CA2279174A1 - Fine particle liquid filtration media - Google Patents

Fine particle liquid filtration media Download PDF

Info

Publication number
CA2279174A1
CA2279174A1 CA002279174A CA2279174A CA2279174A1 CA 2279174 A1 CA2279174 A1 CA 2279174A1 CA 002279174 A CA002279174 A CA 002279174A CA 2279174 A CA2279174 A CA 2279174A CA 2279174 A1 CA2279174 A1 CA 2279174A1
Authority
CA
Canada
Prior art keywords
nonwoven
nonwoven web
fibers
web
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002279174A
Other languages
French (fr)
Inventor
Nicole Michele Amsler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Worldwide Inc
Kimberly Clark Corp
Original Assignee
Kimberly Clark Worldwide Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly Clark Worldwide Inc filed Critical Kimberly Clark Worldwide Inc
Publication of CA2279174A1 publication Critical patent/CA2279174A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/06Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by welding-together thermoplastic fibres, filaments, or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres

Abstract

The present invention provides a filter media comprising (a) a nonwoven composite material comprising a stabilized mixture of thermoplastic microfibers and at least about 50%, by weight, of a secondary fibrous material such as pulp or polymeric staple fibers;
(b) a first outer nonwoven web comprising a substantially uniform nonwoven web of autogenously bonded multicomponent fibers; and (c) a second outer nonwoven web wherein the nonwoven composite material is positioned between the first outer nonwoven web and second outer nonwoven web. The filter material is well suited to filtering liquid borne particulate matter ranging in size from 5µ to about 25µ.

