C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of O.SM sodium hydroxide and incubated for 20 minutes at 85 °C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH
Laboratories, Inc.
(CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100%
ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 E~l SX SSC/0.2% SDS.
Microarray Preparation Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts.
PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert.
Array elements are amplified in thirty cycles of PCR from an initial quantity of I-2 ng to a final quantity greater than 5 pg. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).
Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1 % SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4%
hydrofluoric acid (VWR
Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.
Anray elements are applied to the coated glass substrate using a procedure described in US
Patent No. 5,807,522, incorporated herein by reference. 1 p1 of the array element DNA, at an average concentration of 100 ng/ld, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 n1 of array element sample per slide.
Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene).
Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water.
Non-specific binding sites are blocked by incubation of microarrays in 0.2%
casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60 °C followed by washes in 0.2% SDS and distilled water as before.
Hybridization Hybridization reactions contain 9 p1 of sample mixture consisting of 0.2 pg each of Cy3 and Cy5 labeled cDNA synthesis products in SX SSC, 0.2% SDS hybridization buffer.
The sample mixture is heated to 65 °C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm2 coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 ~.il of SX SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60 °C. The arrays are washed for 10 min at 45 °C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45 °C in a second wash buffer (0.1X
SSC), and dried.
Detection Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of CyS. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.
In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially.
Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT 81477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for CyS. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.
The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A
specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
The output of the photomultiplier tube is digitized using a 12-bit RTI-835H
analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC
computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.
A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).
IX. Complementary Polynucleotides Sequences complementary to the TXREG-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring TXREG.
Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of TXREG.
To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the TXREG-encoding transcript.
X. Expression of TXREG
Expression and purification of TXREG is achieved using bacterial or virus-based expression systems. For expression of TXREG in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA
transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the TS or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
Antibiotic resistant bacteria express TXREG upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of TXREG in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant AutoQraphica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding TXREG by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases.
Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K.
et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al.
(1996) Hum. Gene Ther.
7:1937-1945.) In most expression systems, TXREG is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma janonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from TXREG at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG
antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified TXREG obtained by these methods can be used directly in the assays shown in Examples XI and XV.

XI. Demonstration of TXREG Activity TXREG activity is measured by its ability to stimulate transcription of a reporter gene (Liu, H.Y. et al. (1997) EMBO J. 16(17):5289-5298). The assay employs a well characterized reporter gene construct, LexAoP LacZ, that consists of LexA DNA transcriptional control elements (LexAoP) fused to sequences encoding the E. coli LacZ enzyme. The methods for constructing and expressing fusions genes, introducing them into cells, and measuring LacZ enzyme activity, are well known to those skilled in the art. Sequences encoding TXREG are cloned into a plasmid that directs the synthesis of a fusion protein, LexA-TXREG, consisting of TXREG and a DNA
binding domain derived from the LexA transcription factor. The resulting plasmid, encoding a LexA-TXREG fusion protein, is introduced into yeast cells along with a plasmid containing the LexAoP LacZ reporter gene.
The amount of LacZ enzyme activity associated with LexA-TXREG transfected cells, relative to control cells, is proportional to the amount of transcription stimulated by the TXREG.
XII. Functional Assays TXREG function is assessed by expressing the sequences encoding TXREG at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA
expression. Vectors of choice include pCMV SPORT plasmid (Life Technologies) and pCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 ,ug of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 ~g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA
with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.
The influence of TXREG on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding TXREG and either CD64 or CD64-GFP.
CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can.be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding TXREG and other genes of interest can be analyzed by northern analysis or microarray techniques.
XIII. Production of TXREG Specific Antibodies TXREG substantially purified using polyacrylamide gel electrophoresis (PAGE;
see, e.g., Harnngton, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.
Alternatively, the TXREG amino acid sequence is analyzed using LASERGENE
software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.) Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A
peptide synthesizer (PE Biosystems) using FMOC chemistry and coupled to ICL,H
(Sigma-Aldrich, St.
Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-Ki,H complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-TXREG activity by, for example, binding the peptide or TXREG to a substrate, blocking with~.1 %
BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
XIV. Purification of Naturally Occurring TXItEG Using Specific Antibodies Naturally occurnng or recombinant TXREG is substantially purified by immunoaffinity chromatography using antibodies specific for TXREG. An immunoaffinity column is constructed by covalently coupling anti-TXREG antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
Media containing TXREG are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of TXREG (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/TXREG binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and TXREG is collected.
XV. Identification of Molecules Which Interact with TX)REG

TXREG, or biologically active fragments thereof, are labeled with'ZSI Bolton-Hunter reagent.
(See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled TXREG, washed, and any wells with_labeled TXREG complex are assayed. Data obtained using different concentrations of TXREG are used to calculate values for the number, affinity, and association of TXREG with the candidate molecules.
Alternatively, molecules interacting with TXREG are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989, Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
TXREG may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K.
et al. (2000) U.S.
Patent No. 6,057,101 ).
I5. Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

M O t!1 .-. r1 r1 r1 w-I r1 00 Lf1 N

O l0 r1 O 10 M l0 O r1 w-i O ~D rl O ~O
r1 O O O O r1 N

HwNx Fez o~.,E Hx xH HwH x~x wN

lO '~7 ~D ,'> E-Wf1 O 01 I~ H ~ N O 01 l0 O II1 ~C 5C N H 01 O
L~ O

wN~,zM wHN ~~o~ ~z,~ ~,~ xHMr~ ~z~ Mz ~

l17 H 01 Ul x [-i E-i d~ ~ p4' M U O
M U1 O O (Y, H W Lfl N U' 01 O Ff,' r1 N f3,'r1 fx V~ H 00 -i 01 a 01 U' v-i 00 r1 01 C4 W L~ r1 H W IW a 01 M E-~ Lf1 00 z ~O l0 O H t~ Ra' 01 00 H 00 r1 W ~ 01 L~
W H N ~

ri W N O ,"~ v-I O f~ ~ r1 a d~ (~ ~D
,'7 00 tf1 W ~ 00 .$'..,N C') r-1 a W Cr-i N '-' r1 '-' ~-1 01 r1 V~ '-' H '. '-I
N '-' M '-' ,~', '-' '-' M ~ ~, '-' d~ N v ~, ~D 01 ~D '-' 01 r-I w-I u-1 01 . 01 . p-I ~ ~O v-I
W O . r-I c-i ~D ,-- v0 ~ N . w-I

x-.w-- x-.x .o--x x-. -.x w--x -,w-. --x V~ l0 ~ O ~ CL . N L~ ~ r1 N 01 I~
I~ L~ r1 rl r1 l~ tf1 I~ O
~ 00 01 ~- Lf1 -~ lO -w-i -~ O ~- O1 O (~ O
N Lf1 O r-1 O I~ 00 N O r1 N M
r1 O ~

I
c-1 00 V~ M N L~ r1 E-~ N 00 E-~ E'~
E-Wf1 E-~ E-~ 00 f~ E-~ 01 ~
E-~ ~D rl E-i d~ E-~

O d~ O O 01 O N O C~ O O LC1 O O ',~
41 ',7 M 00 W to H ~ O L~ O M

E'~ r1 H f~ H ~ H t!1 z N LI1 z O H
z 01 w 01 Cia W M z N z N N

O r1 Ul O ~ ',7 ,.'7 E-WDO L~ W 01 H
Lf1 ~ H O t!1 O Ca E-~ M
~', [J f~
~D

'~, N z N H N H N Ul r1 O fx N M
O N O M tf1 O V~ .(Y., d~ d~ UJ

r~ rx c~ ~ z ~ z ~ rx ~ z o rx x N

~w .w ~ a m a -v m ~ .a U -oo ca N . . , .

a -- ~ o - H -- x --v = v v v v w~ aNW U-. xM ,~ NM ~ N ,~ Nw ~ , ~
,~

O ~D O ~ N V M ~ O r1 v O c-I c-1 r1 O ~O r1 r1 O ~D O r1 O
O O N O d~

NwFxH NwH oxH Hx xN HwN wHxH xN~

l0 lIl r1 'J ~O H v-i I~ v-i N O w-I
Lf1 '7 Lf1 ~ O O O O O Q1 W
N ,~', '~7 01 '7 ,~C O

rxa~H~N xNN~ x~~oz x~N ~~ ac~Z~H oozMN Mw,~
I~ U ~ ~O H v0 En d~ d~ r1 d~ M W ~-I
Ri f O H M a 00 H c-i pC., U CO O

O ~i 01 r1 c-~ 01 E-~ M E-~ L~ Ll1 01 LY, M
,W -i ,~1, O C.7 L(1 E-~ '~-~ Q1 'J
(~ LC1 H

II1 U OO 00 01 Ul t~ 01 01 x I~ O O
~ H N H 00 H H N l~ H
H Q', 00 W

~x,~aoox Mr~~r,cn~xom owo, Nw o,N,~oo~rU~m r,am N '-' 10 ~- H W 01 r1 I~ v r1 v v-i N '-' M '-' r1 v '-' M '-' M '-' ~
c '-' ~ N (l) l~ ~O ~--~01 OD

r-I - ~p . . ~D 1p . l0 ~ . 1p .
10 . ,--~ . l0 r-I . e-~ l0 c-I .

.x~.~.,--x-w--x -N._w .x_. ~E-,.~,~.x ~w._x 01 l0 ~ L~ ~ [Y., ~. L~ ~ d~ I~ l0 L~
M e-I 1D N OO 01 Lf1 00 l0 111 M N N N l0 M

v-I L~ c-~ N d~ N N O N 01 O l0 O
N I~ M w1 O M O L~ O r1 r1 d~
O 01 v-I Lf7 O

001[~L~[-~O001[~M 000[~L~00[~ [~N 00[~~O [~O[~rlEiLl1[-~

P0 ~ O E-~ W ,-i E-~ O En ,-i O M p ~o ~ M O ~ ~ ~ ~ ~ O O d~ ~
~ ~ ~ O

or-z~NM ~~z~ a~~M ~~~ z~ o~Ho z~z~ H~z z o, mr, H ~n C4 ~ c~ N z ~ a ~ H
~ t~ N ,~ U oo U a~ C-1 E ~ o N H

O r-i Ul N -i 01 ~ ~-i U1 CW -W f-i N
O N ~ U1 N r1 Q', ClW
Lf1 W V~ f1 a~ x a O x w m x O a x E-~ ~ Ix ~ x ~ H ~ PO z ~ G4 ~ P0 fY1 LL W ~ lTj CO ~
~ ~ ~ ~ W

w._ ~,~ w~ a~.
.-. ~- v v v V V v v x~. v V

G~ U7 ~ ~ ~ r1 V~ r1 r1 O
w-1 l0 ~ O ~D ri lD O ~O N r1 c~ r1 O r1 O O 1D O O r1 O r1 O O O [~ r1 N

--~ +~ ,~~w~xN ,~Hx~ ~HwH ~NwN w~ ~HwH wHwN wax G x~~o~z wx~M c~~.~N rx~~H ~o Ho~z No~o ~

v N [-~ ul H tI1 V~ d~ N ~O N z M
M z ~ d~ H u1 E z H H z N w r~ L~ ~ i r P
~ Cl ~ (~ ~ ~

W O U~ r1 ~ M O z d d 01 r1 ~ O H l N E-~ M E-~ 00 U I .m-i Ul ~n r o 0 o l Ca ~ 7 E-~ 00 r o M av cn .o u, ~ o rx M
o E-~ q oo ~ z o oo y~ io r~

~a ~~~ox~x ~o~~ ~rx~z ~HMa ~,~ ~xoa Mo~H ox~

~I 01 W r1 r1 U Lf1 ~ "~, N M [~ M U IIl C4 M O N W Cr N LL OO O Cl) W
W x (~ E-~ L~

fia O v N (~ v r1 v r-i v-i I1 v ~-i r1 '~ d~ M v .-i v m N 'r v M ~
v ~ N ~ d~
'-' r1 d~ M M f~ M N C~

O O O O O O O O

~t P4 E-~ E~ E-~ E-~ E~ E~ H

cd O O ~ ~ O O O p ~

O C7 E-~ H H L1 H

~ ~ w a ~ x ~ x o o~

x a r~ ~ cn H U m II1 L~ d~ N r1 N d~ 01 00 M

'.., to ~ O M r1 q Lfl 00 v-i 0 ~ L~ ri 01 M
H

H 01 l0 l0 ~ 01 d~ C~ O

U O f~ 01 N N d~ V~ t!1 r1 H H w1 w-1 ~O

-~
z o M d~ u, ~ t~ 00 0, o N M M M M M M M
H

r1 U
d ~W

z~

~o -,~
z J-1 H N M d~ Lf1 l0 h 00 ~

O

~a r1 ill L! W -1 M II1 v-i O O c-I rW -i O r1 l0 r1 L~ O O

Nw ~H Exz ~Nx Hx w xH

IoM xz ~xNo xx~ ~~M ~, o,o Cu z ~ x E~ o E-i C=., 0 0 N o~ ~ di E-~
o~

C~ H N M Ul N [7 00 N u-i r1 W M ~ l0 [~
O

di L~ c-i l~ C~ 00 00 r1 vD
z c-i ~ O ,'7-i H

O1 <-i lD N E~ ~ ~ 00 N x O 00 W O N ~D
r1 O (IW M lO ~ w-i c-I N M [~
c1 (~ r1 W a ill a di O ~ I~ OD 'r O ~ O ~ M N '-' N '-' di 'r M ~ v-1 M r1 01 N

r-I c-I W w-i ~D . H lD . . 10 x -- - x -- ~ w x -- --x x -- w ~

. M ~. N O r1 .-. . N 111 N ~
M O di l0 M

-- O Lf1O ~. \D r1 O ~ 01 O O 01 O ~ O r1 N O N

M 00 O [~ L!1c~ M O Vi M L~ En E-i En ~ [~ l0 [~ E-i Vi O
I

o di E-~O o 0 0~ H t~ o eo O O ~
W ~ M oo O O ~

E-i O ~ E-iE-m~ O di H ~ z z o o~ t~ f=. z z U
C3, a~

O ~ z O p eo z ~ p ov E-i U a~
H o E-i C~ U~ U
o c-I A ,.~ E-i N r1 N [~ U1 r.~
z M w ~ZM LC1 a~ ~ ri x N
H ~ ~ ~. z UW
H o I
a w .m a a a z -N x -a cn cn w .
- . .~ .o x o o ~ ., ~, ~ x v ~. ., v ~ --M U N~ M --~, co~
aN M

~- o ~ ~ -- o 0 ~o ~- H ,-i .o .0 0 o ,~ o o ,--, ~o ~n Fwz ~H x NN~ ~~NH Hx x x~po r1 O G4 N v-1.-i O G4 ~ H O N p O
01 O Lfl H ~ ~1 ~0 O O FC

!Ii N r1 N N z ~ E~ (~ M Lf1 z di z x ~ H z r1 N U

~ o~ M d~~ ~r W o u~ o H o 0 0.. E-i ,~ o o~ M U
t' Cr., f~

~xpH ~.z~ ~ ~~~z MxM~ ~o~ N

~or-IC~MH L~ 01MxMO ~~~la M(Y.,u-io di,7U

di U L~ 00 LflO E-i ~ FC r1 M Vi N W U7 Lf1 M CO W O
U OD

00 '-' ~D e-iL~OO '-' CO '-' O ~- N r1 N '-' '-' M '-' M '-' M '-' ri 41 r1 I~01 <-i 01 r1 l0 r1 H r1 (~ , ,~
H r1 O

.w--x _~, -x--x-- -x-.x -w-- -,x--,~

.-. ~ N ~ O r1 ~ 01 ~ l0 N N di O 01 L(1 M M 00 M M
a1 M di ri Lf1 ~-IO Lf1r-1 M .--1 u-I O O N
r1 .-I O di N N Lf7 N
N O N O lfl O di O (~ O O r1 O L(1 O 01 (~ E-i E-i f~ (~ M (~ (~ H
M [-~ LCl [~
O

E~ ~ E'~O E-iE-i ui E'~ E-i O O of O ~ L~ O ~ ~ O N O
W ~1 O r.C

O t~ O O ~ ui O a~ O ~ ~ z M
z M O z t~ z O z z ~ ~ ~ U ~ ~ U1 O H U1 ' ' ' - i - ' H r1 ~-iJ a 7 N U ~ N i ~a Vi O ~ x w ~ Q , ~ c , wx , a~a E N
o~w cnw a 0 w .w w a o x .~n~x r~ .a x .N a w~m . . -U U ~
.r -- .~ .r ~ .~ .~
pq -- -. H .-. Gq -- W .-. ., .-.
.-.

U v r ~ M v M N N N
di N v ~i H v O

~/ UI O ~O N l0 O H O O l0 O u-i l0 l0 O r1 O O O O
.--1 e-I

.~Hw~ ,HHw ,~~,HxHx .~Hwz .oNxH rx~ wHx~

!"~ Ci fx O Rr'N Q',w U7 f~i (1: c-i ~O
M ',> O ~D '~7 O c-i 'J W O
l0 ',> 00 dW
H -i v ~z~H p H ~ ~,~~~,~ Mz~H ~~,~a Mw ~,z~,~

U ~ O E-i ~ M ~f1r1 C~ d1 E-i I~ ~ r1 O ~ C~ o ~ H 01 H ~ f3i . L~ C~ CO Lf1 ~ ~n ~ O

,..,_, ~ ~a ~ ~ o ~z~ ~ ~ M ~,o Id n~, Lf7L~ tf1Lf1 ~ Mo l!1 M Vi l0 H O M H l W ~ E-i 7 N
01 Q' Ll1 01 l H U

~ ., c r r u , a - w ~r~~ MU ~ ~ Ha.~ ~NM ~vapa N ~opU
n, n ~

CL L!1 01 r1 L~L~ '-' O '-' di r1 r1 '-' '-' M v M v v v v u-I LC) N di ~' "

di N N ~ H M M t!1 N

r1 N O O O O O O O

S-i E-i E-iH E-iE-i E-i E-i H E-i c~ O O O O u~ O O O O

z z z ~ z z z ~ ~

~

o w x ~ w w ~n U a w a H H w o M 01 N r-IM O 00 N O1 N O N ~-iO L~ N r1 M O

~ oo ,~ M M o0 00 00 0 q O di lD di O11D O M N ~O
H

r1 O1 M t~ 1D00 r1 r1 O N

U in t~ oo ~ o~ o o M M

u-I c-iH r1w-I N N N N

j ..

~U
O

-~
z O r1 N M diLf1 l0 L~ 00 01 Ca N d~ di di Vidi di di Vi di H

r~

~a ~w z~

~o .,~
z ~ o ~ N M di ui ~ t~
f~

H ~ H r1 H r1 r1 H H ri O

W
~

_ . ,~

~ ~ x~ ~

O M t!1 M c-I O M N
r1 l0 N ~O O Cy r-iOO O ~O O
O r1 O O

f=. E-~ o Ei ~ x o, Ea E-~ E-~ f~
f~ E-~ E-~
x E-~

~o~o~o N ~o ~x ~, oo ~ ~o ~z~zoz ~ w ~c~ ~ ~z o xz M [7 dl L(1O ~ cr l0 ~D C] ~ r1 O ~ H CI) U

00 dl ~, O N ,~W ~ N ~ ~ 41 N ~
00 z z N O z L~

O N W N 00 Lf1 DO ~ z M dl ~
H x O W 00 L~ a (~ I~ r1 L~ O N r1 01 00 . N
x VI U1 [-~ ~ ~ a W ~O

r1 '-' N M 00 01 M O O N 01 ri O
'-' M v '-' ~ ~ ~ v M

N dl 01 [-i O
[-i N

. r-i . r1 v-I ~ ',~ M c0 ,'7 to . e-1 ~O ri N r1 ~o c-i .-.x.-.w~x~. w~ x N~Hx H~ r., ~~

dl r1 M . 00 . N EW-i N - I~ 13;
r1 v-i r1 r1 ',7 N M
00 .-1 M M

r1 t11 N ri ~ M ~ O U] W O .-. r1 L~
dl O N O ~f1 E-WO 01 O
O r1 E-I I~ E-~ O N 01 r1 E-IW x E-I M O ,'~
~ E-I Lf1 E-I LCl U L~ M z E-I E~

O ~r O of E-~O m ~ W E-~ W O ~C O
O ~ ~ O o~ E-~ o~ O
~ ~ O

~,a o H~,z H~ u.,~ w N~,z a _.z z~,z~z v ~ z o~u ono x as z ~ a uMc~o .ou x~

N M H M N z N M F(',.-I ,?W ~ Ul l0 Ul z ~ ~1, -1 M
~ '-' R,' M

a o x a a o Z w x~ x~ H wH
~

a ~n o -a a x ~-o~ E,~ m . ox .a - . .o .u -z _ _ _ _ H~ z-- o~ ~ uw~ --~,~~ ,~ ~--_ v v v v v o ~- a M U ,~ o~ ~r f~
,~ dl m o M M
,~

v-I N l0 O '-' '~ \O L(1 ~-I v ~ M
O r1 O O r1 O ~D LC1 O r1 r1 r-i 00 r1 O
O

HHwNxNx ~z Hx H w~ ~No~N xo Hx ~ ~x~

~oooNo~ xo .~xo .ox ~o Moo ~~c ~o~o ~ ~o~o dl QO H L~ Ll,'M N OO O Q', O N
-i .mfr E'~ ~ Ill N d~ Lfl N ~

~ ~I100 ~ O M l0 ~D ~ O r1 y H H ~., (~J VI
N u' f~ O 01 O H 00 01 O dl 01 CO . ~O 01 VI ~ ~
U1 00 a O N '-I U1 Q', 00 M

-i o~ W ao N O N N ~ o~ M oo U ~
N W vo W O R; a W ~r ao W

~r,a~xNx~ ~N ~r~l.r,,-,uow MM .N o. ~,ul.r,a M~rx .

ri 'r N M CI 01 M O N N LC7 ClW f-1 ~ M '-' '-''-' '-' v ~ v r1 v I M
L(1 M dl "

N LC7 01 F dl ,7 01 ,' N

. 1D _ ,-~ r1 H ~ H ~ W ~ . 10 _ '~
. ~O ~ l0 O 1D Lf1 , M .
r1 ~ C7., .-. . _ x _ ~ C~, ~ . ~ H
x ~ ~, x .-. x ~.,~ E-I t~ E1 ~o ~
.-. fs. ~ x dl r1 t11 .-..~ ~ r1 (7 H N .~ r1 z I~ M 01 N L~ r1 r1 ',~ Lf1 rl UI v-1 r1 N L~ M 01 rI LC1 v-W M .-I H O O H O M O La -I O rI O N 01 l0 N N N N O
O O O H

E-~ t~ E-~ o o o, o E-~~ H E-I o E-I H
oo E~ u, t~ E-I M ~ c~ o dl o E-m E-I N z o~xMo~H Hll,mox H~ oM aNS,~ o~ N~o z~ xo~

z~,N~z~A o~ ~,~~ zM z~ ~-OHM zN ~~,z Hu --z~

uMzoo~oo: zN ,-~ w~ Nln,~aoo boo oz hu u~o N a M FI,' En O N E-I .mfrQ.I ,'~IO r~'I~
M ~, Lf1~ N M CI U1 M ~ z ~ N a M

o w ~ cn z ~ x o ~ x a z a ~
o w a w ~ ,o w ao oHH H~ ~ N ow ~u~x -o . . . . -a . ~

_ <n z .-.r, .-- u~ ~- _ v ~ ~ a .-. v ~ r, v v v v --v V

(, l0 '-''-' '-' ~-iLf1 N v ,' r1 O r1 N M N M
d~

~/ U1 c--i ri O O v-i O r-I~D ~O N O ri l0 r1 r1 v0 O v-W O r1 01 ~O
O ri -i O

.u wHx~NHx o~ ,~Nx ~H xH ~wxH ~H .oHx x~ HwN

~ O o p fx fx H N vo dl >C CY o ,~
,~ O t~ O O ~ O ~ D W O t~ o r ~o O

v ~z,~H~z~ Mz ~z~ ~H N ~,~.~~I~w ~,~o ~,~ M,H
N cn ao o wr ,--iIn o~ M vo o~ ~ mn C7 ~r z E w E-~ vo ~ ~ o M t~ C7 0 0 o av dl oo dl ~ oo ~o o n ~ ,~
H ao a tx u~ In 5-m fx u a~
~ ~ ~ o ~a a~xov .o goo, Nx Mw ~a,,~ Mx aowN a, ~~w ,-,xM u, a ~I ~n w .o t~ t~ dl ~o oo M In o~ N ~
a o m oo H a w x In E-I a a ~
In a N x G4 rl'-'N~'Mv~N~'O'-'N My N'-'v-iNN'-'dl~'lO'-'MMCO NN

O r1 N 111 r1 N N M c-I ri N O O r1 O r-1 O O O O

~I E-~ E-IE-I E-I E-IE-I H E-I E~ E-I

ro 0 o x x o x w o z o I z z ~ N z ~ ~, z H

~

0 0 ~ ~ w a a H o a r~ a N a N x r1 00 I~ r1 N O I~ r1 O 01 v I-fl lf1dl 01 N ~ O N Lll e-I

W I~ O I~ M u'101 v0 dl l0 I

O ~ 00 Lf1 dl L~ O 01 00 l0 L

r1 tf1 L~ 01 M M ~f1 M 01 01 00 H

a M M Lf1 l0 ~D lO 01 O N l0 N N N N N N N M M M

O
..

~O

-~
z "

O O .-IN M d~ I11 ~D L~ 00 01 W

v to In Lf1 tf1 Lf1Lf1 LC1 LC1 t11 LI1 H

va ~w z ~n ~o .,~
z Ca 00 Q1 O c-i N M dl Lf1 l0 (~

O H r1 N N N N N N N N
H

_ _ lfl r1 I~ N O

ri O O l0 O [~ lD
N

xH .our Hw H ow goo Ho ~~ .o~ z~

~z ~z N~~ H~ ~H~

N 00 fx H ~(1 (y U1 E-~ U l0 [~ .--I

t~ W ~ o m mr fx u n u~ ~
U ,--Lf1 I~ 0 ~O Ol .--I
Ix -~'.y p.,' IY7 C~ M

~f1 r1 .-I O 00 v W UI W M P7 I~
M

M r1 f~ ~' I~ LC7 '-' v M '-' N
v-1 N 01 a0 r1 ~-I
N

r1 r1 01 r1 N N Cri ~ r1 O

-- . w -- x o .-.
x x o L~ ~ . N ~ ~ N
00 M M d~ r1 ~

O M ~ O ~. ~- ~c,' CL

[-W O M d~ M r1 00 I Lf1 E-~ O [-t W

O [~ O l0 O O O
~ M O 1D O

o~~ ~~ o;a .

~M ~M z~rx ~~~ zoo O W W u1 U ~
C~ fx O fx Ix ~ O r.~
- - U - U
~-i a w W ., W a v ~ .-.
ao N '-' ~ M P, W
d~ 00 ~D

~O N v O ~ v r1 O r1 O I~
M

C7.~,~ E-~ E-~ o ,~
E-~ E-~ x o ~o x~ goo. ,~o~ ~Nx ~z ~~ ~z wzw x~M
~

O r1 ~ V~ 01 O
W H d~ ~f1 ~1 (Y1 L(1 r1 01 ',~ <-i l0 N
Ca to F(,' O
Vl o a o x o~ ~ E-~
z o~ a 00 o, oo M E-~ ,~ M z w W o w t~
.

,- ~, -- a, ~ x M --,~

o, ~ 0 --r-, ~ _ . ~

., ~ _ ~, _ _ vo x x ~ E-, .-.
.-. o 00 M -~ N .-. ~ (Y, ~O II7 OD L~ .-1 c-i 1D

O O N ~ N r-I
M t11 O ~ ~-I
O r1 O

E-moH 0 0o 0 o d~
~ E-~ 00 E-~
E-~ 0 ,'~ 01 E-~ E-~ f.T~
I~ k, M O 01 01 FC O

H~, ~H o~.z zow o~z H~o oM zMz Nm z~na ~ -I ~ ~
~ Ul M , E-W M U N
., z o ~ (~
M ~ x a 0 m ~n H ~U ' a .U
- .H -_ _ c~~ ~~.r,w~
v v ~
v v r1 N ~O ~- v .-I
'-' O ~
r1 CL

~/ U7 l0 r1 O ~O c1 O c-i M O w1 M O
v-i wE r-,~x~NxH ,-aHo,~N,-aH

a ~o ~c~o xx~o~ xo~ wo~c~

v ~z N~o ~,H,~H ~,z~ ~, M~

~,c~NH,~ ~zN~n ~xo ~~ox b1 I~ M O Ca OO ~ O
U1 M O ',~ O FC, 01 Q,' (O 01 O L~ H N M E'~
Qi d~ x OD
~ C~ C4 ' S-1 M O '~., O~ lD Ul C~ G4 a (YJ OO E-~ (~
ri M W Pa O
~-' L~ M ,. lf1 O ~
'-' N W ~- l0 V~ -i CI) ~--'-' LI7 r1 M N r1 N O O O O

~ E~ E-~ H E-~ E-~

c0 O SC ~C ~ O

.~ N ~ ~ N

-~ ~n ~ u1 ~

a x a rx 0o H o0 0o a~

v 00 O u-i 01 M

~', ri r1 N O r1 p 01 d~ lD LC7 r-I L~ ~ M LCl 1D
H

CJ I~ M 00 r1 l0 M V~ d~ Lf1 (!l v uo -~
z O O r1 N M d~
Ca N 1D ~O ~D ~O l0 H

H

U
O~

~W

z~

~o -,~
z (~ 00 01 O r1 N

O N N M M M
H

~a x x ~n cn x x a z a ro '~ ~a a '~ ~a ~ 'G
~n a U N N f~ U1 N w W N v O
W

-rl U' W W C7 W I U U' U! I Ca Ul J-1 1 Ul I a 1 U7 CJ~ Cl1 I Ul I (!?
'~ I Ul I
(a ?, O E-~ C7-~ E-~ C7-~ E-~ C~. E~
,~ fx H Cu W G4 Ri E-~
W

r-I Cl1 H W U~ H H -~,-' (l) H U1 ~ (~ Cia W ~-~, H

~ l~ rC E-~ ~' ~C H E-~ H FC E-~ ~ E-~
l~ O ~ H rC

a~ ~a aozrx ao a oa ao aoa ~za mzxw mzxcn zco w~ oozm v _ _ U ~ t71 L~ Ql >~ -~ >~ m ~ a1 m ~

-ri N U7 -ri O r-I
>~ -r-I

N ~.-i -r-IW N w -ri S-1 U7 O U7 -r-I 1-I JJ N -r-I
-ri ~ m C7 ~I p, U CL -rl p, b1 ~ ~ C1 o a~ z s~ o ra >~ ~a r~ -~ s~
N v I-n b7 U H ''C3 ~ -ri C~ S-I -r1 N ~,' (~'., ~
U7 S-~I U7 01 L~ d~

Ix ~-I -r1 N -rl N U -.-1W -rl (a N O~ QJ r1 Lh r-I N ~ -'-i N O f-~I N O
N d~ W U7 N o0 U I~

O ~ r1 b1 t0 ~ ~ ~ ~ M U ~
mo ao ~
M

CT >~ 1-a to f~ O ~C ~ s~
rl O ~n O I~ O
O
t~

O N -r1 ~Q,' H ~I z ~-I -r1 .~. M .~C,' S-1 ~-I
111 Ul r1 ~.T.
u-1 x U1 4-I ~ 1-1 N ~ C7 1~ N ~, b1 'r CL 'J ~
b1 C51 C71 N

x N ~I ~ -r1 N U N -rl rtS

~ O O
~

'd ~ ~-I C7 ~ ~ ~ ~
~

~ H N ~ ' ~ ~' ' O Ul C71 H C71 N yS
cO H s~ x ~ ~ '-~ ~ N
S.~ a " w N

. I .. x .. x I I
~ ~ ~v w ~
~ ~ ~

ui a I ~ I ~.
~M ~ oo I
~ L~
~ M

~O N Ul -r1 -rl , ~ W I1 4-1 C~ -r~ ~ .,1 -rl ~ -M N

~ -r1 U U fa U rd ~ y-7 a ca 1~, ~ ' r w U
' a ~tr~ ra ~ ~ ~u ~ o~
~ ~x ~ ~

N -,~ ~ o .~I -~I v a~ M o o o o mcn~A H~d NUB N~ a 3 a. x m r1 (a M
N

b r1 L~ r-i -rl N O
~-rl '~ z ~ o z N U N dwo f~

J-~ d~ ~O N ~ O
'r O

O r-i r1 N r1 Ln V~
-ri wc~~ z z zz z v U1 C~ N O O

r1 U1 N d~

E-~ N E-~

O u-1 N U1 -ri LC1 M v-I l0 JJ U1 N N ~D 00 (a r1 E-~ N r1 H U1 H U1 d~

r1 ~ M ~ N Ol f~ S-I E'~ M L~ l0 Ul -ri 117 r1 H M CO
O

JJ ~i d~ O r1 V7 l0 U1 00 H ~ Cn N U1 U1 O M ao N E-~

J-~ u1 Q1 h M O O
O r1 O .ti M OO d~ ~ r-i t11 Ol M l0 Cn N O1 OD Ill O

-rl o o a1 r1 N
v -~

H ~ ~ ~ H

>~ W

~' H

U ..

u-1 N M d~ t!1 W

~-I
tn W

x x x x s~ a ~ s~ x H

ro ~a ~a rd U z b '~ ~ ' ~

m a ~ ~ ~ a ~
a ~
a U v v w v v o v w cn a~

-ri U' a~ C7 C7 f~ C7 W I

u1 LJ ~ I ~ I I U1 Ul I Cl~ I (l~
(!$ I I (n ?i O H C7-~ p: H C1-~ CI-~ H C~ H f=.
~T H !x a~
c~

r-I U) H W U1 H H U7 H U7 H W
~ (!3 U C11 $~' rtf r-~ H r.C H H FC H ~C H ~
~ ~ u1 H H
rC

v ~a ao ao o aoa~a ao as ~zr~ mix m~ z w~~ncn ao~xoom U U

-r1 ~ C,' U7 v U7 -r1 -r-I
-r-I

r-1 ~ U7 N N

U tr r1 a -- ~ v "

r-I H v O U7 S-I

U7 ~ -ri (a H -r-I ~ ~-1 N r-I
~

Ul ''O C51 f~, -~ CL b1 (a O N ~I >~ ( N (0 (d C57 ~ U) O

b1 U N -~-1 ~ u7 u7 M ~ .-. -ri ~
u7 ~-i v o ~ 00 r1 .~ -rl N M O ~-I 4-1 -ri ~ N r1 Q., ~D

.--I ~ v,HN U o00 ~ v v oc~
v v~

O W -i '~ J-1 -rl ~., ~D t31 U JJ ~,' ri M I~ M

t5' ~ -r1 O r1 O O W ~ ~ O N
r~ N eo u7 O v N U ~I C7 N Wo H -~I -~I ?a N U M >C ~

x ~n U ~a s~ x ~ ~n r~ w N c?, a ~ ~ ~, a ~

U N

x x U ~I N N

U N ''~ U

eo ' '~ n o S-1 ~ ~ y~ m ~ H ~-I
~p ~O

1~ N r--I C~ ~ M
O

N N ~ ~ M r1 r1 ~ ~ a ~~ ~ ~xxxx a ~

U7 - (v M -U ~O I I I d~
~ U7 W

/1 1J ~ 4-1 ~ ~ H ~ ~
(n d' ~ O .o M ~
~ I ~r oo r0 v -~I .,~ ,~ -~
w -~ ~

~ ~ ~ ~ b ~
tr ~ ~ H '~ W N ~ U U
~ ~ U U

r1 N -~ O N -rl -.-1 O
O O O

V u~ cn N b a tn w ~ fa I m N .H r~ ,~ M ~ ~ .o v zzz z z ~ a o , ~ ~ ~ n ~
o ~ n , o o o .
o ~ o n o z zzz z zz (fl al N

N M ~ N V~ ~O

1J 01 O l0 N L~ H ~ O N d~ r1 O N

-ri H 01 O d~ N 00 o-I l0 H U7 00 r1 l0 M I~ Lf1 d~ 01 ~D M
N O

U7 Lf1 N ~ 10 N d~ Lf1 Lf1 d~ M U7 1D ~ M r-I M C>t C~
d~ l0 eo r1 v1 M .-1 ~n ~n 0~ r1 E-~
H v~ ~n u1 u1 v cn ,-I ~
u7 tn S~ L~ U1 U1 H M r1 N

O U] OO M L!1 01 O r1 ri r1 d~ 00 01 a1 00 01 01 OO r1 Lfl N

-rl 00 l0 v-I M ~D c-I Lfl H H ~ U]
O N OO 00 V~ 00 M ~ N
00 N ~

J-1 01 IIW -I LCl N M Lf7 r1 M M
N I-fl Lf1 r1 N d~ N
M ~ d~ ~D

r~ N ,-I cn ,-I ,-I u~ cn co ,-I Lm cn u~ H u~ cn ~n H r1 u~
H u~ tn u~ H

r-i U] V1 U7 (n Ll1 w-I r1 r1 ~y l0 w-I d~ LI1 Lf1 CO IIl H H M U1 01 Lfl l0 l0 II1 O d~ O

N 1-1 r1 ~!'7 ~D N C~ Lfl 01 ~D O
l0 r1 O L~ ~--1 00 O
l0 00 M l~ N

-r1 N M r1 N d~ M N LC1 Lf1 f~ Ol M N
O Lf1 N ~ r-I N ~ d~ O M
lO N

~n ~ H ~ ~ H ~n ~n cn M H H d~
U1 vi cn u~ H ~n ~1 ,-i H
u~ H

C L~ u1 u~ Cn H
U~

r1 ~O ~Il O l~ N N

!J O d~ I-fl I~ d~ M M L~ V~ M f~ Lfl ~D O O O r1 M l0 N V~ ~

O ~i Lf1 01 r1 L~ dW -i to c-i M v-I r1 N Lll N Ll1 r1 N d~ 01 N
d~ d~ Lh r1 w a, tn cn ~n H H H ~1 ~n u~ H H cn H H H ~n H u1 cn H cn cn cn ~n N

1~ ~ M M N (~ O
,~

-rl d~ M r1 f~ t~
U -~

a, ~ Lf1 ~O M M v-i v Qr' '~ H

v o O~ .o t~ ao o, z w~

x v~ cn x ~n x x H ~ x >~

ro a ~ ca rt z U

O , ~ ~n ~ ~~Ufx ~ ~ ~
a U v N C~ W O N f1. N

-rl U' W I W-I CU C7 U! I

1J '~ I CO I I W I CI1 I U1 (a U1 a Cn I

?, O H Cv~ H fA H Cv~ H Ci.~
.Q fx W f~ C~
H CL ~

r-1 U7 H W U7 U7 U7 V1 H
.~ ~,' Cy H H
t0 '~," W
~

N +~ FC H ~ r.~ FC ~ H
~ H O H -rl E-~
H H

v ~s ao~axa a 3o ao~a ao ~~a mzxwwm m~nz cnzxcnooz o ~ tn o, H ~ (Z, C7 -r1 JJ
N N

I U7 -r-I I a fa (a r1 ~ s~ r1 ~ w v -~I
a, r-I U ~ O rC (~

M

U7 M ~ U7 is N -.-i -rl U ~-I
W

~ ~n x U ~ v ~ +~ >C
~ --O N U7 N rti O (~ U7 ?-1 ~O
N

~1 U N ~ M 1-I UI U7 1-I ~., ~
a~ O1 O ~ ~ ~ ~ ~ .H O ~ -~I
N m CL u~

r-I O o0 ~ (d .F., N
N U t~ N O r-I

O ~ +~ U7 L~ ~ O 'a~
m o 1~ ~
o~

.~. u1 ~ d~ Cu O ~-I Cr~
t3' M O N r1 o v -~I ~ z -~I .~ o ~I
~ ~n x ~r ~

xm ,~u~ ~n~~~, UUau~

N

x N ~-1 i U N

v m x vM
~a 'v ~'w ~ a x ..

