CA2364523A1 - Lifting apparatus for implementing a rectilinear movement of a handling device - Google Patents

Lifting apparatus for implementing a rectilinear movement of a handling device Download PDF

Info

Publication number
CA2364523A1
CA2364523A1 CA002364523A CA2364523A CA2364523A1 CA 2364523 A1 CA2364523 A1 CA 2364523A1 CA 002364523 A CA002364523 A CA 002364523A CA 2364523 A CA2364523 A CA 2364523A CA 2364523 A1 CA2364523 A1 CA 2364523A1
Authority
CA
Canada
Prior art keywords
lifting
lifting beam
longitudinal members
drive mechanism
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002364523A
Other languages
French (fr)
Inventor
Klaus Nerger
Stefan Noll
Manfred Stober
Eberhard Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Demag Cranes and Components GmbH
Original Assignee
Demag Cranes and Components GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Demag Cranes and Components GmbH filed Critical Demag Cranes and Components GmbH
Publication of CA2364523A1 publication Critical patent/CA2364523A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/18Power-operated hoists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/52Details of compartments for driving engines or motors or of operator's stands or cabins
    • B66C13/54Operator's stands or cabins
    • B66C13/56Arrangements of handles or pedals

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Control And Safety Of Cranes (AREA)
  • Specific Conveyance Elements (AREA)
  • Carriers, Traveling Bodies, And Overhead Traveling Cranes (AREA)

Abstract

A lifting apparatus includes two parallel longitudinal members interconnected by at least one connecting element. A lifting beam is movable by a drive mechanism along the longitudinal members and supports, directly or indirectly, a handling device. Extending parallel to and supporting the lifting beam is a guide rail, which is received in spaced-apart carriages, for displacement lengthwise of the longitudinal members in a freely running manner, as the lifting beam is moved by the drive mechanism. The carriages are arranged in a space between the longitudinal members and secured to the connecting element, wherein the longitudinal members and the lifting beam are formed with longitudinal grooves for engagement of sliding blocks so that the connecting element, the drive mechanism and the carrying unit are securable to the longitudinal members in any desired longitudinal position, and the guide rail is securable to the lifting beam in any desired longitudinal position.

Description

LIFTING APPARATUS FOR IMPLEMENTING A RECTILINEAR MOVEMENT OF
A HANDLING DEVICE
BACKGROUND OF THE INVENTION
The present invention relates, in general, to a lifting apparatus for implementing a rectilinear movement of a handling device, e.g., a manually-operated manipulator.
Such a vertical lifting apparatus in the manner of a lifting upright for a manually guided manipulator is known, for example, from German Pat. No. DE 43 42 716 A1.
The lifting apparatus includes a longitudinal member to serve as guide part, and a lifting beam which is guided on the longitudinal member for movement in a longitudinal direction. The lifting beam has a lower end for attachment of a load-receiving member. Operation of the lifting beam is implemented by a drive in the form of a cylinder which is actuated by a pressure medium and securely fixed to the longitudinal member. The cylinder has a movable part a piston which is connected to the lifting beam.
This lifting apparatus suffers shortcomings because of the complexity to suit the lifting apparatus to different operating conditions.
It would therefore be desirable and advantageous to provide an improved lifting apparatus for realizing a rectilinear movement of a handling device, which obviates prior art shortcomings and is easy to suit to different operating situations, while being producible in almost any desired length and adaptable to a wide range of different length requirements, such as, e.g., to the length of the lifting beam and to the fastening height of the lifting apparatus.