Description

FINE PARTICLE LIQUID FILTRATION MEDIA
Field of the Invention The present invention relates to nonwoven composite fabrics suitable for use for fine particle liquid filtration.
Backaround of the Invention Nonwoven fabrics have been used for a variety of filtration and filtration-like applications. As an example, fine fiber webs such as meltblown fabrics and laminates thereof have commonly been used within air filtration media. Meltblown fabrics comprise a web of randomly inter-laid fine fibers, which provide a structure having excellent barrier properties. Generally, as the average fiber diameter decreases there is a corresponding decrease in the average pore size of the fabric. Thus, fabrics with finer fibers or smaller diameter fibers typically have increased barrier properties when compared to like webs of relatively larger fiber size. Therefore, due to fine fibers achievable in meltblown fiber webs and the excellent barrier properties resulting therefrom, meltblown fiber webs have been used in a variety of air filtration media such as, for example, in HEPA
filters as discussed in US Patent No. 4,824,451, bag filters as discussed in US Patent No.
5,586,997, and filtering bacteria from fluids as discussed in US Patent No.
5,582,907 to Paul.
However, the needs of air filtration media often vary considerably from those of liquid filtration media. Notably, the particle size distribution within a liquid stream is typically much larger than particles associated with an air stream. In this regard, air filtration media are often expected to collect particles having a size less than about 5u whereas with fine particle liquid filtration the particle size often varies between about 5u to about 30u. Multilayer filtration media suitable for air filtration, such as that described above, will often have an unacceptably short filter life when used for liquid filtration. While having an excellent filtration efficiency, the particles sizes associated with liquid filtration are typically of a size and distribution that the meltblown webs and/or laminates thereof quickly become fully saturated and/or create high pressure drops.
Additionally, meltblown fiber nonwoven webs can be relatively weak fabrics and often cannot, by themselves, withstand the conditions experienced by liquid filtration media. Thus, meltblown webs have been supported in multilayer structures to provide filter media or filter-like articles with improved strength and/or durability.
In this regard, meltblown fiber nonwoven webs have been laminated with spunbond fiber nonwoven webs in order to provide a material with a combination of good strength and barrier properties. As examples thereof, spunbond/meltblown/spunbond media have been used in sterilization wraps and other like media such as, for example, those described in US
Patent No. 5,464,688 to Timmons et al. and US Patent No. 4,041,203 to Brock et al.
However, many nonwoven laminates are point bonded to form an integrated structure and, in this regard, the point bonds undesirably increase pressure drop without a corresponding increase in filter life and/or efficiency. Additional spunbond fabrics and/or laminates thereof utilized in filtration media are described in PCT
Publication Nos. WO
96/13319 and WO 95/13856. Further, composite meltblown nonwoven fabrics, such as those described in US Patent 4,100,324 to Anderson et al., have also been used in liquid filtration applications wherein the composite nonwoven fabric is supported by a spunbond carrier sheet and a felt material.
However, there exists a need for filtration media suitable for use in liquid filtration that has good filtration efficiency and yet which also exhibit a suitable or even extended filtration life. Further, there exists a need for such materials which can provide the desired filtration efficiency and filter life and which are capable of servicing high volumes without creating high pressure drops. Still further, there exists a need for such materials that can be economically produced and which can withstand the pressures, handling and other conditions commonly associated with liquid filtration.
Summary of the Invention The aforesaid needs are fulfilled and the problems experienced by those skilled in the art overcome by the filtration media of the present invention comprising (a) a nonwoven composite material having a first and second side and comprising a matrix of thermoplastic microfibers having within said matrix at least about 50%, by weight, of a secondary material; (b) a first nonwoven web proximate the first side of the nonwoven composite material and comprising a substantially uniform nonwoven web of bonded fibers; and (c) a second nonwoven web proximate the second side of the nonwoven composite material such that the nonwoven composite material is positioned between the first and second nonwoven web. Desirably the nonwoven composite material and the first and second nonwoven webs form an integrated, autogenously bonded laminate. The nonwoven composite material desirably has a basis weight between about 30 g/m2 and about 300 g/mz and further the secondary material of the nonwoven composite material desirably comprises a fibrous material such as, for example, pulp or polymeric staple fibers. The substantially uniform nonwoven material desirably comprises a nonwoven web having inter-fiber bonds throughout the web such as, for example, an autogenously bonded web of crimped polyethylene/polypropylene bicomponent fibers having a density between about 0.01 g/cm3 and about 0.2 g/cm3.
In a further aspect of the invention, liquids containing particulate matter can be filtered by providing the filter media of the present invention, supporting the filter media on a foraminous surface, and then drawing the liquid through the filter media, wherein particulate matter is collected in the filter media as the liquid passes therethrough. The liquid to be filtered desirably contains a substantial amount of particulate matter having a particle size of from about 5~ to about 25N.
Brief Description of the Drawings Figure 1 is a partially elevated side view of a three layer material of the present invention shown partially broken away;
Figure 2 is a side cross-sectional view of a three-layer material of the present invention;
Figure 3 is a partially elevated side view of a four layer filter material of the present invention shown partially broken away;
Figure 4 is a schematic illustration of a method of making the nonwoven composite fabrics of the present invention; and Figure 5 is a schematic illustration of a process of filtering liquids containing particulate matter.
Definitions As used herein and in the claims, the term "comprising" is inclusive or open-ended and does not exclude additional unrecited elements, compositional components, or method steps.
As used herein the term "nonwoven fabric" or "nonwoven web" means a web having a structure of individual fibers or threads which are interlaid, but not in an identifiable manner as in a knitted fabric. Nonwoven fabrics or webs have been formed from many processes such as for example, meltblowing processes, spunbonding processes, air-laid and bonded-carded web processes.