~ u~ ~ a I w ~ ~ I
~ ' I

~a v o ra ~ -~I -~I

-,~

~ ~ m b ~ ~
b ~i ~ ~
' -U
n~~n x n N~ a N

-rl ~-r-I

"'' w z ~~

v -rl 01 .--I vD
l0 10 U1 U1 u1 M ri d' d~ N u1 H
~

H

O r1 M d~ u1 -rl Ul U~ Lt1 M M C~
Lf1 J-1 V~ OD M ri d~

10 tm o y~ r1 H H
H

.H H N u1 r~ 5y Ul ~-i l0 VW
f1 (a ~1 N N O N 00 M

-ri M l0 r-I N M ~
O ~ N

--i ,-I d~ H H u1 u1 u~

Cl) Ul N

v U1 ~ U1 vO ~ N
L~ H

J.-) N l0 O l0 f~

L~

O .~ r1 M c1 d~ d~ N d~
r-I V' as w H cn H H H H c~
H H

N

O 01 N d~

-rl lD e-I d~ N
V -~

c1 N c-1 L(1 H

N

JJ a c-i N M d~
O

O
z ~

~

x ~ G ~ z U t0 ~ c~ O

~ ~ ~ O

~n ~ ~ ~ ~
rt ~

U v v v W v N N R:
O

-ri C7 C7 I C7 C7 C7 W
u~ Ca m JJ ''~ I ~1 I (n I (n I U7 I Cn f(S Zn I I

7, O H CI, H C=. H C1-~ H f=. H f~
,~ CL H H

r1 ~ U] H U~ H U7 H Cl~ H U7 H
(a ~," (l1 Ul rtf FC H r.~ ~C H FC H rC H
~ ~ H H r-C
FC

v ~a ao aoa ao ao aoaa ~

~a r~~ r~~m r~~ r~z r~zmr~
a m ~

w U ~ U7 ~I ~ ,Q O ~ m U7 O -r1 v v ~ O O ~ H JJ
H ~

N r~ U JJ w -~I ~ H ~ r1 .H
.H v u1 ?-I O ,~ ~ O +~ O -~ ~ ~ ~ U
~-i ~ -~

U7 O JJ L1 -rl ~-I GL-r-I U1 ~-I ~-. U
~-I 1~ f.~ ~-I
U U

O N (fl -r1 O N (2, O w-i 1~ U7 1J -ri Ul U7 Ul (~ (~ O O Ul .-i l0 O

b1 U u7 ~ ~I ~ ~- ~ r1 1J i-1 (~ U N ., M r1 (a H U1 w ~ ~ t~
N .~

O ~ v m , o ~I ~ fs~ U U ri ~ -- ?-I
N b~ d~ ~ rI ~ I

r-I ?-I 1.1 U7 d~ v U7 c~ U7 U U) N L~
N O O N >~ r1 O FC t11 C1, U7 (a l0 b1 I w ~ O ~ H U7 N b1 ~ d~ U~ I ~ O M U7 O
d~

f-~ ~ ~ Wo CL >~ ~ O ra U U t~ Ll >~
~ ~ ~ O ao H ~ ~ o M

(O ~C d~ w -rl f0 U ?-1 x ~I H -rl ~,' r1 H x H ~', ~', r1 N M l0 x cW n ~, U a N w H ~- ~ v ~ ~ U x w ~
~ ~ tr x a b~ a b~ b~

N

x a N

U r~

zi CL d, N i N (n ,W-i b~ Cn N Ul ~ L('1 (' .. x of ~ H ~ r ~
I

>~ tn ~ G ~ N
G M

rd v C7 .,~ .,~
w .,~

. ~ o ~
a ~'~ N ~ ~ o ~ o o o ~

p - ~ u~ - -~n ~n N ~ N ~ x z a U

I N
N .H r~ oo ,H o0 v -~

, ~ min M ~.zz z o 00 ~

o, vo , -~

w z z zzz zz ~~

U7 N N l0 N r1 v o~ e~ ,~ M t' o, ,-, H ~ H ~n W o o~ N ~ H a~ co t~ ~ o omr -ri M 01 I~ N ~-1 ri M tI1 M H

U1 00 r1 N to I~ Ul N 00 d~
Ill N M M d~ r1 V~

N L~ Ul V7 Lc1 U1 U1 c-I H M
O U1 U1 01 U1 ',r H

>~ H H r1 N ,-I N ~ 00 Q l0 O H M C!] OO ~ U] Lf1 Vl O O l0 H 00 M

ri V~ r1 00 U1 111 00 V~ M
l0 d~ Q1 00 O

JJ ~ l0 r1 d~ W O r1 N 41 C~ V~ tf1 N N N' V C~ I~

f~ N U7 CJ) M OD r1 U7 f Cl~ O U1 U7 H

H ,~ eo ,~ u~ u1 W

r-I 00 00 01 H Cl~ U) r1 O 01 5't H 00 M Lh r1 01 N

f~ 1-1 M CO C~ M M I~ tIl fl O LCl M 00 M 0~ N

-rl ~ W -I d~ M M O r1 N L(l N N 00 O r1 N N M M N L~

N ~n u1 H O M ~ umn cn ~n H ~n ~ ~n H cn H H U1 ~ C1 ~n H ~ tn cn H

v Ul M M l~ O Ul OO ~ 00 C~ 00 v-I
CO O M O L~

J-1 O L~ d~ O M N O l0 s-i 01 O Ll1 O ~f1 M L~ M .-I I~ Q1 M

r1 ~ r1 M Lh v-i N .-i to r1 r1 N
I~ N N M N M r1 r1 ~O

0.~ H H E-~ H v~ u~ vo H H tn H H
w ~n tn u~ u~ H H H u1 u~

(n v O 01 d~ 01 00 -~ U o .-I W o N
-~

Lf1 r1 ~f1 00 r1 ~ Ca _ H

v 1.1 f'~ ~p C~ Op p~
y ' o ~ ,-I ,~ ,-I ,-a ,-a z w x x x ~n x cn x y ~ ro y ro b r a z r a a z a ~

~ c ~ ~ ~ ~ ~ ~
d tn U

U N N v f1. N Ct-~ N W v C~, O
fY1 -rl C7 C7 C7 CL C7 ~ I C7 W f~
m tn ~ I W

1J ''O I (l) I U1 I Cn I U) Cs-i I Ul 1 f~ I I U7 CO
a ~, O E-~ E-~ E-~ Ci-nE-~ fs. E-~ CI, f~' .O Cia Cs-i f~ W W ~ E-~
f~' H

r1 ,~ U~ H V7 U) H U7 H I U7 H W U1 (IS H W ,~', ~ U
W Cxn (a 1J FC E-~ ~4' H O FC E-~ C E-~ ~i FC
4J E-~ ~C E-i ~'"-.
-~-". H UW

v ra ao ao~ ~ aozaw aoza ao ax ~~a r~z mix cn~xoow wzxmcn w~xr~

U

.r-I v " .,-I ,-, -r-I

N N C U7 U! N U7 U~

--"" v ~ G

o cn o, ~I v o .H ~I v v m ~ ~I o -~I v -~ I ~, ~ v o -~I
~

m -r1 U CL b~ f.Z ~ C1 U b~ r1 ~, f1, r6 O N fa Z77 ~ (0 ~ rtS -r1 U7 ~ (~ N
O t!1 N

b~ U ~ ~ O u~ -.1 ~ ~ :s ~ -rl ~ cn ,~
N O ~ U7 O ,-I

O t~ O ~I I ao v-r -mn r0 f~ ~ w -.-W
r-r ,-I
a~

~ v ~o v M o v oN ~-~I o v o0 v~ oM

01 t~ I 1~ C7 t~ O '-d U7 U JJ ~ I~
~ ~ ~D 00 M

~ tr cn ~ a o z o o s~ G ~ s~ 0 0 0~
. oo o ~ ~
M

o v ~ -~ U ~I H ~I x -,~ ~ -~I ~I x M
U M x x M ,~
I-r, x~n mw~~ r~s~u~,xa~ua, U,~~~ Na~~

N

x JJ N N N -rl Id 'b ~ U rtS

i ~ O t~ II1 M
~ -i 01 I~

'T~ C~ S-i C~ 1.1 J- v 1 ~

v ' vz a m ..~ v ~,-I~~o,N,-o ~ ~ (1 ~

N !n ~-I ~7 H N -r1 N L
f!j M ' r37 N M M M
M

~,~,~ ~,w ~ ..xxxxxx x~

n ~ .. .,~ ~ N ~ I -~ ~ I I I I
I .. U I I O (1i ..~1-1 -ri 4-I [".,r1 ~ ~-I 4--I y0 01 ~"., ~'., N JJ ~ U~ ~ O '~ C~
U7 ~
f;

(a v ~-I ~ -ri (r5 v (d N
4-1 -r1 N ~ -r-I
-r-I M ~ N N M M M C~
i Ci -r1 '1 U U (O Ci ~ r ((S f~ x x ~i U (a ~ ~ ~ UUUUUU
z ~

~ x ~ >~x ~ a ~ ~
r~ a~ ~ a ~

-rl O -r1 M -r1 -ri -ri O
v O ~ O -ri O

O ~nv~za ro NUro cn a u~ N~ x U

N

,~ r~ ~r, N o, v ~

~t-rl N r1 O d z r-I ~ z M
~Izz O

J~ ,7t r1 00 l0 d~
O N

O r1 N ~Il N ~ N N
-r1 r1 N

wu~ z zzz z zz z U7 M c)' ~O

N Lll .-I M r1 .iJ Ul 00 00 u1 ~O r1 ri OO U7 M
W 1 V~ M 00 -ri OO ~f1 d~ ~ d~ l~ H V~ H O
M N d~

Cl) 10 N M N d~ U] d~ N M M
N Lf1 Lf1 M U1 E-~ E-~ N O Ul U1 e0 ~f1 Ul ~ U7 U7 L:, [~ CI~ O r-1 LCW -i O t~ t~ r1 ,--I t~ ,--I H H ~n ,~ ~ ,-I
~r -m n oo ,-I o ~o cn cn M t~
~ d~ u~ t~
d~

1J N N M ~D N O ~ c-1 ~ d~ CO N
N Lf1 N U7 E'~ V1 E~ N L~ ri U1 N 01 U7 E-~ M U7 U7 E-~

r-i Cf~ U1 ~ 01 [~ U1 r1 ~ a1 L!1 01 M U7 U7 O f~ Q1 t!1 lD u-i O

(a ,L1 O r1 l0 01 N ~ ~ O M Lf1 LC1 M l0 N to -r1 N r1 N r1 r1 r1 ~O 41 M r1 N N r1 O N d~ d~
tI7 1-~ E-~ E-~ E-~ r1 CO CO U7 E-~ r1 C/~
,~ Ul M Cl~ Ul E-~ Ul >~ ~ H ~ H

N U7 01 O .-I 00 O 01 N O d~ d~
L~ OD d~

J-1 L~ O O d~ .-1 O N L~ d~ 01 01 01 O
O l0 d~ r1 N

rl r1 r1 u-i 00 LIl (~ r1 00 wi d~
r1 N N d~ M

W W CO E-~ Ul Cn Cl~ U7 E-~ U7 E-~ U7 H
U7 E-~ (!~ U7 E-V (n v r1 N d~ M r1 -rl O O ~I7 I1 D
U -~

M d~ N i!1 d~

R,' H

v J-1 O r1 N M V~
O

O a N N N N N
z ~

LL

x x x mm x x >~ ~ x H >~ a ~a m ~a U z ra ra ' ~

~
a U v v v w v r~.mw v w v o -ri C7 C7 W C7 ~ I C7 W C7 u~ I Ca ~n 1J~~~ IU7 IU~I I~tUlU1 IU11 IU71 ?i O H C~ E-~ C~ fx E1 fs. E~ f1. E~
,~ fx W CL Cu f~ E~

r-I U1 H U1 H W U7 H W U7 H CI) ~ l0 ~", '~,-'W H

(0 1~ rC E-~ FC E-~ ~7 ~C E-~ rC H FC
J~ ~' H ~ E-~
H Ul FC

v ra ao ao~ aozaaw aoz aoa ~za ooz wzx cnzxr~m~nmzx wzcn v o a ~n ~ m ~a >~ a m O H s~ ~ ~ rl O U O UW
f~ o -r-I H ~-I , N N -r1 -r-I S-1 v r.~ N G,' N
yo U1 ~ ~ U1 N w -~ S-I 1~ m O O v -r1 -~I W -~ U ~

U7 C1 O f~ b1 N C~ I ~1 PG i~-rl b7 f~, .~ U G~, b1 O N -r-I -rl ~ f0 OO ''(J -r-1-rl 1-1 Ft', C~ (a R: O
(~ l0 01 b1 U Y.I +~ -r-1 ~'., UW r(3 ~I Y-I c~ -rl b1 U7 1 U7 N U ~ .~", M

O s~ U r~ ~I 'I-m.a oo v U Sa U f~ 4-I
O ~ rl S-a -r-I
O ~ N

r1 v m ~ o v o M ,~ m o m -~I v o r1 o 0 0, o ~I r ~o ~

~ O ~ U 1~ ~ r1 x >~ 1~ >~ ~ U 1~
~"~ ~ N U U ~

~ O U S~ O O ~ Sa 10 ra ~I ~ O
~ O M U O oo U -~I O
~ ~

O v ~I ~ ~a -~ ~I x ~I O s~ m s~ v -~I
O x ~ x N ro z s~
~ x ~

x U7 E-~ N N ~'-' b) Cin 1J E-~ 1~ N GL
4-I ,f., W ~ X31 W '-' '-' '-' b1 r-I b1 N

x -~I .. ,~

N (a N -ri U ~ 'd r0 O 00 ~ d~ N r~ ~ '~ O
L~ tf1 I~ 01 N Lf1 .. M C~
00 M ~O

r1 u-I N N N r~ ~ ~-I r~ v M M ~ M

~ ..xxxxxxx ~ ~,~I ~" c~
~,,~
' ~ I I I I I ~ ~ Q ~ ~ " ~ I~
I I , M I
~ ' ~

1J ~ W tI1 ~ ~ 1 ~'., W y.a ~ O CO v0 H U -rl I
d OD ~

vD
l I
~ O
~

r ~ U -~
-~ I ~

M
V

~'., U (O '~ 'H N x ~ ~-I x O (O W '~
-ri N N M M y-1 N
(~ UUUUUUU x z ~ ~ ~, ~, ~, p -~, -~ o o -~I o m o v o -~, o U7 CIW, N ''i'~ W U7 V1 Ci.ya ,Y, Ca ''t7 N

-rl N d~

11 U7 M r1 Ul 1J ,7y N O 01 M
O

z z z z (n Lf1 00 d~

v r1 U7 M

l~ d~ Ct' Ei ~

-r-i d~ l0 r1 L~ I~ N

C/~ U7 ~ M M 01 CO r1 OO

N U7 r1 v-I M U]
M

1~ r1 Ul H E-~ r1 N

O dW f1 U7 t~
[~

-ri U1 M V~ U~ 00 00 t~ lf1 1-1 N N r1 r1 d~ 00 M E-~
d~

(O 00 w-1 r1 U1 r1 r1 N Ul O

r1 M W E-~ E-~ E-~ H v-I 00 r1 ~t U1 01 U7 M
H

(O S-1 r1 M N r-I Lfl l0 Ul -r1 M O ~O M [~ ~D 1D M
O C~

M ,~ H W vW on m o~

N U7 M d~ tf1 tf1 M d~ U7 d~

J-1 ~ d~ L~ O r1 N 00 LC1 c-I
O r1 O ~i rl I~ N M r1 N N r1 M LC7 W P~ H uW n tn E-i u~ v~ E-m1 E-~
u~

N

a~ M o ~o --rl Ill I~ M Q~ N
V -~

r1 M M M .-I

H

v 1.1 l(1 ~D [~ 00 Q1 a ~

O W N N N N N
z LL

x cn x x z U N N W ~ f1-~ N f~

~ a' L~
p~ C7 aJ '~ vW ~ ~
r0 ~r O E-~ CLn E-~ Ci.iE-~ Cs. R'.
.S7 P, R:

r-i U1 H U7 H U) H W
~'., ~,' W U
ca (a 1J ,Q,' FC Ei ~(', E-~
1-1 E-~ Cl~
H

a ~ ~ '~
~ ' a ~

~~ ~ xc o n o~x o o a~

_ _ a s~

~ M U7 , -rl u7 O ~ C ~ U N

-~-I r0 ~-I ~ ~ N
U N

U7 J~ H V~ ttS x -r1 O -ri -r-I U

U1 , H CA x ,~ v N ~-1 CZ
-r1 O N -r1 H N 1.1 Or ~
10 ~O

b1 U ?-I U7 O O 'r r1 '~ U7 ~O
r1 O

O ~ U S.I >~ ~ ' N S-a o~
M m'~

r-i W O O O f0 OD 1-1 N O ~Il N u-I O N

C~.. 1.1 JJ H c~ t51 ~ ~., M

.~., N

tJ' cd U U1 C d~ r1 ~ ~ O rl O N U7 ~

o v ~I ra -,~ w M m -~I ~o x M
x ~n -~ ~o x ~n H w ~ x ~ x ,~ ~I 4-I ,~ ~ ~
tn ~

N N

x ~~ x U 'O C5~ U

~-I JJ r1 ~ M r1 01 L~ Lf7 M r1 ~ 01 L~ Lf1 M r1 01 I~

N ~ '?,~ ~ d~ L~ Q1 N 111 00 r1 M M l0 01 N lfl t~ O

N ~ ~ d~ ~ r1 r1 v-i N N N M M
M M C~ d~ d~ Lll ~,,~I.,~~ ..xxxxxxxxxxxxxx Cl) a I 1 I I I I I I I I I
I I I I

' ' ~ ~ -~ ~
I O 101L~LI1M
U 101L~tfIM
IOIL~
M
"

11 .~ , r-I r ., UI w .( I r Ci r w ~.
, ~ ~ .,~ 01 ~ I ~ .,~ N Lfl C~ O M 1D 01 w .,~ w I~ r1 d~ L~ O M LCl 00 C; -rl U la ~'-, U (a H r-1 -i N N N N
~I (a ~ '~ -ri M M M d~ ~ ~ C~
~ W M UUUUUUUUUUUUUU
~
l~

~ ~~ ~ ~~
~~ -rl O y~ -rl O
-rl -rl U7 N O O
O

U U7 U~ N ''Cj Ul 'C3 N ''LS
~,' ~
~l 'J
N

r d~ O
d .-I
~
' i M 1D
- z >-~-ri ' ~o ~ ~

~ oo w z zz ~~

U7 N lD

N N d~

1J M 00 Ul M Ul r1 d~ M r1 c)' f~ tf7 ri O~

U7 d~ d' r1 d~ L~
L(1 r1 d~
d~ M

-I E-~ ~ E-~ N
E-~ E-~
E-~ U7 ~

U1 r-I M

O r1 L~ U) d~ (/J
M l0 r1 Q1 -rl I~ M O N l0 r1 l~ Lf1 ~ N d~ 01 Lf1 r1 M
M M

(~ M V7 M H Ul Ol Ul Ul N
r~

r-I U7 r1 N

r-1 N ~ N U) M (n 'r O 00 Lf1 fa ~-I ~ ~D N OD
00 Lf1 M
I~

-ri d~ M r1 M N
O d' M d~ M
d' M E-~ 0~ H ~o v~ E-~ u~ c~
u1 ~ C1~ E-~ ~1 E~

N U7 d~ M l0 d~ 41 l~ r1 M

J-1 N L~ ~-I O r1 01 O d~ M CO W
~O 1 01 r1 l0 M 00 d~
d~ N d~ f-I
C' w w H u~ ~n on E~ ~
E-~ u~ E-~
E-~
u1 C

N

~,' 01 M ~D
~ ,~

-rl H aW I
U -~

>~ W

H

N

JJ a O v-i N
Q

O W M M M
z W

H

w 0 o z z z z z U

W W Pa H H H H H

a w w ~ s~ c~ cz s~

w ~r ui o o ~o o ~r 01 l0 CO 10 M l0 v-I M

U1 (' ~D Lf1 l0 tf1 L~ l0 O O O O O O O O

~
v v v v v v v v O ~ M ~Cl O LC7 d~ O d~ M

-rl ~", Ci Li ~ >=i C"., .S"-, ~'., G'., r1 M ~ O ~O ~O O() O

N O O O M O O O M O O M
M N d~ M M

-,~ .,~ .~ .,1 .,~ .,1 .,~
~7 . . . . .

'~ 1J J-1 1.1 1J JJ 1J O J-1 1J O
O O O O O O O

s~ rtf c~ ~ ~ r0 ~ r~ v H -- ~- -- ~

O ~-1 f-i ~I ~-I ~-I S.d 1-I ~-I

U w N N v >~ N N N ~ N N >~
~ ~ ~ ~ s~

O w w w O w w 4-I w w O
O O O O O O

~1 -rl -ri -r-I -r-I ri -r-I -r-I r-I
-r-I -ri -r-I -r-I r1 -r-I -r-I r-I

r-I r1 I J-1 r1 r1 r1 1.1 r1 r1 l~
l~ 1W 1.1 11 .L1 O O O O b O O O r~ O O rti ~ ~ ~0 r0 ~

f.~ GL CL C~ CL C~ ~ f.~

r0 ~ td ~0 td N ~ c0 U

v to r-I r1 r-I r1 ~-1 r1 r1 r~ ri r-i r-i r1 r-I r1 r~ r-I

~n ,~ r1 r1 4..1~ ~I ~-I r1 ,-I
~I w w w w w w w -rl N N N >~ N v N ~ v N G
<s. ~ ~ ~ ~ ~

Ca U U U H U U U H U U H
'-' H H H H H

O ~I1 01 O N ~-1 N ~Il 00 O r1 N

M r-I r1 N N r1 ~f7 ~O O O O O O O O r1 O

M O l0 v ~D '-' N '~

r-1 N w-I .-1 .-1 ~~. ~~ ~v a~ ~v .v .

~ N d~ ~ O d~ M >v, 01 N O
O O O ~ ~ O O ~

r1 01 01 ~ O r1 L~ ~ " ~O ~-I
v ~ ~ ~ ~ iD ~

N N ~ N N N ~ y-i N N H
~ ~ ~ ~ ~ ~

C~ .-i O O H O ~ ~ H c~ O O ~
O ~ (d (~ O O ~ O H (a (a ~ ~ H H ~ H

U7 '-' '-' W- ~'.,OO d~ y., '-' '-' E-~ ~p ~ O v '-' O ~' y N
~ l0 W y N

U1 d~ -r1 U -r-I M ~D U -rl U CO -.-i -ri t~ l0 U U ~O rl U

N W N N r1 N N M -r1 N UJ r1 r1 J-) l~ N QJ J~ r1 11 11 ,-i ~-1 -ri ri ri N -ri N

~-I ,~ ,5 J-~ 'J ' J-1 'J ,5 O Ul r~ J-t ,5 Ul J-I U1 Ul Ul J-~ ,5 1J

, ri r1 N rl O O N N -rl ri O
O N N O r1 -rl O -rl N N N
N O v N O

5S J-I J.l ri J-1 '-' v -r1 J-1 1y.' li ~-' 11 J-1 J-1 J-t 1.J r1 1-1 J-) '-' '-' ri r1 '-' '-' -ri J-) W O U U O U U U O >~ U U ~
>~ ~ G O O U O O

-r-I ~ ~ (2, U7 U7 CZ-r-I ~ ~ U7 U7 -r-I ~ ri ~ ~ U7 (7, -r-I
.1 U~ tIl G~ ~L ~ UJ f-~

N J~ ''C ''C O '~ ~ ~ O O 'd 'b ~
~ O O ~ 'b '~ ~ ''~ O O O
O ~ O O ~

~ U O O ~ O O O ~ ~-t O O O
O S-I ?-I O O O O 1~ S-I
~-I O O 1 1~ O 1~
i Ul ~-1 ~ (a ~-I ~ ~ (a 1.~ ~-I ~1 ,~
~ ~ 1J 1J ~-I ~-I '~ (a 1Wd 1J ,7 '~ ~ (~ ~-I ~

~n G1 R~ >~ >-1 i~ ~I ~ ~n L1 CZ ~I
~ ~I u~ m ~I CZ ~1 S-a ~ m m ~I ~ ~ G~ ~I

-rl N N N N N N N ~ 4J N N
G4 N cti ra U N N N N c0 ~ N N N N N N

H-- xz~ x~z xx~z zxx zxx x~zx xxz xz~x m U

~ r.~ o0 ~ 01 lD O Lf1 M 01 IIl N

d~ V~ OO Lf1 ~D O OJ M

-r1 N C~ M v-1 1D 01 L(l L(1 W N I I I r1 I I I I
O I
I

-O Lf1 N 1D d~ 01 LCl r1 00 r1 l0 ~

O U O o M .-1 rW D ~ CO
~ d~

~ W N I~ M LI1 l0 OO V1 C~

~z a~
w '~' o .r., ..

oz r-I M C~ Lll 1D L~ 00 Ol O
L

U H M M M M M M M C~

d W

r~
U]

O

/O

N N

w w H ~ z H

U U U P: P4 U U P4 " z z z o o m m o U H H H W W W W W

~'' ~ w w a a w w oa w w w1 [~ M r1 M Ill O O

Lfl O M 01 01 l0 N O

1D Ch M l0 L~ L(1 111 l0 O O O O O O O O

" '~
\

t o~

-rl i~ ~ OD ~ ~ 00 ~ t~ d~ 1~ ~ O
r1 O ~O ~ 00 +~ O O ~ O O N O O M O M O N
r~ M ~ N

-,~ .,1 .,~ .,1.,1 .,1 .,~ . .,~ .,1 y~ . . . . . .

'b 11 1J O JJ J-1 J-1 JJ O 11 11 O
O O O O O O

>~ (a (d -' (~ (0 ~ ~ " ~ _' ~ "
C~ v '-'~ '.

O ~-I ~-I ~-Il-1 ~1 ~-I ~-I 1-I

U W v N ~ v v ~ N N ~ N ~ v f~
>~ ~ >~

O W w O w 4-I w ~ O ~-I 4-I O
O O O O O

-r-I -r-1 -r-I-r-I -ri -r-I -ri -ri -ri -rl -r-I -r-I -r-I-ri -rl -r-I

r-I r1 1~ r-Ir-i r-I r-i 1~ r-I r1 1~
1J 1~ 11 .J-1 J-1 O O O (0 O O f~ O O rt O ca O (a rd f6 N

U7 S~ ~ R~ ~ CL L~ CZ ~L

~ U td ~ c0 rti rt cW 0 ~0 N c~ H H r-I r-Ir1 r-i r~ r~ r-i r-I r-I
r~ ri r1 r~ ri U7 r-I r1 W r-Ir-i ri r-I 4-I r-I .-i W
~I 4-I W W W 4-a -~I v v ~ v v ~ v v ~ v ~ v s~
r~ t~ t~ t~

(~ U CJ H U U H U U H U H U H
~- H H H

M ~ O

M M N

O 00 O N O I~ .-. O

-~ .-. '-'~ L~ '-' .-. ....
di OD (' v-I OW 1 N r1 (~ O 00 O O

V -- -. ~r -- -- -- ~ oo . o .-. o v -, . v M . o .-.

01 00 r1 L~ O .-1 O ~ O O N O N ~ O
O O ~ O L~

r-I M d~ ~O L~ ri ~ '-' O ~ O
'-' v ~ v O 00 ~,' N c-1 ~O N O M ~ O v O N O --(a r-I O ~ r-1 O ~ N
O 1~ '-' v v r-I v '~ O
r-I

-ri -~ ~- O O O ~ O H ~. (a O ~ O H --O O f0 H ~ r1 O O
(O (~

(J) 00 N '-' '-''-' ~ ~ V~ ~1 ~I ~-1 N
E-i V ~I ~ d~ N ~ (a '-' ~ O
G ~ ~I ~ " O '-' ~~ N d~ N (~ U o0 f~ U t~ (d f0 (a U
-ri -r~ t0 -r-I -rl 1.1 d~ O

N 4-1 N N N N N r1 v -rl r1 r-I ri O
N r1 -rir1 r1 r-I J-1 N -rl 1-1 1-1 J-1 v N w1 N N

(~ ~-I ~ ~ ~ ,5 ~ ' ~ 1-1 ~ ~ ~ ~ '-' O !A U7 J--1~ U7 r1 1J
U7 'J

p, o o -~I -~I-.~ -~I N o U U -~I U v O
-~I U N v o o N N -~I o -~I
N U v k f~ -- -- ~ +~ a -- +-~ .,~ -- m ~ m v -~I
~ ~n -~ m -- ~ ~ x -- -- ~
~ ~ ~ ~..~

W O U U cd U U N U O ~ ~ ~0 b G O
t~ ~ O f~ fn U U U

-r-I u7 UI ~ ~ ~ u7 ~ C.1, U7 5 ~ ,5 -r-I
~ ~ -r-I f.~,~ cn ,~ -r-1 -U7 C1 U7 -r-I -r-I O ~

v~ gird gird ~ ro ~a o ~ o o~ o ~ o o o o o ~ ~ o~zs ~ ~zs o o U O O O O O O O +~ O -ri -r1 -rl U
O wl 1~ -rl O ?-I ~ O 1~ O
S-I ~-I S-I O O O

U7 ,'7 ,' ?-I ~I ~1 ~-I W~ ,5 '~ '~ O
c~ 1-I 'd (a ,' ,7 '~ 1J ~-I f0 ~
1~ 1J 'Z~ + U S-I ~ S-I

tn f~ N CL f.~C1 CA ~ s~ ~I ~I ~.I '~
s~ CL ~.I E ~I ~.I m cn C~ ~ ~
m u~ s~ tn CL ~ R~

-~I v v v v v v v v v ro rt ~a ~
w v as v ca v rt ~ v v v ra ro ~a v v v H-- zrx~ zrxUC~ xx rxzU rxzc7xzUC~~x Uxz Uwxzx ~ro v U

c-I LC1 d~ 00 M 1D l~ 00 U ~ (~ O o O 00 ~-i O d~ aD

-r1 N M ~f1LW -i M N lO d~

W N I I I I I I I I I
O

-O L~ ri O d~ Q1 N M ~
r1 N ~O \O l0 M L~ ~D M
O

N N d~ LO .~ N r1 d~
~O

U z NW

O

N

N

-1-~
O

oz v r-I -i N M d~ tIW O I~ 00 W

U H d~ d~ ~ d~ V~

OI

W

r-1 Cl~

O

W

" o z z z z z z z V W H H H H H H H

ri L('1 O 01 Lf1 M O L~

01 N i.f1 O ~ M l0 ~O

di l0 N W f1 M Lf1 ~O

O O O O O O O O

~ ~
v v v v v v v v O ~ M N Lf1 00 di l0 O O

-ri ~", ~'., ~"., .("., L'., (.", ('., .("', r1 Lf1 01 L~ H LC1 to l0 O

J-1 O O O M O M O O t!1 O O
(~ M N di M tf1 .,-.I.~ -,..I .,-.I .,--I.,--I .,-.I.,.-I
. . . . . . .

'~ JJ l~ JJ O J-1 1-1 J-1 O 1-I J-1 O O O O O O O

1~E1 t0" ~~' ~" ~" ~"

O ~I S-I 1-I 1-W I S-W -I ?-I

a ~I v v v >~ v ~ v v s~ v v ~ ~ o ~ ~

o ~I-I w w o w o w ~I o w w o o o o o -r-I -ri -,~ -r-I

o ~ ~ .H H a r1 a r1 .-I ~ ~-I r1 ~ +~ ~ ~ +~

0 o o o ~a o ~a o o ~a o o ra ~a ~a ra ~

~ ~ ~ ~ a a~ a~ ~
~

a a a~ ~ ~ a~

td ca to ra ~ ra ~ to b U

N c0 r~ r-I .-1 r-i r1 r~ r~ r~ r-I
r~ r1 ri r-i r~ r~ r-i ~n r1 ~ r~ w r-1 ~ r1 w r~ ~I
~I w 4-r 4-a w w w -.~ v v v ~ v >~ v v ~ v v Ci.i s~ G >~ ~

f~ U U U H U H U U H U U
-r H H H H H

L~ N O O

In Vi O O

r1 N N ill O L~ O N O H ~ O O
N

lD LI1 ~ M CO rW -i v N N N r1 H l0 w-i C
r1 c-i ~ o, .... ~ m v ,l, . ~ v v . . .-. r-I v ~
. .-. ~o ~ L(1 N O O II1 ~ ~I7 O O ~
~ O .-I N H ~', M
O O r-1 r-I M O ~ O ~ '-' O N ~
~ r1 H ~ M
v ~ (d N O f1 N O ~ O ~ ~ N ~
O JJ ~ W r1 ~ ri N ri ~ M
r1 r1 ~ H ri O

v -r1 ~ ~ O (~ O (a H r1 N O H
O O (d ~ tf1 -~ O r1 O H O
H -' ~' ' (O " ~ ~-' ' ' v ' ' ' " ' ' U7 II7 S-I ~., - \ ~1 r1 - \
E~ - OO Lf1 S-1 ~ ( \ ~I
u~ \ ( N Li ., , (!f O U
M ., -~I N U - U c0 U ~ N ~ c~ -~I -~i c~ -~I o O eo JJ
-~I

N 4-1 N ra t)) v r-I -r-I ri O N -r1 v N J-1 J-1 N JJ N -r-1 N
-ri 1.1 ,-I r1 1J N N r-I

~I ~ ~ ~ U7 ~ ~ 1J ~ ''' ~ 1.1 O J-1 O UI ~ U7 r-I 1.~ 'J
U! U7 ~

o U -~I -~-I v U N N -~I N
~C' -~I o v o U v -~I -~I N -~I
a v N -- o v ~n v O U
-- ~n ~ +~ ~ ~n .,~ ~ x ,J .,~
~ -- -- ~ -- ,J ,J -,~ ~
-~I ~ ,J -- m W O U ra U >~ U c0 O to ~ U O
O G U f~ U ~ Ul O U
~ U r0 -r-I u7 ~ ~ -.-I ~ ~ CL 5 -r-I ~
~ (n UI -r-I ~ -r-I f~
CL -r-I -r-I u1 W O ~ u7 v 1.~ ~ O ''~ ''~ O O ~-I '~ O
'O ~ O ~ O O 'd O r-I O ''C
O O b~ ~ O ''d ~ O

~ U O -ri O ?-I O -wi 1.1 -.-I O 1~
O O O O S-I O U ~ 1-i O
1~ S-I O ~-I ~ O O -ri ~ ~ ~ ~ U ~ ~
~ ~ ~

(f7 ~ -I L~ U7 U7 S ~ 'Z~ UI ~ ~
~-I -I U7 ~ -I L~ f S~ CL
i.7, ? -I O S~ U7 J1 CZ ~
~ S--r-I v (~ v ~ v r0 v t0 ~ v v fs, v N v ~-I ~ v v to ~ v N
N (0 td v v t0 E~ z U Cx C~ P4 U ~C U W C7 P4 ~C
-' fx z z ~ C7 fx ~ fx ~C !~
x C~ z C7 z U

~ -~-I

U U

~ FC N di N

O M d~ O N ifl l0 Ill L~ d~

U ~ M Q1 .-i ~O Il1 O di O O

~ -r1 ~ l0 l0 N 01 .-I M 00 O H N I I I I I I
v I I
I I

-O 01 O lD 00 r1 00 N v-i r1 OO O
by U U oo m ~o ri I-n o 0 o N o M ~D Lf1 N O M CO
O O

~z ,~ N

v ~, '~
o v v .r., ..

~o oz v r-I 01 O v-I N M W f1 lD
(~

U H dW r1 tn LIW .t1 u7 L(1 In OI

W

O

W

U U U U U U U U

" z z z z z z z z V H H H H H H H H

tf1 dt O O M 01 00 01 w1 r1 O l0 tf1 r1 00 ~!1 l0 I~ 11W !W O tfW f1 O O O O O O O O

I

-O ~ ~ ~O ~ ~ N ~ d~ ~ O ~ ~
ri O ~ O ~D
I

I
+~ O O ~ O O ~ O d~ O N O O
~ M .-a ~r M

-,-I .,--I.,--I .,--I.,-~ .,--I .,--I .,--I-,.
,L.1 . . . . . . .

JJ .!--1 JJ 1J O 1-1 JJ 1J JJ
O O O O O O O

C', ~ (a " (~ (~ "" ~ "
H v V

O ~-I S.-I f-I S-I ~-I Y-1 ~-I ~-I

U v v ~ v v t~ v ~ v s~ v v w s~ ~ ~ a o w w o w w o w o w o w w o o o o ~I -,-I -r-I -ri -r-I -r1 -r-I -r-I -r-I
-ri -r-I -ri -r-I -r-I -ri -r-I -r-I

o ,~ r-i ,-I r1 JJ r-I r1 r1 r1 ~r 1.1 1J 1.1 J-1 1J J-1 1J

0 0 o rt o o ro o rrs o to o o to to ro b n+ ~ ~ ~ ~ ~ ~ ~ ~

~ a a ~ a a a a t0 cd ty d t0 r0 ~ r0 U

N r--I r~ r1 r-1 r1 r~ r~ r-1 r-I ri (~ r1 r-1 r-I .-i r-I ri ~n r1 r1 w r1 r1 w r1 ~ w r1 ,-I
~I w w w w w -r-I v v G v v ~ v S~ v ~ v v CL~ ~ ~ ~

fa U U H U U H U H U H U U
'-' H H H H

~C W O O 01 M N N r1 O O M O O N L~

d~ ~ N N
v v l0 d~ L~ M r1 O N r1 V ~ v u-, I~, ~ v v ~ ~ v ~. ,..
,-~ ~ ~ ~. ~ . ~ .