SZJ1~IARY OF THE INVENTION
According to the present invention there is provided a lifting apparatus for implementing a rectilinear movement of a handling device, comprising: a pair of longitudinal members arranged in spaced parallel relationship in a common plane and securable to a stationary or movable carrying unit; at least one connecting element rigidly interconnecting the longitudinal members; a drive mechanism; a lifting beam movable by the drive mechanism longitudinally along the longitudinal members and having attached thereon, directly or indirectly, a handling device;
and a guide rail extending parallel to and supporting the lifting beam, said guide rail being received in carriages, arranged at a distance from one another, for displacement in longitudinal direction in a freely running manner as the lifting beam is moved by the drive mechanism, wherein the carriages are arranged in the space between the longitudinal members and secured to the connecting element, wherein the longitudinal members and the lifting beam are formed with longitudinal grooves for engagement by sliding blocks so that the connecting element, the drive mechanism and the carrying unit are securable to the longitudinal members in any desired longitudinal position, and the guide rail is securable to the lifting beam in any desired longitudinal position.
The present invention resolves prior art problems by providing a lifting apparatus in which the essential length-determining elements, i.e., the lifting beam and the two parallel longitudinal members are provided with continuous longitudinal grooves for cooperation with fasteners that engage in the grooves. As a consequence, the lifting beam and the longitudinal members may be made from aluminum profiles of square or rectangular cross section, which have been produced preferably through extrusion.
Aluminum profiles can be cut to size in any desired length and can be produced very cost-effectively. The provision of longitudinal grooves allows the user to suit the position of the lifting beam to the situation at hand before fastening.
Furthermore, the longitudinal members may be mounted to a trolley at a desired height, without need for any additional measures. In case of changes to the work area, the height can thus be altered to new height conditions (trolley/handling device spacing) in an easy manner by only a few adjustments.
According to another preferred feature of the invention, the carriages may be guided by recirculating balls, thereby allowing easy guidance of the lifting beam at little amount of play.
According to another preferred feature of the invention, the connecting element may be provided by a metal plate which is easy to produce.
According to another preferred feature, the drive mechanism may be implemented by a cable balancer having a cable secured to a lower end of the lifting beam. This configuration is suitable, in particular, for a vertical lifting beam which under its own weight moves automatically downward into a position predetermined by the cable length.
The handling device, which may be a load-receiving member or a tool, may be fastened, for example, to an intermediate attachment element which is a horizontal member designed as an aluminum profile. Suitably, the attachment element is mounted to the lifting beam via a load-moment support.
According to another preferred feature, the longitudinal members may have stop members secured by sliding blocks for limiting a lifting path of the lifting beam.
BRIEF DESCRIPTION OF THE DRAWING
Other features and advantages of the present invention will be more readily apparent upon reading the following description of a preferred exemplified embodiment of the invention with reference to the accompanying drawing, in which:
FIG. 1 is a perspective illustration of a lifting apparatus according to the present invention;
FIG. 2 is a front view of the lifting apparatus of FIG.1;
FIG. 3 is a side view of the lifting apparatus of FIG. l;
FIG. 4 is a cross section of the lifting apparatus, taken along the line I-I in FIG. 3; and FIG. 5 is a schematic illustration of a mounting for securement of the lifting apparatus on a trolley.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Throughout all the Figures, same or corresponding elements are generally indicated by same reference numerals.
Turning now to the drawing, and in particular to FIG. 1, there is shown a perspective illustration of a vertical lifting apparatus according to the present invention having an upper end for attachment to a trolley as a moveable carrying apparatus, as will be described in more detail with reference to FIG. 5. In this way, the lifting apparatus can be moved in a horizontal direction. Of course, the lifting apparatus may certainly also be fixedly secured, for example to a support beam in a ceiling region of an assembly building or to a wall mounting.
As shown in particular in FIGS. 2 and 3, the lifting apparatus includes two longitudinal members 1, which are arranged in parallel relationship in a common plane at a distance to one another to thereby define a space 2 therebetween. The two longitudinal members 1 are rigidly interconnected transversely to one another by an intermediate connecting element 3 in the form of a metal plate. As best seen in FIG. 4, each of the longitudinal members 1 is formed on its outer sides with longitudinal grooves la to allow securement of the connecting element 3 to the longitudinal members 1 via suitable sliding blocks 4, which engage behind the longitudinal grooves la. Of course, it is also possible to use sliding-block strips for realizing a securement of the connecting element 3.
Fastened to the inside of the connecting element 3 by screw fasteners 6 are two carriages 5 which are guided by, not shown, recirculating balls and spaced from one another in longitudinal direction so as to be located at the top and bottom of the connecting element 3. A guide rail 7 is slidably mounted to the two carriages 5 so as to run freely in the longitudinal direction thereof. The guide rail 7 and the two carriages 5 are arranged in the space 2 between the two longitudinal members 1, as shown in particular in FIG. 4.
The guide rail 7 carries a lifting beam 8 in parallel relationship thereto, as shown in FIG. 4, whereby the lifting beam 8 is fastened to the guide rail 7 by sliding blocks 4a which engage behind longitudinal grooves 8a of the lifting beam 8. In this manner, the lifting beam 8 can be shifted into a desired longitudinal position, before being fastened to the guide rail 7, without any need for additional measures. As depicted in FIG. 1, an attachment plate 9 is fastened to a bottom end face of the lifting beam 8 via an interposed load moment support 10, which, in turn, is mounted on the lifting beam 8 by sliding blocks 4.
In order to limit the lifting path, stop angles 11 are fastened to the lifting beam 8 to interact with buffer elements 12, which are mounted to the longitudinal members 1, so as to define the two end positions of the lifting beam 8. The stop angles 11 and buffer elements 12 are also secured by sliding blocks 4 so as to allow a rapid change of the desired lifting distance by making only a few adjustments.
The lifting beam 8 is displaced longitudinally by means of a cable balancer 13 which is arranged at the top region of the longitudinal members 1 and fastened by angle brackets 14 to the two longitudinal members 1 using sliding blocks 4. The cable balancer 13 has a cable 15 which is connected to the attachment plate 9 at the bottom end of the lifting apparatus. Of course, the cable balancer 13 is only one of a number of drive options. Another example includes a pneumatic pulling cylinder or the like for use as a drive mechanism.
Unwinding of the cable 15 thus results in rectilinear downwards extension of the lifting beam 8 as a consequence of the effective weight force of the lifting beam 8. A raising and/or retraction of the lifting beam 8 is realized by winding up the cable 15 onto a cable drum 16 of the cable balancer 13.
The lifting beam 8 and the longitudinal members 1 may be configured as aluminum profiles which are made through an extrusion process and have a square or rectangular cross section.
Although not shown in detail in the foregoing figures, a horizontal member in the form of an aluminum profile may, for example, be fastened as intermediate element to the attachment plate 9, for supporting at one end, for example, a tool or a load-receiving member. Of course, it is certainly also possible to secure the tool directly to the attachment plate 9.
Referring now to FIG. 5, there is shown a schematic illustration of a possible securement of the lifting apparatus to a trolley having a frame plate 17 which may, for example, be part of a trolley frame. Angles 18 are mounted to the frame plate 17 and formed with bores 19 for receiving sliding blocks 4 by which the frame plate 17 can be mounted to the longitudinal grooves la of the longitudinal members 1, as the longitudinal members 1 is placed through a large opening 20 of the frame plate 17.
Also, in this case, the longitudinal position of the frame plate 17, and thus of the trolley, on the lifting apparatus can be suited to the situation at hand and secured in place in an easy manner. All of the grooves that receive the sliding blocks 4 may be under cast grooves.
While the invention has been illustrated and described as embodied in a lifting apparatus for implementing rectilnear movement of a handling device, it is not intended to be limited to the details shown since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.