As used herein the term "microfibers" or "fine fibers" means small diameter fibers having an average fiber size not greater than about 20 microns. As used herein "fiber size"
refers to the diameter of round fibers or the mean diameter for non-round fibers.
As used herein the term "spunbonded fibers" or "spunbond fibers" refers to small diameter fibers of drawn or substantially oriented polymer. Generally, spunbond fibers are formed by extruding molten thermoplastic material as filaments from a plurality of fine, usually circular capillaries of a spinneret with the diameter of the extruded filaments then being rapidly reduced such as, for example, in US Patent 4,340,563 to Appel et al., US
Patent 3,802,817 to Matsuki et al., US Patent 3,542,615 to Dobo et al. and US
Patent 5,382,400 to Pike et al.; the entire contents of each of the aforesaid references are incorporated herein by reference. Spunbond fibers are generally not tacky when they are deposited onto a collecting surface and thus often require additional mechanical or chemical bonding to form an integrated stabilized web.
As used herein the term "meltblown fibers" means fibers which are generally formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity, usually hot, gas (e.g.
air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are generally carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers. Such a process is disclosed, for example, in Naval Research Laboratory Report No. 4364, "Manufacture of Super-fine Organic Fibers" by V. A. Wendt, E. L. Boon, and C. D. Fluharty, Naval Research Laboratory Report No. 5265, "An Improved Device for the Formation of Super-fine Thermoplastic Fibers" by K. D. Lawrence, R. T. Lukas, and J. A. Young, US Patent No.
3,849,241 to Butin et al.; US Patent 3,849,241 to Butin et al. and US patent No. 5,213,881 to Timmons et al.;
the entire contents of the aforesaid references are incorporated herein by reference.
Meltblown fibers are often microfibers which can be continuous or discontinuous and are generally tacky when deposited onto a collecting surface.
As used herein the term "polymer" generally includes but is not limited to, homopolymers, copolymers, such as for example, block, graft, random and alternating copolymers, terpolymers, etc. and blends and/or modifications thereof.
Furthermore, unless otherwise specifically limited, the term "polymer" shall include all possible spatial configurations of the molecule. These configurations include, but are not limited to, isotactic, syndiotactic and/or random symmetries.
As used herein the term "monocomponent" fiber refers to a fiber formed a single, continuous polymer segment.
As used herein the term "multiconstituent fibers" refers to fibers that have been formed from at least two polymers extruded from the same extruder.
Multiconstituent fibers do not have the various polymer components arranged in constantly positioned distinct zones across the cross-sectional area of the fiber and the various polymers are usually not continuous along the entire length of the fiber, instead usually forming fibrils or protofibrils which start and end at random. Biconstituent fibers are a specific class of multiconstituent fibers wherein the fiber comprises two distinct polymers.
As used herein the term "blend" means a mixture of two or more polymers while the term "alloy" means a sub-class of blends wherein the components are immiscible but have been compatibilized.
As used herein, "ultrasonic bonding" means a process performed, for example, by passing the fabric between a sonic horn and anvil roll as illustrated in US
Patent 4,374,888 to Bornslaeger.
As used herein "point bonding" means bonding one or more layers of fabric at numerous small, discrete bond points. For example, thermal point bonding generally involves passing one or more layers to be bonded between heated rolls such as, for example an engraved patterned roll and a flat calender roll. The engraved roll is patterned in some way so that the entire fabric is not bonded over its entire surface, and the anvil roll is usually flat. As a result, various patterns for engraved rolls have been developed for functional as well as aesthetic reasons. One example of a pattern has points and is the Hansen Pennings or "H&P" pattern with about a 30% bond area and with about 200 bonds/square inch as taught in US Patent 3,855,046 to Hansen et al.
As used herein, the term "autogenous bonding" refers to bonding between discrete parts and/or surfaces independently of external mechanical fasteners or external additives such as adhesives, solders, and so forth. As an example, multicomponent fibers and multiconstituent fibers can be autogenously bonded by developing inter-fiber bonds at fiber contact points without destroying the fiber structure.
Description of the Invention In reference to FIGS. 1 and 2, multilayer filtration media 10 can comprise a nonwoven composite material 12, a first substantially uniform nonwoven fabric 14 and a second nonwoven fabric 16 such that nonwoven composite material 12 is disposed there between. The first substantially uniform nonwoven fabric 14 desirably comprises a low density and/or high-loft material and faces upstream of the composite material 12 such that larger particles are collected within first substantially uniform nonwoven fabric 14 prior to reaching nonwoven composite material 12.
Nonwoven composite materials suitable for use with the present invention include materials comprising a mixture or stabilized matrix of thermoplastic fibers and a distinct secondary particulate or fibrous material therein. As an example, suitable nonwoven composite materials may be made by a process in which at least one meltblown die head is arranged near a chute through which other materials are added to the web while it is forming. Suitable secondary materials include, but are not limited to, pulp, cellulose, feathers, polymeric staple fibers and/or other fibrous or particulate matter.
Desirably, the composite material comprises a matrix of thermoplastic fibers and a second non-thermoplastic material. Composite materials made from such a process are often referred to as "coform" materials and examples of such processes are described in commonly assigned US Patent 4,818,464 to Lau, US Patent 4,100,324 to Anderson et al., and US
Patent 5,350,624 to Georger et al., and US Patent Application No. 08/882,308 to Strack et al. filed June 25, 1997; the entire contents of the aforesaid patents and application are incorporated herein by reference. The composite material desirably comprises fine fibers having an average fiber diameter of less than about 20u and even more desirably between about 0.5u and about 15u and still more desirably between about 1 a and about 1 Ou.
Additionally, the fine fiber composite material desirably has a basis weight between about 30 g/m2 to about 300 g/m2 and even more desirably between about 50 g/mz to about 150 glm2.