-. t~ ~ ,-I M t~ ~ ~ ,-I co o~ d~
,-I d~ ~ ~-I o ~ o o d~ o r1 I~ ~ ' CO Lh ~ ~ ' M ~ L!1 f-I
tf1 ' ~O v IS7 v ~', M ~ O O M ~ ~ O N ~ N M
(a O r1 N O r1 r-I r-I
O v-i ~ r-I
1J v -r1 O H O O O H ~ H O ~ O O
O ~ O ~ ((f O H f~ ~
' v " ' ' v -~ f0 ' v ' ' " ' ' ' ' U7 00 \ ~-1 M - O \ 00 v l0 E'~ ~-I U ~ ~I \ ~-1 ~1 \ ( S
u! - rd ~, - ~o ., r oo d~ U to N U U Lf1 -ra -rl t0 -a 00 o0 -rl N N -.-1 r-I N -ri M -ri N r1 v N
W r-I r1 N r-I ~-I -ri t~ a-i r-1 U N a-1 1-1 v .-I 1-1 1-I ~ m ~ ~ ~ a ~ ~ > 5 5 O ' -~ ~ ~ tn > +~ m ~ ~ ' U1 , -~I N U U ~I v o v -a -~I -~I
o ~-~ -~I U N U o v o U o -~I v O v J-~ -r-I Wf1 1~ -r-I---.-I1J J-I JJ
~--- f!7 J-1 (!7 U7 ~---r-IJ-1 --tn O 1- -- 1~ J-1 ~-- JJ

W U O t~ r0 U O O ca U O U U
O rtS r1 U rti U s~
U C

~,ao~ m ~cz~-~ ~ncz~~~~ns~ ~-~cn~

v~ ~~o oo~~a o~~ ~ooo ~oo~ ~~o root ~~o U O 1-~ -rl O ~ O 1-~ O O O O
O -r-I O -'-I -~ ~ S-I O
-r1 cd O ~I O O ~-I
O

Ul ~1 (0 '~ '~ ~I (~ '~ ~I ~-I ~i (~ ,~ ~ ~I ~-I '~ (d ,~ 1J ~
'~ ,~ 1J '~ (~ ,~ 1.1 ~-1 tn i~ ~ ~.I ?a G1 ~ ~I ~ ~I f.~ CL
~I ~I s~ ~, N m ~ ~ tn 1~
~I CL ~I ~.I S~ ~n C~

-~I v v to ro v v v v v v v v w v v v v ra rt v co v to v to v v ro xzU xUax Uxz xxUC~ zxUx xzx xuz c~zc~

~ro U
U

O L~ r1 ~ ~ ~

M Lf7 00 Lf1 M d N r1 U o l0 OD ri r1 d~ h C~ o1 y W M

~ o ,-1 d~ Ln r-I d~ r-I 01 t0 -r-I I I 00 I 1 I I v-I I
y I I
N I I

,.d 01 r1 d~ r1 l0 L~ M 00 t~
r1 M l~

r1 N d~ L~ d~ 01 O N d~
r1 01 l0 r1 d~ ~ ~-I M L~ 01 l0 U f-i r1 r1 z vw '~
O

v v ~o oz v r-i (\ 00 01 O r1 N M dt (~

U uW W n to \o ~O vD l0 H

d W

r1 O

L~

v ui ~.I ?, rt v I ~I -,~ v ~ ra ~.I

U7 N (0 1.J ~ ~ U1 v N O 'b U7 .7~ r1 J-I -r-1 U7 -r-I ~ r-I J-1 v f~ G' ~-1 ~-I

c0 t($ ~ N U7 ?-I U7 ~-i U7 U U7 ~ N r-I
rtS ~t ''d -rl N N ''C ,~ N -rl r0 U7 'L3 U O ~ , to ~ C ~ -rl ~ -r1 O 'i-1~ N O i-W ~ ~ ~ O -~I N -rl ~ N 1-I
?i O ra ~ ~ N U7 ~-1 O U7 ''~ r-I .~ ~-I 1.~ ''t'~ v r-I
S"., S~-I +-I v ~ U7 ?-I S-I 1~

v.-m on C ~ Q rtS rtS v s~ cn r~ ~I f.~
O O ~ >, ' ~, ~n ~0 L N -r1 N ~ O U ~ Y.a ~ v 'r w1 ~ ~ U) ~i ~ ~ V~ r-1 '-O ~ +~ 1.~ ''C O v C71 U7 1~ U N O .~
~.1 N O 1~ tn -rI -~I

N U7 X v f~ ~ ~ -ri U ca X O t0 ~ U ~
O ' U -r1 N ~ ''O
O

a m s~ v zs ca ~, ~I v v ~I +.~ tn cn ~ v tn v ro ra v to -r-IO N r-I O U7 f~ (a W-I ,~ U U7 r~
U t0 CLn ~ S-I

mo t~ ~ ~ f..1 ' -~ N ,~ ~-I -r-I-r-I O
rtS -r-1 ~ 1-I v 1-I m O N

O ~ td b~ 1.i ~ w ~ t0 4-I b~ 1-~ t71 r-i N ' v 1.~ N N +-~ y-I

U7 b~ 1J ~ ~ ~ N v O +~ '~ ?-1 1~ f~ t~
U1 O '-d U7 1~ ~
U

-r1 ~ N v to 1~ U! ~ N ~ N N v U 'b -rl . -r1 ~ N -rl N ~ 1J

U7 ~ 1J 1-1 'J ~-1 ~ >~ U7 J..1 -.-I S-a rd '~ N '~ ca 'J ~ ,5 O CL
U7 ,t7 -' ~ U7 N .-i '~ ~ O -rl ra to -~I O ~ ~
S-I 4-I N ~-I ~ U 'Li -ri 'b rti O t0 N c0 r1 U1 to -~ -rl N ~ ~ u7 f-I '~
O O m Sa U r1 ?a -rl v v U

t N N -ri t0 ~ (a U7 U7 -r-I 'r '~
~ -rl ca U1 ~ U ca ''O .!J
~ tff U '~

ov .C ~ t~ ~ t3' ~-I -rl -ri ~ S.t .~ N t~
O 1J rd r1 O U1 ~ >~ 5 Q1 r0 v C~ 1-1 ,~ ~ ~"., ('.,,~ U '~ ~ v (a JJ r1 '~ ~ ~-I (~ -ri .(', ~"-, -rl I
to H

t!1 (a ri ~I to J-1 x ~-i W -ri H (~ 4-I
U v N U r-I

~ ra v ~I s~ ~ v cz ~ b -~ ' ~ ~ o ~n .~ ?. ~ o o ,~

~ o o U ~ ~ ~s o o ~I o ~ m ro o v m to ~C ca ~ ,~ ~a v v s~ ~ ~-~I ~ ra ~I ~ ~I ~ o -~I ~ w ~
o v > ra v o v v ~ 3 ~n w ~ C ~I o ,~ ~ s~ w >~ ~I
G o ~ ~ m a ~
~ ~

rt ra -~I +-~ -~ m -~-I C~ s~ ~ r~
~-I . s~ o to o +-~

U ''C 'b 1-I ~ ~-I 'b ~-I '-d S-~ '~ c0 U U ,~ ~-I ~ -r1 W U U 'L7 v ca v v N ~ N N ~-I N ~ ~ N ~ ?, ca N -r-I
~ r-I -rl N v .~ -~ 'd O ,~

1~ !.-)J..1 'd U CL J..~ 1J '~ r-1 1-1 U) ca (a N 11 1-I U '~ -r1 ~ '-d v ('., ~,' L~ 1W

~ r~ r0 -rl ~1, t~ ~ td '~ O rt3 td U ~I 1W a N ~ 1~ O ~ 5 to -~-I

O r-I r-I N 1-I ~ rl N r-I v r-I r-I U
,~ ~ ~ U ca v ~ r1 -rl r-I ~-I
-.-I -rl r-I O O r1 '-1 O O r-1 O .-I -.-i O ~ r-i v N ~ U ,p N r1 U7 - O ?-I
+.~

U U7 U7 t~ ~ v N U7 td U7 c~ ~ U7 c0 r-I ~I '~ -rl -rl N 1~ b w O
U v .-' -~ -~ ~ ~ s~ 1-I -.-I -r-I ~ p, -r-I U
t~ N ~ v N ~ t~ ~ N U7 ~ w ~ ?-I

U N .tJ v ~.I N td v ''~ t0 U1 ', '-O +~ cd U1 1.-~
to rC ~ ~ w zi 3 ~ rC v-I r~ v r v ~ ~ b~
v ra ~ w f.~ ~n .
w 5C v ~ ~ O ~
O

>~ 1-1 -r ~ >~ -rl ~ O
~-I U U7 1-1 ~ t0 ' 1J r-I
-I -r -I

''C ?-I tti to N ~ t0 to to U to I ~ O
O U1 ~ ~ '~ O

b1 01 b1-rl U '~ b1 -ri CJl -ri C71 ~i 1~ 4-I v U -rl id U -rl -ri -ri N ~
N r1 ~.1 1~

~ ~ ~ tn -~I v s~ m t~ m ~ cn G to ~
ra ~ ~ c~ +~ -~I o -~I ~I ~ v to ra -r-I-r-I to ~ -r-I-~ ca -r-I ca -r-I v rd ~ m >, v ~ s~ ~ to ~ to to -r-I 3 to ~

U7 U1 U7 U ~ W U UI U U7 U -ri U7 ~ U
N N ~-I ,l~ ~ .S7 r-I r-I LL US
''L~

~ ~ ~ ~ w-I -r-I ~ ~ -r-I~ ~ C7, ~ I -ri r-i -ri ~ O S-I rtS 1-I 1J c~ ~

t~ '~Clf0 1.1 -r-I (~ N (a ~r ?~1 (J0 ''($
~ 1J N -r-I (l$ ~ U ~-I

'Lf Z7 U ?, ~ -~I '~ U ~ U b~ N 'd N ~
cn U ~ 7,,~ '~ O cn rt U

-, v v v ~ v b x -~I v ~ ~ v o v G v -~I
o ~ o to ~ .-a 1J 1.1 1J '~ O '~ 1J '~ J..1 '-d J-1 cd c-I i~, C; U7 .ice., O ,7t r1 1~ -r-1 -rl (a H 'J

U U U r-1 r-I -.-1U r-1 U r1 O ,~ U O U
C~ ~n 3 ~ U rl 4--I t0 U O ~ w ~-I
~ ~ ~ O O O '~ ~ ~ O ~ -~ -~
~, N ~ O O ~-I -rl O

~-I ?-I S-I I ,i; UI ~-I I S-a I 11 S-I O
v-I ' 4-I v r1 1J ,i; rl U to O ,fir !]a '~ ''O rl t~ W 1~ !-I ~ td ~ Y-a U f-I ct3 1~ r-I
O N 'd -rl U7 ~ N t(S O U .~ r-i ~r N ?-I

m m ~n co t~ 3 m ca ~n to a~ ~n ro ~ v ~ ~ ~a +~ c~ r1 -~I m o o ~ o ~ ra U1 ~ ~ N ~ Y-1 r-I ~ N W ~ v r-I ~ -rl (a tti v t51 U7 ~ U ,~ 4.-I
~

O O O ?~ (n N U O ~r O ~r v t0 O O 1~
v ~ Ci. ?-t '~ ~ rl N J~

U U U t U1 3 ~ U I to U I .~ U 1a to ~ ,~ ~ U 'd . 4-a tn U ao ~, r0 -r1 u1 ~ M ~r 1~ W, W N
ca v cd ?

U7 U7 U1 t11 F. ~- UI M U1 V~ .~. U1 f'.a U7 -ri UI U7 ~i v -ri S'r r-I c0 -r-I U1 W 0 td to O v ?m-i t~ O t0 O G1 t0 ~ >~
-r1 >~ ~ ' ~ ~ ~r ~1 3 3 3 ~a ~ v r1 3 ~a 3 ~a ~ v 3 v -~I
~ ~a ~I u~ m v -~ -~ ~I v ?~

N >;2,U .~ ~ O O t0 ~ U ?-I t0 1-W, .C
?i U7 ~-I ~-I

U7 ~r ~r ~ N E-~ ~ ~ v ?W v ,~ r'~ ~
U7 '~ +~ r-i ~ O O ~ -ri ~ 1 ~
S-I ?-I to O r-I ?-I O 1~ O ''C
-rl ~ O 1~ O tf~ O ~ 1~ 4--I ~-I N
~ ~ N (2, O 'i~
-rl O t0 tlS t0 ~-I U7 td ~-I td ?-I UI (d ~ 1~
~ x G,'' -r-1 ~, U1 -r-I to ~ O

U ~ ~ ~ ~ ~ ~
~ ~

-I .R N ~ to ''O ,~ N N
.R Z3 'O ~ ,~
r .~ ~ ~ N ~

~, -rl -ri -ri ''~ O J.1 -rl '~ r1 ''O U1 -r1 .~
to r-I 11 ,~ N .-~ O M N '-O 1-1 1J ~

.H ~ r1 v v ~ ra ~ v ~ r1 v v v ~ ~ -~I
~ o s~ ~ ~ ~, v ~, r-, rd ~ to ~

rd ~ I ~ ~ -rl S-I ~ ~ ,L1 5 ~ tT O O N U
N ~ ~-I ~I .H N ~

?-I U7 U7 U7 O Cl, U U7 O U1 O f.~.~ (fl ~
O ~I td -rl v N -r-I ~ ~ 'Ll S-I U7 N -rl r1 -r-I
1.1 ,S~ -r-I -r1 -r1 ~ ~ ~-I -ri ~ -.-i ~ ~ -r-I O
'-O Itf ~ J.-~ '~ ~ ~-I (~ 1.J ?i N
yJ 1J ~ c~ U

~ ~ .>~ ,~ v -~I ca .~ v ,s~ v -~ ~ ~I ,~
r1 v v rt G ~ ~I v v .~ to ~I s~ ~
ra >~ v a N~o r~5.,N~ImU~nwrarataNs~~Uw Hs~mUa~~-~IN~I~p,-,~~I

r1 d~ M M L~ M

,'7yO O O O O O

~1 W E1 E~ H Ei H

rt O O ~ p O O

,t7 O U' E-~ H E-~

~

a ~ a ~ w ~ x x a w ~ r~ r-v -r., ..

~o oz v r1 M d~ LC1 l0 I~ 00 G~

U M M M M M M
H

~a w o i ~ ~ to ~ -~ ro v ?~ i 3 ~n o -a ~ w r0 w ~ ~ o r~ > .~
~ v I

I
O ~ U7 U w U U r0 v ~ 'O -r1 2f O -r1 ''O

T5 ~ N ~-~ w v v m N
O ?a ~
-~

r1 ~ U ~ ?a v rd N u1 ~ ~ O ~ H c0 w r~ N

r~ SC m -~ 5 ~ ~ N .C ~ O G1 ~ w G. ~ r1 ~ U

U N N ttf O O O ~-t N Ul ~ ~ ~ O
'O w -ri 1~ U .~! ~ 1-I

v ~ r-I ~ -rl ~ r1 ~ t(3 r-I v -r1 -ri -.-i O ~

UI O t71 C1~ v U7 N r-I -ri r-I ?-1 U7 N
.r1 t0 ~C N N ~ JJ S-I -rl r-I

r1 ~ o ~I ~I rrs ~ v o s~ m ~ ~
v -~ c~-~
~

-~ ~ 'L3 U U7 .-I N -ri U w N 'O to U7 ~ S.a G U

S-a rl i.a v ~C N 1~ ,~ ~ N N U7 O U7 N S-I U7 U1 ''O (J1 O
S.a o to ~ v ~ v ~ ~I ~ ~ ~ v cn ro -~
.~ ~ o -~ -~ ~ ~ to U JJ ''O UJ U7 r0 U O ,~ U1 ~'., 1J
3 ''O ?-I J~ ~ N ?-r U1 U ,5 o u~ u~ a~ w o -~ .~ v +~
~ ~~ ~ v o Zs o v v w -,~ -~I o ~ ~ +~ +~ ~ to v ~ ~ s~ v ~, v ~ ~ ro ~ -~I ~ b o ra .c: at U ~ a ~ ~ o ro -~ ,~

w ~ ro s~ v ~ v ~ ~n ~ v -~ ~
s~ to ~ ,~ v ra E ~ o G ~ ~ ~m o ~~ v o m Zs ~ ~

v 1-1 ~l.rl -r-1 O WO J.J 1J ca r1 v S~-I '~ -rl U i.~, ~' (,"
1-1 v U7 4-I ~ U1 t0 r-I .r1 .r1 N to -ri v ~ N N N U7 r-I CJ1 U ..-i ~ ~-I

-~ v ro 3 ~I o s~ u~ ~ ~ ~I ~ -~I ~
rt v +~ u~ v to -~ v d '~ r-i .-i ,~ U ~ -rl $ N ,~ N N 1-~
-ri O r-I r1 ~ '~ O 'i3 ca ~ tts N U

(n (n r~ llf to ''O 'O t0 1.~ 1~ ~ v N .7J N ~r v ~

~ ~ ca v ~ ~ ~ 3 ~I ~ ~ ~ ra cn ~
ra ~ m to ,~ ~
to O O U ''O o v o v ~n v o v o r1 m o U ,~ -~ -~ o 0 ~ U

~-I f~ ~ N i~-I ~I U7 ~ ?a I -~-i i-i ~ E-~ N w ,~ ,~ 1~ +-W -.-i to Zf U 'd r-I

w w t~ ~ w O w t~ !~ w w y.~ w r~ ~ a m ~n v U ~

U U N -rl O W v ,s~ -rl ?a ~ '-C3 ?i ~ v 'Z3 U '~ '-C3 '~ U7 O ''a '~ ~-I ''b ~ ?-I td 1-1 t~ O ~ -r1 ra U7 ~ 5 v v ~ -~ v .~ v -.~ ~ v ~ v rrs v ~ v 3 v rt it m o ~ -~I ~

1J 1.1 r-I 1J J..~ 'L3 J.J 1.1 U 1W.J
r-i 'd .~ U7 U O ~ O ?W-I
1~

ra trs O ~ ra c0 to U c0 N t7~ r0 O w b~ ?-I to r1 ''O ~ l-I
N

ri r-I I .r-Ir-I r-I U1 'O r-I r-I ~ r-I
1 -r-I ~ U r-I ~ -r-I 1J -ri ''~
t~ ~'-, O '~

O O i-a U O ~ O ~ N ~ O v O -ri O
~-I -rl 1~ ~ ~ 1~ ~

U7 U7 ra ~ U7 U1 ~ J..~ (n U7 ?-I U7 rti N ,~ ~r to 1~ N ,~" 'O ?i N
U7 t0 -.-i -r-I N -~-i -~ ,~ t6 -r-I -r-I ~ .r-I
N tr~ CZ U tn r-I E-~ N ?-I ,~
~-I ~ ~-I f~ -~

~ ~ 0 o '~
~ o o ~

FC > ~ l -I t ~C ~ FC
FC ~C FC ~-I -r FC ~
~ '~ v t0 4- u d' N O N G rl U ''O r1 + N -rl O
O ~ O N ~ U7 ?,-ri f ~ ~ ~
~

u~ .~ ?~ rt -~ ~ O ~ U .~ ~I
r~ , I tr ,~ -ri cn r1 ~ w ~ ca O ,~
~.~ -r1 -rl v O

~rt ~ta to b,~l ~~ ~v ~n ~v tn~ m ~, 3 m U o ~~

r..~ ~ ~ w ~I s~ ~ -~I ~, ~ ~ v tn ~
m ra s~ ,~ -~I ~ ~ rt r-I .~I

-.~ -~ w v .r-I -r-I g ~-~ -~ .~ w t~ -,~
w to U v E-~ ~ G w s~ v o ~a m m o ~ m ~,,~m o cn cn ~n v .~I ~n o ~ -~ ~ ~ -~

O ~ ~ ~o ~io~ ~ ~ ~z1 o ~
oo ~ ~

V ~ ~ t ~ a ~ t d a ta~
a,~

~ ~ -r-I ro ~ to ,~ 2s ~ -~ ~ ~
' -~ -~ v s~ ~ U co ~ o ra .~ o ~ w v ~, - v v to ~n v U v ~ a w v o v ~ w v to ~ ~ v ~, ~I .~

+~ ~ v ~ to ~ v to . ~ r1 ~ G ~ ~
o rrs o o ~ ~ 3 r1 U U f~ ~ U f~ U w p, U7 U .i7 U H O U
.C7 C -~I ~I U ~ +~ ,~
U

~ ~ ~ ~ ~ ~ ~
~ w ~ N .H v U7 -I s~ U1 ~ S 1 -I O O ~ f~ b1 -I -I ~ ~I
v 1~ ~ ra -I S .~ ~ ~ - N
UI ~ O 1~ ctf v 1~ ~ U7 ~, 1W-1 - O O >~ 1~ O N N
~ U7 t0 cn m ~ v m m v cn .~I ~ u~ u~ <a ~n ~ v N ~ ~ -~I -~I b~ C
..-. .~ ~n ~ ~, ~ ~ ,~ ~ m -~ o t~ ~ w o ~
ra ~ ~ o ~ 3 -.~ to U ~

O O ~ ~ I O O O N 1~ 1~ O O rl U O
~ ~ -rl U N U v ''O v U
N 1 U t~ U H U U U7 U1 U a f~ U7 U U O - H - U 'O O
O JJ l ~ f ~ r ca r r-I - t6 to Sa ~ ~ ', ~ v ca 1N ~- r-I ,~
U1 S-~ t0 t~
-r-1 cn u~ w N m ~ u7 r0 ~ u7 u~ O ~ m w u~ ?~'O N ~ N v r0 U ~ -~
N U

~ to to ~ rd ra td U G t~ td rti I rri m U N t~ f~ ~ ~ td - U7 tn U7 O

s~ 3 3 zi r1 3 ~ 3 -~ ~ 3 v 3 ~ w 3 ~ ~ ~ ~ ~ rt ~a -~ ~ ~I

N N N r-i ,'O :~ ''O U O w ?a to to U
Z5 ~ -rl -rl -rl td ', ', ~ t~ O C ', ~--yl , -rl ?i v +~ ?, ~ O N r1 -rl .r1 1y ~ '~ ~ r1 ~
O ? ~ S l ~ ~ ~ ~
U O ? ~ ~ ~
~ ~ U ~ O v N

-I .~ -I -I -I
O 7 -I N r t~ r U ttf rt3 , td rtf I trs rl ~ b ~ t~ ~ ~.1 w O -~ ~ O t~ I ?~ U
~ O -~ ~ ~ ~ ~ U
N

a ~ ~I v v ~I ~I ~I ~ ~I s~ N ~ ~I
v ~I -~ ~ ~ -~ o ~ .~
~, ~ m ~I .~ ~I s~ ,o ,~ t~ u~ ,~ Wo o GL ,~
v ~ U ~ o zi 3 I ~a r1 v ro '., -.-1 -r-I v -ri -.--I N -.-I -r-I 1J -r-I
~ tti U7 W U N ~ ?-I r~ -ri r-I
~ N b~ ~ -d~

~-I r-I r-I N U r-I r-I ~, N r-I r-I (d r-i N ~ ~ 1-~ v I ''~ fl7 to U rl O
-rl S-I O v O r<$

rt3 ~ ~ O ~ O H ,~ I ~ .-i N ~ N v ~ 1 N N ~ ~-I ~-I -rl ~-I U7 Ul U1 t(S U7 U7 vo 1-~ U1 UI ~ 1~ (l) (fl ?-I U N t0 N N ~, 'O N 1-t ,~ 1~ 'b '~ O 'Lf -~ ,~ ,~ -r-I ,~ ,~ w r-I ,.Wn ,~ S~ ,~
-~ w v -~ ~ 5C ~ ?, ?~ r~ ?~ v r-I .r-I v rd m ?~

~7 E-~ H ~ O ~ E-~ E-~ t~ O Ei E-~ w E-~
~ U ~ ~ -~I N ~ d~ ~ b~ ~r r.~ U u7 U .~ U ~
b~

N f~ U~ N N d~ r1 O O r1 N O O O

~1 E'~ E-t E'~ E'~ L'~ E'~ Ea ~ O D O O O O U1 I z N z z z ~ ~

~a ~

o ~ o w U r~ oo U a cn a v ro -r., .

~o oz v r-I 01 O r1 N M dW f1 (~

U M V~ ~ d~ d~ V~ C~
H

~a w a~

U 'O

4J v r1 U7 U

~-I 'b to 'C3 't w U7 U7 ''O 1J - N Ul C31 ~ ~-I O
~

U7 f~ ~ t~ ~-1 ~ ~ ~ r-I v ~-t -rl -r-I ~ N N O O ~ ~C U 1.~
v O

1~ 1~ O N U U ~ O r-I N i~ O
1~ 1-~ -rl 1-t ri N N ~ r-I -r-I v O f.~-r-I -r-I
~'., UI ~ r-I (~
rtS 1-1 ~I ~I v cz a r~ ~I v zs ra m m -~ a -~ r~
v -r-I

td ra i-a W-i 1-~ .O N 'r U
td t0 U ,~ U1 ~-I Y-I ~
?-I

ri r1 -rl ~ O N U O 1~ '-O N
N N f~ !-I ~ S-i ~

a o ~n v m ~ s~ ~ ~ ,~ b a o r1 m ~, s~ a ~ ~a U U -rl ~ -ri r-i m to U to 1W7 -ri L~ .
S-a -r-I -r-1 u7 '~ '-d u7 i.-1 -.-1 O
''O 'b ~ --1 w U7 ~ O
N
t0 N +-t U1 N N U7 r1 N ''O N U
O ~ ''O G -.-1 U7 Ul tIl -rl '-d 1J ~ f~' .Q
S~-I S..I 1~ ra ~ -r1 ~ O
~-I S-1 ra ''~

vN~ vN~ l~~rtS''dC=.t~vG f~w-10 caU '-d +~ 1J N U N ~ r-I ~ ri 1J N
~ ~ U7 r-I r-I ca -ri ri 1.1 J-1 ca ~ C," ''~ r-I
-r-I -r-I -.-i ''d t0 U
.U -r1 ~ ~ r-I U7 5C 'L3 -r-I 1.1 b7 ?d O
~-I ~ ~ U7 -r-I N N ri (a ''O
~

O O w N ~ ~ ~-I ~I ~ O N -rl O
w U7 N '~ z3 N
~

w w N ~
O ~ ~

~-I O f.-If-a ~I ~ ~ rt -U1 S-I - O CZ ~ r -i 1-I S-I ~7 ~ N -rl O U i-1 ,~ ~ r0 N N O 4 v W U N
m 'i3 ''O S-I ~ ~ O ~ ~ ~ r-I
w w G
~ ~

-r-I N -.-I~ ~ U1 ~ ~ ~ ~ (~ ~-1 ~ ~ ~-I -r-I U
N

1-~ 1~ O 1~ m ~-I O >~ O W O N O
''O ''O U v c0 U7 r-I ~ ~

N t~ ~-I N -rl ?-I ~-I -ri 1-I
N O ~-I U1 O .R r~ O

r-I r-i w r1 11 w (d w ?a O w -rl r-i 1~ N (~ r~t ~-1 Sa ~ ''~

O O ''O r-i m ,~ ?-I N N r1 O
'~ s~ N N
~

U1 U7 'O ~ ~I '~d TS rl 1~
to (a -rl ~ U1 w 1~ ~"'.., to .~

-rl -rl N ~ O ~ N O N ~ f~ S-a N
O O a -rl s~ U1 ~

+-t ~ '~ +-~ +-~ ~ ~
O N -rW d .

3 3 ~'~ ~v ~
~ ~

z u a~~l o- s~+~~
u z -rl P: O b~ N ~d O -ri O to ~ ~ O
- ~d U r'~ v -r-t ~

U7 .(~'., U7 U7 -r-I U7 'Lt -ri '~ C71 r-i r-I N J.J

r-I ~ r-I -r1 -r-I -r-I -r-I Ul r-I
~"..,~ N J-~ - r-I -r-I ~-I
~ -r1 -r-I

~ ~
~

.-1 ~ f6 C ~ td (1, FC -~ t0 FC
~ r1 U1 ,~ C U
ca F ~ F
~-I

O z z z n ~ ~ N~
~ ~3 L ~~ ~ ~~~
I~ U .
~

r0 r0 N O ~I v C~ U ~ ~
- ~ O m ~ ~ -rl tT r1 U7 bWl tT U7 1-I b~
-.-i W c0 ~ -rl O w u~ ~ cn ~ ccf u~ C r0 G zi ~ O t~
-~ -r-I ~ ~ rd >, v -r-I
r-I

-r-I -r-1 -r-I ~ ca -rl -r-I r1 -rl (0 (~ O ?-I ?-I ~ -.-1 , U7 U7 ~ U 1-~
O

U1 U7 U7 N ~ ~ U1 U7 O r-I U1 U U ~ N ~
O O O
..G

O ~ ~ ~ ~ w N -r1 ~ w ~ I U7 1~
~ ,~ O U -r1 ~ N
~ U

V rt ~a .~ U v ~ ~I ~I ,~ ,~
~ ~I ro ''O '~ ''O f~ ~ 'U '-d rt N 'zf U U ~-I ~ ''O f~ b~ U -rl ~I ?i ~I
N

O N r-I v ca r0 v ca v v r-I v -a u1 >~ u7 rtS -r-I -~
~

1-~ 1~ 1~ -rl i-1 1~ 1~ ~ .~
''O ''O U O t0 -rl ~-I S-I
U U N U
~

U U r1 U U7 O +~ U U7 U I 1~ U
-i ,~

O ~ O ~ to w ~ ~ to ~ rI .~
''O ''O ~ ~-I N ''O N !Ii ~-I S-I S-I U t0 ~I ?WO +-~ Y-I
I I N c0 ~ U ~ c~ ~ 1J
N v 1~ ~ ~ ri N U1 1J 1~ (l~ r1 - +J -r~ 1J
~-I ~-I (a 11 b1 (~
'~ '~ ~
''t~

tn m ra m ra ~ ~ m ~ m r0 $ w m ~ ~ ~ ~ -~I ~ -~I r1 ~ s~

>~ ~ N ~ U O ,~ >~ ~ G ''O >~
N rl N U ''O U O C ~
r1 ~
O

O O 'r O r-I O O U O ~ c~ rl O
~r U U1 U1 -rl ~ O N
U

U U I U '~ O rl U '~ U O ~ to U
I ~ -rl t0 f~ ~-I ~ U
~ H +~

I~ L -r-Ir1 ,~ ''~ r-i ~-I N to --i ~ -.-1 U

fn U7 U7 O +~ U1 U7 w U7 U7 c1 r~7 d~ O N O ~ U N 1~

1~ ra ~0 ~ I ~d +~ rtS td ?~ N O
~., ~r ~ I m C W N
?~
N

~ 3 3 ro 3 ~I w v 3 ~I 3 ~ ~ ~n 3 ca ~I ~I ,~ ~ ~I -~ as >oa ~
~I w v o o ~a ~ ra rt v o,~~ U m v+~ o ~

~,~~ >,~~ ~v ~o v v~-~I ~~ ~.~ o ~,-~, ~I ~' ro ~I ~I ~ ~ ~I >, ~I o v c~
o o ~ v ro u~ ~ . >~
~n ~n O N N 1-I ~ I ~, b~ ~ I N ~ ~ U c~
?a -rl U ~ -rl N r~ U
-rl r-i U ~I ~I ~I eo ~ h o~ f~ N .-i ~
w w U c~ ~ O N b~ -~I
~ ~ r0 ,~ u, o .Q ~ ~I ~ cZ
v -~ ''O u, ~ .
-~I

~, ~ -r-I -~ ~ ~ ~ ~I -~I ~ ~n -ro ~a v . ~ ~ v ~ a-r ~

1-I r-I ri r-I t~ U ri r1 N -ri r-1 N N r-I rt ~0 N ~0 ?-I N
f~ s~ ''O ~ ~ U1 ~

r0 5 5 v v U7 ~ ~ v ~ ~ U s~ S-and~-I
N N

S-I U7 U7 U7 ~ J.J U~ U7 U7 (a u1 O O (0 ~ r1 ~ r1 -rl U
-~-1 -r1 U r-I O v U

-rl -rl -rl O u7 -~ r-1 U1 ~ -rl ~ ~ ,5 N U O r-1 b1 1.1 +J 1~ .!-~ ~ U7 O

-r-I~ ,~ ,~ ~-I to ~ ?a ,~ -ra tp ,~
v N ~ .~ ~ ca N s~ v to c0 td 4S ~, -rl a N H s~ N w ~ -~ N w N ~ f~ 3 N
~I w s~ -~I w ~o ,~ ~ ~
w U ~

('~1 M to N O ri ~y O O O O N O

N H N H N

c~ O O O O O O

~ H H N ~ N

-~I m ~n ~n ~C z a a w w rx ~ ~ cn H H m o a v -r., ..

~o oz v r-, ~D l~ 00 01 O r-I
A

U V~ d~ d' CW r1 u1 H

a ~
w w ~ ~

>, 3 - ..
~vG

y v o 3 ' o ~

r ~ - ~ ~ v v a v ~ m v -~ ~, a ~ v a -~I v ~ -~ v --~ o ?. ~ ~ ~ ro s~ o ~ ~ +~ ~n ~, ~

m ~I s~ m o v o ~ a~ -~I s~ m m o ~ s~ ~., c~ a m ro ~-I ro ~ ~ ro ~ ~ ro ~n w ~ v ro v ~ -r-I ~, ro tn -~I a~ ro > m U .,~ ro c~ -~, o ~ v ~I -~I ~,.~I o ~ ~ v ~I

a ro ~ m o v cn v c~, v ~ v ~ ro ~ ~ s~
s~ r1 ~ ro ~ ~

r-I a ro ~ v -r-I r-I ~ o ~ ~, -r-I
ro v o ~ ~n ,~ ro v s~ v ~ ~ s~ ~ o r1 ~n >~ ~ ~ ro u~ v ~n ,~ o -~ v ~ ~ o O ~,''d bl,~ U .-I ~ O ~ 1~ ~ O ~ U7 ~
O ~ O ~ '~ S-I

?-I -r-I S~ ~ -r-I -r-I ro ~ ~ O v U7 b~ N N '~ ~ ro -r-I ro ~ N ~ w v O U -ri ri ,~ O E w U 1-I U l U ~ ~ U7 ~ s~ v ~, N S-m '~ ~-I

1~ 1-~ ~ +W ~ v ~I v ~ -ri v -r-I CL .r-I
I E-~ E-~ v r-I .~ ~ ~ v tn ro -rl S~ ro ~ ~ v ro L~ ~ 'd U7 ,~ U 1~
-r1 U 1J N r-I U O

~ N N .~ v ~ ~ U ~ -rl ~ ~ O S-I .r1 I U 'd U ~

ro o a u~ ,~ ~ +~ o ~ 3 -~ o ~ ro ~ cn ~ ro +~ cn ro ~ ro ro ~

-~ r-I ro v ~ ~ ~ w ro u~ ~I U . -r-I~
H ~ ~ -.~ -~ s~ U ro s~ s~, ~I v o t~ w -~I ?~ o ~ o v o 3 ~ v v o w ro k ~ a ~ r, -~I ~ ~ ~ ~ s~ a ~n ~n 7, o Zs s~ 7, ~

5 v ,~ ~, ~ o s~ ro -~I o ~ ~ v ~ ,~
~ a ~, ro cn -- ~I o v rd o ro ro ~I r1 U r1 -a ~ ~ ~n ~ ~ ~ ~
o >~ ~I v o r1 ro -~ v v ro ro M U -r~ ro ro +~
~ ro U7 O

.~,ro O,~U7N1J1.J~, ,'~ .~,N1.J~,0.~.,ro UlU ~~
N I

O ?~ ~ O ~ r1 O b~ O O ~ O O -- O .~I O
u1 ~-I ~ ~ ~ m ~1 b1 .~, v ~-I Ci ~-I rl ~-I b1 V~ ~-1 C1 -rl ro .~, '~ ~-1 U U ,~' - ?G
ro U

w ~ O ~ ~ ~I w -~I v w N O w ~ U v w ~-I ~n ro S~ N

-rl U ro w O 7-I S-I L1 ~ ro .rl w ro N
ro ~ 5r ~I 'd ~ ~r S-I

't7 1-I U .W ''~ ~ '-' '~ -r1 '~ ~-I O
N U ~-I O ~-I ~1 Li ~ U7 ,~ r1 ~
?d ro v ~ N U7 rl N '-~ ro ~ ~ +~ N ~ '-' N
~ U ro N O 1~ O -.-i r-I

1J 'd ?d ~1 1-1 ,~ 1.1 v 1-1 'LS 1W~
U .~., C~, v N U 1) ~., U .r1 ro O U N -rl ro N ~ ro ~ 'd ro r'~ ro ro ro U! O ~ ~ ~ ~ N ro rl r1 v ~ ~ b~ ~--I ~ -I v m .---I v S~ ~ S~ ro O -~I w zi f=.
W w O ~ C1 U1 -r-1 O ro 1W O ro 1~ O r1 N N O
ro ~ O O U n O O S-I ~

UJ ro O ~ JJ U7 ~ U U7 ro U7 ro '~ U1 ~ ~ -r-1 U ro -r-I N '-C~ J--~ ro -r1 .~., O O -.-i N -.-i X1-..1-~ ~ ro -rl ~., ~-I -r-I N ,~ u1 M CL ~ ~-I ~-I
u1 N ~-I

N I ~ N ~I ~ w S-I ~ ~ U ~ v S.a r-I 'd U ~ UJ N N ro r.>; w O -rl r.~ O rl ~C -~ r.~ w b~ FC
O v rl -rl N U O N -rl U U N N
-.-f ~ ~~~ v ~~ o o~ rid ~ ~ ~ ~ ard-~
~ a~~ aro r'~a ro~
~n ro -~I ~ ~ ~ -~ o ro ~ ro ~I ro v U v ~ -r-I ~I ~ v U -~I

v ~ ~m o ~ ~ ~u~ ~-,~~ ~, ~o ~ ~

~ ~n r-I ro s~ ro I ~ v v ~ cn ro a, ro m s~ rd v v ~I s~ -~
r-I v .ri ro ro v -ri U O -ri ri .rf ro U -rl ~ ~ U 'd N ~ .~ U O -.-I $
~ 1~ U
' U7 U U7 1-I U7 ~ b~ U1 ro U7 U -r-I U7 -rl '~ ro r-I 1J ~ -ri 1-1 -r1 1-I .
U1 ~ N .G U7 ~

O ~ ro ~~ ~ ~ '~ ~
~ ~ ~ ~ ~
u~ ~

. - ~I m O -~ ~n C> rord~ -~I v d,U
ro 'O U ~-ri O rd ~-rl rd s~ rd U -rl '-d ' ~ G N - Z3 1~ O ro .G '~ >~
~ O

- v ~ rd ~ ~ ro v ~ .-and v ro w v a o ~I v ro ~ s~ -~I ~ ~ ~ ~

l~ 'd O C~, 1) ~-i 1J .r1 l~ 'd 'r 11 ~i U7 r-i 1~ ro L; ,~ U7 JJ ro U N
N O v r U r1 ~ -~I -~I U O U7 U U~ ~ U r1 ~ ~ U
~, ~ ~ ro U -~I ~I O O 5 w O U U ~ C d ~ ro N ~ O O N
' ~ I 7~ '' r S~

, ~I ~-I ~-I U ~-I I r~ ~-I
~-I I N ,fir r-I ?, O 1-~ -ri N N N
~-. .r1 ~ ~ ro d r1 1J
d ro 1~ ro ro l~ ~ r1 J.-) i-1 r-I
1-W-I ?-I b1 ~1 1~ U7 N O 1J 1~ cn U7 ~-I ~-1 o o ~ ~n ro U1 ro C71 N U ~n v ~ o o rd ~n ro m ro v o ro ~ ro ro ro ~ - ro ~
I ~

~ I ~ U ~ , ~ v ~ r1 r1 I d , r1 v ~ ~ ~ ~ >, v ~ v ~ w ~ ~ v ~ v s~

O ~, u7 O , O I a O O ~ U O ~r ro O
~ ~ v r1 u~ U .-i (n U1 ro N
U I ~ U d~ ro -i U i ~ U
~ O U O ~ U '-d U I W - w t7 U ro ~ ~ ro , , . r , r1 W J-1 O ~ ~t ~d .-a ,~ J-~ N l0 r1 J-1 ~ .r1 -rl 'd ~ N ro U7 W ro ~ r-1 Ul -rl U1 O Ul U~ I~ O U7 ~ '-d -ri ~-I ro '~d .ri 1~ ?-I
U

J-1 ro ri f3~ r-I ro ro ~ ro I ro v -r-1 N v ,~ ~ v ~ v ~1 ~ 3 ro ro rd o 3 rd ~ 3 ~I v 3 ro ~ u~ 3 ~ ~, U ?. .~ ro -~

v ~ v w v ro ~ ~u ro v s~ o ro x r1 m ~I - d o rd _ _ ~ ~ ~
~ ~ ~ x ~ U
O O ~
~
~ ~

S ro U1 U ~ S. U
-I O 1~ a ~ ~ ro ro - ~ ro - ro O

O ro 1-I O O r1 ro w N ro I ro ro S-1 ?a 1.~ ''d U7 ~ U U7 -rl U7 -rl U Sa w rd ~ ~ i-1 ?m~ ~ o v ~I w v - ~I
'd ro ~ -rl -~ -~ ro ~ ro U7 ro ~ U U v ~I -rl ~ '-d ~ .S7 N .~ f~ ~
,~ ~ S-I 'd .~ U ~-I ~ ?a ~ tJl ~ ~~ ~ --i ~~ -i ' v ~' v v ro ~ '~~~ a ' ~,~, ~ ~, ~; ro ~ ~ ~ , ~ 5 ro ~
-ro 5 r1 a -~I ro -,~ m o v o r1 ~ d ~ ,~ U
-~I m r1 ~I o ~ v ~I

?-I U7 O ro N 1-~ U7 ro O U7 ~ ~ UI O 1~ U7 J-~ rl (l,-rl J--~ r1 1-I .ri U O N O ~
N ,~ !~

l ~ 1~ C1 r1 -~ W N -.-i O -rl ~ w -~I
~ O O ~ 'd U7 O U ~ U7 U7 ~-I O
U ro U7 N

-.-i~ v O fZ ~ O ..t~ ,s7 ~ S-I ,~ N U ro ,.~
~-I -rl ro r1 ~ -~ ~.1 N .~ N .r1 S.I
~ G ro .r1 ~-l E-~ Sa 1~ ro E-~ O -rl E-~ w E-~ ~I r-1 E-~
~ U CL , R ro .~ ro ~ 5 'd U w C~. ~ -r1 Ct-~ 'd ro '-d N ~fl r-I N N

O r1 O r1 O

~ Ea E'~ Ei Ei E~

ro ~ ~ o ~ W

z ~ w ,~ rx z ~ c~ z ~ ~ o o ~ x a O U f~1 W En N

~
O

oz v r1 N ('~1 d~ Lf1 ~O
G]

U u1 In in u1 In H

Ot W

r~i Ul O

~ ro J~
~

3 tJl I r ~ ~ I ,~
l J

m .,~ -mo ~ ~ cn E~ H o ~
o o ~

~n >, 3 ~I ~ U v ro ~ -~ v -~I
s~

-.-i 1- WI -ri ?., ~ r-I U ro 1J ri ~ U1 O

+~ O N U7 'b ro '-, O O G~ -~-I U1 (d C 1-I ~ ~ U N ?-I ~I

G ?-W G ~-I -~I +~ ~ O v ~ r1 v ~
N as v r1 U -~, ro w o ~I ,~ v ~ U v ro ~ u~
~., ~ ~ ~ o o ~
-,~

ro v r1 o ~ v . v ~ ~I tn ~ ~, v ~ o ~I -~I ~I ~ ~
~

U~-10 ~ro ~, U1J~N5Uro roN~ O U UlT-~-i -r-I .-I ~-I 1.1 -r-I N ~ O r1 (.," O
N r-1 f3~ ~ U1 ro -r-I
''~

~ +~ r1 ro s~ ~ ro ~ ~ ~I r1 ro o ~o ro +~ -,~ ~ ro ~, ~I m v ,~ ~ ro v w ~ <n ~ ro -r-I ~ m .~ ~, .~ v ,~ ~

N ~t U N O N J.1 1.) U7 O tn r1 U7 x JJ U7 v ?-I ro r-I ro U ~ ~ S-I ?-I ~ ~ w -r1 -ri -rl 'C5 ro ro v ro r-1 ro ~ ~ U ~ ~

W 1-~ O N v '-O U ~ ~ Cn N U G N ro O O Ul O

N r-I ro U ''o -~-i U r1 i.~ ~ 'o g w r-I i-1 O v ,~
,~

ro x G1 N a ~, ~,'~ +~ ~ ro ro N i2, O G ?a -r1 .r1 ~I J-1 1.-1 ro U7 '~ ,7 U .tJ
(".., '~ N ?a L', v v N 1J N rl N O U

~ v .~ ~ w .~ v ro v -~I ro ro N
a ~ ro .u .~ ro v b~ 17 tr ro ~ 1~ N ~ ~ +~ ~ N
ro ~ ro ~ U r~ p, O

.4.) ro -rl r-I ?a S-I ~ U '-CS ~I Sa ro -rl R~ r-I -r-I ro E-~ ~
yJ

ro ~-I c~, ~ 4-I ~.1 ~ ro ~-I ~ N
v ro O U ~ ro x v C7~
' v ~I o o >., ~ o ro -~I o o ~ +~ z ~ ~C -ro ?a ~ ~ ~ N -~ ~-, ~ S.~ ~ I En ~ w ~ ~ -rl N ~ N H

O ~ O -~ O ~ ~ ~I O O N N O ~ w O ro N u~ v S-WT ?-I S-I N ro O 1-W ''C ~ ro ~-I
U v ro -r-I m ro O
U H

w ~ w S.1 w ,~ l~ -ri w ro w v ~ w '~
r-I i~ '~ N U -r1 S-1 N

-.~ v ro +~ a ~n o ~I ~ ca, ~, v v o ro -~I m m ~

~-I '~ '-0 ro ~ ~I 'LS -ri '~ I '~ -rl ~, 3 ro S-1 O -.-i U ~-I 1-1 U -ri N ~ 4J N ~ r1 r1 O N L1 v O ~ N ''C
ro U N ~I ~ ''C N U