Claims (12)

1. A lifting apparatus for implementing a rectilinear movement of a handling device, comprising:
- a pair of longitudinal members arranged in spaced parallel relationship in a common plane and securable to a stationary or movable carrying unit;
- at least one connecting element rigidly interconnecting the longitudinal members;
- a drive mechanism;
- a lifting beam movable by the drive mechanism longitudinally along the longitudinal members and having attached thereon, directly or indirectly, a handling device;
and -a guide rail extending parallel to and supporting the lifting beam, said guide rail being received in carriages, arranged at a distance from one another, for displacement in longitudinal direction in a freely running manner as the lifting beam is moved by the drive mechanism, wherein the carriages are arranged in the space between the longitudinal members and secured to the connecting element, - wherein the longitudinal members and the lifting beam are formed with longitudinal grooves for engagement by sliding blocks so that the connecting element, the drive mechanism and the carrying unit are securable to the longitudinal members in any desired longitudinal position, and the guide rail is securable to the lifting beam in any desired longitudinal position.
2. The lifting apparatus of claim 1, wherein the lifting beam and the longitudinal members are configured as aluminum profiles made through an extrusion process and having a square or rectangular cross section.
3. The lifting apparatus of claim 1 or claim 2, wherein the carriages are guided in a linear direction.
4. The lifting apparatus of any one of claims 1 to 3, wherein the connecting element is a metal plate.
5. The lifting apparatus of any one of claims 1 to 4, wherein the drive mechanism is a cable balancer having a cable secured to a lower end of the lifting beam.
6. The lifting apparatus of any one of claims 1 to 5, and further comprising an attachment element configured as a horizontal beam made of an aluminum profile, and a rigid load-moment support for securing the attachment element to the lifting beam via sliding blocks.
7. The lifting apparatus of any one of claims 1 to 6, wherein the longitudinal members have stop members secured by sliding blocks for limiting a lifting path of the lifting beam.
8. A lifting apparatus comprising:
- a pair of spaced-apart longitudinal members defining a longitude axis and formed with grooves extending longitudinally in the direction of the axis;
- a connecting element interconnecting the longitudinal members;
- a drive mechanism;