1~ '-0 1~ ~ O G~ U U 1~ 1-I 1~ In ~ ro U1 b~ N N U7 ~-I

ro ~ ro ro ~ ~n U Zs ro ro ro I ro O
~ ~I ,~ v ~ cn w ro -I N .-I r1 w ~ O U ~ ro r1 O r1 ,~
O ~ N ~ ~ N ~
~

o r1 o v o ro -~I +~ o ~ ~ o ~ s~ o 3 -~I o u~ ro r1 ro ~

t1) U7 U7 ''~ ?-1 U7 ~ U7 '-' U7 -rl ro U r-I 1-1 ro ,~ ~ ~L ~
J..1 ~

-r1 -r-I -r-I N 1J ro -r-I -ri ~ -ri ~ ro O O r-I U~ '~ -r-i U7 N r1 v S-I 'J J..~ ?-I ?-1 ~ 1~ v -.-i ~ v U1 .~

FC w wC FC O 1~ O N FC ~ FC r-I FC 1~
-~ .~ 'o O '~ ~-t ,~ Y-I
U ro ro E-~ ~ ?-I 1-1 r-I '-C3 ~ 1J N U
-r-I -ri ~ v ~ dP
-r-I ~
~

N ro U ~ ~ U O U7 ''~ Lf1 w v r1 ro ''C v ~ N ~ U1 ro N ~ ~I ro ~ t~ U7 -r-I N U N

~ v tn ~ o o -~ b, .H ~ -~I ~ v ,-I ~ ~ ro ,~ ~
x ~

U1 ro ~ r1 ~ N ~-I f-I >~ ro C ~ ~ >~ r1 1~ ~ ~ f~ -rl U N i-I
v ro v -rl -rl ~ ro w -~ ~ -~ ro -~ ro ro N N ?-I U7 ro O O
''O ,~
v U7 U U1 U7 fA ,S." U1 N U7 ~-I U1 ~
~ ~ ~ ,~ ~y N N ~ , ~ ro r-I

O ~ ~ ~ ro ~ U7 t5~ ~ ~ w ~ ~ ~ ~ ~ N
~ O 1~ U N Si U -rl ~

V ro o r1 -~ ~ o ro m -~I b o o r1 w ~
~ ro ~n o ~r ' ' _ '~ 1J -rl -ri 'Ts ~ '~ ~I '~ N
a~ U '~ -r-I ~ l~ ~-1 ,~ ~
1J r1 ~
~

v U v w v ~ ~ ~7 U7 N ro v w w N ro N v N G ~
~ H

J-1 JJ 1~ ,~ ~ U ?W 1~ -rl 11 to J-1 ''~ O ro -rl JJ O t71 1.~
N U H S-I

U ~-i U LL U ~ ~ N 1~ U u1 U ~ ~ U w ~I I ro .~ ~ -~I -~I
N O

~ o ~ m--H~ v ro v-~ ~ ro ~ v ~ ~ 0 o m o ~ v 3w I .~ ~I ~ ~ N w ~ ~ ~I U ~I ~ ~I
ro ~ U ?I Z5 U O ,-I a-~
+~ ~I i.~ ~ ~ ~I G 1N ~ ~ N ~ O w ~ 'Li CL ,-I ~I U ~ Y.I --- ~
,~ ?a ~
N

U7 ro UI U7 ro ro -ri u7 ro U7 ~ U7 -r-I
O CL N ro ro ro -rl '~ ro N U

1~

N O C U ~ ~ U ,-R ~ ~ U ~ ~ N 'd ~ ro O ?I J~ O ~r r1 ~ O w O F-I ~ ro I 7, ~ O ro O .-i N ~ O ~
O m ~ ''C ro U v U I U E-~ U 1-I ~ ro U '~ U ~ U ,s7 O ?-I N ~ 1-~ CT., U -rl v ro ~

o J77 ro ro -rl ro r-I ~ N ro ?a r-I
O ~ ro U7 d~ U7 U1 ~ -r-1 ''d U1 O U1 ~ U7 N
~ ~ v ~ '~ -.-i ,~ 00 1J
r-I r-I
'~

ro -~ ro ro O u~ ~I ro I ro m ro ~
v ~ O , a ~ ro ~ ~ N
O
v a 3roa,~l3~~t~ 3~Iroro~lroroo3~1?~-~v3~nUa 3+~v~

N .-I S-I O U U O -rl ro ~-1 -r-1 ?-I
U ~ -r1 'i~ ~ U

?, ~ ?~ U ~ O U ~ ~ ?I v ~ 1~ ?, ~
ro ~ ~ O ~I -rl v O
N O ro I
~

s~ o ~I ro 5, v a ro ~I ?~ ~I -~ s~ 0 u~ o ~ ro 3 ~
m .a v U

o rosy ro~l~,t~roxU~~~oN ro I rovv+~ roil cnUm U ~I w 1a ~I v ~ -~ -~I S.I In 1~ ~ f~ w r1 w -r-I -~ O ~I ~ m -zf -r-I -r-I N

.R ro ,~ .Q r-I TS '-d ~ M ,y?,''O.R ?~ ,Q r-I
v r-I -r1 Q, !~ v ro ~
~-I v ~ ~ ~ ~ ~i -rlvvro ~v rl~oro r-,ro~. r10 rlvv ~l ~~~m ~ ~
~

ro ~ 1-~ ~ b~ ~ I ~ N ?-I r-I N ~ U7 ~ U
U O ~ v ro ~-I -~ S-I ~-l ~I ~n O u~ m U ~I r1 U ~n ~ m p, m O
ro -~ v w ,~ v -~ a -I c~ H
-~I ~ v N
~

-~ .~ v ~ v ~ -rl N ~ N ,~ O .~ ~
-.rl O ~ ro -r-I ro U v x ~ -rl ~1 r-i a E-~ E-~ E-~ U ?m~ '~ E-~ w H r1 E-~
~I '~ ~ ''o U rd f~, U O Y-I
~ -~I In ro ro ro E-~
.~ ~

l7 y -1 Lf7 r1 M

N

E-~ E-~ E-~ E-~ H

o z o o x x H

-~ ~x ~ H

U H x ~

N

-,1 ..

u0 oz v ~ t~ 00 0~ o ~ N
fa U In u1 In ~O
H

a ~
w w ~ o zs m s~ ~ Zs v v .~ v ~ v v ~n -~ ~ ~a o v r1 3 .~ ro s~
U ~

rt ~ v -~ ~ ~ U a v a.

v ~ o ~ ~ co ~ v s~ .~ -~ ~

1-I r-I ''~ fI$ 1~" r1 r-I w N
'Lj (a r-I U f.~ ~ 1~

to v ~ -rl v U w r~ r~ O aG m U r-I v ~, a to U ~ -r1 ~ ~ N ~ -rI ~
U f~ G -ri 1.~ N ~ -~ O O N b~ cn ~ ~
w -~ -~I -~

.u U U7 U! U -rl ~ .~"., ~ -rl ~ .'.G S~-I N tO

b~ t0 -rl r0 u1 r0 ~ -~ u~ ~
U O ~ m ,~ N W N

-~I r1 ro ~ ~a ~ -~ ~ x o u~
,~ ,-~ ~ ~ s~ ~I

1.-I -ri ~ U i~ ~ U7 N N ?.a r-1 c0 .~ O ~ N ~

~ -r-1 N N O U C~ to ~ ~ ,~ w U 1~ v ~ 3 U7 r-I

't~ ~ ~ ,~ U1 w U O ~-I -rl U7 O ~ -rl -.-i v >,~~ ~ .-~,ca v~uow ,~v~nro m ~a ~ U . ~a ~ ~a cz U v v ~,.>~ v ~ o w to O ~ ~I ~ 1.~ ra U N O N U S-I
~ U1 N -rl Nb~~''OO~UN~,-~ 'b ~-tN~~N.~rl~

U7 .l-'., O w ~ '~ ~ ra N U
-r~ ~ ~ r-1 ''O 1~ b1 Sa -rl -r-I ,~ r-I f0 r-I v ~.1 '~
U7 '-d -ri -ri ca ''O ?-I N ra ~, U O 1-~ r-I N
t0 r-I ~ i-1 -r1 N - b~ v ~

~ ''O W U O -.-i ~ i~ ~-I ~ O N
1J '~ C~, r-1 1~ N -rl O ~ .-I >~ ~ O t6 N ,~ ~ 1~
''O v ~-t v '~ O ~ S-I N 'd v U7 -r-I r-i U 1~ ~-t G

w r1 '., ~ ~ ~ W ~., O Sa 'ZS
r~ ~ U7 r0 ~ O ~ -r1 ca ~n ~ ~ o v I ~ v v 3 o U
~ o ~s o ~

''O ~ ~.7, .~J '-d W U r-I ,~
(0 ~"., 'J ~I ?-I U7 -ri ~

vv0f~LL-ri-~O~O NM's ~Ntr~rINV

1~ w -r~ -rl U 1~ N N N 1.a ~
m c", U ~I r0 ~ tr ~I

~a ~ ~I ~ v ~ ~a ra ~ ,~ ~ v o ~I m a v r-, s~ ~ ~a ~ r1 ca ~ v ,~ ~I
v . w v .~ o >

O to ~ ~ -rl U O w U ~I E-~ ~
1W a G Sa N .~ U -r1 m -r-I m -~ ~n ~n o -~ w x -,~ -~ v -rl U7 rtf '-d -rl 'i3 O N N
r0 ~ N ~ U -~I

~a v ~ r1 ~ v ~ ~ ~ m ~n U 3 ?~ ?m3 r.C U 1-m-I p, FC -~ -ri U7 N
1~ .~ ~ v - ~ ~

~ O~
~ ~
~

t (~.,-'~O ~Ob GV~-rl ~S-I?,O
O

U ~ -r-I .a ~-,~ u~ ~ ~
~a 3 ?.-.~ -~ ~ -~I C~ ~

~ b~ O 1~ -rl r0 b~ N U ,k U7 N ~ O N

'~, -.~rIN~ ~ >~NrIU~Uf~~t0~-,v -r-I r1 O N ~0 -rl .C O ~-I N
v 'O N -r1 ~ 1.~ ~ ~-i ' ' C, U7 1J ,~ rd .r.
O U7 O CJl r-i U w r-I O -r1 O
v -rl C~
1~ ~
~

~

y~ ~ ~ +-~ 4 ~ ~ C r1 U ''O
-Im0 -~ b~ ~ '~
N

ca cd ,~ U -rl '-d O W -rl c~
~1 w r-I -ri ~ U ~I
'~

N N U ~ 1~ b1 v S-I O ?-I c0 N ~ ~ O ~ v J~ ~r 'r '~ r-i 1~ w ?~ ,~ U
'd ~.. (a ~-I w U t71 I ~ S
? ~
~

U -I
U ~ U N U N
-I -I .
~ ~ O
~

~-I d~ 1.~ 1~ S-a N ~ ~ N t~
N v U7 Cr C2, 1J U U7 to ''O !n N
r1 ''O nS -r1 +~ ~ r-I U U '~
(0 1~ >_,' U7 to N ?i N U U7 O -rI v O U
~ ~ N v N v 1J U +~ ~ H U ~ ~ ~ .H v w --i v ~ ~I r-i O>~UlO~toGU-rl.O ONw,.~ r-INc~-.-I

~ U S-a ~ -U ~ ~
~ ~ N

C ~ - U
-ri . - ~
1-I ~ ,~ - ~ 1J U

U7 w -r-I +~ ''O U7 N to r-I , U7 -rl U7 ~ -,1 CL td -r-i '~ ''O

~ c~ v w cd C v r6 ~ -~ ~ 5, 3 ?W v v o U 6~, v ~I~~zs 3 ~~ ~~ ~ ~n o~
3zs~ ~-a ca ~ u7 ~-I r-I UI
v f-~ N Y~ ~ O -.-i U
x v -r1 ~ ~
~ ~
~ ~
~
~

I O -.- I
w ~ U7 f to - +~ U
i - U b~ O s~ O U
~- r-O ra ~ cn a U7 O ~ r~ -~ ~ N O
-.-i . -ri ,~ ~I f~

U ?-I N to t0 U7 ~I U7 ~ (1-rl '~ .~ (I7 '~ -rl U -ri C31 ~

,s7 S-i 'LS S-t ~1 ~ O U7 O ~
~ -ri v -~ N ~r ~ -r1 N

~ ~
~ ~

S-1 r-I N 'LS w r1 ,~ '~-I U1 O f~' -rl H U1 ~ 1.-) '-(j ~I O

~ C -rl r-I ~-I ~ O O O .~ ''C
U N U7 .~ r-i O -.-I

!a U7 U7 N r-I -r-I U7 ~ ~ 1-I 1-I
O I -ri ~ N +~ b1 td r-I
1J '~

I~ -r-I u1 1~ O i~ -rl U v .f1 U
~G ~ ~ ~ ~L-rl (~ u1 ~1 ''d -rl ~ ~ U -r1 -r-I -.-i .~ -r1 x ~-I t~ N r-I ~ ~ -r-I
~ O (~ -rl .$~'.,to a E-~ ~ v R~ CL E-~ ca ''O w ~
1-1 ~ f3a U1 r-I U7 H U7 ~'., J-1 td U

N r1 O O

b ~ 0 a x w cn v ro .r., ..

~o oz v r-I M V~
C~

U ~o ~o H

Ot W

r-i c~

O

W

SEQUENCE LISTING
<110> INCYTE GENOMICS, INC.
LAL, Preeti YUE, Henry TANG, Y. Tom BAUGHN, Mariah R.
AZIMZAI, Yalda TRAM, Bao <120> HUMAN TRANSCRIPTIONAL REGULATOR PROTEINS
<130> PF-0713 PCT
<140> To Be Assigned <141> Herewith <150> 60/140,109 <151> 1999-06-18 <160> 64 <170> PERL Program <210> 1 <211> 192 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 091502CD1 <400> 1 Met Ala Ser Lys Gly Pro Ser Ala Ser Ala Ser Pro Glu Asn Ser Ser Ala Gly Gly Pro Ser Gly Ser Ser Asn Gly Ala Gly Glu Ser Gly Gly Gln Asp Ser Thr Phe Glu Cys Asn Ile Cys Leu Asp Thr Ala Lys Asp Ala Val Ile Ser Leu Cys Gly His Leu Phe Cys Trp Pro Cys Leu His Gln Trp Leu Glu Thr Arg Pro Asn Arg Gln Val Cys Pro Val Cys Lys Ala Gly Ile Ser Arg Asp Lys Val Ile Pro Leu Tyr Gly Arg Gly Ser Thr Gly Gln Gln Asp Pro Arg Glu Lys Thr Pro Pro Arg Pro Gln Gly Gln Arg Pro Glu Pro Glu Asn Arg Gly Gly Phe Gln Gly Phe Gly Phe Gly Asp Gly Gly Phe Gln Met Ser Phe Gly Ile Gly Ala Phe Pro Phe Gly Ile Phe Ala Thr Ala Phe Asn Ile Asn Asp Gly Arg Pro Pro Pro Ala Val Pro Gly Thr Pro Gln Tyr Val Asp Glu Gln Phe Leu Ser Arg Leu Phe Leu Phe Val Ala Leu Val Ile Met Phe Trp Leu Leu Ile Ala <210> 2 <211> 169 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 763816CD1 <400> 2 Met Asp Ile Lys Gly Gln Glu Ser Ser Ser Asp Gln Glu Gln Val Asp Val Glu Ser Ile Asp Phe Ser Lys Glu Asn Lys Met Asp Met Thr Ser Pro Glu Gln Ser Arg Asn Val Leu Gln Phe Thr Glu Glu Lys Glu Ala Phe Ile Ser Glu Glu Glu Ile Ala Lys Tyr Met Lys Arg Gly Lys Gly Lys Tyr Tyr Cys Lys Ile Cys Cys Cys Arg Ala Met Lys Lys Gly Ala Val Leu His His Leu Val Asn Lys His Asn Val His Ser Pro Tyr Lys Cys Thr Ile Cys Gly Lys Ala Phe Leu Leu Glu Ser Leu Leu Lys Asn His Val Ala Ala His Gly Gln Ser Leu Leu Lys Cys Pro Arg Cys Asn Phe Glu Ser Asn Phe Pro Arg Gly Phe Lys Lys His Leu Thr His Cys Gln Ser Arg His Asn Glu Glu Ala Asn Lys Lys Leu Met Glu Ala Leu Glu Pro Pro Leu Glu Glu Gln Gln Ile <210> 3 <211> 498 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 961184CD1 <400> 3 Met Pro Phe Leu Ser Leu His Arg Ser Pro His Gly Pro Ser Lys Leu Cys Asp Asp Pro Gln Ala Ser Leu Val Pro Glu Pro Val Pro Gly Gly Cys Gln Glu Pro Glu Glu Met Ser Trp Pro Pro Ser Gly Glu Ile Ala Ser Pro Pro Glu Leu Pro Ser Ser Pro Pro Pro Gly Leu Pro Glu Val Ala Pro Asp Ala Thr Ser Thr Gly Leu Pro Asp Thr Pro Ala Ala Pro Glu Thr Ser Thr Asn Tyr Pro Val Glu Cys Thr Glu Gly Ser Ala Gly Pro Gln Ser Leu Pro Leu Pro Ile Leu Glu Pro Val Lys Asn Pro Cys Ser Val Lys Asp Gln Thr Pro Leu Gln Leu Ser Val Glu Asp Thr Thr Ser Pro Asn Thr Lys Pro Cys Pro Pro Thr Pro Thr Thr Pro Glu Thr Ser Pro Pro Pro Pro Pro Pro Pro Pro Ser Ser Thr Pro Cys Ser Ala His Leu Thr Pro Ser Ser Leu Phe Pro Ser Ser Leu Glu Ser Ser Ser Glu Gln Lys Phe Tyr Asn Phe Val Ile Leu His Ala Arg Ala Asp Glu His Ile Ala Leu Arg Val Arg Glu Lys Leu Glu Ala Leu Gly Val Pro Asp Gly Ala Thr Phe Cys Glu Asp Phe Gln Val Pro Gly Arg Gly Glu Leu Ser Cys Leu Gln Asp Ala Ile Asp His Ser Ala Phe Ile Ile Leu Leu Leu Thr Ser Asn Phe Asp Cys Arg Leu Ser Leu His Gln Val Asn Gln Ala Met Met Ser Asn Leu Thr Arg Gln Gly Ser Pro Asp Cys Val Ile Pro Phe Leu Pro Leu Glu Ser Ser Pro Ala Gln Leu Ser Ser Asp Thr Ala Ser Leu Leu Ser Gly Leu Val Arg Leu Asp Glu His Ser Gln Ile Phe Ala Arg Lys Val Ala Asn Thr Phe Lys Pro His Arg Leu Gln Ala Arg Lys Ala Met Trp Arg Lys Glu Gln Asp Thr Arg Ala Leu Arg Glu Gln Ser Gln His Leu Asp Gly Glu Arg Met Gln Ala Ala Ala Leu Asn Ala Ala Tyr Ser Ala Tyr Leu Gln Ser Tyr Leu Ser Tyr Gln Ala Gln Met Glu Gln Leu Gln Val Ala Phe Gly Ser His Met Ser Phe Gly Thr Gly Ala Pro Tyr Gly Ala Arg Met Pro Phe Gly Gly Gln Val Pro Leu Gly Ala Pro Pro Pro Phe Pro Thr Trp Pro Gly Cys Pro Gln Pro Pro Pro Leu His Ala Trp Gln Ala Gly Thr Pro Pro Pro Pro Ser Pro Gln Pro Ala Ala Phe Pro Gln Ser Leu Pro Phe Pro Gln Ser Pro Ala Phe Pro Thr Ala Ser Pro Ala Pro Pro Gln Ser Pro Gly Leu Gln Pro Leu Ile Ile His His Ala Gln Met Val Gln Leu Gly Leu Asn Asn His Met Trp Asn Gln Arg Gly Ser Gln Ala Pro Glu Asp Lys Thr Gln Glu Ala Glu <210> 4 <211> 615 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 1255525CD1 <400> 4 Met Leu Leu Gly Phe Leu Lys Leu Gln Gln Lys Trp Ser Tyr Glu Asp Lys Asp Gln Arg Pro Leu Asn Gly Phe Lys Asp Gln Leu Cys Ser Leu Val Phe Met Ala Leu Thr Asp Pro Ser Thr Gln Leu Gln Leu Val Gly Ile Arg Thr Leu Thr Val Leu Gly Ala Gln Pro Asp Leu Leu Ser Tyr Glu Asp Leu Glu Leu Ala Val Gly His Leu Tyr Arg Leu Ser Phe Leu Lys Glu Asp Ser Gln Ser Cys Arg Val Ala Ala Leu Glu Ala Ser Gly Thr Leu Ala Ala Leu Tyr Pro Val Ala Phe Ser Ser His Leu Val Pro Lys Leu Ala Glu Glu Leu Arg Val Gly Glu Ser Asn Leu Thr Asn Gly Asp Glu Pro Thr Gln Cys Ser Arg His Leu Cys Cys Leu Gln Ala Leu Ser Ala Val Ser Thr His Pro Ser Ile Val Lys Glu Thr Leu Pro Leu Leu Leu Gln His Leu Trp Gln Val Asn Arg Gly Asn Met Val Ala Gln Ser Ser Asp Val 170 175 ~ 180 Ile Ala Val Cys Gln Ser Leu Arg Gln Met Ala Glu Lys Cys Gln Gln Asp Pro Glu Ser Cys Trp Tyr Phe His Gln Thr Ala Ile Pro Cys Leu Leu Ala Leu Ala Val Gln Ala Ser Met Pro Glu Lys Glu Pro Ser Val Leu Arg Lys Val Leu Leu Glu Asp Glu Val Leu Ala Ala Met Val Ser Val Ile Gly Thr Ala Thr Thr His Leu Ser Pro Glu Leu Ala Ala Gln Ser Val Thr His Ile Val Pro Leu Phe Leu Asp Gly Asn Val Ser Phe Leu Pro Glu Asn Ser Phe Pro Ser Arg Phe Gln Pro Phe Gln Asp Gly Ser Ser Gly Gln Arg Arg Leu Ile Ala Leu Leu Met Ala Phe Val Cys Ser Leu Pro Arg Asn Val Glu Ile Pro Gln Leu Asn Gln Leu Met Arg Glu Leu Leu Glu Leu Ser Cys Cys His Ser Cys Pro Phe Ser Ser Thr Ala Ala Ala Lys Cys Phe Ala Gly Leu Leu Asn Lys His Pro Ala Gly Gln Gln Leu Asp Glu Phe Leu Gln Leu Ala Val Asp Lys Val Glu Ala Gly Leu Gly Ser Gly Pro Cys Arg Ser Gln Ala Phe Thr Leu Leu Leu Trp Val Thr Lys Ala Leu Val Leu Arg Tyr His Pro Leu Ser Ser Cys Leu Thr Ala Arg Leu Met Gly Leu Leu Ser Asp Pro Glu Leu Gly Pro Ala Ala Ala Asp Gly Phe Ser Leu Leu Met Ser Asp Cys Thr Asp Val Leu Thr Arg Ala Gly His Ala Glu Val Arg Ile Met Phe Arg Gln Arg Phe Phe Thr Asp Asn Val Pro Ala Leu Val Gln Gly Phe His Ala Ala Pro Gln Asp Val Lys Pro Asn Tyr Leu Lys Gly Leu Ser His Val Leu Asn Arg Leu Pro Lys Pro Val Leu Leu Pro Glu Leu Pro Thr Leu Leu Ser Leu Leu Leu Glu Ala Leu Ser Cys Pro Asp Cys Val Val Gln Leu Ser Thr Leu Ser Cys Leu Gln Pro Leu Leu Leu Glu Ala Pro Gln Val Met Ser Leu His Val Asp Thr Leu Val Thr Lys Phe Leu Asn Leu Ser Ser Ser Pro Ser Met Ala Val Arg Ile Ala Ala Leu Gln Cys Met His Ala Leu Thr Arg Leu Pro Thr Pro Val Leu Leu Pro Tyr Lys Pro Gln Val Ile Arg Ala Leu Ala Lys Pro Leu Asp Asp Lys Lys Arg Leu Val Arg Lys Glu Ala Val Ser Ala Arg Gly Glu Trp Phe Leu Leu Gly Ser Pro Gly Ser <210> 5 <211> 120 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1297447CD1 <400> 5 Met Ile Thr Ser Gln Gly Ser Val Ser Phe Arg Asp Val Thr Val Gly Phe Thr Gln Glu Glu Trp Gln His Leu Asp Pro Ala Gln Arg Thr Leu Tyr Arg Asp Val Met Leu Glu Asn Tyr Ser His Leu Val Ser Val Gly Tyr Cys Ile Pro Lys Pro Glu Val Ile Leu Lys Leu Glu Lys Gly Glu Glu Pro Trp Ile Leu Glu Glu Lys Phe Pro Ser Gln Ser His Leu Gly Glu Leu Val Cys Ala Arg Trp Asn Leu Lys Glu Gly Arg Ser Gln Arg Val Ser Leu Asp Asn Lys Thr Ile Glu Met Phe Phe Arg Asn His Val Leu Glu Ala Pro Asp Leu Trp Lys <210> 6 <211> 543 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1441094CD1 <400> 6 Met Met Phe Gly Gly Tyr Glu Thr Ile Glu Ala Tyr Glu Asp Asp Leu Tyr Arg Asp Glu Ser Ser Ser Glu Leu Ser Val Asp Ser Glu Val Glu Phe Gln Leu Tyr Ser Gln Ile His Tyr Ala Gln Asp Leu Asp Asp Val Ile Arg Glu Glu Glu His Glu Glu Lys Asn Ser Gly Asn Ser Glu Ser Ser Ser Ser Lys Pro Asn Gln Lys Lys Leu Ile Val Leu Ser Asp Ser Glu Val Ile Gln Leu Ser Asp Gly Ser Glu Val Ile Thr Leu Ser Asp Glu Asp Ser Ile Tyr Arg Cys Lys Gly Lys Asn Val Arg Val Gln Ala Gln Glu Asn Ala His Gly Leu Ser Ser Ser Leu Gln Ser Asn Glu Leu Val Asp Lys Lys Cys Lys Ser Asp Ile Glu Lys Pro Lys Ser Glu Glu Arg Ser Gly Val Ile Arg Glu Val Met Ile Ile Glu Val Ser Ser Ser Glu Glu Glu Glu Ser Thr Ile Ser Glu Gly Asp Asn Val Glu Ser Trp Met Leu Leu Gly Cys Glu Val Asp Asp Lys Asp Asp Asp Ile Leu Leu Asn Leu Val Gly Cys Glu Asn Ser Val Thr Glu Gly Glu Asp Gly Ile Asn Trp Ser Ile Ser Asp Lys Asp Ile Glu Ala Gln Ile Ala Asn Asn Arg Thr Pro Gly Arg Trp Thr Gln Arg Tyr Tyr Ser Ala Asn Lys Asn 5/5~

Ile Ile Cys Arg Asn Cys Asp Lys Arg Gly His Leu Ser Lys Asn Cys Pro Leu Pro Arg Lys Val Arg Arg Cys Phe Leu Cys Ser Arg Arg Gly His Leu Leu Tyr Ser Cys Pro Ala Pro Leu Cys Glu Tyr Cys Pro Val Pro Lys Met Leu Asp His Ser Cys Leu Phe Arg His Ser Trp Asp Lys Gln Cys Asp Arg Cys His Met Leu Gly His Tyr Thr Asp Ala Cys Thr Glu Ile Trp Arg Gln Tyr His Leu Thr Thr Lys Pro Gly Pro Pro Lys Lys Pro Lys Thr Pro Ser Arg Pro Ser Ala Leu Ala Tyr Cys Tyr His Cys Ala Gln Lys Gly His Tyr Gly His Glu Cys Pro Glu Arg Glu Val Tyr Asp Pro Ser Pro Val Ser Pro Phe Ile Cys Tyr Tyr Asp Asp Lys Tyr Glu Ile Gln Glu Arg Glu Lys Arg Leu Lys Gln Lys Ile Lys Val Leu Lys Lys Asn Gly Val Ile Pro Glu Pro Ser Lys Leu Pro Tyr Ile Lys Ala Ala Asn Glu Asn Pro His His Asp Ile Arg Lys Gly Arg Ala Ser Trp Lys Ser Asn Arg Trp Pro Gln Glu Asn Lys Glu Thr Gln Lys Glu Met Lys Asn Lys Asn Arg Asn Trp Glu Lys His Arg Lys Ala Asp Arg His Arg Glu Val Asp Glu Asp Phe Pro Arg Gly Pro Lys Thr Tyr Ser Ser Pro Gly Ser Phe Lys Thr Gln Lys Pro Ser Lys Pro Phe His Arg Ser Ser His Tyr His Thr Ser Arg Glu Asp Lys Ser Pro Lys Glu Gly Lys Arg Gly Lys Gln Lys Lys Lys Glu Arg Cys Trp Glu Asp Asp Asp Asn Asp Asn Leu Phe Leu Ile Lys Gln Arg Lys Lys Lys Ser <210> 7 <211> 633 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 1479382CD1 <400> 7 Met Tyr Ser Thr Arg Lys Asn Cys Ala Gln Leu Trp Leu Gly Pro Ala Ala Phe Ile Asn His Asp Cys Arg Pro Asn Cys Lys Phe Val Ser Thr Gly Arg Asp Thr Ala Cys Val Lys Ala Leu Arg Asp Ile Glu Pro Gly Glu Glu Ile Ser Cys Tyr Tyr Gly Asp Gly Phe Phe Gly Glu Asn Asn Glu Phe Cys Glu Cys Tyr Thr Cys Glu Arg Arg Gly Thr Gly Ala Phe Lys Ser Arg Val Gly Leu Pro Ala Pro Ala Pro Val Ile Asn Ser Lys Tyr Gly Leu Arg Glu Thr Asp Lys Arg Leu Asn Arg Leu Lys Lys Leu Gly Asp Ser Ser Lys Asn Ser Asp Ser Gln Ser Val Ser Ser Asn Thr Asp Ala Asp Thr Thr Gln Glu Lys Asn Asn Ala Thr Ser Asn Arg Lys Ser Ser Val Gly Val Lys Lys Asn Ser Lys Ser Arg Thr Leu Thr Arg Gln Ser Met Ser Arg Ile Pro Ala Ser Ser Asn Ser Thr Ser Ser Lys Leu Thr His Ile Asn Asn Ser Arg Val Pro Lys Lys Leu Lys Lys Pro Ala Lys Pro Leu Leu Ser Lys Ile Lys Leu Arg Asn His Cys Lys Arg Leu Glu Gln Lys Asn Ala Ser Arg Lys Leu Glu Met Gly Asn Leu Val Leu Lys Glu Pro Lys Val Val Leu Tyr Lys Asn Leu Pro Ile Lys Lys Asp Lys Glu Pro Glu Gly Pro Ala Gln Ala Ala Val Ala Ser Gly Cys Leu Thr Arg His Ala Ala Arg Glu His Arg Gln Asn Pro Val Arg Gly Ala His Ser Gln Gly Glu Ser Ser Pro Cys Thr Tyr Ile Thr Arg Arg Ser Val Arg Thr Arg Thr Asn Leu Lys Glu Ala Ser Asp Ile Lys Leu Glu Pro Asn Thr Leu Asn Gly Tyr Lys Ser Ser Val Thr Glu Pro Cys Pro Asp Ser Gly Glu Gln Leu Gln Pro Ala Pro Val Leu Gln Glu Glu Glu Leu Ala His Glu Thr Ala Gln Lys Gly Glu Ala Lys Cys His Lys Ser Asp Thr Gly Met Ser Lys Lys Lys Ser Arg Gln Gly Lys Leu Val Lys Gln Phe Ala Lys Ile Glu Glu Ser Thr Pro Val His Asp Ser Pro Gly Lys Asp Asp Ala Val Pro Asp Leu Met Gly Pro His Ser Asp Gln Gly Glu His Ser Gly Thr Val Gly Val Pro Val Ser Tyr Thr Asp Cys Ala Pro Ser Pro Val Gly Cys Ser Val Val Thr Ser Asp Ser Phe Lys Thr Lys Asp Ser Phe Arg Thr Ala Lys Ser Lys Lys Lys Arg Arg Ile Thr Arg Tyr Asp Ala Gln Leu Ile Leu Glu Asn Asn Ser Gly Ile Pro Lys Leu Thr Leu Arg Arg Arg His Asp Ser Ser Ser Lys Thr Asn Asp Gln Glu Asn Asp Gly Met Asn Ser Ser Lys Ile Ser Ile Lys Leu Ser Lys Asp His Asp Asn Asp Asn Asn Leu Tyr Val Ala Lys Leu Asn Asn Gly Phe Asn Ser Gly Ser Gly Ser Ser Ser Thr Lys Leu Lys Ile Gln Leu Lys Arg Asp Glu Glu Asn Arg Gly Ser Tyr Thr Glu Gly Leu His Glu Asn Gly Val Cys Cys Ser Asp Pro Leu Ser Leu Leu Glu Ser Arg Met Glu Val Asp Asp Tyr Ser Gln Tyr Glu Glu Glu Ser Thr Asp Asp Ser Ser Ser Ser Glu Gly Asp Glu Glu Glu Asp Asp Tyr Asp Asp Asp Phe Glu Asp Asp Phe Ile Pro Leu Pro Pro Ala Lys Arg Leu Arg Leu Ile Val Gly Lys Asp Ser Ile Asp Ile Asp Ile Ser Ser Arg Arg Arg Glu Asp Gln Ser Leu Arg Leu Asn Ala <210> 8 <211> 312 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1503131CD1 <400> 8 Met Ser Ala Phe Ser Glu Ala Ala Leu Glu Lys Lys Leu Ser Glu Leu Ser Asn Ser Gln Gln Ser Val Gln Thr Leu Ser Leu Trp Leu Ile His His Arg Lys His Ser Arg Pro Ile Val Thr Val Trp Glu Arg Glu Leu Arg Lys Ala Lys Pro Asn Arg Lys Leu Thr Phe Leu Tyr Leu Ala Asn Asp Val Ile Gln Asn Ser Lys Arg Lys Gly Pro Glu Phe Thr Lys Asp Phe Ala Pro Val Ile Val Glu Ala Phe Lys His Val Ser Ser Glu Thr Asp Glu Ser Cys Lys Lys His Leu Gly Arg Val Leu Ser Ile Trp Glu Glu Arg Ser Val Tyr Glu Asn Asp Val Leu Glu Gln Leu Lys Gln Ala Leu Tyr Gly Asp Lys Lys Pro Arg Lys Arg Thr Tyr Glu Gln Ile Lys Val Asp Glu Asn Glu Asn Cys Ser Ser Leu Gly Ser Pro Ser Glu Pro Pro Gln Thr Leu Asp Leu Val Arg Ala Leu Gln Asp Leu Glu Asn Ala Ala Ser Gly Asp Ala Ala Val His Gln Arg Ile Ala Ser Leu Pro Val Glu Val Gln Glu Val Ser Leu Leu Asp Lys Ile Thr Asp Lys Glu Ser Gly Glu Arg Leu Ser Lys Met Val Glu Asp Ala Cys Met Leu Leu Ala Asp Tyr Asn Gly Arg Leu Ala Ala Glu Ile Asp Asp Arg Lys Gln Leu Thr Arg Met Leu Ala Asp Phe Leu Arg Cys Gln Lys Glu Ala Leu Ala Glu Lys Glu His Lys Leu Glu Glu Tyr Lys Arg Lys Leu Ala Arg Val Ser Leu Val Arg Lys Glu Leu Arg Ser Arg Ile Gln Ser Leu Pro Asp Leu Ser Arg Leu Pro Asn Val Thr Gly Ser His Met His Leu Pro Phe Ala Gly Asp Ile Tyr Ser Glu Asp <210> 9 <211> 377 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1594803CD1 8/S~

<400> 9 Met Phe Asn Gly Gly Met Ala Thr Thr Ser Thr Glu Ile Glu Leu Pro Asp Val Glu Pro Ala Ala Phe Leu Ala Leu Leu Lys Phe Leu Tyr Ser Asp Glu Val Gln Ile Gly Pro Glu Thr Val Met Thr Thr Leu Tyr Thr Ala Lys Lys Tyr Ala Val Pro Ala Leu Glu Ala His Cys Val Glu Phe Leu Lys Lys Asn Leu Arg Ala Asp Asn Ala Phe Met Leu Leu Thr Gln Ala Arg Leu Phe Asp Glu Pro Gln Leu Ala Ser Leu Cys Leu Glu Asn Ile Asp Lys Asn Thr Ala Asp Ala Ile Thr Ala Glu Gly Phe Thr Asp Ile Asp Leu Asp Thr Leu Val Ala Val Leu Glu Arg Asp Thr Leu Gly Ile Arg Glu Val Arg Leu Phe Asn Ala Val Val Arg Trp Ser Glu Ala Glu Cys Gln Arg Gln Gln Leu Gln Val Thr Pro Glu Asn Arg Arg Lys Val Leu Gly Lys Ala Leu Gly Leu Ile Arg Phe Pro Leu Met Thr Ile Glu Glu Phe Ala Ala Gly Pro Ala Gln Ser Gly Ile Leu Val Asp Arg Glu Val Val Ser Leu Phe Leu His Phe Thr Val Asn Pro Lys Pro Arg Val Glu Phe Ile Asp Arg Pro Arg Cys Cys Leu Arg Gly Lys Glu Cys Ser Ile Asn Arg Phe Gln Gln Val Glu Ser Arg Trp Gly Tyr Ser Gly Thr Ser Asp Arg Ile Arg Phe Ser Val Asn Lys Arg Ile Phe Val Val Gly Phe Gly Leu Tyr Gly Ser Ile His Gly Pro Thr Asp Tyr Gln Val Asn Ile Gln Ile Ile His Thr Asp Ser Asn Thr Val Leu Gly Gln Asn Asp Thr Gly Phe Ser Cys Asp Gly Ser Ala Ser Thr Phe Arg Val Met Phe Lys Glu Pro Val Glu Val Leu Pro Asn Val Asn Tyr Thr Ala Cys Ala Thr Leu Lys Gly Pro Asp Ser His Tyr Gly Thr Lys Gly Leu Arg Lys Val Thr His Glu Ser Pro Thr Thr Gly Ala Lys Thr Cys Phe Thr Phe Cys Tyr Ala Ala Gly Asn Asn Asn Gly Thr Ser Val Glu Asp Gly Gln Ile Pro Glu Val Ile Phe Tyr Thr <210> 10 <211> 170 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 1736129CD1 <400>

Met Glu Pro Pro Glu Glu Asn Lys Gln Gln Asp Asp Asn Met Ser Pro Lys Arg Pro Gln Ser Pro Gly Asn Ile Cys Glu Ser Gly His Leu Gly Ala Pro Lys Cys Thr Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala Leu Ile Thr His Gln Arg Ser His Gly Pro Ala Ala Lys Pro Thr Leu Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Arg Arg His Arg Gln Met His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Glu Cys Gly Gln Asp Phe Ala Gln Glu Ala Gly Leu His Gln His Tyr Ile Arg His Ala Arg Gly Glu Leu <210> 11 <211> 160 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 1874312CD1 <400> 11 Met Ala Arg Thr Lys Gln Thr Ala Arg Lys Ser Thr Gly Gly Lys Ala Pro Arg Lys Gln Leu Ala Thr Lys Ala Ala Arg Lys Ser Ala Pro Ala Thr Gly Gly Val Lys Lys Pro His Arg Tyr Arg Pro Gly Thr Val Ala Leu Arg Glu Ile Arg Arg Tyr Gln Lys Ser Thr Glu Leu Leu Ile Arg Lys Leu Pro Phe Gln Arg Leu Val Arg Glu Ile Ala Gln Asp Phe Lys Thr Asp Leu Arg Phe Gln Ser Ser Ala Val Met Ala Leu Gln Glu Ala Cys Glu Ala Tyr Leu Val Gly Leu Phe Glu Asp Thr Asn Leu Cys Gly Ile Gln Arg Gln Ala Arg His Tyr His Ala Gln Gly His Pro Thr His Pro Pro Ala Ser Ala Glu Glu Arg Ala Val Ile Thr Val Gly Leu Ser Cys Arg Ser Lys Gln Arg Val Phe Phe Arg Ala Thr Thr Phe Ser Lys 155 160.
<210> 12 <211> 219 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 1969301CD1 <400> 12 Met Asn Arg Leu Phe Gly Lys Ala Lys Pro Lys Ala Pro Pro Pro Ser Leu Thr Asp Cys Ile Gly Thr Val Asp Ser Arg Ala Glu Ser Ile Asp Lys Lys Ile Ser Arg Leu Asp Ala Glu Leu Val Lys Tyr Lys Asp Gln Ile Lys Lys Met Arg Glu Gly Pro Ala Lys Asn Met Val Lys Gln Lys Ala Leu Arg Val Leu Lys Gln Lys Arg Met Tyr Glu Gln Gln Arg Asp Asn Leu Ala Gln Gln Ser Phe Asn Met Glu Gln Ala Asn Tyr Thr Ile Gln Ser Leu Lys Asp Thr Lys Thr Thr Val Asp Ala Met Lys Leu Gly Val Lys Glu Met Lys Lys Ala Tyr Lys Gln Val Lys Ile Asp Gln Ile Glu Asp Leu Gln Asp Gln Leu Glu Asp Met Met Glu Asp Ala Asn Glu Ile Gln Glu Ala Leu Ser Arg Ser Tyr Gly Thr Pro Glu Leu Asp Glu Asp Asp Leu Glu Ala Glu Leu Asp Ala Leu Gly Asp Glu Leu Leu Ala Asp Glu Asp Ser Ser Tyr Leu Asp Glu Ala Ala Ser Ala Pro Ala Ile Pro Glu Gly Val Pro Thr Asp Thr Lys Asn Lys Asp Gly Val Leu Val Asp Glu Phe Gly Leu Pro Gln Ile Pro Ala Ser <210> 13 <211> 142 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 1986873CD1 <400> 13 Met Asp Met Thr Ser Pro Glu Gln Ser Arg Asn Val Leu Gln Phe Thr Glu Glu Lys Glu Ala Phe Ile Ser Glu Glu Glu Ile Ala Lys Tyr Met Lys Arg Gly Lys Gly Lys Tyr Tyr Cys Lys Ile Cys Cys Cys Arg Ala Met Lys Lys Gly Ala Val Leu His His Leu Val Asn Lys His Asn Val His Ser Pro Tyr Lys Cys Thr Ile Cys Gly Lys Ala Phe Leu Leu Glu Ser Leu Leu Lys Asn His Val Ala Ala His Gly Gln Ser Leu Leu Lys Cys Pro Arg Cys Asn Phe Glu Ser Asn Phe Pro Arg Gly Phe Lys Lys His Leu Thr His Cys Gln Ser Arg His Asn Glu Glu Ala Asn Lys Lys Leu Met Glu Ala Leu Glu Pro Pro Leu Glu Glu Gln Gln Ile <210> 14 <211> 524 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2010820CD1 <400> 14 Met Ala Glu Ile Lys Val Lys Leu Ile Glu Ala Lys Glu Ala Leu Glu Asn Cys Ile Thr Leu Gln Asp Phe Asn Arg Ala Ser Glu Leu Lys Glu Glu Ile Lys Ala Leu Glu Asp Ala Arg Ile Asn Leu Leu Lys Glu Thr Glu Gln Leu Glu Ile Lys Glu Val His Ile Glu Lys Asn Asp Ala Glu Thr Leu Gln Lys Cys Leu Ile Leu Cys Tyr Glu Leu Leu Lys Gln Met Ser Ile Ser Thr Gly Leu Ser Ala Thr Met Asn Gly Ile Ile Glu Ser Leu Ile Leu Pro Gly Ile Ile Ser Ile His Pro Val Val Arg Asn Leu Ala Val Leu Cys Leu Gly Cys Cys Gly Leu Gln Asn Gln Asp Phe Ala Arg Lys His Phe Val Leu Leu Leu Gln Val Leu Gln Ile Asp Asp Val Thr Ile Lys Ile Ser Ala Leu Lys Ala Ile Phe Asp Gln Leu Met Thr Phe Gly Ile Glu Pro Phe Lys Thr Lys Lys Ile Lys Thr Leu His Cys Glu Gly Thr Glu Ile Asn Ser Asp Asp Glu Gln Glu Ser Lys Glu Val Glu Glu Thr Ala Thr Ala Lys Asn Val Leu Lys Leu Leu Ser Asp Phe Leu Asp Ser Glu Val Ser Glu Leu Arg Thr Gly Ala Ala Glu Gly Leu Ala Lys Leu Met Phe Ser Gly Leu Leu Val Ser Ser Arg Ile Leu Ser Arg Leu Ile Leu Leu Trp Tyr Asn Pro Val Thr Glu Glu Asp Val Gln Leu Arg His Cys Leu Gly Val Phe Phe Pro Val Phe Ala Tyr Ala Ser Arg Thr Asn Gln Glu Cys Phe Glu Glu Ala Phe Leu Pro Thr Leu Gln Thr Leu Ala Asn Ala Pro Ala Ser Ser Pro Leu Ala Glu Ile Asp Ile Thr Asn Val Ala Glu Leu Leu Val Asp Leu Thr Arg Pro Ser Gly Leu Asn Pro Gln Ala Lys Thr Ser Gln Asp Tyr Gln Ala Leu Thr Val His Asp Asn Leu Ala Met Lys Ile Cys Asn Glu Ile Leu Thr Ser Pro Cys Ser Pro Glu Ile Arg Val Tyr Thr Lys Ala Leu Ser Ser Leu Glu Leu Ser Ser His Leu Ala Lys Asp Leu Leu Val Leu Leu Asn Glu Ile Leu Glu Gln Val Lys Asp Arg Thr Cys Leu Arg Ala Leu Glu Lys Ile Lys Ile Gln Leu Glu Lys Gly Asn Lys Glu Phe Gly Asp Gln Ala Glu Ala Ala Gln Asp Ala Thr Leu Thr Thr Thr Thr Phe Gln Asn Glu Asp Glu Lys Asn Lys Glu Val Tyr Met Thr Pro Leu Arg Gly Val Lys Ala Thr Gln Ala Ser Lys Ser Thr Gln Leu Lys Thr Asn Arg Gly Gln Arg Lys Val Thr Val Ser Ala Arg Thr Asn Arg Arg Cys Gln Thr Ala Glu Ala Asp Ser Glu Ser Asp His Glu Val Pro Glu Pro Glu Ser Glu Met Lys Leu Arg Arg Ala Lys Thr Ala Ala Leu Glu Lys Met Pro Arg Ser Asn Ala Gln Phe Leu Asn Glu Asp Leu Ser Lys Leu Leu <210>15 <211>500 <212>PRT

<213>Homo Sapiens <220>

<221>misc_feature <223>Incyte 2013818CD1 ID
No:

<400> 15 Met Pro Gly Gln Ser Val Arg Lys Lys Thr Arg Lys Ala Lys Glu Ile Ser Glu Ala Ser Glu Asn Ile Tyr Ser Asp Val Arg Gly Leu Ser Gln Asn Gln Gln Ile Pro Gln Asn Ser Val Thr Pro Arg Arg Gly Arg Arg Lys Lys Glu Val Asn Gln Asp Ile Leu Glu Asn Thr Ser Ser Val Glu Gln Glu Leu Gln Ile Thr Thr Gly Arg Glu Ser Lys Arg Leu Lys Ser Ser Gln Leu Leu Glu Pro Ala Val Glu Glu Thr Thr Lys Lys Glu Val Lys Val Ser Ser Val Thr Lys Arg Thr Pro Arg Arg Ile Lys Arg Ser Val Glu Asn Gln Glu Ser Val Glu Ile Ile Asn Asp Leu Lys Val Ser Thr Val Thr Ser Pro Ser Arg Met Ile Arg Lys Leu Arg Ser Thr Asn Leu Asp Ala Ser Glu Asn Thr Gly Asn Lys Gln Asp Asp Lys Ser Ser Asp Lys Gln Leu Arg Ile Lys His Val Arg Arg Val Arg Gly Arg Glu Val Ser Pro Ser Asp Val Arg Glu Asp Ser Asn Leu Glu Ser Ser Gln Leu Thr Val Gln Ala Glu Phe Asp Met Ser Ala Ile Pro Arg Lys Arg Gly Arg Pro Arg Lys Ile Asn Pro Ser Glu Asp Val Gly Ser Lys Ala Val Lys Glu Glu Arg Ser Pro Lys Lys Lys Glu Ala Pro Ser Ile Arg Arg Arg Ser Thr Arg Asn Thr Pro Ala Lys Ser Glu Asn Val Asp Val Gly Lys Pro Ala Leu Gly Lys Ser Ile Leu Val Pro Asn Glu Glu Leu Ser Met Val Met Ser Ser Lys Lys Lys Leu Thr Lys Lys Thr Glu Ser Gln Ser Gln Lys Arg Ser Leu His Ser Val Ser Glu Glu Arg Thr Asp Glu Met Thr His Lys Glu Thr Asn Glu Gln Glu Glu Arg Leu Leu Ala Thr Ala Ser Phe Thr Lys Ser Ser Arg Ser Ser Arg Thr Arg Ser Ser Lys Ala Ile Leu Leu Pro Asp Leu Ser Glu Pro Asn Asn Glu Pro Leu Phe Ser Pro Ala Ser Glu Val Pro Arg Lys Ala Lys Ala Lys Lys Ile Glu Val Pro Ala Gln Leu Lys Glu Leu Val Ser Asp Leu Ser Ser Gln Phe Val Ile Ser Pro Pro Ala Leu Arg Ser Arg Gln Lys Asn Thr Ser Asn Lys Asn Lys Leu Glu Asp Glu Leu Lys Asp Asp Ala Gln Ser Val Glu Thr Leu Gly Lys Pro Lys Ala Lys Arg Ile Arg Thr Ser Lys Thr Lys Gln Ala Ser Lys Asn Thr Glu Lys Glu Ser Ala Trp Ser Pro Pro Pro Ile Glu Ile Arg Leu Ile Ser Pro Leu Ala Ser Pro Ala Asp Gly Val Lys Ser Lys Pro Arg Lys Thr Thr Glu Val Thr Gly Thr Gly Leu Gly Arg Asn Arg Lys Lys Leu Ser Ser Tyr Pro Lys Gln Ile Leu Arg Arg Lys Met Leu <210> 16 <211> 119 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2302032CD1 <400> 16 Met Asn Ala Ser Ser Glu Gly Glu Ser Phe Ala Gly Ser Val Gln Ile Pro Gly Gly Thr Thr Val Leu Val Glu Leu Thr Pro Asp Ile His Ile Cys Gly Ile Cys Lys Gln Gln Phe Asn Asn Leu Asp Ala Phe Val Ala His Lys Gln Ser Gly Cys Gln Leu Thr Gly Thr Ser Ala Ala Ala Pro Ser Thr Val Gln Phe Val Ser Glu Glu Thr Val Pro Ala Thr Gln Thr Gln Thr Thr Thr Arg Thr Ile Thr Ser Glu Thr Gln Thr Ile Thr Gly Thr Ala Gly Ala Trp Gly Ser Arg Pro Glu Leu Ala Trp Leu Cys Leu Lys His Val His Gly Thr Cys <210> 17 <211> 544 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2326109CD1 <400> 17 Met Ile His Val Arg Arg His Glu Thr Arg Arg Asn Ser Lys Ser His Val Pro Glu Gln Lys Ser Arg Val Asp Trp Arg Arg Thr Lys Arg Ser Ser Ile Ser Gln Leu Leu Asp Ser Asp Glu Glu Leu Asp Ser Glu Glu Phe Asp Ser Asp Glu Glu Leu Asp Ser Asp Glu Ser Phe Glu Asn Asp Glu Glu Leu Asp Ser Asn Lys Gly Pro Asp Cys Asn Lys Thr Pro Gly Ser Glu Arg Glu Leu Asn Leu Ser Lys Ile Gln Ser Glu Gly Asn Asp Ser Lys Cys Leu Ile Asn Ser Gly Asn Gly Ser Thr Tyr Glu Glu Glu Thr Asn Lys Ile Lys His Arg Asn Ile Asp Leu Gln Asp Gln Glu Lys His Leu Ser Gln Glu Asp Asn Asp Leu Asn Lys Gln Thr Gly Gln Ile Ile Glu Asp Asp Gln Glu Lys His Leu Ser Gln Glu Asp Asn Asp Leu Asn Lys Gln Thr Gly Gln Ile Ile Glu Asp Asp Leu Glu Glu Glu Asp Ile Lys Arg Gly Lys Arg Lys Arg Leu Ser Ser Val Met Cys Asp Ser Asp Glu Ser Asp Asp Ser Asp Ile Leu Val Arg Lys Val Gly Val Lys Arg Pro Arg Arg Val Val Glu Asp Glu Gly Ser Ser Val Glu Met Glu Gln Lys Thr Pro Glu Lys Thr Leu Ala Ala Gln Lys Arg Glu Lys Leu Gln Lys Leu Lys Glu Leu Ser Lys Gln Arg Ser Arg Gln Arg Arg Ser Ser Gly Arg Asp Phe Glu Asp Ser Glu Lys Glu Ser Cys Pro Ser Ser Asp Glu Val Asp Glu Glu Glu Glu Glu Asp Asn Tyr Glu Ser Asp Glu Asp Gly Asp Asp Tyr Ile Ile Asp Asp Phe Val Val Gln Asp Glu Glu Gly Asp Glu Glu Asn Lys Asn Gln Gln Gly Glu Lys Leu Thr Thr Ser Gln Leu Lys Leu Val Lys Arg Asn Ser Leu Tyr Ser Phe Ser Asp His Tyr Thr His Phe Glu Arg Val Val Lys Ala Leu Leu Ile Asn Ala Leu Asp Glu Ser Phe Leu Gly Thr Leu Tyr Asp Gly Thr Arg Gln Lys Ser Tyr Ala Lys Asp Met Leu Thr Ser Leu His Tyr Leu Asp Asn Arg Phe Val Gln Pro Arg Leu Glu Ser Leu Val Ser Arg Ser Arg Trp Lys Glu Gln Tyr Lys Glu Arg Val Glu Asn Tyr Ser Asn Val Ser Ile His Leu Lys Asn Pro Glu Asn Cys Ser Cys Gln Ala Cys Gly Leu His Arg Tyr Cys Lys Tyr Ser Val His Leu Ser Gly Glu Leu Tyr Asn Thr Arg Thr Met Gln Ile Asp Asn Phe Met Ser His Asp Lys Gln Val Phe Thr Val Gly Arg Ile Cys Ala Ser Arg Thr Arg Ile Tyr His Lys Leu Lys His Phe Lys Phe Lys Leu Tyr Gln Glu Cys Cys Thr Ile Ala Met Thr Glu Glu Val Glu Asp Glu Gln Val Lys Glu Thr Val Glu Arg Ile Phe Arg Arg Ser Lys Glu Asn Gly Trp Ile Lys Glu Lys Tyr Gly Gln Leu Glu Glu Tyr Leu Asn Phe Ala Asp Tyr Phe Gln Glu Glu Lys Phe Glu Leu <210> 18 <211> 869 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2354751CD1 <400> 18 Met Arg Trp Gly His His Leu Pro Arg Ala Ser Trp Gly Ser Gly Phe Arg Arg Ala Leu Gln Arg Pro Asp Asp Arg Ile Pro Phe Leu Ile His Trp Ser Trp Pro Leu Gln Gly Glu Arg Pro Phe Gly Pro Pro Arg Ala Phe Ile Arg His His Gly Ser Ser Val Asp Ser Ala Pro Pro Pro Gly Arg His Gly Arg Leu Phe Pro Ser Ala Ser Ala Thr Glu Ala Ile Gln Arg His Arg Arg Asn Leu Ala Glu Trp Phe Ser Arg Leu Pro Arg Glu Glu Arg Gln Phe Gly Pro Thr Phe Ala Leu Asp Thr Val His Val Asp Pro Val Ile Arg Glu Ser Thr Pro Asp Glu Leu Leu Arg Pro Pro Ala Glu Leu Ala Leu Glu His Gln Pro Pro Gln Ala Gly Leu Pro Pro Leu Ala Leu Ser Gln Leu Phe Asn Pro Asp Ala Cys Gly Arg Arg Val Gln Thr Val Val Leu Tyr Gly Thr Val Gly Thr Gly Lys Ser Thr Leu Val Arg Lys Met Val Leu Asp Trp Cys Tyr Gly Arg Leu Pro Ala Phe Glu Leu Leu Ile Pro Phe Ser Cys Glu Asp Leu Ser Ser Leu Gly Pro Ala Pro Ala Ser Leu Cys Gln Leu Val Ala Gln Arg Tyr Thr Pro Leu Lys Glu Val Leu Pro Leu Met Ala Ala Ala Gly Ser His Leu Leu Phe Val Leu His Gly Leu Glu His Leu Asn Leu Asp Phe Arg Leu Ala Gly Thr Gly Leu Cys Ser Asp Pro Glu Glu Pro Gln Glu Pro Ala Ala Ile Ile Val Asn Leu Leu Arg Lys Tyr Met Leu Pro Gln Ala Ser Ile Leu Val Thr Thr Arg Pro Ser Ala Ile Gly Arg Ile Pro Ser Lys Tyr Val Gly Arg Tyr Gly Glu Ile Cys Gly Phe Ser Asp Thr Asn Leu Gln Lys Leu Tyr Phe Gln Leu Arg Leu Asn Gln Pro Tyr Cys Gly Tyr Ala Val Gly Gly Ser Gly Val Ser Ala Thr Pro Ala Gln Arg Asp His Leu Val Gln Met Leu Ser Arg Asn Leu Glu Gly His His Gln Ile Ala Ala Ala Cys Phe Leu Pro Ser Tyr Cys Trp Leu Val Cys Ala Thr Leu His Phe Leu His Ala Pro Thr Pro Ala Gly Gln Thr Leu Thr Ser Ile Tyr Thr Ser Phe Leu Arg Leu Asn Phe Ser Gly Glu Thr Leu Asp Ser Thr Asp Pro Ser Asn Leu Ser Leu Met Ala Tyr Ala Ala Arg Thr Met Gly Lys Leu Ala Tyr Glu Gly Val Ser Ser Arg Lys Thr Tyr Phe Ser Glu Glu Asp Val Cys Gly Cys Leu Glu Ala Gly Ile Arg Thr Glu Glu Glu Phe Gln Leu Leu His Ile Phe Arg Arg Asp Ala Leu Arg Phe Phe Leu Ala Pro Cys Val Glu Pro Gly Arg Ala Gly Thr Phe Val Phe Thr Val Pro Ala Met Gln Glu Tyr Leu Ala Ala Leu Tyr Ile Val Leu Gly Leu Arg Lys Thr Thr Leu Gln Lys Val Gly Lys Glu Val Ala Glu Leu Val Gly Arg Val Gly Glu Asp Val Ser Leu Val Leu Gly Ile Met Ala Lys Leu Leu Pro Leu Arg Ala Leu Pro Leu Leu Phe Asn Leu Ile Lys Val Val Pro Arg Val Phe Gly Arg Met Val Gly Lys Ser Arg Glu Ala Val Ala Gln Ala Met Val Leu Glu Met Phe Arg Glu Glu Asp Tyr Tyr Asn Asp Asp Val Leu Asp Gln Met Gly Ala Ser Ile Leu Gly Val Glu Gly Pro Arg Arg His Pro Asp Glu Pro Pro Glu Asp Glu Val Phe Glu Leu Phe Pro Met Phe Met Gly Gly Leu Leu Ser Ala His Asn Arg Ala Val Leu Ala Gln Leu Gly Cys Pro Ile Lys Asn Leu Asp Ala Leu Glu Asn Ala Gln Ala Ile Lys Lys Lys Leu Gly Lys Leu Gly Arg Gln Val Leu Pro Pro Ser Glu Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe Gln Asn Gln Arg Phe Ser Ala Glu Val Leu Ser Ser Leu Arg Gln Leu Asn Leu Ala Gly Val Arg Met Thr Pro Val Lys Cys Thr Val Val Ala Ala Val Leu Gly Ser Gly Arg His Ala Leu Asp Glu Val Asn Leu Ala Ser Cys Gln Leu Asp Pro Ala Gly Leu Arg Thr Leu Leu Pro Val Phe Leu Arg Ala Arg Lys Leu Gly Leu Gln Leu Asn Ser Leu Gly Pro Glu Ala Cys Lys Asp Leu Arg Asp Leu Leu Leu His Asp Gln Cys Gln Ile Thr Thr Leu Arg Leu Ser Asn Asn Pro Leu Thr Glu Ala Gly Val Ala Val Leu Met Glu Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu Leu His Thr Gly Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln Leu Asp Arg Asn Arg Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly Ala Gly Asp Thr Ala Ala Leu Ala Leu Ala Arg Ala Ala Arg Glu His Pro Ser Leu Glu Leu Leu Gln <210> 19 <211> 128 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2378058CD1 <400> 19 Met Met Thr Ala Val Ser Leu Thr Thr Arg Pro Gln Glu Ser Val Ala Phe Glu Asp Val Ala Val Tyr Phe Thr Thr Lys Glu Trp Ala Ile Met Val Pro Ala Glu Arg Ala Leu Tyr Arg Asp Val Met Leu Glu Asn Tyr Glu Ala Val Ala Phe Val Val Pro Pro Thr Ser Lys Pro Ala Leu Val Ser His Leu Glu Gln Gly Lys Glu Ser Cys Phe Thr Gln Pro Gln Gly Val Leu Ser Arg Asn Asp Trp Arg Ala Gly Trp Ile Gly Tyr Leu Glu Leu Arg Arg Tyr Thr Tyr Leu Ala Lys Ala Val Leu Arg Arg Ile Val Ser Lys Ile Phe Arg Asn Arg Gln Cys Trp Glu Asp Arg Arg Lys Ala <210> 20 <211> 301 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2595747CD1 <400> 20 Met Leu Leu Thr Gln Ala Arg Leu Phe Asp Glu Pro Gln Leu Ala Ser Leu Cys Leu Asp Thr Ile Asp Lys Ser Thr Met Asp Ala Ile Ser Ala Glu Gly Phe Thr Asp Ile Asp Ile Asp Thr Leu Cys Ala Val Leu Glu Arg Asp Thr Leu Ser Ile Arg Glu Ser Arg Leu Phe Gly Ala Val Val Arg Trp Ala Glu Ala Glu Cys Gln Arg Gln Gln Leu Pro Val Thr Phe Gly Asn Lys Gln Lys Val Leu Gly Lys Ala Leu Ser Leu Ile Arg Phe Pro Leu Met Thr Ile Glu Glu Phe Ala Ala Gly Pro Ala Gln Ser Gly Ile Leu Ser Asp Arg Glu Val Val Asn Leu Phe Leu His Phe Thr Val Asn Pro Lys Pro Arg Val Glu Tyr Ile Asp Arg Pro Arg Cys Cys Leu Arg Gly Lys Glu Cys Cys Ile Asn Arg Phe Gln Gln Val Glu Ser Arg Trp Gly Tyr Ser Gly Thr Ser Asp Arg Ile Arg Phe Thr Val Asn Arg Arg Ile Ser Ile Val Gly Phe Gly Leu Tyr Gly Ser Ile His Gly Pro Thr Asp Tyr Gln Val Asn Ile Gln Ile Ile Glu Tyr Glu Lys Lys Gln Thr Leu Gly Gln Asn Asp Thr Gly Phe Ser Cys Asp Gly Thr Ala Asn Thr Phe Arg Val Met Phe Lys Glu Pro Ile Glu Ile Leu Pro Asn Val Cys Tyr Thr Ala Cys Ala Thr Leu Lys Gly Pro Asp Ser His Tyr Gly Thr Lys Gly Leu Lys Lys Val Val His Glu Thr Pro Ala Ala Ser Lys Thr Val Phe Phe Phe Phe Ser Ser Pro Gly Asn Asn Asn Gly Thr Ser Ile Glu Asp Gly Gln Ile Pro Glu Ile Ile Phe Tyr Thr <210> 21 <211> 402 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2634391CD1 <400> 21 Met Ile Asp Gln Ala Ser Leu Tyr Gln Tyr Ser Pro Gln Asn Gln His Val Glu Gln Gln Pro His Tyr Thr His Lys Pro Thr Leu Glu Tyr Ser Pro Phe Pro Ile Pro Pro Gln Ser Pro Ala Tyr Glu Pro Asn Leu Phe Asp Gly Pro Glu Ser Gln Phe Cys Pro Asn Gln Ser Leu Val Ser Leu Leu Gly Asp Gln Arg Glu Ser Glu Asn Ile Ala Asn Pro Met Gln Thr Ser Ser Ser Val Gln Gln Gln Asn Asp Ala His Leu His Ser Phe Ser Met Met Pro Ser Ser Ala Cys Glu Ala Met Val Gly His Glu Met Ala Ser Asp Ser Ser Asn Thr Ser Leu Pro Phe Ser Asn Met Gly Asn Pro Met Asn Thr Thr Gln Leu Gly Lys Ser Leu Phe Gln Trp Gln Val Glu Gln Glu Glu Ser Lys Leu Ala Asn Ile Ser Gln Asp Gln Phe Leu Ser Lys Asp Ala Asp Gly Asp Thr Phe Leu His Ile Ala Val Ala Gln Gly Arg Arg Ala Leu Ser Tyr Val Leu Ala Arg Lys Met Asn Ala Leu His Met Leu Asp Ile Lys Glu His Asn Gly Gln Ser Ala Phe Gln Val Ala Val Ala Ala Asn Gln His Leu Ile Val Gln Asp Leu Val Asn Ile Gly Ala Gln Val Asn Thr Thr Asp Cys Trp Gly Arg Thr Pro Leu His Val Cys Ala Glu Lys Gly His Ser Gln Val Leu Gln Ala Ile Gln Lys Gly Ala Val Gly Ser Asn Gln Phe Val Asp Leu Glu Ala Thr Asn Tyr Asp Gly Leu Thr Pro Leu His Cys Ala Val Ile Ala His Asn Ala Val Val His Glu Leu Gln Arg Asn Gln Gln Pro His Ser Pro Glu Val Gln Glu Leu Leu Leu Lys Asn Lys Ser Leu Val Asp Thr Ile Lys Cys Leu Ile Gln Met Gly Ala Ala Val Glu Ala Lys Ala Tyr Asn Gly Asn Thr Ala Leu His Val Ala Ala Ser Leu Gln Tyr Arg Leu Thr Gln Leu Asp Ala Val Arg Leu Leu Met Arg Lys Gly Ala Asp Pro Ser Thr Arg Asn Leu Glu Asn Glu Gln Pro Val His Leu Val Pro Asp Gly Pro Val Gly Glu Gln Ile Arg Arg Ile Leu Lys Gly Lys Ser Ile Gln Gln Arg Ala Pro Pro Tyr <210> 22 <211> 254 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2637522CD1 <400> 22 Met Asn Phe Thr Val Gly Phe Lys Pro Leu Leu Gly Asp Ala His Ser Met Asp Asn Leu Glu Lys Gln Leu Ile Cys Pro Ile Cys Leu Glu Met Phe Ser Lys Pro Val Val Ile Leu Pro Cys Gln His Asn Leu Cys Arg Lys Cys Ala Asn Asp Val Phe Gln Ala Ser Asn Pro Leu Trp Gln Ser Arg Gly Ser Thr Thr Val Ser Ser Gly Gly Arg Phe Arg Cys Pro Ser Cys Arg His Glu Val Val Leu Asp Arg His Gly Val Tyr Gly Leu Gln Arg Asn Leu Leu Val Glu Asn Ile Ile Asp Ile Tyr Lys Gln Glu Ser Ser Arg Pro Leu His Ser Lys Ala Glu Gln His Leu Met Cys Glu Glu His Glu Glu Glu Lys Ile Asn Ile Tyr Cys Leu Ser Cys Glu Val Pro Thr Cys Ser Leu Cys Lys Val Phe Gly Ala His Lys Asp Cys Glu Val Ala Pro Leu Pro Thr Ile Tyr Lys Arg Gln Lys Ser Glu Leu Ser Asp Gly Ile Ala Met Leu Val Ala Gly Asn Asp Arg Val Gln Ala Val Ile Thr Gln Met Glu Glu Val Cys Gln Thr Ile Glu Asp Asn Ser Arg Arg Gln Lys Gln Leu Leu Asn Gln Arg Phe Glu Ser Leu Cys Ala Val Leu Glu Glu Arg Asn Gly Glu Leu Leu Gln Ala Leu Ala Arg Glu Gln Ala Gly Gln Ala Ser Thr Arg Ser Asp Gly Thr His Ser Gly Gln <210> 23 <211> 553 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2650980CD1 <400> 23 Met Ala Thr Asp Thr Ser Gln Gly Glu Leu Val His Pro Lys Ala Leu Pro Leu Ile Val Gly Ala Gln Leu Ile His Ala Asp Lys Leu Gly Glu Lys Val Glu Asp Ser Thr Met Pro Ile Arg Arg Thr Val Asn Ser Thr Arg Glu Thr Pro Pro Lys Ser Lys Leu Ala Glu Gly Glu Glu Glu Lys Pro Glu Pro Asp Ile Ser Ser Glu Glu Ser Val Ser Thr Val Glu Glu Gln Glu Asn Glu Thr Pro Pro Ala Thr Ser Ser Glu Ala Glu Gln Pro Lys Gly Glu Pro Glu Asn Glu Glu Lys 2~/SO