- a lifting beam operatively connected to a load-receiving member and movable by the drive mechanism in the direction of the axis, said lifting beam having a groove extending longitudinally in the direction of the axis;
- a support unit positioned between the longitudinal members for guiding the lifting beam as it moves in the axial direction, said support unit including a pair of carriages mounted in axially spaced-apart relationship to the connecting element, and a guide rail movably received in the carriages and supporting the lifting beam; and -fastening means in the form of sliding blocks for detachable securement in the grooves of the longitudinal members and the lifting beam to thereby permit positioning of the connecting element and the drive mechanism along a length of the longitudinal members, and of the guide rail along a length of the lifting beam at a desired location.
9. The lifting apparatus of claim 8, wherein the lifting beam and the longitudinal members are configured as aluminum profiles made through an extrusion process and having a square or rectangular cross section.
10. The lifting apparatus of claim 8 or claim 9, wherein the connecting element is a metal plate.
11. The lifting apparatus of any one of claims 8 to 10, wherein the drive mechanism is a cable balancer having a cable secured to a lower end of the lifting beam.
12. the lifting apparatus of any one of claims 1 to 11 and further comprising means for restricting a lifting path of the lifting beam, said means including a stop member detachably secured to the longitudinal members, and a pairof angle brackets mounted on opposite end zones of the lifting beam for cooperation with the stop member.
CA002364523A 2000-12-05 2001-12-04 Lifting apparatus for implementing a rectilinear movement of a handling device Abandoned CA2364523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10061343A DE10061343A1 (en) 2000-12-05 2000-12-05 Lifting device for moving a handling device in a straight line
DE10061343.8 2000-12-05

Publications (1)

Publication Number Publication Date
CA2364523A1 true CA2364523A1 (en) 2002-06-05

Family

ID=7666458

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002364523A Abandoned CA2364523A1 (en) 2000-12-05 2001-12-04 Lifting apparatus for implementing a rectilinear movement of a handling device

Country Status (5)

Country Link
EP (1) EP1213257B1 (en)
JP (1) JP2002220200A (en)
AT (1) ATE265984T1 (en)
CA (1) CA2364523A1 (en)
DE (2) DE10061343A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006039472A1 (en) * 2006-08-23 2008-03-27 Maha Maschinenbau Haldenwang Gmbh & Co. Kg Lifting device, in particular for motor vehicles
CN106241636A (en) * 2016-09-30 2016-12-21 莫健生 Hanging apparatus
CN112193821B (en) * 2020-10-19 2022-03-01 长春理工大学 Industrial detonator explosion-proof gripper and intrinsically safe working motion trajectory planning method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE439968B (en) * 1982-10-19 1985-07-08 Ulf Kenneth Folke Fasth STELLDON
DE4111551A1 (en) * 1991-04-09 1992-10-15 Schaeffler Waelzlager Kg Linear guide unit with elongated U=shaped guide housing - has axially parallel guide rail, with carriage and drive mechanism
DE4342716A1 (en) * 1993-12-15 1995-06-22 Zasche Foerdertechnik Gmbh Lifting device for manual manipulator
DE19502986A1 (en) * 1994-02-02 1995-09-07 Heinz Schmidt Vertical lift axis on crane-like transporter, enabling horizontal motion
FI104549B (en) * 1995-06-29 2000-02-29 Erikkilae Nostotekniikkaa Oy The transfer device
DE29919136U1 (en) * 1999-10-30 2001-03-08 Muennekehoff Gerd System for controlling the movements of a load lifting device

Also Published As

Publication number Publication date
EP1213257B1 (en) 2004-05-06
ATE265984T1 (en) 2004-05-15
EP1213257A1 (en) 2002-06-12
DE50102195D1 (en) 2004-06-09
JP2002220200A (en) 2002-08-06
DE10061343A1 (en) 2002-06-13

Similar Documents

Publication Publication Date Title
US4566738A (en) Positioning apparatus
EP2712689B1 (en) Telescopic linear handling module
CN108501139B (en) Multi-position nailing device
US6550724B2 (en) Sit/stand console structure
EP2671783A2 (en) Cabin arrangement for a crane
CN105492161A (en) Workpiece clamping device, machine tool, and method for clamping a workpiece
KR101121500B1 (en) Rolling device
US6634515B2 (en) Lifting apparatus for implementing a rectilinear movement of a handling device
US11697576B2 (en) Telescopic lifting unit
CA2348060C (en) Sit/stand console structure
CA2364523A1 (en) Lifting apparatus for implementing a rectilinear movement of a handling device
US7446301B2 (en) Safety mechanism comprising a height-adjustable holding device
EP2745019B1 (en) Spooling machine
CN108372409B (en) Movable turnover mechanism for mirror image milling equipment of aircraft skin
CN209942835U (en) Novel variable section lining trolley
RU2004119990A (en) LIFTING DEVICE FOR SUPPORTING LOAD ON VEHICLE (OPTIONS)
EP1392939B2 (en) Rolling platform
US6098759A (en) Hydraulic elevator
GB2053153A (en) Lift truck
CN210243201U (en) Vehicle mass center of mass angle of tumbling measuring platform
EP1040891B1 (en) A work centre having a plurality of clamps for clamping a work-piece
CN218320169U (en) Telescopic counterweight frame for elevator
CN217350474U (en) Steel construction section bar hoist device
CN111059146B (en) High mechanical slide rail of stability
CN219121888U (en) Elevator intensity sampling detection equipment

Legal Events

Date Code Title Description
FZDE Discontinued