Glu Glu Asn Lys Ser Ser Glu Glu Thr Lys Lys Asp Glu Lys Asp Gln Ser Lys Glu Lys Glu Lys Lys Val Lys Lys Thr Ile Pro Ser Trp Ala Thr Leu Ser Ala Ser Gln Leu Ala Arg Ala Gln Lys Gln Thr Pro Met Ala Ser Ser Pro Arg Pro Lys Met Asp Ala Ile Leu Thr Glu Ala Ile Lys Ala Cys Phe Gln Lys Ser Gly Ala Ser Val Val Ala Ile Arg Lys Tyr Ile Ile His Lys Tyr Pro Ser Leu Glu Leu Glu Arg Arg Gly Tyr Leu Leu Lys Gln Ala Leu Lys Arg Glu Leu Asn Arg Gly Val Ile Lys Gln Val Lys Gly Lys Gly Ala Ser Gly Ser Phe Val Val Val Gln Lys Ser Arg Lys Thr Pro Gln Lys Ser Arg Asn Arg Lys Asn Arg Ser Ser Ala Val Asp Pro Glu Pro Gln Val Lys Leu Glu Asp Val Leu Pro Leu Ala Phe Thr Arg Leu Cys Glu Pro Lys Glu Ala Ser Tyr Ser Leu Ile Arg Lys Tyr Val Ser Gln Tyr Tyr Pro Lys Leu Arg Val Asp Ile Arg Pro Gln Leu Leu Lys Asn Ala Leu Gln Arg Ala Val Glu Arg Gly Gln Leu Glu Gln Ile Thr Gly Lys Gly Ala Ser Gly Thr Phe Gln Leu Lys Lys Ser Gly Glu Lys Pro Leu Leu Gly Gly Ser Leu Met Glu Tyr Ala Ile Leu Ser Ala Ile Ala Ala Met Asn Glu Pro Lys Thr Cys Ser Thr Thr Ala Leu Lys Lys Tyr Val Leu Glu Asn His Pro Gly Thr Asn Ser Asn Tyr Gln Met His Leu Leu Lys Lys Thr Leu Gln Lys Cys Glu Lys Asn Gly Trp Met Glu Gln Ile Ser Gly Lys Gly Phe Ser Gly Thr Phe Gln Leu Cys Phe Pro Tyr Tyr Pro Ser Pro Gly Val Leu Phe Pro Lys Lys Glu Pro Asp Asp Ser Arg Asp Glu Asp Glu Asp Glu Asp Glu Ser Ser Glu Glu Asp Ser Glu Asp Glu Glu Pro Pro Pro Lys Arg Arg Leu Gln Lys Lys Thr Pro Ala Lys Ser Pro Gly Lys Ala Ala Ser Val Lys Gln Arg Gly Ser Lys Pro Ala Pro Lys Val Ser Ala Ala Gln Arg Gly Lys Ala Arg Pro Leu Pro Lys Lys Ala Pro Pro Lys Ala Lys Thr Pro Ala Lys Lys Thr Arg Pro Ser Ser Thr Val Ile Lys Lys Pro Ser Gly Gly Ser Ser Lys Lys Pro Ala Thr Ser Ala Arg Lys Glu Val Lys Leu Pro Gly Lys Gly Lys Ser Thr Met Lys Lys Ser Phe Arg Val Lys Lys <210> 24 <211> 461 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2939607CD1 <400> 24 Met Asp Ala Lys Ser Leu Thr Ala Trp Ser Arg Thr Leu Val Thr Phe Lys Asp Val Phe Val Asp Phe Thr Arg Glu Glu Trp Lys Leu Leu Asp Thr Ala Gln Gln Ile Val Tyr Arg Asn Val Met Leu Glu Asn Tyr Lys Asn Leu Val Ser Leu Gly Tyr Gln Leu Thr Lys Pro Asp Val Ile Leu Arg Leu Glu Lys Gly Glu Glu Pro Trp Leu Val Glu Arg Glu Ile His Gln Glu Thr His Pro Asp Ser Glu Thr Ala Phe Glu Ile Lys Ser Ser Val Ser Ser Arg Ser Ile Phe Lys Asp Lys Gln Ser Cys Asp Ile Lys Met Glu Gly Met Ala Arg Asn Asp Leu Trp Tyr Leu Ser Leu Glu Glu Val Trp Lys Cys Arg Asp Gln Leu Asp Lys Tyr Gln Glu Asn Pro Glu Arg His Leu Arg Gln Val Ala Phe Thr Gln Lys Lys Val Leu Thr Gln Glu Arg Val Ser Glu Ser Gly Lys Tyr Gly Gly Asn Cys Leu Leu Pro Ala Gln Leu Val Leu Arg Glu Tyr Phe His Lys Arg Asp Ser His Thr Lys Ser Leu Lys His Asp Leu Val Leu Asn Gly His Gln Asp Ser Cys Ala Ser Asn Ser Asn Glu Cys Gly Gln Thr Phe Cys Gln Asn Ile His Leu Ile Gln Phe Ala Arg Thr His Thr Gly Asp Lys Ser Tyr Lys Cys Pro Asp Asn Asp Asn Ser Leu Thr His Gly Ser Ser Leu Gly Ile Ser Lys Gly Ile His Arg Glu Lys Pro Tyr Glu Cys Lys Glu Cys Gly Lys Phe Phe Ser Trp Arg Ser Asn Leu Thr Arg His Gln Leu Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Lys Glu Cys Gly Lys Ser Tyr Ser Gln Arg Ser His Leu Val Val His His Arg Ile His Thr Gly Leu Lys Pro Phe Glu Cys Lys Asp Cys Gly Lys Cys Phe Ser Arg Ser Ser His Leu Tyr Ser His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys His Asp Cys Gly Lys Ser Phe Ser Gln Ser Ser Ala Leu Ile Val His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Cys Gln Cys Gly Lys Ala Phe Ile Arg Lys Asn Asp Leu Ile Lys His Gln Arg Ile His Val Gly Glu Glu Thr Tyr Lys Cys Asn Gln Cys Gly Ile Ile Phe Ser Gln Asn Ser Pro Phe Ile Val His Gln Ile Ala His Thr Gly Glu Gln Phe Leu Thr Cys Asn Gln Cys Gly Thr Ala Leu Val Asn Thr Ser Asn Leu Ile Gly Tyr Gln Thr Asn His Ile Arg Glu Lys Ala Tyr <210> 25 <211> 159 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 3098421CD1 <400> 25 Met Asp Lys Pro Arg Lys Glu Asn Glu Glu Glu Pro Gln Ser Ala Pro Lys Thr Asp Glu Glu Arg Pro Pro Val Glu His Ser Pro Glu Lys Gln Ser Pro Glu Glu Gln Ser Ser Glu Glu Gln Ser Ser Glu Glu Glu Phe Phe Pro Glu Glu Leu Leu Pro Glu Leu Leu Pro Glu Met Leu Leu Ser Glu Glu Arg Pro Pro Gln Glu Gly Leu Ser Arg Lys Asp Leu Phe Glu Gly Arg Pro Pro Met Glu Gln Pro Pro Cys Gly Val Gly Lys His Lys Leu Glu Glu Gly Ser Phe Lys Glu Arg Leu Ala Arg Ser Arg Pro Gln Phe Arg Gly Asp Ile His Gly Arg Asn Leu Ser Asn Glu Glu Met Ile Gln Ala Ala Asp Glu Leu Glu Glu Met Lys Arg Val Arg Asn Lys Leu Met Ile Met His Trp Lys Ala Lys Arg Ser Arg Pro Tyr Pro Ile <210> 26 <211> 373 <212> PRT
<213> Homo sapiens <220>
<221> unsure <222> 368 <223> unknown, or other <220>
<221> misc_feature <223> Incyte ID No: 3296650CD1 <400> 26 Met Lys Ala Leu Phe Lys His Glu Ser Leu Gly Ser Gln Pro Leu His Asp Arg Val Leu Gln Val Pro Gly Leu Ala Gln Gly Gly Cys Cys Arg Glu Asp Ala Met Val Ala Ser Arg Leu Thr Pro Gly Ser Gln Gly Leu Leu Lys Met Glu Asp Val Ala Leu Thr Leu Thr Pro Gly Trp Thr Gln Leu Asp Ser Ser Gln Val Asn Leu Tyr Arg Asp Glu Lys Gln Glu Asn His Ser Ser Leu Val Ser Leu Gly Gly Glu Ile Gln Thr Lys Ser Arg Asp Leu Pro Pro Val Lys Lys Leu Pro Glu Lys Glu His Gly Lys Ile Cys His Leu Arg Glu Asp Ile Ala Gln Ile Pro Thr His Ala Glu Ala Gly Glu Gln Glu Gly Arg Leu Gln Arg Lys Gln Lys Asn Ala Ile Gly Ser Arg Arg His Tyr Cys Tyr Gln Thr Asn His Ile Arg Glu Lys Ala Tyr His Glu Cys Gly Lys Ser Phe Ala Gln Ser Ser Gly Leu Thr Lys His Arg Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Glu Asp Cys Gly Lys Thr Phe Ile Gly Ser Ser Ala Leu Val Ile His Gln Arg Val His Thr Gly Glu Lys Pro Tyr Glu Cys Glu Glu Cys Gly Lys Val Phe Ser His Ser Ser Asn Leu Ile Lys His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Asp Asp Cys Gly Lys Thr Phe Ser Gln Ser Cys Ser Leu Leu Glu His His Lys Ile His Thr Gly Glu Lys Pro Tyr Gln Cys Asn Met Cys Gly Lys Ala Phe Arg Arg Asn Ser His Leu Leu Arg His Gln Arg Ile His Gly Asp Lys Asn Val Gln Asn Pro Glu His Gly Glu Ser Trp Glu Ser Gln Gly Arg Thr Glu Ser Gln Trp Glu Asn Thr Glu Ala Pro Val Ser Tyr Lys Cys Asn Glu Cys Glu Arg Ser Phe Thr Arg Asn Arg Ser Leu Ile Glu His Gln Lys Ile His Thr Gly Asp Lys Pro Tyr Gln Cys Asp Thr Cys Gly Lys Gly Phe Thr Arg Thr Ser Tyr Leu Val Gln His Gln Arg Ser His Val Gly Xaa Lys Thr Leu Ser Gln <210> 27 <211> 330 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 3687719CD1 <400> 27 Met Gln Gln Gln Pro Leu Pro Gly Pro Gly Ala Pro Thr Thr Glu Pro Thr Lys Pro Pro Tyr Ser Tyr Ile Ala Leu Ile Ala Met Ala Ile Gln Ser Ser Pro Gly Gln Arg Ala Thr Leu Ser Gly Ile Tyr Arg Tyr Ile Met Gly Arg Phe Ala Phe Tyr Arg His Asn Arg Pro Gly Trp Gln Asn Ser Ile Arg His Asn Leu Ser Leu Asn Glu Cys Phe Val Lys Val Pro Arg Asp Asp Arg Lys Pro Gly Lys Gly Ser Tyr Trp Thr Leu Asp Pro Asp Cys His Asp Met Phe Glu His Gly Ser Phe Leu Arg Arg Arg Arg Arg Phe Thr Arg Gln Thr Gly Ala Glu Gly Thr Arg Gly Pro Ala Lys Ala Arg Arg Gly Pro Leu Arg Ala Thr Ser Gln Asp Pro Gly Val Pro Asn Ala Thr Thr Gly Arg Gln Cys Ser Phe Pro Pro Glu Leu Pro Asp Pro Lys Gly Leu Ser Phe Gly Gly Leu Val Gly Ala Met Pro Ala Ser Met Cys Pro Ala Thr Thr Asp Gly Arg Pro Arg Pro Pro Met Glu Pro Lys Glu Ile Ser Thr Pro Lys Pro Ala Cys Pro Gly Glu Leu Pro Val Ala Thr Ser Ser Ser Ser Cys Pro Ala Phe Gly Phe Pro Ala Gly Phe Ser Glu Ala Glu Ser Phe Asn Lys Ala Pro Thr Pro Val Leu Ser Pro Glu Ser Gly Ile Gly Ser Ser Tyr Gln Cys Arg Leu Gln Ala Leu Asn Phe Cys Met Gly Ala Asp Pro Gly Leu Glu His Leu Leu Ala Ser Ala Ala Pro Ser Pro Ala Pro Pro Thr Pro Pro Gly Ser Leu Arg Ala Pro Leu Pro Leu Pro Thr Asp His Lys Glu Pro Trp Val Ala Gly Gly Phe Pro Val Gln Gly Gly Ser Gly Tyr Pro Leu Gly Leu Thr Pro Cys Leu Tyr Arg Thr Pro Gly Met Phe Phe Phe Glu <210> 28 <211> 396 <212> PRT
<213> Homo sapiens <220>
<221> misC_feature <223> Incyte ID No: 3774188CD1 <400> 28 Met Lys Ala Val Lys Ser Glu Arg Glu Arg Gly Ser Arg Arg Arg His Arg Asp Gly Asp Val Val Leu Pro Ala Gly Val Val Val Lys Gln Glu Arg Leu Ser Pro Glu Val Ala Pro Pro Ala His Arg Arg Pro Asp His Ser Gly Gly Ser Pro Ser Pro Pro Thr Ser Glu Pro Ala Arg Ser Gly His Arg Gly Asn Arg Ala Arg Gly Val Ser Arg Ser Pro Pro Lys Lys Lys Asn Lys Ala Ser Gly Arg Arg Ser Lys Ser Pro Arg Ser Lys Arg Asn Arg Ser Pro His His Ser Thr Val Lys Val Lys Gln Glu Arg Glu Asp His Pro Arg Arg Gly Arg Glu Asp Arg Gln His Arg Glu Pro Ser Glu Gln Glu His Arg Arg Ala Arg Asn Ser Asp Arg Asp Arg His Arg Gly His Ser His Gln Arg Arg Thr Ser Asn Glu Arg Pro Gly Ser Gly Gln Gly Gln Gly Arg Asp Arg Asp Thr Gln Asn Leu Gln Ala Gln Glu Glu Glu Arg Glu Phe Tyr Asn Ala Arg Arg Arg Glu His Arg Gln Arg Asn Asp Val Gly Gly Gly Gly Ser Glu Ser Gln Glu Leu Val Pro Arg Pro Gly Gly Asn Asn Lys Glu Lys Glu Val Pro Ala Lys Glu Lys Pro Ser Phe Glu Leu Ser Gly Ala Leu Leu Glu Asp Thr Asn Thr Phe Arg Gly Val Val Ile Lys Tyr Ser Glu Pro Pro Glu Ala Arg Ile Pro Lys Lys Arg Trp Arg Leu Tyr Pro Phe Lys Asn Asp Glu Val Leu Pro Val Met Tyr Ile His Arg Gln Ser Ala Tyr Leu Leu Gly Arg His Arg Arg Ile Ala Asp Ile Pro Ile Asp His Pro Ser Cys Ser Lys Gln His Ala Val Phe Gln Tyr Arg Leu Val Glu Tyr Thr Arg Ala Asp Gly Thr Val Gly Arg Arg Val Lys Pro Tyr Ile Ile Asp Leu Gly Ser Gly Asn Gly Thr Phe Leu Asn Asn Lys Arg Ile Glu Pro Gln Arg Tyr Tyr Glu Leu Lys Glu Lys Asp Val Leu Lys Phe Gly Phe Ser Ser Arg Glu Tyr Val Leu Leu His Glu Ser Ser Asp Thr Ser Glu Ile Asp Arg Lys Asp Asp Glu Asp Glu Glu Glu Glu Glu Glu Val Ser Asp Ser <210> 29 <211> 126 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 4349106CD1 <400> 29 Met Gly Leu Leu Thr Phe Arg Asp Val Ala Ile Glu Phe Ser Arg Glu Glu Trp Glu His Leu Asp Ser Asp Gln Lys Leu Leu Tyr Gly Asp Val Met Leu Glu Asn Tyr Gly Asn Leu Val Ser Leu Gly Leu Ala Val Ser Lys Pro Asp Leu Ile Thr Phe Leu Glu Gln Arg Lys Glu Pro Trp Asn Val Lys Ser Ala Glu Thr Val Ala Ile Gln Pro Asp Ile Phe Ser His Asp Thr Gln Gly Leu Leu Arg Lys Lys Leu Ile Glu Ala Ser Phe Gln Lys Val Ile Leu Asp Gly Tyr Gly Ser Cys Gly Pro Gln Asn Leu Asn Leu Arg Lys Glu Trp Glu Ser Glu Gly Lys Ile Ile Leu Trp <210> 30 <211> 519 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 4834217CD1 <400> 30 Met Ala Ala Glu Ala Ala Asp Leu Gly Leu Gly Ala Ala Val Pro Val Glu Leu Arg Arg Glu Arg Arg Met Val Cys Val Glu Tyr Pro Gly Val Val Arg Asp Val Ala Lys Met Leu Pro Thr Leu Gly Gly Glu Glu Gly Val Ser Arg Ile Tyr Ala Asp Pro Thr Lys Arg Leu Glu Leu Tyr Phe Arg Pro Lys Asp Pro Tyr Cys His Pro Val Cys Ala Asn Arg Phe Ser Thr Ser Ser Leu Leu Leu Arg Ile Arg Lys Arg Thr Arg Arg Gln Lys Gly Val Leu Gly Thr Glu Ala His Ser Glu Val Thr Phe Asp Met Glu Ile Leu Gly Ile Ile Ser Thr Ile Tyr Lys Phe Gln Gly Met Ser Asp Phe Gln Tyr Leu Ala Val His Thr Glu Ala Gly Gly Lys His Thr Ser Met Tyr Asp Lys Val Leu Met Leu Arg Pro Glu Lys Glu Ala Phe Phe His Gln Glu Leu Pro Leu Tyr Ile Pro Pro Pro Ile Phe Ser Arg Leu Asp Ala Pro Val Asp Tyr Phe Tyr Arg Pro Glu Thr Gln His Arg Glu Gly Tyr Asn Asn Pro Pro Ile Ser Gly Glu Asn Leu Ile Gly Leu Ser Arg Ala Arg Arg Pro His Asn Ala Ile Phe Val Asn Phe Glu Asp Glu Glu Val Pro Lys Gln Pro Leu Glu Ala Ala Ala Gln Thr Trp Arg Arg Val Cys Thr Asn Pro Val Asp Arg Lys Val Glu Glu Glu Leu Arg Lys Leu Phe Asp Ile Arg Pro Ile Trp Ser Arg Asn Ala Val Lys Ala Asn Ile Ser Val His Pro Asp Lys Leu Lys Val Leu Leu Pro Phe Ile Ala Tyr Tyr Met Ile Thr Gly Pro Trp Arg Ser Leu Trp Ile Arg Phe Gly Tyr Asp Pro Arg Lys Asn Pro Asp Ala Lys Ile Tyr Gln Val Leu Asp Phe Arg Ile Arg Cys Gly Met Lys His Gly Tyr Ala Pro Ser Asp Leu Pro Val Lys Ala Lys Arg Ser Thr Tyr Asn Tyr Ser Leu Pro Ile Thr Val Lys Lys Thr Ser Ser Gln Leu Val Thr Met His Asp Leu Lys Gln Gly Leu Gly Pro Ser Gly Thr Ser Gly Ala Arg Lys Pro Ala Ser Ser Lys Tyr Lys Leu Lys Asp Ser Val Tyr Ile Phe Arg Glu Gly Ala Leu Pro Pro Tyr Arg Gln Met Phe Tyr Gln Leu Cys Asp Leu Asn Val Glu Glu Leu Gln Lys Ile Ile His Arg Asn Asp Gly Ala Glu Asn Ser Cys Thr Glu Arg Asp Gly Trp Cys Leu Pro Lys Thr Ser Asp Glu Leu Arg Asp Thr Met Ser Leu Met Ile Arg Gln Thr Ile Arg Ser Lys Arg Pro Ala Leu Phe Ser Ser Ser Ala Lys Ala Asp Gly Gly Lys Glu Gln Leu Thr Tyr Glu Ser Gly Glu Asp Glu Glu Asp Glu Glu Glu Glu Glu Glu Glu Glu Glu Asp Phe Lys Pro Ser Asp Gly Ser Glu Asn Glu Met Glu Thr Glu Ile Leu Asp Tyr Val <210> 31 <211> 493 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 5156094CD1 <400> 31 Met Ile Leu Asn Ser Leu Ser Leu Cys Tyr His Asn Lys Leu Ile Leu Ala Pro Met Val Arg Val Gly Thr Leu Pro Met Arg L'eu Leu Ala Leu Asp Tyr Gly Ala Asp Ile Val Tyr Cys Glu Glu Leu Ile Asp Leu Lys Met Ile Gln Cys Lys Arg Val Val Asn Glu Val Leu Ser Thr Val Asp Phe Val Ala Pro Asp Asp Arg Val Val Phe Arg Thr Cys Glu Arg Glu Gln Asn Arg Val Val Phe Gln Met Gly Thr Ser Asp Ala Glu Arg Ala Leu Ala Val Ala Arg Leu Val Glu Asn Asp Val Ala Gly Ile Asp Val Asn Met Gly Cys Pro Lys Gln Tyr Ser Thr Lys Gly Gly Met Gly Ala Ala Leu Leu Ser Asp Pro Asp Lys Ile Glu Lys Ile Leu Ser Thr Leu Val Lys Gly Thr Arg Arg Pro Val Thr Cys Lys Ile Arg Ile Leu Pro Ser Leu Glu Asp Thr Leu Ser Leu Val Lys Arg Ile Glu Arg Thr Gly Ile Ala Ala Ile Ala Val His Gly Arg Lys Arg Glu Glu Arg Pro Gln His Pro Val Ser Cys Glu Val Ile Lys Ala Ile Ala Asp Thr Leu Ser Ile Pro Val Ile Ala Asn Gly Gly Ser His Asp His Ile Gln Gln Tyr Ser Asp Ile Glu Asp Phe Arg Gln Ala Thr Ala Ala Ser Ser Val Met Val Ala Arg Ala Ala Met Trp Asn Pro Ser Ile Phe Leu Lys Glu Gly Leu Arg Pro Leu Glu Glu Val Met Gln Lys Tyr Ile Arg Tyr Ala Val Gln Tyr Asp Asn His Tyr Thr Asn Thr Lys Tyr Cys Leu Cys Gln Met Leu Arg Glu Gln Leu Glu Ser Pro Gln Gly Arg Leu Leu His Ala Ala Gln Ser Ser Arg Glu Ile Cys Glu Ala Phe Gly Leu Gly Ala Phe Tyr Glu Glu Thr Thr Gln Glu Leu Asp Ala Gln Gln Ala Arg Leu Ser Ala Lys Thr Ser Glu Gln Thr Gly Glu Pro Ala Glu Asp Thr Ser Gly Val Ile Lys Met Ala Val Lys Phe Asp Arg Arg Ala Tyr Pro Ala Gln Ile Thr Pro Lys Met Cys Leu Leu Glu Trp Cys Arg Arg Glu Lys Leu Ala Gln Pro Val Tyr Glu Thr Val Gln Arg Pro Leu Asp Arg Leu Phe Ser Ser Ile Val Thr Val Ala Glu Gln Lys Tyr Gln Ser Thr Leu Trp Asp Lys Ser Lys Lys Leu Ala Glu Gln Ala Ala Ala Ile Val Cys Leu Arg Ser Gln Gly Leu Pro Glu Gly Arg Leu Gly Glu Glu Ser Pro Ser Leu His Lys Arg Lys Arg Glu Ala Pro Asp Gln Asp Pro Gly Gly Pro Arg Ala Gln Glu Leu Ala Gln Pro Gly Asp Leu Cys Lys Lys Pro Phe Val Ala Leu Gly Ser Gly Glu Glu Ser Pro Leu Glu Gly Trp <210> 32 <211> 516 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 5665139CD1 <400> 32 Met His Gly Arg Lys Asp Asp Ala Gln Lys Gln Pro Val Lys Asn Gln Leu Gly Leu Asn Pro Gln Ser His Leu Pro Glu Leu Gln Leu Phe Gln Ala Glu Gly Lys Ile Tyr Lys Tyr Asp His Met Glu Lys Ser Val Asn Ser Ser Ser Leu Val Ser Pro Pro Gln Arg Ile Ser Ser Thr Val Lys Thr His Ile Ser His Thr Tyr Glu Cys Asn Phe Val Asp Ser Leu Phe Thr Gln Lys Glu Lys Ala Asn Ile Gly Thr Glu His Tyr Lys Cys Asn Glu Arg Gly Lys Ala Phe His Gln Gly Leu His Phe Thr Ile His Gln Ile Ile His Thr Lys Glu Thr Gln Phe Lys Cys Asp Ile Cys Gly Lys Ile Phe Asn Lys Lys Ser Asn Leu Ala Ser His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Asn Glu Cys Gly Lys Val Phe His Asn Met Ser His Leu Ala Gln His Arg Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Asn Glu Cys Gly Lys Val Phe Asn Gln Ile Ser His Leu Ala Gln His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Asn Glu Cys Gly Lys Val Phe His Gln Ile Ser His Leu Ala Gln His Arg Thr Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Asn Lys Cys Gly Lys Val Phe Ser Arg Asn Ser Tyr Leu Val Gln His Leu Ile Ile His Thr Gly Glu Lys Pro Tyr Arg Cys Asn Val Cys Gly Lys Val Phe His His Ile Ser His Leu Ala Gln His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Asn Glu Cys Gly Lys Val Phe Ser His Lys Ser Ser Leu Val Asn His Trp Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Asn Glu Cys Gly Lys Val Phe Ser His Lys Ser Ser Leu Val Asn His Trp Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Asn Glu Cys Gly Lys Val Phe Ser Arg Asn Ser Tyr Leu Ala Gln His Leu Ile Ile His Ala Gly Glu Lys Pro Tyr Lys Cys Asp Glu Cys Asp Lys Ala Phe Ser Gln Asn Ser His Leu Val Gln His His Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Asp Glu Cys Gly Lys Val Phe Ser Gln Asn Ser Tyr Leu Ala Tyr His Trp Arg Ile His Thr Gly Glu Lys Ala Tyr Lys Cys Asn Glu Cys Gly Lys Val Phe Gly Leu Asn Ser Ser Leu Ala His His Arg Lys Ile His Thr Gly Glu Lys Pro Phe Lys Cys Asn Glu Cys Gly Lys Ala Phe Ser Met Arg Ser Ser Leu Thr Asn His His Ala Ile His Thr Gly Glu Lys His Phe Lys Cys Asn Glu Cys Gly Lys Leu Phe Arg Asp Asn Ser Tyr Leu Val Arg His Gln Arg Phe His Ala Gly Lys Lys Ser Asn Thr Cys Asn <210> 33 <211> 3163 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 091502CB1 <400> 33 gtcggaggtc ttacccaaca gattgacgcg gcgttagtat tggccgtgta cccgaaaaac 60 tgattgactg ggctggcgtt aactgtgcgg aggcaggatt tccctgggga aagtcttcac 120 tcagagcttc gctgacagcc aaggatggca agcaaggggc cctcggcctc tgcatctcct 180 gagaactcca gtgcaggggg gcccagtggg agcagcaatg gcgctggcga gagcggaggg 240 caggacagca ctttcgagtg caacatctgc ttggacacag ccaaggatgc cgtcatcagc 300 ctgtgtggcc acctcttctg ttggccgtgt ttacatcagt ggttggagac cagacctaac 360 agacaggtgt gtcctgtttg caaagctggc atcagccgag acaaggtcat ccccctctat 420 ggaaggggca gcactgggca acaggacccc agagagaaga cccctcctcg tcctcaagga 480 cagaggccag agccggagaa tagaggggga tttcaaggat ttggatttgg agatggtggc 540 ttccagatgt cttttggaat tggggcattt ccctttggga tatttgccac agcatttaat 600 ataaatgatg ggcggcctcc tccagctgtc cctgggacac cccagtatgt ggacgagcag 660 ttcctgtcac gcctcttcct atttgtggcc ctggtgatca tgttctggct cctgattgcc 720 taatgctggg ctcctgccta catccgtggc agggctctgg actggtgacg tgccacccca 780 actcctggtg tttggcttcc tggctaatct tgactcctgg aatcagtggg atcagtaaca 840 catcaaggag tcttgtttct tcatcagagc tttggaactc gagaccagtt ggcgatgacc 900 cctgaatatc gccaccgctg taaacactct ataacttcag gccttggcat tgagtcatct 960 ctcatgggtg acaccatgaa atcttgtttc agccagttct gcaggtcctg actctgcaga 1020 gggaagaggc agaaagagag aaactgtcag agtataattt cacctgagtt taatattaca 1080 gaaacaaagg gatgcaccaa atggtatttc tggaaatttt catgtcttta aatacccctt 1140 ggtaagttgc ttctgaagcc agtgggggct cctcagatag agaggttccc ctttcaaatc 1200 ccagtgccgc tctgttctct ttccttcccc tcccactccc cctcttcttc ctctgtagag 1260 atgcaagaaa ttgctgtccc ataaaaatca taattgcagt agctaaagct ggggtcactt 1320 cgtgaattca ccagagactc aaagatcttt tattggctct gggctgtgct cagtgtcttt 1380 ggcctcagag aacaacttga atgacttcct ggtttcctgg cataaattat tcctggtgag 1440 acatgtggct taactcacag gtttcccatc agctttctcc ctaaaactat gttcatctgc 1500 ctctctctgc cagagaacat acagccgaga atactgccga agctgagact gactactgtg 1560 cattaggaaa gacctggagt caggactttg gtgggatttg gagctccgag gcagtaataa 1620 ctgaacaagc agccctgtcc cctaggctgc agaagcttga atgcatcctc tcccagaacc 1680 tgccacagga aactgggggc tttgtcaggt cagcccaact gcatgcaaaa gaccaccatc 1740 ctcagaagcc aagttgtctt ttatgaagag gcaaggaaag gggaaaccca catgtgaccc 1800 tgattttggt atggcttgat agagttccct gaaaactcct tgtatgtgtg ctaaaaccag 1860 ggaagcatgt gactgccaag caggcaaccc ctgatgattt gtaaagccag gtggcagggc 1920 cttggggagc cccagcacaa tgatattgtg tggtcttccc tcctgtggaa tcgaggggaa 1980 attattcttc ccaatacctt gatttgattt tcagtttcat aagcttcttc ctctgaatct 2040 tattgaggga ctatggtacc aagcaggtag gactgttcac ctggtggaac agttcttgct 2100 ctgccttcta ggcttcatcc cagaaatcca gcctctttct ggagacccca aagctggagg 2160 gagatgggct ttcctctggg cctctctcct actttgccat ccacactgct cctggctaac 2220 cccagcaata accaacaaat ggtaggaagc cccatctatt gctttttctc aattatgact 2280 gcatagttta tggaaacaaa gatcttgagg aagatgaggg aagccctccc ctcttcacag 2340 tccccatctc ttctcctttg tacctgtcaa caccagagtt cagtgtttaa acagacaaaa 2400 tataaagtat tgagtaggtg gttcatatgc cgaatccact tggtaggaag aaaccaccag 2460 ctttatagtg tgcctgatag attttaaaca ttcctgggca cccactcaag agtgctcttt 2520 ttatcacctt ctggaaatcc gcaaagttgc aggggcctct ggagtgtctc ttctctagag 2580 agaattggtg ggacccccct cagtgcagtg gccccaacta gtggagggag agaggactta 2640 agtcagatgg actcaacaga aatgggtttc cagaagaata atgaaaagtt gtgggtagga 2700 aaatgaatca tttggactct tcaatgaaat ggagtgagcc caggagagct cagccaacag 2760 aggcactctg ggaacctgtt agtaaagcca ggctggccaa atgccatttg attttgaacc 2820 tcgtaggtcc ccactcaccc tctgccagga gctaagtaag gcaggagagc tgacttggga 2880 ctcctggctc ggccccaaca gggagccccc ttcccaccat ccctcggcaa gctcaccacc 2940 tcatccttct gccaaggcag ctttcctttc ttttgtgtgt tttctgtgtt cttagcctcc 3000 accctcctcc tgccaccctt gtggactagg accaggtcct gaccccagtc agaaaatgat 3060 gatatgtaca gtggcacacc ttaaccagtc actaattttc actgttgtga aagtgatttg 3120 atttagaatt aaacaaatgg ttttacatta ctatgaaaaa aaa 3163 <210> 34 <211> 2185 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 763816CB1 <400> 34 ggatctccag agctcagaaa accctcaggg tcaccagatc tttggaagct ttctcctgat 60 cagcggaaaa cttctcctgc ttcacttgat ttccctgagt cccagaaaag ttcccgtggt 120 ggttctcctg atctctggaa gtcttccttt tttattgagc ctcagaaacc tgtcttccct 180 gagagccgaa aaccatgtcc ttatgggcca tctgaggccc caaaagcagc ctcagatatc 240 tggaagctgt tctctctatc gatactgagc ctagaaaacc tgccctgttt cccgagcctg 300 ccaaaacagc ccctcctgct tctccagaag cacgcaaacg tgcccttttt ccagagcccc 360 ggaagcatgc ccttttccct gaactcccca aatctgctct attctcagaa tcacagaagg 420 ctgttgagct tggtgatgaa ctacaaatag atgccataga tgatcaaaaa tgtgatattt 480 tggttcagga agaacttcta gcttcaccta agaaactctt agaagatact ttatttcctt 540 cctcaaagaa gctcaagaaa gacaaccaag agagctcaga cgctgagctt agtagtagtg 600 agtacataaa aacagatttg gatgcgatgg atattaaggg ccaggaatca agcagtgatc 660 aagagcaggt tgatgtggaa tccattgatt ttagcaaaga gaacaaaatg gacatgacta 720 gtccagagca gtctagaaat gtgctacagt ttactgaaga aaaagaagct tttatctctg 780 aagaggagat tgcaaaatac atgaagcgtg gaaaaggaaa gtattattgc aaaatttgtt 840 gctgtcgtgc tatgaaaaaa ggtgctgttt tgcatcattt ggttaataag cataatgttc 900 atagccctta caaatgcaca atctgtggaa aggcttttct tttggaatct ctccttaaaa 960 atcatgtagc agcccatggg caaagtttac ttaaatgtcc acgttgtaat tttgaatcaa 1020 atttcccaag aggttttaag aaacatttaa ctcattgtca aagccggcat aatgaagagg 1080 caaataaaaa gctaatggaa gctcttgaac cgccactgga ggagcagcaa atttgataac 1140 acagtgtgaa tatttgttct acaaaggtgt ttgttggaac cattctttgt aagtatagct 1200 tatcagatag catagttgga tcagtagatg acatgtatgg tgtaccgtgt ttcactgtct 1260 cagttgtgtt actaagaatg agcatttgat catttttttc tggtctctgt ctatgtgact 1320 atcttgtaag tcaataaatt tctgtatagt ccagatggat taaacttctc atttctttta 1380 aatatgtatg aataataata caaggaagta ggcattccat ttaataatca agagcaagtt 1440 gtactcaaag cattcagtta aagtgtatct gtgtgtggaa ctaatttcag acaatagaaa 1500 atattagttg aaatgtttaa gaattaggca tgaaaaataa atttgagaaa ttttgtttcc 1560 ttacatgtat ttttaaatca taagagttat tttctatctg atgtaaaatt agtttataaa 1620 tcttaatcag cttctagatg tttattagct tttatgtcat gaaatgttgg agtctcaggg 1680 ttgctgattt tctgctaatg ggaaaaattg actaagtctt taaaatagtt tgcagccttc 1740 tcccacagga gacaagtgaa agataagtgt gattttagat ctttcttgtc catagttgtt 1800 ttcagtggag tcttccattc tgtatcttac cctaagatct ggttcttccc tccccatccc 1860 caccccccac ccaccgcctg ccagctcaca ctaatagatg attcttaatt gccaaatgtg 1920 ttagagtttg tatatcctac tcctgggcct tacatgtcgc ctgttggggc ttaagaccag 1980 gttgataagt aggaactgaa agtcttccag attcacagta gaaaatttta tagacatttc 2040 tgttaaagaa atatatcgat tttatgtttt tcaattatgt tactgtaaat accttgtacc 2100 tgttcatgga ttattttatt ctaaaatatt ttgtcaaatg tgtatcaacc aaattaaaaa 2160 gaaaggtttt catgtcaaaa aaaaa 2185 <210> 35 <211> 2408 <212> DNA
<213> Homo sapiens <220>
<221> unsure <222> 2243 <223> a or g or c or t, unknown, or other <220>
<221> misc_feature <223> Incyte ID No: 961184CB1 <400> 35 ggagcatccg gacgctccag tccaatctgg gctgcctccc accatcctcg gctttgccct 60 ctgggaccag gagcctccca cgccccattg acggtgtttc ggactggagc caagggtgct 120 ccctgcgatc cactggcagc cctgcctccc tggccagcaa cttggaaatc agccagtccc 180 ctaccatgcc cttcctcagc ctgcaccgca gcccacatgg gcccagcaag ctctgtgacg 240 acccccaggc cagcttggtg cccgagcctg tccccggtgg ctgccaggag cctgaggaga 300 tgagctggcc gccatcgggg gagattgcca gcccaccaga gctgccaagc agcccacctc 360 ctgggcttcc cgaagtggcc ccagatgcaa cctccactgg cctccctgat acccccgcag 420 ctccagaaac cagcaccaac tacccagtgg agtgcaccga ggggtctgca ggcccccagt 480 ctctcccctt gcctattctg gagccggtca aaaacccctg ctctgtcaaa gaccagacgc 540 cactccaact ttctgtagaa gataccacct ctccaaatac caagccgtgc ccacctactc 600 ccaccacccc agaaacatcc cctcctcctc ctcctcctcc tccttcatct actccttgtt 660 cagctcacct gaccccctcc tccctgttcc cttcctccct ggaatcatca tcggaacaga 720 aattctataa ctttgtgatc ctccacgcca gggcagacga acacatcgcc ctgcgggttc 780 gggagaagct ggaggccctt ggcgtgcccg acggggccac cttctgcgag gatttccagg 840 tgccggggcg cggggagctg agctgcctgc aggacgccat agaccactca gctttcatca 900 tcctacttct cacctccaac ttcgactgtc gcctgagcct gcaccaggtg aaccaagcca 960 tgatgagcaa cctcacgcga caggggtcgc cagactgtgt catccccttc ctgcccctgg 1020 agagctcccc ggcccagctc agctccgaca cggccagcct gctctccggg ctggtgcggc 1080 tggacgaaca ctcccagatc ttcgccagga aggtggccaa caccttcaag ccccacaggc 1140 ttcaggcccg aaaggccatg tggaggaagg aacaggacac ccgagccctg cgggaacaga 1200 gccaacacct ggacggtgag cggatgcagg cggcggcact gaacgcagcc tactcagcct 1260 acctccagag ctacttgtcc taccaggcac agatggagca gctccaggtg gcttttggga 1320 gccacatgtc atttgggact ggggcgccct atggggctcg aatgcccttt gggggccagg 1380 tgcccctggg agccccgcca ccctttccca cttggccggg gtgcccgcag ccgccacccc 1440 tgcacgcatg gcaggctggc acccccccac cgccctcccc acagccagca gcctttccac 1500 agtcactgcc cttcccgcag tccccagcct tccctacggc ctcacccgca ccccctcaga 1560 gcccagggct gcaacccctc attatccacc acgcacagat ggtacagctg gggctgaaca 1620 accacatgtg gaaccagaga gggtcccagg cgcccgagga caagacgcag gaggcagaat 1680 gaccgcgtgt ccttgcctga ccacctgggg aacacccctg gacccaggca tcggccagga 1740 ccccatagag caccccggtc tgccctgtgc cctgtggaca gtggaagatg aggtcatctg 1800 ccactttcag gacattgtcc gggagccctt catttaggac aaaacgggcg cgatgatgcc 1860 ctggctttca gggtggtcag aactggatac ggtgtttaca attccaatct ctctatttct 1920 gggtgaaggg tcttggtggt gggggtattg ctacggtctt ttaattataa taaatattta 1980 ttgaatgcta aaccatatca aacacttccc aaaatttaca agcaagagag agttaaaatt 2040 aggaaatata tctgtgtaaa taacaatctg cctatacatt gtcttataaa ttaatttctc 2100 tttacatagt tttgagtaGt attttaagat tgcatctttt ccagtgttcc ttttgtcaaa 2160 aaatgttttc atgaggaagg agaatgttgt gtgtttacag agccaatgta tattaaattg 2220 agagaaactg atggggaagg ggnatcgact ttataggcag taaagtattt acaaaccatg 2280 actgcctatt ttaaaaccgt aagccaaatt tgtattgtag ttaatccaaa ttggtcctgt 2340 taagtgaaat tggttagaat ctgggtttaa aaacttttta attttataaa ataaccaggg 2400 aggatttt 2408 <210> 36 <211> 2564 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No. 1255525CB1 <400> 36 ccaacctcat tttttctctg ttgccacagg accctttgtg gaggagttgt ttgaagtgac 60 atcctgttat ttccctatcg attttacccc tccacctaat gatccccatg gtatccagag 120 agaagacctc atcctgagtc ttcgcgctgt gctggcttct acaccacgat ttgctgagtt 180 tctgctgccc ctgttgattg agaaagtgga ttctgaggtt ctgagtgcca agttggattc 240 tctacagact ctgaatgctt gctgtgctgt gtatggacag aaggaactga aggacttcct 300 ccccagcctt tgggcttcta tccgcagaga gagcagccag cggcggacaa tccttgaaat 360 gctcctgggt ttcttgaagc tgcagcagaa atggagctat gaagacaaag atcaaaggcc 420 tctgaatggc ttcaaggacc agctgtgctc actggtattc atggctctaa cagaccccag 480 cacccagctt cagcttgttg gcatccgtac actgacagtc ttgggtgccc agccagatct 540 cctatcttat gaggacttgg agctggcagt gggtcacctg tacagactga gcttcctgaa 600 ggaggattcc cagagttgca gggtggcagc actggaagca tcaggaaccc tggctgctct 660 ctaccctgtg gccttcagca gccacctcgt acccaagctc gctgaggagc tgcgtgtagg 720 ggagtcaaat ttgactaacg gagatgagcc cacccaatgc tcccggcatc tgtgctgtct 780 gcaagccttg tcagctgtat caacacatcc cagcatcgtc aaggagacac tgcctctgct 840 gctgcagcat ctctggcaag tgaacagagg gaatatggtt gcacaatcca gtgacgttat 900 tgctgtctgt cagagcctca gacagatggc agaaaaatgt cagcaggacc ctgagagttg 960 ctggtatttc caccagacag ctataccttg cctgcttgcc ttggctgtgc aggcctctat 1020 gccagagaag gagccctcag ttctgagaaa agtactattg gaggatgagg tgttggctgc 1080 catggtgtct gtcattggca ctgctacaac ccacctgagc cctgagttag ctgcccagag 1140 tgtgacacac attgtgcccc tcttcttgga tggcaacgtg tcctttctgc ctgaaaacag 1200 cttcccgagc agattccagc cattccagga tggctcctca gggcagaggc ggctgattgc 1260 actgcttatg gcctttgtct gctccctgcc tcgaaatgtg gaaatccctc agctgaacca 1320 actcatgcgg gagcttttgg aactgagctg ctgccacagc tgcccctttt cttccaccgc 1380 tgctgccaag tgctttgcag gactcctcaa caagcaccct gcagggcagc agctggatga 1440 attcctacag ctagctgtgg acaaagtgga ggctggcctg ggctctgggc cctgtcgtag 1500 tcaggccttc actcttcttc tctgggtaac aaaggcccta gtgctcagat accatcctct 1560 cagctcctgc cttacagccc ggctcatggg cctcctgagt gacccagaat taggtccagc 1620 agcagctgat ggcttctctc tgctcatgtc tgactgcact gatgtgctga ctcgtgctgg 1680 ccatgccgaa gtgcggatca tgttccgcca gcggttcttc acagataatg tgcctgcttt 1740 ggtccagggc ttccatgctg ctccccaaga tgtgaagcca aactacttga agggtctttc 1800 tcatgtactt aacaggctgc ccaagcctgt actcttgcca gagctgccca cgcttctttc 1860 cttgctgctg gaggccctgt cctgccctga ctgtgtggtg cagctctcca ccctcagctg 1920 ccttcagcct cttctactgg aagcacccca agtcatgagt cttcacgtgg acaccctcgt 1980 caccaagttt ctgaacctca gctctagccc ttccatggct gtccggatcg ccgcactgca 2040 gtgcatgcat gctctcactc gcctgcccac ccctgtgctg ctgccgtaca aaccacaggt 2100 gattcgggcc ttagccaaac ccctggatga caagaagaga ctggtgcgca aggaagcagt 2160 gtcagccaga ggggagtggt ttctgttggg gagccctggc agctgagccc tcagtcctgg 2220 cctagactgt tctgacaatc taacctggga ttactaactg ttgagccatc ttccccaaag 2280 cagggaaacc actggtctct gactgccttt cccacagaca cagcacaaat gctaggcctc 2340 tgttgcatgg ctgtacaaag aacataagag tccatatttc tagtggattt gtaaaataag 2400 tgtgtgtgag acacttgcgt ttgaagaaag atctagggtc ctgggtctct tgcatttata 2460 tgtcagaaaa ggggcgatat gctgctgagg ggtgagtgca tatgagtgtg gccctgagga 2520 ccagggctgg cagatgttgt ctacctgctg aagaataaag atcg 2564 <210> 37 <211> 957 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 1297447CB1 <400> 37 ccttctgggc atgtctgcca tatggctcca ggtttgtttt tctccccggc actctgacgg 60 ggagggctcc cggcatctcc tggcgtccgg gtagaggacg cggaggatgc tgagctgctg 120 gcgcactgca gcacaactag agatgtacgg atgcccccat cttgatctta cagaatcaga 180 ggtacagccg cgagaaagag tcaagaacag acagagtcgc ttgaggactc aggagggtgt 240 ttgctgcgtt gacaacagac tacaccctca cagtttgctc tgctcttcca acaccagtgg 300 aagatgatca catcccaggg atcagtgtcg tttagggatg tgactgtggg cttcactcaa 360 gaggagtggc agcatctgga ccctgctcag aggaccctgt acagggatgt gatgctggag 420 aactacagcc accttgtctc agtagggtat tgcattccta aaccagaagt gattctcaag 480 ttggagaaag gcgaggagcc atggatatta gaggaaaaat ttccaagcca gagtcatctg 540 ggtgagttag tatgtgccag atggaattta aaggaaggta gatcacaaag ggtaagtttg 600 gataataaga ccattgaaat gttctttagg aatcatgttt tagaggctcc agacctttgg 660 aagtaacatg ttgacgtgac ccaaatatgc agtgactctg aatcacccag catctcccag 720 tatcactttc atacacacat cttgttgttt tttttaaatt gtgatataaa ctatatagtt 780 tagccagaga ttaataaaat tttatatata tatgtaacac tcatgtaccc atcattgaga 840 tgaatatata aagtgatttt tcaacacccc cagaaagctc cctgttgtac tcttcccagt 900 aaagagcatc cctccttttg taaaattaaa tatatttttc tataaaaaaa aaaaaaa 957 <210> 38 <211> 2701 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1441094CB1 <400> 38 gcggcagtga gtatgtgtgt gacggacccc cgccgcccgc ggctcgggac ccctgcctac 60 cctccttctt gcccgccggg ctgtggaact agcgcgtgcc ccctcgccgg cctcgacgtc 120 tcccgtccgc ccctcactcg tggcagggcg cagctcctgc ttcaaggtta ctgacttttt 180 atgatgtttg gtggctatga gactatagaa gcatacgaag atgatcttta tcgagatgag 240 tcatctagtg aactgagtgt tgatagtgag gtggaatttc aactctatag ccaaattcat 300 tatgcccaag atcttgatga tgtcatcagg gaggaagagc atgaagaaaa gaactctggg 360 aattcggaat cttcgagtag taaaccaaat cagaagaagc taatcgtcct ttcagatagt 420 gaggtcatcc agctgtcaga tgggtcagag gtcatcactt tgtctgatga agacagtatt 480 tatagatgta aaggaaagaa tgttagagtt caagcacaag aaaatgccca tggtctttct 540 tcttctcttc aatctaatga gctggttgat aagaaatgca agagtgatat tgagaagcct 600 aaatctgaag agagatcagg tgtaatccga gaggtcatga ttatagaggt cagttcaagt 660 gaagaggaag agagcaccat ttcagaaggt gataatgtgg aaagctggat gctactggga 720 tgtgaagtag atgataaaga tgatgatatc cttctcaacc ttgtgggatg tgaaaactct 780 gttactgaag gagaagatgg tataaactgg tccatcagtg acaaagacat tgaggcccag 840 atagctaata accgaacacc tggaagatgg acccagcggt actattcagc caacaaaaac 900 attatctgta gaaattgtga caaacgtggt catttatcaa aaaactgccc cttaccacga 960 aaagttcgtc gctgcttcct gtgctccagg agaggacatc tcctgtattc ctgtccagcc 1020 cccctttgtg aatactgtcc tgtgcctaag atgttggacc actcatgtct tttcagacat 1080 tcctgggata aacagtgtga ccgatgtcat atgctaggcc actatacaga tgcttgcaca 1140 gaaatctgga ggcagtatca cctaacgacc aaacctggac cacccaaaaa gccgaagacc 1200 ccttcaagac catcagcctt agcatattgc tatcactgcg cgcaaaaagg ccattatgga 1260 cacgaatgtc cagaaagaga agtgtatgac ccgtctccag tatctccatt catctgctac 1320 tatgatgaca aatatgaaat tcaggagaga gaaaagagac taaaacaaaa aataaaagta 1380 ctcaagaaaa atggggttat cccagagcca tccaagctac cttatataaa agcagcaaat 1440 gagaaccccc accatgatat aaggaagggc cgtgcctcat ggaaaagcaa caggtggcct 1500 caagaaaata aagaaacaca aaaagaaatg aagaacaaga atagaaactg ggagaagcac 1560 aggaaggctg acagacatcg tgaagtggat gaggattttc ccaggggccc caaaacctac 1620 tcttctcctg gcagttttaa aacccagaag ccttctaagc cctttcaccg ttcatcacat 1680 taccacacgt caagagaaga caagtctccc aaggaaggca agaggggcaa gcagaagaaa 1740 aaggagaggt gctgggaaga tgatgacaat gataacttat ttcttattaa gcagagaaaa 1800 aaaaagtctt aagccgtcag gcagcctctg atgtggcttt tcattgttca tttggccttt 1860 gtgtctataa ccttctggca ctgtgtttat tatctatgat taaataaagt gagtttttgg 1920 ttttgttttt ttaatttcag ccattcctag agttactgaa tatccatgga gatctcaatt 1980 ctctgtgtcc aacaggatat taggtaagaa agtacaaaga taaacctgga cttctcctat 2040 tccaatatgt catctttact cagaatccta gggataggta gaagaattca tcttttcaag 2100 aaagtgtttt aaaaatactt tgggaaaaaa actgcatcaa aggtaattta tcctcaaatt 2160 aaatccttgc aggaagagaa attaacacta agaaaaagtc atcaatattt ttcaactttt 2220 tttttttttt tttttacttt ggaaaggaca ataactataa acctatatcc agattttctt 2280 tctgctgaag ctgttgtcag aatcttcctt tggacaaaac atcactagct gactataaaa 2340 acaaaagtgt catcattgaa gccctgaaga ggcagggaat tgagcttcag caaaatacag 2400 gaaaagaact atccagtata aatgtcagaa gacagatttc ctaaacaagt aaaagagaca 2460 tcaaaaattt taacataatc acaatgaaat cattttttac cacttttaca gcggtgtttc 2520 aagcggactg tcactcagat ctgcagagat gaatattact caaaaaattt ttttgttctc 2580 ttgcattttt ttcaactacc gcaaagctat acagattttt ttgtacttgt ggatcttttg 2640 tacttctcat aacctaatgt cagactaaga aaaataaaat atctgagagt aaaaaaaaaa 2700 a 2701 <210> 39 <211> 2517 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1479382CB1 <400> 39 ggagaaaacg acttcagtgt catgtactcc acaaggaaaa actgtgctca actctggctg 60 ggtcctgctg cgtttataaa ccatgattgc agacctaatt gtaagtttgt gtcaactggt 120 cgagatacag catgtgtgaa ggctctaaga gacattgaac ctggagaaga aatttcttgt 180 tattatggag atgggttctt tggagaaaat aatgagttct gcgagtgtta cacttgcgaa 240 agacggggca ctggtgcttt taaatccaga gtgggactgc ctgcgcctgc tcctgttatc 300 aatagcaaat atggactcag agaaacagat aaacgtttaa ataggcttaa aaagttaggt 360 gacagcagca aaaattcaga cagtcaatct gtcagctcta acactgatgc agataccact 420 caggaaaaaa acaatgcaac ttctaaccga aaatcttcag ttggcgtaaa aaagaatagc 480 aagagcagaa cgttaacgag gcaatctatg tcaagaattc cagcttcttc caactctacc 540 tcatctaagc taactcatat aaataattcc agggtaccaa agaaactgaa gaagcctgca 600 aagcctttac tttcaaagat aaaattgaga aatcattgca agcggctgga gcaaaagaat 660 gcttcaagaa aactcgaaat gggaaactta gtactgaaag agcctaaagt agttctgtat 720 aaaaatttgc ccattaaaaa agataaggag ccagagggac cagcccaagc cgcagttgcc 780 agcgggtgct tgactagaca cgcggcgaga gaacacagac agaatcctgt gagaggtgct 840 cattcgcagg gggagagctc gccctgcacc tacataactc ggcggtcagt gaggacaaga 900 acaaatctga aggaggcctc tgacatcaag cttgaaccaa atacgttgaa tggctataaa 960 agcagtgtga cggaaccttg ccccgacagt ggtgaacagc tgcagccagc tcctgtgctg 1020 caggaggaag aactggctca tgagactgca caaaaagggg aggcaaagtg tcataagagt 1080 gacacaggca tgtccaaaaa gaagtcacga caaggaaaac ttgtgaaaca gtttgcaaaa 1140 atagaggaat ctactccagt gcacgattct cctggaaaag acgacgcggt accagatttg 1200 atgggtcccc attctgacca gggtgagcac agtggcactg tgggcgtgcc tgtgagctac 1260 acagactgtg ctccttcacc cgtcggttgt tcagttgtga catcagatag cttcaaaaca 1320 aaagacagct ttagaactgc aaaaagtaaa aagaagaggc gaatcacaag gtatgatgca 1380 cagttaatcc tagaaaataa ctctgggatt cccaaattga ctcttcgtag gcgtcatgat 1440 agcagcagca aaacaaatga ccaagagaat gatggaatga actcttccaa aataagcatc 1500 aagttaagca aagaccatga caacgataac aatctctatg tagcaaagct taataatgga 1560 tttaactcag gatcaggcag tagttctaca aaattaaaaa tccagctaaa acgagatgag 1620 gaaaataggg ggtcttatac agaggggctt catgaaaatg gggtgtgctg cagtgatcct 1680 ctttctctct tggagtctcg aatggaggtg gatgactata gtcagtatga ggaagaaagt 1740 acagatgatt cctcctcttc tgagggcgat gaagaggagg atgactatga tgatgacttt 1800 gaagacgatt ttattcctct tcctccagct aagcgcttga ggttaatagt tggaaaagac 1860 tctatagata ttgacatttc ttcaaggaga agagaagatc agtctttaag gcttaatgcc 1920 taagctcttg gtcttaactt gacctgggat aactacttta aagaaataaa aaattccagt 1980 caattattcc tcaactgaaa gtttagtggc agcacttcta ttgtcccttc acttatcagc 2040 atactattgt agaaagtgta cagcatactg actcaattct taagtctgat ttgtgcaaat 2100 ttttatcgta ctttttaaat agccttctta cgtgcaattc tgagttagag gtaaagccct 2160 gttgtaaaat aaaggctcaa gcaaaattgt acagtgatag caactttcca cacaggacgt 2220 tgaaaacagt aatgtggcta cacagttttt ttaactgtaa gagcatcagc tggctcttta 2280 atatatgact aaacaataat ttaaaacaaa tcatagtagc agcatattaa gggtttctag 2340 tatgctaata tcaccagcaa tgatctttgg ctttttgatt tatttgctag atgtttcccc 2400 cttggagttt tgtcagtttc acactgtttg ctggcccagg tgtactgttt gtggcctttg 2460 ttaatatcgc aaaccattgg ttgggagtca gattggtttc ttaaaaaaaa aaaaaaa 2517 <210> 40 <211> 1698 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 1503131CB1 <400> 40 gactacgctt gctggtttgc ggccggtctt ggatgaagcg gcggccgtgg tgagagcgtg 60 gggaagggtg gggtgagggg gcgaggccgc agctagggcg gcgaaactct cctcccctcg 120 gccccaccgc gtgggacggc gtgaacgtgg tgtcggaggg atgtcagcct tctctgaggc 180 ggcgctggag aagaagctgt cggagttgag caactcgcag cagagcgtgc agaccttgtc 240 cctgtggctc attcaccacc gtaaacactc gcggcccatc gtcaccgtgt gggagcggga 300 gctgcggaaa gccaaaccaa acaggaagct tacttttctc tacctagcca atgatgtcat 360 acagaacagc aagaggaagg ggccagagtt tacaaaagat tttgcaccag ttatagtgga 420 ggcttttaag catgtttcaa gtgaaactga tgaaagttgt aagaagcacc ttggaagagt 480 gttatctatt tgggaagaaa ggtctgttta tgaaaatgat gtattagaac aacttaaaca 540 agctctgtat ggtgataaga agcctaggaa gcgaacttat gaacagataa aggtggatga 600 aaatgaaaac tgttcctctc tgggatctcc aagtgaacca ccacagactc tagatctcgt 660 tagagcatta caagatctgg aaaatgcagc ctcaggtgat gcagcagttc atcagaggat 720 agcttcttta cctgttgaag tccaagaagt atctctatta gataaaataa cagataaaga 780 atctggagaa aggctttcca aaatggtaga ggatgcgtgt atgttgctgg cagattacaa 840 tggcagattg gcggcagaaa tagatgatag aaagcaactc actcgaatgt tagcagattt 900 tcttcgttgt caaaaggaag cccttgcaga gaaagagcat aaattggaag agtacaagcg 960 caagctagcc agagtttccc tggtgcgcaa agaactcagg tcccggatcc agagcctgcc 1020 agacttatct cgattgccca atgtcactgg cagccacatg cacctgccct ttgcgggaga 1080 catctacagt gaagattgat ggaccagcct ctttccaggt cccaggactt tgcaagagat 1140 ggagacaggt taggtggata gtcctgtagt gttatttttg tatattgttg agaaagaaac 1200 actaacaaaa ggaacaacga gtaatttata aaattgttta aaatgttggt ttgtttacta 1260 ttttattggt aaattaacat gacttaattt gaacaaagtg atgatttgtg tgtattaata 1320 agctcacaaa tagtgattat tttcaaaaga tctttttgta aatttttttt tttgatccaa 1380 ggccttgtga gaaatctctt gtttgtattt cttcaggtat tttcaattgt ttttctttat 1440 tttcttcagc atttaatcac tgtatactat gtaattcctg aaggggaaga actaattagg 1500 agttgattga gactttatta tggtatagtt aggacttgat tgtagaaggg actaaatgtt 1560 ccaacataat ctttaccctt ctccccaaac aaaatatcaa ttctgtgtct ctacatgcct 1620 ttgattcctt agaggtcggt aatttaacat aaaacaggga tgtcactttg aggggcagat 1680 gaaagtctag agacctgt 1698 <210> 41 <211> 2250 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1594803CB1 <400> 41 gctcgcagcg catccccgcg cacaggttcg tgctggccgt gggcagcgcg tctttgatgc 60 catgttcaac gggggaatgg ccacaacatc cacggagatt gagctgcccg acgtggaacc 120 cgctgccttc ctcgcactgc tcaagtttct ctactcggac gaggtgcaga ttggcccgga 180 gacggtgatg accacgctat acaccgccaa gaagtacgcg gtgccagcgc tcgaggccca 240 ttgcgtggag ttcctgaaga agaacctgcg agccgacaac gccttcatgc tgctcacgca 300 ggcgcgactc ttcgatgaac cgcagctggc cagcctgtgc ctggagaaca tcgacaaaaa 360 cactgcagac gccatcaccg cggagggctt caccgacatt gacctggaca cgctggtggc 420 tgtcctggag cgcgacacac tgggcatccg tgaggtgcgg ctgttcaatg ccgttgtccg 480 ctggtccgag gccgagtgtc agcggcagca gctgcaggtg acgccagaga acaggcggaa 540 ggttctgggc aaggccctgg gcctcattcg cttcccgctc atgaccatcg aggagttcgc 600 tgcaggtccc gcacagtcgg gcatcctggt ggaccgcgag gtggtcagcc tcttcctgca 660 cttcaccgtc aaccccaagc cacgagtgga gttcattgac cggccccgct gctgcctgcg 720 tgggaaggag tgcagcatca accgcttcca gcaggtggag agtcgctggg gctacagcgg 780 gaccagtgac cgcatcaggt tctcagtcaa caagcgcatc ttcgtggtgg gatttgggct 840 gtatggatcc atccacgggc ccaccgacta ccaagtgaac atccagatta ttcacaccga 900 tagcaacacc gtcttgggcc agaacgacac gggcttcagc tgcgacggct cagccagcac 960 cttccgcgtc atgttcaagg agccggtgga ggtgctgccc aacgtcaact acacggcctg 1020 tgccacgctc aagggcccag actcccacta cggcaccaaa ggcctgcgca aggtgacaca 1080 cgagtcgccc accacgggcg ccaagacctg cttcaccttt tgctacgcgg ccgggaacaa 1140 caatggcaca tccgtggagg acggccagat ccccgaggtc atcttctaca cctaggctgc 1200 ccgacaccga caccgccctc cctccgtggg gatagccgca gccccaggcc atcatctgct 1260 gctggggccc ccccaccacg cggtgccagg cccagtgtcc cccaggccgt ctgtccactc 1320 catgccacct ttctcagcat caggacgggg ttgccctgtg ttcaccacga gtgtggctgc 1380 tggatcaggg cagccgggga ggtggccagg ccagtggcca ggccctgtgg agacaatccc 1440 tcaggactag ggacagggct gtgccggcct gggccagggc ccacggaccc gcagctcagg 1500 gcgcctgccc acgtcgtctg ccggcggtgc gccgcgggcg tccctcgcgt ctcttcactg 1560 cacattgcaa tgcatttgcg attcccattt ctctgctagg agccagcctg ggtggcgctg 1620 ctcccagagc cgtgggtccc agaccttgcg ttccttttgt tcctgtccgt ttatcaggac 1680 acgggcccca cctgtcacgt gcccgaggcc acccaagccc agcctgcggg gcgttcccac 1740 tgcctggatg ccggcttgag ttctgcgcac gcaggattca gtgtggggac ggcccctgcc 1800 ggataggcct agccctggcc caggtggtga gcggtttgca gtgtccgttc tcatccacct 1860 gatgggccca gataaaggcc cccgctgtcc agcctccctg gacggccctc gcggtccctg 1920 cagcccaaga tgggactcag accctgtgcc ccagagctcc cctgccgcag aatggggccc 1980 cagccggccc cgaccgggtc caggagcact gctcgcctgt acatactgtt gccctagccc 2040 acctggtgcc gtgggagcca cccccaggtg ctgggggcac agcccctccc cactccggcc 2100 acgcccccac ccaccccgcg tgtttctgcc ctgtgactcc tggaacctgc gtcctcccca 2160 aagccatggg aggggtgtcc tcctcagacc atgcccccag atgatttttt taaataaaga 2220 aacaaatgca cctgcaaaaa aaaaaaaaaa 2250 <210> 42 <211> 1082 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No. 1736129CB1 <400> 42 ggcaaatccg ggatctcggc tccgagaggc tcatctggca aaagggcgcg gaaaccacgg 60 gggccctgag actgagtggt ccctatccca cttctctctg gggcggcgct gtagccagcg 120 gctgacaggc gcacgaatag gcagccctct gctgtaagga ggaaaactga ggcctgggag 180 caggaacctg taggcagcgc ttgagggtag cgggatagca gctgcaagcg cgcgtgggag 240 gcgggggctc tgggcggaac aaaaatcaca ggatgtcaga ggatgtttcc cgggaagaac 300 tgggataaag gaagggtccc agcaccatgg aggacccgaa ccctgaagag aacatgaagc 360 agcaggattc acccaaggag agaagtcccc agagcccagg aggcaacatc tgccacctgg 420 gggccccgaa gtgcacccgc tgcctcatca ccttcgcaga ttccaagttc caggagcgtc 480 acatgaagcg ggagcaccca gcggacttcg tggcccagaa gctgcagggg gtcctcttca 540 tctgcttcac ctgcgcccgc tccttcccct cctccaaagc cctaatcacc caccagcgca 600 gccacggtcc agccgccaag cccaccctgc cggttgcaac cactactgcc cagcccacct 660 tcccttgtcc tgactgtggc aagacctttg ggcaggctgt ttctctgagg cggcaccgcc 720 agatgcatga ggtccgtgcc cctcctggca ccttcgcctg cacagagtgc ggtcaggact 780 ttgctcagga agcagggctg catcaacact acattcggca tgcccggggg gagctctgag 840 tgcagcttaa gcctctccac ggtgacgggt ggctctgtgg ctggtaggac tcacccatga 900 tatggggtgc aggaactctg ggggccctga aggatttgct tccctcccct gggaaggcag 960 agggctctta ataaagagga cccagaagat tcttatttag agcttcagtc tttggagcac 1020 acagggcctt cgtgagacag tgaaatcaga taataatgag atcttttgtt aaaaaaaaaa 1080 as 1082 <210> 43 <211> 570 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 1874312CB1 <400> 43 gttccgctgt gctgtttttc cgtcatggct cgcactaagc aaactgctcg gaagtctact 60 ggtggcaagg cgccacgcaa acagttggcc actaaggcag cccgcaaaag cgctccggcc 120 accggcggcg tgaaaaagcc ccaccgctac cggccgggca ccgtggctct gcgcgagatc 180 cgccgttatc agaagtccac tgaactgctt attcgtaaac tacctttcca gcgcctggtg 240 cgcgagattg cgcaggactt taaaacagac ctgcgtttcc agagctccgc tgtgatggct 300 ctgcaggagg cgtgcgaggc ctacttggta gggctatttg aggacactaa cctgtgcggc 360 atccaacgcc aagcgcgtca ctatcatgcc caaggacatc ccactcaccc gccagcatcc 420 gcggaagaga gggcggtgat tactgtgggt ctctcttgcc ggtccaagca aagggtcttt 480 ttcagggcca ccaccttttc caaataaagt tgctgtaaga aaacccattt atggcccaaa 540 agggattcct ttggggggca tttttctttt 570 <210> 44 <211> 1007 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 1969301CB1 <400> 44 cccacgcgtc cgcccacgcg tccggtttgg gtttcttcgc ggctgctcaa gatgaaccga 60 ctcttcggga aagcgaaacc caaggctccg ccgcccagcc tgactgactg cattggcacg 120 gtggacagta gagcagaatc cattgacaag aagatttctc gattggatgc tgagctagtg 180 aagtataagg atcagatcaa gaagatgaga gagggtcctg caaagaatat ggtcaagcag 240 aaagccttgc gagttttaaa gcaaaagagg atgtatgagc agcagcggga caatcttgcc 300 caacagtcat tcaacatgga acaagccaat tataccatcc agtctttgaa ggacaccaag 360 accacggttg atgctatgaa actgggagta aaggaaatga agaaggcata caagcaagtg 420 aagatcgacc agattgagga tttacaagac cagctagagg atatgatgga agatgcaaat 480 gaaatccaag aagcactgag tcgcagttat ggcaccccag aactggatga agatgattta 540 gaagcagagt tggatgcact aggtgatgag cttctggctg atgaagacag ttcttatttg 600 gatgaggcag catctgcacc tgcaattcca gaaggtgttc ccactgatac aaaaaacaag 660 gatggagttc tggtggatga atttggattg ccacagatcc ctgcttcata gatttgcatc 720 attcaagcat atcttgtaaa acaaacacat attatgggac taggaaatat ttatctttcc 780 aaatttgcca taacagattt aggtttcttt cctttctttg aaggaaagtt taattacatt 840 gctcttttat tttttccatt aagagactca ttgcttggga aatgctttct tcgtactaaa 900 atttgattcc tttttttctt atgaaaaacg aactcagttt aaaagtattt ttagctcgta 960 tgacttgttt tcattcatta ataataattt gagataacca agggaat 1007 <210> 45 <211> 1622 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1986873CB1 <400> 45 ttaaccaaat gatgcaaaac agcacctttt ttcatagcac gacagcaaca aattttgcaa 60 taattactgt ccttgtccac gcttcatgta ttttgcaatc tcctcttcgg agataaaagc 120 ttctttttct tcagtaaaat ggacatgact agtccagagc agtctagaaa tgtgctacag 180 tttactgaag aaaaagaagc ttttatctct gaagaggaga ttgcaaaata catgaagcgt 240 ggaaaaggaa agtattattg caaaatttgt tgctgtcgtg ctatgaaaaa aggtgctgtt 300 ttgcatcatt tggttaataa gcataatgtt catagccctt acaaatgcac aatctgtgga 360 aaggcttttc ttttggaatc tctccttaaa aatcatgtag cagcccatgg gcaaagttta 420 cttaaatgtc cacgttgtaa ttttgaatca aatttcccaa gaggttttaa gaaacattta 480 actcattgtc aaagccggca taatgaagag gcaaataaaa agctaatgga agctcttgaa 540 ccgccactgg aggagcagca aatttgataa cacagtgtga atatttgttc tacaaaggtg 600 tttgttggaa ccattctttg taagtatagc ttatcagata gcatagttgg atcagtagat 660 gacatgtatg gtgtaccgtg tttcactgtc tcagttgtgt tactaagaat gagcatttga 720 tcattttttt ctggtctctg tctatgtgac tatcttgtaa gtcaataaat ttctgtatag 780 tccagatgga ttaaacttct catttctttt aaatatgtat gaataataat acaaggaagt 840 aggcattcca tttaataatc aagagcaagt tgtactcaaa gcattcagtt aaagtgtatc 900 tgtgtgtgga actaatttca gacaatagaa aatattagtt gaaatgttta agaattaggc 960 atgaaaaata aatttgagaa attttgtttc cttacatgta tttttaaatc ataagagtta 1020 ttttctatct gatgtaaaat tagtttataa atcttaatca gcttctagat gtttattagc 1080 ttttatgtca tgaaatgttg gagtctcagg gttgctgatt ttctgctaat gggaaaaatt 1140 gactaagtct ttaaaatagt ttgcagcctt ctcccacagg agacaagtga aagataagtg 1200' tgattttaga tctttcttgt ccatagttgt tttcagtgga gtcttccatt ctgtatctta 1260 ccctaagatc tggttcttcc ctccccatcc ccacccccca cccaccgcct gccagctcac 1320 actaatagat gattcttaat tgccaaatgt gttagagttt gtatatccta ctcctgggcc 1380:-ttacatgtcg cctgttgggg cttaagacca ggttgataag taggaactga aagtcttcca 1440 gattcacagt agaaaatttt atagacattt ctgttaaaga aatatatcga ttttatgttt 1500 ttcaattatg ttactgtaaa taccttgtac ctgttcatgg attattttat tctaaaatat 1560 tttgtcaaat gtgtatcaac caaattaaaa agaaaggttt tcatgtcaaa aaaaaaaaaa 1620 as 1622 <210> 46 <211> 2047 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2010820CB1 <400> 46 tgttgaaaga ctactccaca tcattataga tgataataag agaacacaaa ttgttacaga 60 aattatctca gagattcggg cgcccattgt tactgttggt gttaataacg atccagctga 120 tgtaagatag aaagaactca agatggctga aataaaagtt aagcttatcg aagccaaaga 180 agctttggaa aattgcatta ccttacagga ttttaatcgg gcatcagaat taaaagaaga 240 aataaaagca ttagaagatg ccagaataaa ccttttgaaa gagacagagc aacttgaaat 300 taaagaagtc cacatagaga agaatgatgc tgaaacattg cagaaatgtc ttattttatg 360 ctatgaactg ttgaagcaga tgtccatttc aacaggctta agtgcaacca tgaatggaat 420 catcgaatct ttgattcttc ctggaataat aagtattcat cctgttgtaa gaaacctggc 480 tgttttatgc ttgggatgct gtggactaca gaatcaggat tttgcaagga aacacttcgt 540 attactattg caggttttgc aaattgatga tgtcacaata aaaataagtg ctttaaaggc 600 aatctttgac caactgatga cgttcgggat tgaaccattt aaaactaaaa aaatcaaaac 660 acttcattgt gaaggtacag aaataaacag tgatgatgag caagaatcaa aagaagttga 720 agagactgct acagctaaga atgttctgaa actcctttct gatttcttag atagtgaggt 780 atctgaactt aggactggag ctgcagaagg actagccaag ctgatgttct ctgggctttt 840 ggtcagcagc aggattcttt ctcgtcttat tttgttatgg tacaatcctg tgactgaaga 900 ggatgttcaa cttcgacatt gcctaggcgt gttcttcccc gtgtttgctt atgcaagcag 960 gactaatcag gaatgctttg aagaagcttt tcttccaacc ctgcaaacac tggccaatgc 1020 ccctgcatct tctcctttag ctgaaattga tatcacaaat gttgctgagt tacttgtaga 1080 tttgacaaga ccaagtggat taaatcctca ggccaagact tcccaagatt atcaggcctt 1140 aacagtacat gacaatttgg ctatgaaaat ttgcaatgag atcttaacaa gtccgtgctc 1200 gccagaaatt cgagtctata caaaagcctt gagttcttta gaactcagta gccatcttgc 1260 aaaagatctt ctggttctat tgaatgagat tctggagcaa gtaaaagata ggacatgtct 1320 gagagctttg gagaaaatca agattcagtt agaaaaagga aataaagaat ttggtgacca 1380 agctgaagca gcacaggatg ccaccttgac tacaactact ttccaaaatg aagatgaaaa 1440 gaataaagaa gtatatatga ctccactcag gggtgtaaaa gcaacccaag catcaaagtc 1500 tactcagcta aagactaaca gaggacagag aaaagtgaca gtttcagcta ggacgaacag 1560 gaggtgtcag actgctgaag ccgactctga aagtgatcat gaagttccag aaccagaatc 1620 agaaatgaag atgagactac caagacgagc caaaaccgca gcactagaaa aaagtaaact 1680 taaccttgcc caatttctca atgaagatct aagttaggaa agacgatgga ggtggaatcc 1740 tttaagatta tgtccagtta tttgctttaa taaagaagaa gttacccttg tcaaaatcag 1800 aacaaacctg atgtctttct gaagattttc tgctgtgcgc ttccacgtta ctttggcctg 1860 tattaaagca gtagagcagc atcagttatt atagtccaga aaaagtgtgc atcagtcagt 1920 cacacagatt tatcccaatc tgaaggtggg ctaggaatct catttttaaa tagtctctcc 1980 aagtgattcc tatggactct ttaagtttaa atcatgtcct tatggaaaac ttacagtgtt 2040 actagct 2047 <210> 47 <211> 1817 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2013818CB1 <400> 47 caacaggaag catcagcaga tgttgctact cctaagatgc cagggcagtc agtcaggaag 60 aaaactagga aggcaaaaga aatttctgaa gcttctgaaa acatctattc tgatgtcaga 120 ggactatctc agaaccagca aatacctcaa aattctgtta cgcctaggag aggaaggaga 180 aagaaagaag ttaatcagga catactagaa aacaccagtt ctgtggaaca agaattacag 240 atcactacag gtagggaatc aaaaagatta aaatcatctc agctgttgga accagcagtt 300 gaagaaacta ctaaaaaaga agttaaggtt tcatctgtta caaaaaggac tcctagaaga 360 attaaaagat ctgtagaaaa tcaggaaagt gttgaaatta taaatgatct aaaagttagt 420 acggtaacaa gtcctagcag aatgatcaga aaattgagaa gtactaattt agatgcttct 480 gaaaatacag gaaataagca agatgataaa tccagtgaca agcagctgcg tattaaacat 540 gttagaaggg tcagagggag agaagttagt ccatcagatg tgagagaaga ctccaacctt 600 gagtcatctc agttgactgt tcaagcagaa tttgatatgt ctgccatacc tagaaaacgt 660 ggtagaccaa gaaaaatcaa tccatctgaa gatgtaggat ctaaggctgt taaggaagag 720 agaagcccca agaagaaaga agctcccagc attagaagga gatctacaag aaatacccca 780 gctaaaagtg aaaatgttga tgttggaaaa ccagctttag gaaaatccat tttagtgcca 840 aacgaggaac tttcgatggt gatgagctct aagaaaaaac ttacaaaaaa gactgaaagt 900 caaagccaaa aacgttcatt gcactcagta tcagaagaac gcacagatga aatgacacat 960 aaagaaacaa atgagcagga agaaagattg ctcgccacag cttccttcac taaatcatcc 1020 cgcagcagca ggactcggtc tagcaaggcc atcttgttgc cggacctttc tgaaccaaac 1080 aatgagcctt tattttctcc agcgtcagaa gttccaagga aagcaaaagc taaaaaaata 1140 gaggttcctg cacagctgaa agaattagtt tcggatttat cttctcagtt tgtcatctca 1200 cctcctgctt taaggagcag acaaaaaaac acatccaata agaacaagct tgaagatgaa 1260 ctgaaagatg atgcacaatc agtagaaact ctgggaaagc caaaagcgaa acgaatcagg 1320 acgtcaaaaa caaaacaagc aagcaaaaac acagaaaaag aaagtgcttg gtcacctcct 1380 cccatagaaa ttcggctgat ttcccccttg gctagcccag ctgacggagt caagagcaaa 1440 ccaagaaaaa ctacagaagt gacaggaaca ggtcttggaa ggaacagaaa gaaactgtct 1500 tcctatccaa agcaaatttt acgcagaaaa atgctgtaat ttcttgggaa gattttaatg 1560 tacacctatt tgtaaagtca tcagaatagt gtggattatt aaatatctag tttggaagaa 1620 aataatttat ataaattatt gtaaattttt atgtaaacag aaggtcttca ataagtaaag 1680 taactccata tggagtgatt gtttcagtcc aggcaatttt tctattttat attaagactt 1740 catacattta tatatgtaaa tatggcttat taatggaatg ttaaataaaa tgtatacttc 1800 acagtcaaaa aaaaaaa 1817 <210> 48 <211> 700 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2302032CB1 <400> 48 cccgcctcgc agagttggga gaaggcaggg tggggggtgt ggaaaaataa aaggaaaagt 60 ccttgcacca tgtagatcag cgtcccccac tttggcatcc cggccggccg gggacctccc 120 agtctgcggc catgaacgcg agcagcgagg gcgagagctt cgcgggctcg gtgcaaattc 180 caggtggcac aacggtgctg gtggagctga ctcccgacat ccatatctgc ggcatctgca 240 agcagcagtt taacaacctg gatgcctttg tagctcacaa gcaaagtggc tgccagctga 300 caggcacatc cgcagcagcc cccagcacgg tccagtttgt atcggaggaa acagtgcctg 360 ccacccagac tcagaccacc accagaacca tcacctcgga gacccagaca atcacaggta 420 cagctggagc atgggggagt cggccagaat tggcctggct gtgtctcaaa cacgtccatg 480 gaacttgtta aaaatataga ttcccagagc ccacccccta gggttgctga ttcattattt 540 ttaacaagct ccaccaggaa gccagctgcc cagccaggtt tgggagctgc taggttaaaa 600 cattaactgt tagcagttat aaatgttgtc acgttacaaa aaaaacagac aaaaaagaga 660 tttctgaaac aaaaatctat atactatagg aaaaaaaaaa 700 <210> 49 <211> 2704 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2326109CB1 <400> 49 cggggcggag gcggaggcag aggtggaggc gctttgaaag ccgtcattgt gtggcactgg 60 acggggaatc aagagacccg gtttctaatc cctgctctgt cactaacaag ctgcgtgatc 120 ttcggaaaaa agtaatcctc ttggaaagct ggaaacatag tccgaagctt aagtgaaaat 180 gatacatgtt agaagacatg aaacaaggag aaattctaag agtcacgtgc ctgagcagaa 240 atctcgagtt gattggaggc gaactaaaag aagtagtatc tcacaattac ttgatagtga 300 tgaagagctt gatagtgaag aatttgatag tgatgaagag cttgatagtg atgaaagttt 360 tgaaaatgat gaagagcttg atagtaacaa gggacctgat tgtaataaaa caccaggaag 420 tgaaagagag ctcaacttaa gtaaaattca aagtgaagga aatgacagta agtgtctcat 480 taactctggc aacggttcaa catatgaaga agaaacgaac aaaatcaaac ataggaatat 540 tgacttacaa gatcaggaaa aacatttaag tcaagaggat aatgatctca acaaacaaac 600 tggacaaata atagaggatg atcaggaaaa acatttaagt caagaggata atgatctcaa 660 caaacaaact ggacaaataa tagaggatga tttagaagaa gaagacatca agcgaggaaa 720 aagaaaaagg ctatcctctg tgatgtgtga cagtgatgag agtgatgaca gcgatatcct 780 agttagaaaa gtaggtgtta aacgtccccg tagagtggtt gaagatgaag gttcttcagt 840 ggaaatggag caaaagactc ctgaaaaaac attagctgca caaaagcgag aaaaacttca 900 gaagctcaaa gaactctcaa aacaaagatc tcgtcagaga cgcagtagtg gtagagattt 960 tgaggactct gaaaaggaat cttgcccaag cagtgatgaa gttgatgagg aggaagaaga 1020 ggataattat gaatctgatg aagatggaga tgattatatt atcgatgact ttgtagtgca 1080 agatgaggag ggtgatgaag agaataaaaa ccaacaagga gaaaaattga ctacatcaca 1140 actgaaatta gtaaaacgga attctcttta ttcttttagt gaccactata ctcattttga 1200 aagagttgtg aaggctcttc tgatcaacgc tttagatgaa tcttttctgg gaacattata 1260 tgatggcaca aggcaaaaat catatgcaaa agatatgcta acatctcttc attatttgga 1320 taaccgcttt gttcagcctc gtctagagag cttggtatct agaagtcgtt ggaaagagca 1380 atataaggag cgagtagaaa attattctaa tgtaagtatt catttgaaga atcctgaaaa 1440 ctgttcctgc caggcttgtg gactgcatcg ctactgtaaa tattcagtgc atttatcagg 1500 agagttgtat aacaccagga ccatgcaaat agataatttc atgtcacatg ataaacaggt 1560 gttcactgtt ggcagaattt gtgccagccg taccagaatt tatcataaac tgaaacattt 1620 taaattcaaa ctataccagg aatgttgcac cattgcaatg acagaagaag ttgaagatga 1680 acaagttaaa gaaacagtgg aaagaatttt caggcggtca aaagaaaatg gctggattaa 1740 ggagaaatat ggtcaacttg aagaatatct caattttgcg gattactttc aagaagagaa 1800 gtttgagttg taacacattt ccatcagaga agatttttta aattcctgta aatgtgaaga 1860 tcatgattct tgtttttctg tatcatgtga catgtttgta cattttatct atatcttcat 1920 ggcaaaatat tttgtttaaa acatgattat cttaattcct gtgaagtggc actctacact 1980 ctaattaaac ttttatctga tgtacataaa agcattatct taatttttaa gtctgtaaat 2040 atattttaaa gttatataat aatggcttta taacagatga ctgtcaagtg aatgagctgt 2100 tgatatcctg tcagtttagt caaaatatat tgtatcttaa aaatgtattt agactaacgt 2160 ctacatgtat ttttacggaa ttcctgtcca gatctgttta ttcttttaca gtattaaatg 2220 attttcacta atatattttt tactgctatc atctaaatca gtgggccatg gaagaaacct 2280 catatatcat tcagttcaat cccattgctt cagaatcaga tcatagcata tctattctaa 2340 gtagaggaat gcttttttcc ttttcttgaa agtttctctt tcaaatagat ttcaggcctc 2400 tagagtcttt caaccctcac attcaggaat aattttatgt aaattttcat gctttataat 2460 gttcttactt ttttctattc aattttgtct atatattgat gattaagatg tattttattt 2520 atttttatcc atagcttttt ccatataagt atgtatctta gggtcagaac tgctgaaaga 2580 gacaaactca gccaaaaaca cttggaaagc atattttggt atctgcattg ctttgcatat 2640 ctaaattttc ccataaagta ataaagtaaa atggttgcag agtgaacaaa aaaaaaaaaa 2700 aagg 2704 <210> 50 <211> 3086 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2354751CB1 <400> 50 cgccggcgtc cgcccagccg acccctctgg gccgcggccg acggctcccg gaactgggca 60 gccgcgggac agaagtcggt cctaggcccc ccaggctctg accttctttc ccaggatgag 120 gtggggccac catttgccca gggcctcttg gggctctggt tttagaagag cactccagcg 180 accagatgat cgtatcccct tCCtgatCCa ctggagttgg ccccttcaag gggagcgtcc 240 ctttgggccc cctagggcct ttatacgcca ccacggaagc tcggtagata gcgctccccc 300 acccgggagg catggacggc tgttccccag cgcctctgca actgaagcta tacagcggca 360 ccgccggaac ctggctgagt ggttcagccg gctgcccagg gaggagcgcc agtttggccc 420 aacctttgcc ctagacacgg tccacgttga ccctgtgatc cgcgagagta cccctgatga 480 gctacttcgc ccacccgcgg agctggccct ggagcatcag ccaccccagg ccgggctccc 540 cccactggcc ttgtctcagc tctttaaccc ggatgcctgt gggcgccggg tgcagacagt 600 ggtgctgtat gggacagtgg gcacaggcaa gagcacgctg gtgcgcaaga tggttctgga 660 ctggtgttat gggcggctgc cggccttcga gctgctcatc cccttctcct gtgaggacct 720 gtcatccctg ggccctgccc cagcctccct gtgccaactt gtggcccagc gctacacgcc 780 cctgaaggag gttctgcccc tgatggctgc tgctgggtcc cacctcctct ttgtgctcca 840 tggcttagag catctcaacc tcgacttccg gctggcaggc acgggacttt gtagtgaccc 900 ggaggaaccg caggaaccag ctgctatcat cgtcaacctg ctgcgcaaat acatgctgcc 960 tcaggccagc attctggtga ccactcggcc ctctgccatt ggccgtatcc ccagcaagta 1020.
cgtgggccgc tatggtgaga tctgcggttt ctctgatacc aacctgcaga agctctactt 1080 ccagctccgc ctcaaccagc cgtactgcgg gtatgccgtt ggcggttcag gtgtctctgc 1140 cacaccagct cagcgtgacc acctggtgca gatgctctcc cggaacctgg aggggcacca 1200 ccagatagcc gctgcctgct tcctgccgtc ctattgctgg ctcgtttgtg ccaccttgca 1260 cttcctgcat gcccccacgc ctgctgggca gacccttaca agcatctata ccagcttcct 1320 gcgcctcaac ttcagcgggg aaaccctgga cagcactgac ccctccaatt tgtccctgat 1380 ggcctatgca gcccgaacca tgggcaagtt ggcctatgag ggggtgtcct cccgcaagac 1440 ctacttctct gaagaggatg tctgtggctg cctggaggct ggcatcagga cggaggagga 1500 gtttcagctg ctgcacatct tccgtcggga tgccctgagg tttttcctgg ccccatgtgt 1560 ggagccaggg cgtgcaggca ccttcgtgtt caccgtgccc gccatgcagg aatacctggc 1620 tgccctctac attgtgctgg gtttgcgcaa gacgaccctg caaaaggtgg gcaaggaagt 1680 ggctgagctc gtgggccgtg ttggggagga cgtcagcctg gtactgggca tcatggccaa 1740 gctgctgcct ctgcgggctc tgcctctgct cttcaacctg atcaaggtgg ttccacgagt 1800 gtttgggcgc atggtgggta aaagccggga ggcggtggct caggccatgg tgctggagat 1860 gtttcgagag gaggactact acaacgatga tgttctggac cagatgggcg ccagtatcct 1920 gggcgtggag ggcccccggc gccacccaga tgagccccct gaggatgaag tcttcgagct 1980 cttccccatg ttcatggggg ggcttctctc tgcccacaac cgagctgtgc tagctcagct 2040 tggctgcccc atcaagaacc tggatgccct ggagaatgcc caggccatca agaagaagct 2100 gggcaagctg ggccggcagg tgctgccccc atcagagctc cttgaccacc tcttcttcca 2160 ctatgagttc cagaaccagc gcttctccgc tgaggtgctc agctccctgc gtcagctcaa 2220 cctggcaggt gtgcgcatga caccagtcaa gtgcacagtg gtggcagctg tgctgggcag 2280 cggaaggcat gccctggatg aggtgaactt ggcctcctgc cagctagatc ctgctgggct 2340 gcgcacactc ctgcctgtct tcctgcgtgc ccggaagctg ggcttgcaac tcaacagcct 2400 gggccctgag gcctgcaagg acctccgaga cctgttgctg catgaccagt gccaaattac 2460 cacactgcgg ctgtccaaca acccgctgac ggaggcaggt gttgccgtgc taatggaggg 2520 gctggcagga aacacctcag tgacgcacct gtccctgctg cacacgggcc ttggggacga 2580 aggcctggag ctgctggctg cccagctgga ccgcaaccgg cagctgcagg agctgaacgt 2640 ggcgtacaac ggtgctggtg acacagcggc cctggccctg gccagagctg cccgggagca 2700 cccttccctg gaactgctac agtgagtcct gtccctggtc ccattgcccc cagcccttca 2760 gactacttcc ctctctcaac tgtgctcctc caatcctagg gagtgcttct gggcctgggc 2820 ctggtgcctg tcctttattc ctggtttctg actgagcctt gtcaacctag ctctgagcca 2880 gcccaccccc tctgtgactg gcgcttaaac tgcaccaatt ccctaccacc atttctccta 2940 aagccctact gtctctggtc ccactgaatt ctagtatcag ggtcggctgt ggtggctcac 3000 gtctgtaatc ccagcacttc ggggggccaa ggcgggcaca tcacctgagg tcaggagttc 3060 aagaccagtc tggccaacat ggtgaa 3086 <210> 51 <211> 676 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2378058CB1 <400> 51 ttcgtttttg tcgcgcgagg ttttggtttg tgaggatcgg cgagtggcgc ccaccatctc 60 tgcttgctga aaagctgcag aggccgccag gagcccacgc acctgagact tttaccttta 120 cccagaaagg aataaaagag gtcagatgat gacagctgtg tccttaacaa ccaggcccca 180 ggaatcagtg gcttttgagg acgtggctgt gtacttcact acgaaggaat gggccatcat 240 ggtgcctgcc gagagggcct tgtacaggga tgtgatgctg gagaactatg aggctgtggc 300 ctttgtagtg ccacccactt ccaaaccagc tttggtctct catctggagc aagggaaaga 360 gtcctgtttc acccagccac agggagtcct aagcaggaat gactggagag caggctggat 420 aggatacttg gaactaagaa gatatactta cttagctaaa gcagtgttac gtagaatagt 480 atcaaaaatt tttcgaaatc gtcaatgctg ggaagacagg agaaaagctt aattcttgac 540 atttaaatac cagttttcca agtaaggagt tgatgtaaga gccaccttaa acgatgtcaa 600 atacacattt tctttttctg tagactggta gatttaatgt ttttcattca ttaaaataac 660 tcattttgat gtacaa 676 <210> 52 <211> 2135 <212> DNA
<213> Homo sapiens <220>
<221> unsure <222> 1913 <223> a or g or c or t, unknown, or other <220>
<221> misc_feature <223> Incyte ID No: 2595747CB1 <400> 52 agtcccagcc ttggaagcac actgtgtaga atttctcacc aaacatctta gggcagataa 60 tgcctttatg ttacttactc aggctcgatt atttgatgaa cctcagcttg ctagtctttg 120 tctagataca atagacaaaa gcacaatgga tgcaataagt gcagaagggt ttactgatat 180 tgatatagat acactctgtg cagttttaga gagagacaca ctcagtattc gagaaagtcg 240 actttttgga gctgttgtac gctgggcaga agcagaatgt cagagacaac aattacctgt 300 gacttttggg aataaacaaa aagttctagg aaaagcactt tccttaatcc ggttcccact 360 gatgacaatt gaggaatttg cagcaggtcc tgctcaatct ggaattttgt cagatcgtga 420 agtggtaaac ctctttcttc attttactgt caaccctaaa ccccgagttg aatacattga 480 ccgaccaaga tgctgtctca ggggaaagga atgctgcatc aatagattcc agcaagtaga 540 aagccgctgg ggttacagtg ggacgagtga tcgaatcaga ttcacagtta atagaaggat 600 ctctatagtt ggatttggct tgtatggatc tattcatggc cctacagatt atcaagtgaa 660 tatacagatc attgaatatg agaaaaagca aaccctggga cagaatgata ccggctttag 720 ttgtgatggg acagctaaca cattcagggt catgttcaag gaacccatag agatcctgcc 780 caatgtgtgc tacacagcat gtgcaacact caaaggtcca gattcccact atggcacaaa 840 aggattgaag aaagtagtgc atgagacacc tgctgcaagc aagactgttt ttttcttttt 900 tagttcccct ggcaataata atggcacttc aatagaagat ggacaaattc cagaaatcat 960 attttataca taatttagca ttataataca tcttggctaa ataataccat acaatctagt 1020 gtcaaaaaca taaatggcca caaaaaagta gtttgagtgt tatgaatatt taaaattgta 1080 agataagaaa cagtttctta gagcagatag aaaaatgctt atttaaatct ttgcatgatt 1140 taaaaacaga ttttccattt tcttacaact ttaagagaaa agaactgggt ttaatggttt 1200 aaaaaaaagc acagcttttt caccttcatc ttgtataatt tcatagattg gctgacttag 1260 ggtctttcaa tagtttggga attgaaagat tcttgttata tatagctagt ttgggtttgt 1320 ttttgtttta actattttga aggttaggtg agatgggcaa ataggcttaa ctattttgaa 1380 ggttggatga aaagagatgg gtcagtattc ctacagaatt cttattaact caaataacta 1440 aatttcagaa aattaagaag ctgactttat atttggtggt ttgaagtatc ttgttgttag 1500 catttgtaat aatgctaaaa aaggcctaat aaaatgccca agaaaatatt cagtgcattt 1560 atagagaagg atattttgta gtagtatagt aatgtgttat gtagtacagt tttaaagcta 1620 taaatggaat tttgtgtaaa ttcacaaaaa tgtgatataa acaggatcta agactggatt 1680 ccctgtcact aaactgcaca actatacctg tctctctgtg tgggggacac tgctgatgat 1740 tcccaagatt taggatgatg aacggtgatg aacgcttggg tgaacagcca tcaactttaa 1800 acattgggga ttaatccttt caacaggcaa ggagaacaag gatttaaaat tgactaacac 1860 aatttcttaa acaaacattg cttcatgacc aaatttgata agggaggatt canaacaggg 1920 tagttaaatt ccgggcttgg aaaagataaa cgagttttca tgaccaacca ttttctgagg 1980 gggggggaac acggttaaca caatttcgac cattttggag ggggccggtt tacaatttaa 2040 atggccggtg ggtttaaaac gcggtgactg gggaaccatg ggggtaccaa cattggattt 2100 tttgaggaaa tccccttttt gcaagggggg tgatt 2135 <210> 53 <211> 1385 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2634391CB1 <400> 53 gccaaccatt ccaagtcagg ggctcccaac aaatgataga ccaggcttcc ctgtaccagt 60 attctccaca gaaccagcat gtagagcagc agccacacta cacccacaaa ccaactctgg 120 aatacagtcc ttttcccata cctccccagt cccccgctta tgaaccaaac ctctttgatg 180 gtccagaatc acagttttgc ccaaaccaaa gcttagtttc ccttcttggt gatcaaaggg 240 aatctgagaa tattgctaat cccatgcaga cttcctccag tgttcagcag caaaatgatg 300 ctcacttgca cagcttcagc atgatgccca gcagcgcctg tgaggccatg gtggggcacg 360 agatggcctc tgactcttca aacacttcac tgccattctc aaacatggga aatccaatga 420 acaccacaca gttagggaaa tcactttttc agtggcaggt ggagcaggaa gaaagcaaat 480 tggcaaatat ttcccaagac cagtttcttt caaaggatgc agatggtgac acgttccttc 540 atattgctgt tgcccaaggg agaagggcac tttcctatgt tcttgcaaga aagatgaatg 600 cacttcacat gctggatatt aaagagcaca atggacagag tgcctttcag gtggcagtgg 660 ctgccaatca gcatctcatt gtgcaggatc tggtgaacat cggggcacag gtgaacacca 720 cagactgctg gggaagaaca cctctgcatg tgtgtgctga gaagggccac tcccaggtgc 780 ttcaggcgat tcagaaggga gcagtgggaa gtaatcagtt tgtggatctt gaggcaacta 840 actatgatgg cctgactccc cttcactgtg cagtcatagc ccacaatgct gtggtccatg 900 aactccagag aaatcaacag cctcattcac ctgaagttca ggagctttta ctgaagaata 960 agagtctggt tgataccatt aagtgcctaa ttcaaatggg agcagcggtg gaagcgaagg 1020 cttacaatgg caacactgcc ctccatgttg ctgccagctt gcagtatcgg ttgacacaat 1080 tagatgctgt ccgcctgttg atgaggaagg gagcagaccc aagtactcgg aacttggaga 1140 acgaacagcc agtgcatttg gttcccgatg gccctgtggg agaacagatc cgacgtatcc 1200 tgaagggaaa gtccattcag cagagagctc caccgtatta gctccattag cttggagcct 1260 ggctagcaac actcactgtc agttaggcag tcctgatgta tctgtacata gaccatttgc 1320 cttatattgg caaatctaag ttgtttctat gacacaaaca tatttagttc actattatat 1380 acagt 1385 <210> 54 <211> 1500 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 2637522CB1 <400> 54 cacagagtga acaagagaga gtcatttggg aaacaaaagg agaattttac agagagagag 60 ggatagctaa aactacgtga gcctggcgag ggtgcagagc agaaagtaga gactgtccga 120 agactgctat ctgggacgag acaagttgtt aaagggacag gagagaaagc agagctattt 180 caagagtgag ccacagaagg gaatccagag gccatctaag cgaggaaggg tctacaggca 240 gtgagtgaag gccaggagca gggcccaggc caggcacgac caccgagggg atgaacttca 300 cagtgggttt caagccgctg ctaggggatg cacacagcat ggacaacctg gagaagcagc 360 tcatctgccc catctgcctg gagatgttct ccaaaccagt ggtgatcctg ccctgccaac 420 acaacctgtg ccgcaaatgt gccaacgacg tcttccaggc ctcgaatcct ctatggcagt 480 cccggggctc caccactgtg tcttcaggag gccgtttccg ctgcccatcg tgcaggcatg 540 aggttgtcct ggacagacac ggtgtctacg gcctgcagcg aaacctgcta gtggagaaca 600 ttatcgacat ttacaagcag gagtcatcca ggccgctgca ctccaaggct gagcagcacc 660 tcatgtgcga ggagcatgaa gaagagaaga tcaatattta ctgcctgagc tgtgaggtgc 720 ccacctgctc tctctgcaag gtcttcggtg cccacaagga ctgtgaggtg gccccactgc 780 ccaccattta caaacgccag aagagtgagc tcagcgatgg catcgcgatg ctggtggcag 840 gcaatgaccg cgtgcaagca gtgatcacac agatggagga ggtgtgccag actatcgagg 900 acaatagccg gaggcagaag cagttgttaa accagaggtt tgagagcctg tgcgcagtgc 960 tggaggagcg caacggtgag ctgctgcagg cgctggcccg ggaacaagca ggacaagctt 1020 caacgcgatc cgacgggact cattccggtc agtaatgggc gaagcaactt gggaaggccc 1080 tccctgccta aaagcctggt ttggagggtc actgtccaaa tcccaagttt ccacatttgg 1140 atataccaga gcccaacaga aaattgtgtg cggacactta gtaaaatgcc cgtccaagag 1200 gccaagggtg cccaccaatg ggggagaacc tttgtacact ccacaggttt aaaaaagtgt 1260 tcccccctga ggggccccac tatttttttc ccacataagc gagttgtggg aaaaaaactt 1320 tttgtgtcca cagagggggc cctcgggacc cccctgggga aaagttccac agaggcgctc 1380 ttaattttgt aatagaaggg gtccaaattt gtgcgaaaag ctccaaaaag tttcccaaac 1440 acccgggggt tataataccg aggggctttc gggggaaaag gggccacccc cccttttttg 1500 <210> 55 <211> 2051 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2650980CB1 <400> 55 gcggacgccg aggctcgcgt tccgccgctg cttccgtcgc cggggcgggc gccgcggtgt 60 ccctgccgag cgtgaccccg aactgtcacc gcgccgagcc ccagcctcat ccgtcggtgt 120 ccgcggttga ttcttcacca cactgaaacc attaggaaaa atccttgtgg ttaacagcag 180 aggcttcaga gtgtaacctg tactcgggcc tagaaattat ttaaaatggc gactgatacg 240 tctcaaggtg aactcgtcca tcctaaggca ctcccactta tagtaggagc tcagctgatc 300 cacgcggaca agttaggtga gaaggtagaa gatagcacca tgccgattcg tcgaactgtg 360 aattctaccc gggaaactcc tcccaaaagc aagcttgctg aaggggagga agaaaagcca 420 gaaccagaca taagttcaga ggaatctgtc tccactgtag aagaacaaga gaatgaaact 480 ccacctgcta cttcgagtga ggcagagcag ccaaaggggg aacctgagaa tgaagagaag 540 gaagaaaata agtcttctga ggaaaccaaa aaggatgaga aagatcagtc taaagaaaag 600 gagaagaaag tgaaaaaaac aattccttcc tgggctaccc tttctgccag ccagctagcc 660 agggcccaga aacaaacacc gatggcttct tccccacgtc ccaagatgga tgcaatctta 720 actgaggcca ttaaggcatg cttccagaag agtggtgcat cagtggttgc tattcgaaaa 780 tacatcatcc ataagtatcc ttctctggag ctggagagaa ggggttatct ccttaaacaa 840 gcactgaaaa gagaattaaa tagaggagtc atcaaacagg ttaaaggaaa aggtgcttct 900 ggaagttttg ttgtggttca gaaatcaaga aaaacacctc agaaatccag aaacagaaag 960 aataggagct ctgcagtgga tccagaacca caagtaaaat tggaggatgt cctcccactg 1020 gcctttactc gcctttgtga acctaaagaa gcttcctaca gtctcatcag gaaatatgtg 1080 tctcagtatt atcctaagct tagagtggac atcaggcctc agctgttgaa gaacgctctg 1140 cagagagcag tagagagggg ccagttagaa cagataactg gcaaaggtgc ttcggggaca 1200 ttccagctga agaaatcagg ggagaaaccc ctgcttggtg gaagcctgat ggaatatgca 1260 atcttgtctg ccattgctgc catgaatgag ccgaagacct gctctaccac tgctctgaag 1320 aagtatgtcc tagagaatca cccaggaacc aattctaact atcaaatgca tttgctgaaa 1380 aaaaccctgc agaaatgcga aaagaatggg tggatggaac agatctctgg gaaagggttc 1440 agtggcacct tccagctctg ttttccctat tatcccagcc caggagttct gtttccgaag 1500 aaagagccag atgattctag agatgaggat gaagatgaag atgagtcatc agaagaagac 1560 tctgaggatg aagagccgcc acctaagaga aggttgcaga agaaaacccc agccaagtcc 1620 ccagggaagg ccgcatctgt gaagcagaga gggtccaaac ctgcacctaa agtctcagct 1680 gcccagcggg ggaaagctag gcccttgcct aagaaagcac ctcctaaggc caaaacgcct 1740 gccaagaaga ccagaccctc atccacagtc atcaagaaac ctagtggtgg ctcctcaaag 1800 aagcctgcaa ccagtgcaag aaaggaagta aaattgccgg gcaagggcaa atccaccatg 1860 aagaagtctt tcagagtgaa aaagtaaatt ttataggaaa aaagggtatc atgatgaaat 1920 tcaaaatctt attttctaag gtcagtgtgc atttgtttag ttttgatgct tttcaaatta 1980 cattattttc ctcccctatg aacattgtgg ggagggactc taaataaacc agtttaggca 2040 aaaaaaaaaa a 2051 <210> 56 <211> 1694 <212> DNA
<213> Homo Sapiens <220>
<221> unsure <222> 239 <223> a or g or c or t, unknown, or other <220>
<221> misc_feature <223> Incyte ID No: 2939607CB1 <400> 56 gaattttgtg tttgcatcgt catcatgcgc gtgttgagcc ctttagtaat gtttttgtgt 60 attagcttct tatttctagg tagacggtaa tttcgtcaat gaaaaaattt aacggtgatc 120 gtcacccctt gcctcagtca ctttctgtcc ctcgcgcggc cccggggttc accgcggacg 180 ttcctgttct gtggagaata acggctgcac ctgtatattg acgcatattt ggcggcggng 240 gtgctttgtc tcctcagcac tctgctgtca ctcaaggaag tatcatcaag aacaaggagg 300 gcatggatgc taagtcacta actgcctggt cccggacact ggtgaccttc aaggatgtat 360 ttgtggactt caccagggag gagtggaagc tgctggacac tgctcagcag atcgtgtaca 420 gaaatgtgat gctggagaac tataagaacc tggtttcctt gggttatcag cttactaagc 480 cagatgtgat cctccggttg gagaagggag aagagccctg gctggtggag agagaaattc 540 accaagagac ccatcctgat tcagagactg catttgaaat caaatcatca gtttccagca 600 ggagcatttt taaagataag caatcctgtg acattaaaat ggaaggaatg gcaaggaatg 660 atctctggta tttgtcatta gaagaagtct ggaaatgtag agaccagtta gacaagtatc 720 aggaaaaccc agagagacat ttgaggcaag tggcattcac ccaaaagaaa gtacttactc 780 aggagagagt ctctgaaagt ggtaaatatg ggggaaactg tcttcttcct gctcagctag 840 tactgagaga gtatttccat aaacgtgact cacatactaa aagtttaaaa catgatttag 900 ttcttaatgg tcatcaggac agttgtgcaa gtaacagtaa tgaatgtggt caaactttct 960 gtcaaaacat tcaccttatt cagtttgcaa gaactcacac aggtgataaa tcctacaaat 1020 gccctgataa tgacaactct cttactcatg gttcatctct tggtatatca aagggcatac 1080 atagagagaa accctatgaa tgtaaggaat gtggaaaatt cttcagctgg cgctctaatc 1140 ttactaggca tcagcttatt catactggag aaaaacccta tgagtgtaaa gaatgtggaa 1200 agtcttacag ccagagatct caccttgttg tgcatcatag aattcacact ggactaaaac 1260 cttttgagtg taaggattgt ggaaaatgtt ttagtcgaag ctctcacctt tattcacatc 1320 aaagaaccca cactggagag aaaccatatg agtgtcatga ttgtggaaaa tctttcagcc 1380 agagttctgc ccttattgtg catcagagga tacacactgg agagaaacca tatgaatgct 1440 gtcagtgtgg gaaagccttc atccggaaga atgacctcat taagcaccag agaattcatg 1500 ttggagaaga gacctataaa tgtaatcaat gtggcattat cttcagccag aactctccat 1560 ttatagttca tcaaatagct cacactggag agcagttctt aacatgcaat caatgtggga 1620 cagcgcttgt taatacctct aaccttattg gataccagac aaatcatatt agagaaaaag 1680 cttactaata aata 1694 <210> 57 <211> 1177 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 3098421CB1 <400> 57 gacctggccc ccgaatcagg aaaaggcagg tattggaacc cacggcctgg gtgttagtcc 60 agccgcttag tattctgact ctattctgcc tttcttgtct cctaagaata actgtgcttg 120 aagaagaaaa ttcccaacat ggacaaacca cgcaaagaaa atgaagaaga gccgcagagc 180 gcgcccaaga ccgatgagga gaggcctccg gtggagcact ctcccgaaaa gcagtccccc 240 gaggagcagt cttcggagga gcagtcctcg gaggaggagt tctttcctga ggagctcttg 300 cctgagctcc tgcctgagat gctcctctcg gaggagcgcc ctccgcagga gggtctttcc 360 aggaaggacc tgtttgaggg gcgccctccc atggagcagc ctccttgtgg agtaggaaaa 420 cataagcttg aagaaggaag ctttaaagaa aggttggctc gttctcgccc gcaatttaga 480 ggggacatac atggcagaaa tttaagcaat gaggagatga tacaggcagc agatgagcta 540 gaagagatga aaagagtaag aaacaaactg atgataatgc actggaaggc aaaacggagc 600 cgtccttatc ctatttaatg tgttcggcct ttaattctgt tttgcctgct aatagtattg 660 ccattgccac ctggactttc tgtttgcatt ttcttaatgc cttttcccat attctgaatt 720 ttaacttttt gtgaggcttt attttagatg tttagcatgt aactcgctta aagttgaggt 780 ttccccctaa aatctacaag tttccctctt tcagtcatga gccctacaca tttgcatgaa 840 agatgtacat tatatattgt gaaacgaaaa aagcaatttt caaatggtat atattgtatc 900 ccatttttgt aaaaaaaatg tatatttata tattaatatg caaagaaaaa gctaaaagta 960 tagacttcaa aggcataaca gtggttgtgt ggtaagataa taggtgattt tttaaatttt 1020 tgttttatct gaatttctca ttttttcagg acaaacgttt tacttgtgtt gcaaaaatat 1080 ataatgaaaa aatcacacaa ttttgaagaa aactgtcaat cagcttataa cgacaatgtg 1140 gcacttaata aatacttgtc agaactttaa aaaaaaa 1177 <210> 58 <211> 1219 <212> DNA
<213> Homo sapiens <220>
<221> unsure <222> 1139 <223> a or g or c or t, unknown, or other <220>
<221> misc_feature <223> Incyte ID No: 3296650CB1 <400> 58 gctcggaatt cggctcgagg tagccagtgc cagccaatga aggctctgtt caagcatgaa 60 tctctgggat cccagccctt acacgataga gttctccagg ttcctgggct tgcccaggga 120 gggtgctgca gagaagatgc aatggtagct tccaggctca ctccagggtc ccagggtttg 180 ctgaaaatgg aagatgtggc cctgaccctc actcctgggt ggacacagct ggattcatct 240 caggtgaacc tctacagaga tgaaaagcag gagaaccata gcagcctggt ctcccttggt 300 ggtgaaatac agactaagag cagggacttg cctccagtca agaagcttcc agaaaaggag 360 catgggaaga tatgccacct gagggaagac attgcccaga ttcctacaca tgcagaagct 420 ggtgaacagg agggcaggtt acaaagaaag cagaaaaatg ccatagggag taggcgacat 480 tattgccatg aatgtggaaa gagttttgct caaagttcag gcctgactaa acacaggaga 540 atccacactg gtgagaaacc ctatgaatgt gaagactgtg gaaagacctt cattgggagc 600 tctgcccttg tcattcatca gagagtccac actggtgaga agccatatga gtgtgaagaa 660 tgtggtaagg tcttcagtca cagctcaaac cttatcaaac accagagaac ccacactggg 720 gagaagccct atgagtgtga tgactgtggg aagaccttca gccagagctg cagcctcctt 780 gaacatcaca aaattcatac tggggagaag ccataccagt gcaatatgtg tggcaaagcc 840 tttaggcgga attcacatct cctgagacat cagaggattc atggtgataa aaatgttcag 900 aatcctgagc acggggagtc ctgggaaagt cagggtagga cggaaagcca gtgggaaaat 960 actgaggctc ccgtgtctta taaatgtaat gagtgtgaga gaagtttcac acggaataga 1020 agtcttattg aacatcagaa aatccacact ggtgacaaac cctatcagtg tgacacatgt 1080 ggaaaaggtt tcactcgaac ttcatacctt gttcaacatc agagaagcca tgtagggana 1140 aaaactcttt cacagtgacc catggttatc atgccaacat tggtgctcat ttgtcactga 1200 actgaagcaa cccttggag 1219 <210> 59 <211> 1309 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 3687719CB1 <400> 59 ctggaagctg agcctgaccc agcaggtccC agcagcctgg cagcccggcc agcatgcagc 60 agcagcctct gcccgggcct ggcgccccca caactgagcc aaccaagcct ccctacagct 120 acatcgccct tattgctatg gccatccaga gctcaccggg gcagcgggcc accctcagtg 180 gcatctaccg ctacatcatg ggccgattcg ccttctaccg ccacaaccgg cccggctggc 240 agaacagcat ccgccacaat ctgtcactca acgagtgctt tgtcaaggtg ccccgcgatg 300 accgcaagcC aggcaagggc agctactgga cgctggaccc tgactgccac gacatgtttg 360 agcacggcag cttcctacgc cgccgccgcc gcttcacccg gcagacaggt gctgagggca 420 cccggggccc cgccaaggca cgccgtggac ccctcagggc gaccagccag gacccaggag 480 tccccaacgc cacgaccggc aggcagtgct cattcccacc agagctgcca gatcccaagg 540 gcctaagctt tgggggtctg gtgggggcca tgccagccag tatgtgccca gcaaccactg 600 atggcaggcc tcggccaccc atggagccca aagagatttc cacgcccaag cctgcatgcc 660 caggggagct ccccgtggcc acctcatctt cctcatgccc agcgtttggc tttcctgccg 720 gcttctcaga ggctgagagt tttaataagg cccctacgcc cgtcttgtcc ccggaatcag 780 gcatcgggag cagctaccag tgtcggctgc aggcactgaa tttttgcatg ggggctgacc 840 caggccttga gcacctcttg gcctcagcag ccccctcccc tgcaccaccc acccctccag 900 gctcactccg ggccccactg cccctgccaa ctgaccacaa ggaaccctgg gttgcaggtg 960 gcttccctgt ccagggaggc tccggctacc cattggggct gaccccctgc ctataccgga 1020 cgccaggaat gttcttcttt gagtaaaggc agcctcacct cgggcagtcc ctgcaggtcc 1080 ctcaccctcc gggctgagcc tggctctagg acctgaagaa ctctcgaagg acccagccct 1140 ggtgagccaa ggacaaccac acagaaagcc aggattgaag cggtgctcag ccaggcccct 1200 ggggcctccg gacaaacttg ggggtgaggg gaagcagggc ctcttgggat ttactctgtg 1260 gctctcaggg ccaataaagc catgtgatga tgaaaaaaaa aaaaaaagg 1309 <210> 60 <211> 1326 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 3774188CB1 <400> 60 gaggagctca actgatctgt tttctttcgc ccagccaaaa tcacagaatg aaggcggtga 60 agagcgaacg ggagcgaggg agccggcgaa gacaccggga cggggacgtg gtgctgccgg 120 cgggggtggt ggtgaagcag gagcgtctca gcccagaagt cgcacctccc gcccaccgcc 180 gtccggacca ctccggtggt agcccgtctc cgccgaccag cgagccggcc cgctcgggcc 240 accgcgggaa ccgagcccga ggagttagcc ggtccccacc caaaaagaaa aacaaggcct 300 cagggagaag aagcaagtct cctcgcagta agagaaaccg aagtcctcac cactcaacag 360 tcaaagtgaa gcaggagcgt gaggatcatc cccggagagg acgggaggat cggcagcaca 420 gggaaccatc agaacaggaa cacaggagag ctaggaacag tgaccgggac agacaccggg 480 gccattccca ccaaaggaga acgtctaacg agaggcctgg gagtgggcag ggtcagggac 540 gggatcgaga cactcagaac ctgcaggctc aggaagaaga gcgggagttt tataatgcca 600 ggcgacggga gcatcgccag aggaatgacg ttggtggtgg cggcagtgag tctcaggagt 660 tggttcctcg gcctggtggc aacaacaaag aaaaagaggt gcccgctaaa gaaaaaccaa 720 gctttgaact ttctggggca cttcttgagg acaccaacac tttccggggt gtagtcatta 780 aatatagtga gcccccagaa gcacgtatcc ccaaaaaacg gtggcgtctc tacccattta 840 aaaatgatga ggtgcttcca gtcatgtaca tacatcgaca gagtgcgtac ctactgggtc 900 gacaccgccg cattgcagac attccaattg atcacccgtc ttgttcaaag cagcatgcgg 960 tctttcaata tcggcttgtg gaatataccc gtgctgatgg cacagttggc cgaagagtga 1020 agccctacat cattgacctt ggctcaggca atggaacctt cttaaacaac aaacgtattg 1080.
agccacagag atactatgaa ctaaaagaaa aggatgtact caaatttgga ttcagtagca 1140 gagaatacgt cttgctccat gagtcgtcgg acacttctga aatagacagg aaagatgacg 1200 aggatgagga ggaggaggaa gaagtgtctg acagctagca aactaagaac ccaaactatt 1260 gatacacggt ttccttcttg gaagtctttg attgactcag agagcactat ggtggtgggt 1320 ccagca 1326 <210> 61 <211> 1097 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 4349106CB1 <400> 61 gcggcttccg ggatttggcg gtggcctttg ttggctgcag taagagctca gtctcttcac 60 caggggctcc cagtccttcc atctgggagg ccaaggcggc ttcgcgttct gagaatagac 120 agaacctctg ttactctgtg accggcaggc accgggagat ccgtagctca gacgccagga 180 catcccggaa gctgggaaat gggactgttg acattcaggg atgtggccat agaattctct 240 cgggaggagt gggaacacct ggactcagat cagaagcttt tatatgggga tgtgatgtta 300 gagaactacg gaaacctggt ctctctgggt ctcgctgtct ctaagccgga cctgatcacc 360 tttttggagc aaaggaaaga gccctggaat gtgaagagtg cagagacagt agccatccag 420 ccagatatct tttctcatga tactcaaggc ctcttaagaa agaagcttat agaagcatca 480 ttccaaaaag tgatattgga tggatatggg agctgtggcc ctcagaattt aaacttaagg 540 aaagagtggg aaagtgaggg caaaataatc ctatggtgaa aaaaaatcaa caagataatc 600 tctgcatgag aaaaaggacc aaagacaagt gaattttctg agggtgatga aagtgttgct 660 tcgaaaaggg gtgaagttta tatgggtcta tttatttgtc taacatgtac agttaaggtt 720 tatgccttgc aatgtatgta catcttcaca aaaaaaatct taaaaaaatt aaatgggtgg 780 gggtagggaa agggttgaag tatagatgaa gcagaagtgg tacatgatta gtagttgaag 840 ctgggggcag gtctatatat tttattttta tgtctttaat agcatttgta taaatgtaca 900 atattcgttt acaatgttag ctcaggatct tgtttacctt tggacaggga gggagggaga 960 aatttatttt ctgggtagga gtaaagctgg ttctattcct cagttatgta aattatctgt 1020 tataatccaa aaagctttac atgaatgttt ctgtatgtaa tgtggtatat caataaaaaa 1080 ttaaatatta aaaaaaa 1097 <210> 62 <211> 2404 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No. 4834217CB1 <400> 62 ctcgctggct agtaggagag actggtgctt gccccgcccg gtggactaac tcgcttaatt 60 ttaaataaaa agtcgaggac acggcggtcg ttttcccgaa gacatgggcc ctcccatggg 120 ccatttgctc cctggaggcc ctcgcgtctt gctgagcccg gggagttagg atgacgcgag 180 cggtgaggga gcccggaacg attccttcgc ggaacaattg aggcgaggcc tttgggagta 240 ctttgtggga cggaccctgg cgggccctgc cagacgcaca gggatggcgg cggaggcggc 300 cgatttgggg ctgggggccg ccgtccccgt ggagctgagg cgggagcgac gcatggtgtg 360 cgtggagtac ccgggagtgg tgcgtgatgt ggctaagatg ctgccgactc tgggcggcga 420 ggaaggcgtc tcccggatct acgcagaccc caccaagagg ctggagctgt acttccggcc 480 caaggaccca tactgccacc cagtgtgcgc caaccgcttc agtaccagca gcctgctgct 540 ccgcatcagg aagagaacga ggcggcagaa aggggtgctg ggcactgagg cccactccga 600 ggtcacattt gacatggaga tccttggcat catctccacc atttacaaat ttcaggggat 660 gtctgacttc cagtacttgg ctgtgcatac ggaagcaggc ggcaagcata cgtcaatgta 720 tgacaaggtg ctcatgctcc ggcccgagaa ggaggccttt ttccaccagg agctgccgct 780 ctacatcccc ccacccatct tctcccggct ggacgccccg gtggactact tctaccgacc 840 agagacccag caccgggaag gctacaacaa tccccccatc tcaggtgaga atctgattgg 900 cctgagcaga gcccggcgcc cccacaatgc catctttgtc aactttgagg atgaggaggt 960 gcccaagcag ccactggagg ctgcagccca gacgtggagg agagtctgca ctaaccccgt 1020, ggaccggaag gtggaggagg agctgaggaa gctgtttgac atccgtccca tctggtcccg 1080%
aaatgctgtc aaggccaaca tcagcgtcca cccagacaag ctcaaggtct tgcttccctt 1140 catagcctat tacatgataa caggcccctg gcgcagccta tggattcgat ttgggtatga 1200 cccccgaaaa aacccagatg ccaagattta tcaagtcctc gatttccgaa tccgttgtgg 1260 aatgaaacac ggttacgccc ccagtgactt gccggtcaaa gcaaagcgca gcacctacaa 1320 ctacagcctc cccatcaccg tcaagaagac atccagccag cttgtcacca tgcatgacct 1380 gaagcagggc ctgggcccgt cggggacgag tggtgctcgg aaaccagctt ccagcaagta 1440 caagctcaag gactctgtct acatcttccg ggaaggggcc ttgccaccct atcggcagat 1500 gttctaccag ttatgcgact tgaatgtgga agagttgcag aagatcattc accgcaatga 1560 cggggcagag aattcctgca cagaacggga tgggtggtgc ctccccaaga ccagcgacga 1620 gctcagggac accatgtccc tcatgatccg gcagaccatc cgctccaaga ggcctgctct 1680 cttttccagc tcagccaagg ctgatggcgg aaaagagcag ctgacgtacg agtctgggga 1740 agacgaggag gatgaggagg aggaggaaga ggaggaggag gacttcaagc catccgacgg 1800 cagtgaaaac gaaatggaga cagagattct ggactacgtg tgacagggcc caaggctggg 1860 cctccctgac ccggccagac tggtgtctgg cctaatgagg gagccggggc tccccattgc 1920 cacccacagt gcccggaatg gccctaggag gccctctgag gagagctaga gtcccagcaa 1980 agggtgcagc tgaccctagc actggctgtg acatgctgct tggtgctgcc tctggtcctg 2040 aggggttagg gacatcccca aagggtatac cctggctctg ccacccatga accagcccag 2100 catccagcca gtgagtgggc acccaatgcc tctcaggatg agaccagtaa atgccggagg 2160 tggagctggg cagctgtgga gccccaggcc acaggccagt ctcgcttggc tctcatgact 2220 gtggtggtgg agatagcgtg gggagcctcg cccatggtct cacgtggcaa gaagtgcctt 2280 tagctctgga tcccaaccgt ttggcacagc tttggccaca gccaggcccc tctggaattg 2340 tccttattaa accagtttcc cgagaaaaaa aagaataaaa acagcagaaa aaataaaaaa 2400 aaaa 2404 <210> 63 <211> 1900 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 5156094CB1 <400> 63 agctggagca ccgtgaggaa gaagcgaggt tctttttaag agttcagctg cgaggctgta 60 acagaggagg aaatgatttt gaatagcctc tctctgtgtt accataataa gctaatcctg 120 gccccaatgg ttcgggtagg gactcttcca atgaggctgc tggccctgga ttatggagcg 180 gacattgttt actgtgagga gctgatcgac ctcaagatga ttcagtgcaa gagagttgtt 240 aatgaggtgc tcagcacagt ggactttgtc gcccctgatg atcgagttgt cttccgcacc 300 tgtgaaagag agcagaacag ggtggtcttc cagatgggga cttcagacgc agagcgagcc 360 cttgctgtgg ccaggcttgt agaaaatgat gtggctggta ttgatgtcaa catgggctgt 420 ccaaaacaat attccaccaa gggaggaatg ggagctgccc tgctgtcaga ccctgacaag 480 attgagaaga tcctcagcac tcttgttaaa gggacacgca gacctgtgac ctgcaagatt 540 cgcatcctgc catcgctaga agataccctg agccttgtga agcggataga gaggactggc 600 attgctgcca tcgcagttca tgggaggaag cgggaggagc gacctcagca tcctgtcagc 660 tgtgaagtca tcaaagccat tgctgatacc ctctccattc ctgtcatagc caacggagga 720 tctcatgacc acatccaaca gtattcggac atagaggact ttcgacaagc cacggcagcc 780 tcttccgtga tggtggcccg agcagccatg tggaacccat ctatcttcct caaggagggt 840 ctgcggcccc tggaggaggt catgcagaaa tacatcagat acgcggtgca gtatgacaac 900 cactacacca acaccaagta ctgcttgtgc cagatgctac gagaacagct ggagtcgccc 960 cagggaaggt tgctccatgc tgcccagtct tcccgggaaa tttgtgaggc ctttggcctt 1020 ggtgccttct atgaggagac cacacaggag ctggatgccc agcaggccag gctctcagcc 1080 aagacttcag agcagacagg ggagccagct gaagatacct ctggtgtcat taagatggct 1140 gtcaagtttg accggagagc atacccagcc cagatcaccc ctaagatgtg cctactagag 1200 tggtgccgga gggagaagtt ggcacagcct gtgtatgaaa cggttcaacg ccctctagat 1260 cgcctgttct cctctattgt caccgttgct gaacaaaagt atcagtctac cttgtgggac 1320 aagtccaaga aactggcgga gcaggctgca gccatcgtct gtctgcggag ccagggcctc 1380 cctgagggtc ggctgggtga ggagagccct tccttgcaca agcgaaagag ggaggctcct 1440 gaccaagacc ctgggggccc cagagctcag gagctagcac aacctgggga tctgtgcaag 1500 aagccctttg tggccttggg aagtggtgaa gaaagccccc tggaaggctg gtgactactc 1560 ttcctgcctt agtcacccct ccatgggcct ggtgctaagg tggctgtgga tgccacagca 1620 tgaaccagat gccgttgaac agtttgctgg tcttgcctgg cagaagttag atgtcctggc 1680 aggggccatc agcctagagc atggaccagg ggccgcccag gggtggatcc tggccccttt 1740 ggtggatctg agtgacaggg tcaagttctc tttgaaaaca ggagcttttc aggtggtaac 1800 tccccaacct gacattggta ctgtgcaata aagacacccc ctaccctcac ccacggctgg 1860 ctgcttcagc cttgggcatc ttcataaaaa aaaaaaaaaa 1900 <210> 64 <211> 2901 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 5665139CB1 <400> 64 accacagcgc agtctcactc tgtccttcag gctgtgagtg cagtctcatg atcttggctc 60 actgcaacct ctgtctcctg ggttcaagtg attcttgtgc ctcagcctac caagtagctg 120 agatacagga ttgacttcta aagactcttg gtacctgagg aagaaaccca gaagaggaag 180 aggaaagcaa aggagtcggg gatggctctt tctcagggtc tattgacatt cagggacgtg 240 gccatagaat tctctcagga ggagtggaaa tgcctggacc ctgctcagag gactctatac 300 agagacgtga tgctggagaa ttataggaac ctggagtctg tggggtctat tgacattcag 360 ggatgtggcc atagaattct ctcaggagga gtggaaatgc ctggaccctg ctcagaggac 420 tctatacaga gatgtgatgt tggagaatta taggaacctg gtctccctgg gtattttttc 480 taaatgtgag atcaaggaat taccaccaaa aaaggagagt aatacaggag aaatattcca 540 gacagtaatg ttggaaagac atgaaagcca cgacatacaa gatttttgct tcagagaaac 600 ccagaaaaat gtacatgact ctcagtgtct gtggaaacat gattgaagac attataagcg 660 agtgcgtgtg acctataagg aaagtctcat tggtagaaga gacatgcatg gtagaaagga 720 tgatgcacaa aagcagcctg ttaaaaatca gcttggatta aacccgcagt cacatctacc 780 agaactgcag ctatttcaag ctgaagggaa aatatataaa tatgatcaca tggaaaaatc 840 tgtcaacagt agttccttag tttccccacc ccaacgtatt tcttctactg tcaaaaccca 900 catttctcat acatatgaat gtaattttgt ggattcatta ttcacacaaa aagagaaagc 960 aaatattggg acagaacact acaaatgtaa tgagcgtggc aaggcctttc atcaaggctt 1020 acattttact atacatcaaa taatccatac taaagagacg caatttaaat gtgatatatg 1080 tggcaagatc ttcaataaaa aatcaaacct tgcaagtcat caaagaattc atactggaga 1140 gaagccatat aaatgtaatg aatgtggcaa ggtcttccat aatatgtcac accttgcaca 1200 gcatcgcagg attcatactg gagagaaacc atataaatgt aatgaatgtg gcaaggtctt 1260 taatcaaatt tcacaccttg cacaacatca aagaattcat accggagaga aaccttataa 1320 atgtaatgaa tgtggaaagg tcttccatca aatttcacac cttgcacaac atcggacaat 1380 tcatactgga gaaaaacctt acgaatgtaa caaatgtggc aaggtgttca gtcgcaattc 1440 ctaccttgta caacatctga tcattcatac tggagagaaa ccttacagat gtaatgtatg 1500 tggaaaggtc ttccatcata tttcacacct tgcacaacat cagagaatcc acactggaga 1560 gaaaccttac aaatgtaatg agtgtggcaa ggtcttcagt cacaagtcat ccctagtaaa 1620 tcactggaga attcatactg gagagaaacc ttacaaatgt aatgagtgtg gcaaggtctt 1680 cagtcacaag tcatccctag taaatcactg gagaatccac actggagaga aaccttacaa 1740 atgtaatgaa tgtggcaagg tcttcagtcg caattcatac cttgcccaac atctgataat 1800 tcatgccggt gagaaacctt ataagtgtga tgaatgtgac aaagcattca gtcaaaattc 1860 acatcttgta caacatcaca gaatccatac tggagagaaa ccttacaaat gtgatgaatg 1920 tggcaaagtc ttcagtcaaa attcatacct tgcatatcat tggagaattc atactggaga 1980 aaaagcttat aaatgtaatg aatgtgggaa ggtcttcggt ctaaactcat ccctagcaca 2040 tcatcggaaa attcacactg gagagaaacc tttcaaatgt aatgaatgtg gcaaagcttt 2100 tagtatgcgt tcaagcctca ctaatcatca tgcgatccac actggagaga aacatttcaa 2160 atgtaatgaa tgtggcaaac tcttccgcga caattcatat cttgtacgtc atcagagatt 2220 tcatgccgga aagaaatcta acacatgtaa ttaatgtggc agagtgttca gttagcatta 2280 aagccttgta agacatacaa taatttatac tggagaaaaa ctttgcaagt ataatgaatg 2340 tagcagagcc tttagttttt gttcaaggct taataaccgt tagctagacc atagaggaca 2400 gaaactttac taatgtactg aatgtggcaa ggtcttaagg taaaatctga gaccaggatt 2460 tttcaaagaa ttcttgctgg tgagaaacct aacaaatgta atgaatgtgg caaggtcttc 2520 tggcacaatt ctcacattgt acaatattgc aaaaattcat gcttgagaga aacaaaaaca 2580 ctgagagtgg gaaaccatta tgacttcaaa cattcatcaa catcagagaa tccatactaa 2640 agagcattta taataattat atgtgataga gattttccgc aggccaaagt ctcactaggc 2700 atcaaaaact tttttgatga aaccatacaa atgtaacgtg catgcttaag cttttaccca 2760 ggcatcaaaa ccggaacatc acagggttta tactggagag taactacaca aagataatgt 2820 aataagcctt tcagtgtaat attcatgatt ttgtcgtgag agatccactc aataaaaacc 2880 aggcaaatgt aaaaaaaaaa a - 2901 SO/S~

Claims (27)

What is claimed is:
1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.
2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1-32.
3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide encoding a polypeptide of claim 2.
5. An isolated polynucleotide of claim 4 selected from the group consisting of SEQ ID
NO:33-64.
6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
7. A cell transformed with a recombinant polynucleotide of claim 6.
8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
9. A method for producing a polypeptide of claim 1, the method comprising:
a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and b) recovering the polypeptide so expressed.
10. An isolated antibody which specifically binds to a polypeptide of claim 1.
11. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:
a) a polynucleotide sequence selected from the group consisting of SEQ ID
NO:33-64, b) a naturally occurring polynucleotide sequence having at least 70% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d).
12. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 11.
13. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:
a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
14. A method of claim 13, wherein the probe comprises at least 60 contiguous nucleotides.
15. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:
a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
16. A pharmaceutical composition comprising an effective amount of a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
17. A pharmaceutical composition of claim 16, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.
18. A method for treating a disease or condition associated with decreased expression of functional TXREG, comprising administering to a patient in need of such treatment the pharmaceutical composition of claim 16.
19. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting agonist activity in the sample.
20. A pharmaceutical composition comprising an agonist compound identified by a method of claim 19 and a pharmaceutically acceptable excipient.
21. A method for treating a disease or condition associated with decreased expression of functional TXREG, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 20.
22. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting antagonist activity in the sample.
23. A pharmaceutical composition comprising an antagonist compound identified by a method of claim 22 and a pharmaceutically acceptable excipient.
24. A method for treating a disease or condition associated with overexpression of functional TXREG, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 23.
25. A method of screening for a compound that specifically binds to the polypeptide of claim 1, said method comprising the steps of:
a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
26. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, said method comprising:
a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1, b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
27. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:
a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
CA002375414A 1999-06-18 2000-06-15 Human transcriptional regulator proteins Abandoned CA2375414A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14010999P 1999-06-18 1999-06-18
US60/140,109 1999-06-18
PCT/US2000/016766 WO2000078954A2 (en) 1999-06-18 2000-06-15 Human transcriptional regulator proteins

Publications (1)

Publication Number Publication Date
CA2375414A1 true CA2375414A1 (en) 2000-12-28

Family

ID=22489799

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002375414A Abandoned CA2375414A1 (en) 1999-06-18 2000-06-15 Human transcriptional regulator proteins

Country Status (5)

Country Link
EP (1) EP1190050A2 (en)
JP (1) JP2003517290A (en)
AU (1) AU5623000A (en)
CA (1) CA2375414A1 (en)
WO (1) WO2000078954A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6731200A (en) 1999-10-08 2001-04-23 Chugai Seiyaku Kabushiki Kaisha Gene YS68 concerning early hematopoiesis
JP4112976B2 (en) * 2000-11-09 2008-07-02 株式会社Jimro PCA2501 gene
US20040072997A1 (en) * 2000-12-20 2004-04-15 Alsobrook John P. Therapeutic polypeptides, nucleic acids encoding same, and methods of use
WO2002061046A2 (en) * 2001-01-30 2002-08-08 Regeneron Pharmaceuticals, Inc. Novel nucleic acid and polypeptide molecules
JP3810731B2 (en) 2002-11-29 2006-08-16 独立行政法人科学技術振興機構 Novel adapter protein that binds to mammalian Toll-like receptor 3 and gene thereof
WO2004078112A2 (en) * 2003-03-07 2004-09-16 Asahi Kasei Pharma Corporation Apoptosis inducing gene
EP2163624A1 (en) * 2004-09-24 2010-03-17 Oncotherapy Science, Inc. Method for diagnosing non-small cell lung cancers by tRNA-dihydrouridine synthase activity of URLC8

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726288A (en) * 1989-11-13 1998-03-10 Massachusetts Institute Of Technology Localization and characterization of the Wilms' tumor gene
US5861495A (en) * 1997-01-21 1999-01-19 Incyte Pharmaceuticals, Inc. Human zinc binding proteins

Also Published As

Publication number Publication date
WO2000078954A3 (en) 2001-08-23
WO2000078954A2 (en) 2000-12-28
EP1190050A2 (en) 2002-03-27
AU5623000A (en) 2001-01-09
JP2003517290A (en) 2003-05-27

Similar Documents

Publication Publication Date Title
CA2382015A1 (en) Membrane associated proteins
CA2431493A1 (en) Aminoacyl trna synthetases
CA2374745A1 (en) Proteases and protease inhibitors
CA2379968A1 (en) Gtp-binding protein associated factors
CA2375493A1 (en) Human transport proteins
CA2402735A1 (en) Human transcription factors
CA2405781A1 (en) Secreted proteins
US20050227277A1 (en) Apoptosis proteins
CA2387785A1 (en) Human transferase molecules
CA2375414A1 (en) Human transcriptional regulator proteins
EP1179065A2 (en) Full-length molecules expressed in human tissues
WO2000077040A2 (en) Human intracellular signaling molecules
CA2384324A1 (en) Proteins associated with cell differentiation
CA2410953A1 (en) Adenylyl and guanylyl cyclases
US20040053396A1 (en) Molecules for disease detection and treatment
CA2409392A1 (en) Intracellular signaling proteins
CA2394049A1 (en) Vesicle trafficking proteins
CA2382019A1 (en) Isomerase proteins
CA2378989A1 (en) Human lim domain proteins
CA2336262A1 (en) Sorting nexins
WO2002046413A2 (en) Molecules for disease detection and treatment
CA2375407A1 (en) Rna metabolism proteins
US20030044913A1 (en) Extracellular matrix and cell adhesion molecules
CA2425767A1 (en) Lipocalins
CA2402747A1 (en) G-protein associated molecules

Legal Events

Date Code Title Description
FZDE Dead