The secondary material desirably comprises between about 50% by weight and about 85% by weight and still more desirably between about 70% by weight and about 80% by weight of the nonwoven composite material. The use of the secondary material within the fine fiber matrix creates a material having a fiber structure which is considerably more irregular and non-uniform as compared to microfiber meltblown fabrics more commonly utilized in filtration applications. Further, due to the more irregular internal structure of the composite material, relative to microfiber meltblown nonwoven webs, larger average pore structures are created. However, the composite material has a structure with less uniform fiber orientation and as a result has numerous tortuous paths through the fabric. This forces particles traveling through the composite material to flow in a multitude of directions which allows the filter to trap particles smaller than that of the complex pathway. As a specific example, the fine fiber nonwoven composite material can comprise a nonwoven web of polypropylene meltblown fibers and the secondary material can comprise generally ribbon-shaped pulp fibers having an average length between about 30u and 50u with an average height of about 5u. Desirably, the nonwoven composite material has a mean pore size ranging from about 15 a to about 45 ~
and, still more desirably, a mean pore size of about 30~. In a further aspect, the nonwoven composite material desirably has a wide range of pore sizes such as, for example, having pore sizes ranging from about 10u to about 140. Despite having a mean flow pore size larger than many of the particles to be trapped, the complex and tortuous pathways through the composite material provide a filtration medium capable of efficiently entraping particles of a size from about 5u to about 25u. Moreover, such a structure also provides filtration media having good pressure drop as well as capacity and filter life.
The filtration media also has a first or upstream layer comprising a substantially uniform nonwoven web of continuous, bonded fibers. The first nonwoven web desirably has inter-fiber bonds throughout the web and an average pore size greater than that of the composite material. As used herein the term "substantially uniform" means a material which does not have regions of significantly high and low densities such as point bonded fabrics or other similar fabrics having high density and low density regions across the face or central portion of the fabric. Having relatively high-density areas, such as those created at bond points, generally decreases the filtration efficiency of the first nonwoven web and also increases the pressure drop across the filtration media. The substantially uniform, ' bonded nonwoven fabric can have inter-fiber bonds created by an external adhesive applied to the fibers or autogenous inter-fiber bonding. Desirably, the outer nonwoven web is directly attached to the composite material. However, other intermediate materials may be disposed therebetween.
An exemplary substantially uniform nonwoven material comprises autogenously bonded fibers and still more desirably comprises autogenously bonded multicomponent spunbond fibers. As used herein the term "multicomponent fibers" refers to fibers which have been formed from at least two polymers extruded from separate extruders but spun together to form one fiber. Bicomponent fibers refer to a common, specific class of multicomponent fiber wherein the fiber comprises two distinct components. The polymers are arranged in substantially constantly positioned distinct zones or segments across the cross-section of the fibers and extend continuously along the length of the fibers. The configuration of such fibers may be, for example, a sheath/core arrangement wherein one polymer is surrounded by another or may be a side-by-side arrangement, a pie arrangement or other arrangement. Multicomponent fibers are taught in US Patent 5,108,820 to Kaneko et al., US Patent 4,795,668 to Krueger et al., US Patent 5,336,552 to Strack et al. and in US
Patent 5,382,400 to Pike et al.; the entire content of each of the aforesaid patents is incorporated herein by reference. For bicomponent fibers, the polymers are desirably present in ratios of 75/25, 50/50, 25/75 or any other desired ratios. The fibers may also have various shapes such as, for example, ribbon, hollow, multilobal and so forth. Desirably the autogenously bonded nonwoven web has a basis weight of at least 15 g/mz and desirably between about 30 g/m2 to about 300 g/m2 and even more desirably a basis weight between about 50 g/mz to about 150 g/m2. Multiconstituent fibers capable of forming inter-fiber bonds are also believed suitable for use with the present invention. In a preferred embodiment, the autogenously bonded nonwoven web can comprise a multicomponent spunbond fiber web such as is described in US Patent No. 5,382,400 to Pike et al., US
Patent No. 5,534,339 to Stokes and US Patent No. 5,855,784 to Pike et al.; the entire contents of the aforesaid patents are incorporated herein by reference. As a specific example, the autogenously bonded nonwoven web can comprise a high-loft web comprising crimped polyethylene/polypropylene conjugate fibers having a density between about 0.01 g/cm3 and about 0.2 g/cm3. As a further example, crimped polyethylene/nylon spunbond fiber webs are also believed well suited for use in the present invention.
Desirably, the substantially uniform nonwoven webs are autogenously bonded using hot air such as developed by "through-air bonding." As used herein, through-air bonding refers to a process of bonding nonwoven fiber webs in which hot air, that is sufficiently hot to melt one of the polymers comprising the fibers, is forced through the web. The hot air melts the lower melting polymer component and the resolidification of the melted polymer forms bonds between the filaments at contact points to integrate the web. As an example, an exemplary through-air bonding process suitable for use with the fabrics of the present invention can employ an air velocity between 100 and 500 feet per minute and dwell times up to about 6 seconds. Exemplary through-air bonding equipment can direct hot air, having a temperature above the melting temperature of one component and below the melting temperature of another component, from a surrounding hood, through the web, and into a perforated roller supporting the web. Alternatively, the through-air bonder may be a flat arrangement wherein the air is directed vertically downward onto the web. It will be appreciated by those skilled in the art that the requisite air temperature, air velocity and dwell time will vary with respect to the particular polymers comprising the nonwoven web, the composition or structure of the same as well as the degree of bonding desired.
The multilayer filtration media further comprises a second or downstream nonwoven web positioned such that the nonwoven composite web is disposed between the first and second nonwoven webs. Desirably, the second nonwoven layer comprises a material capable of providing additional filtration properties, strength and/or support to the nonwoven composite web. The second nonwoven web can comprise one or more of the materials discussed herein above with regard to the first outer nonwoven web. In one aspect of the invention, the second nonwoven web can comprise spunbond fibers comprising monocomponent, multiconstituent or multicomponent fibers. Desirably, the second nonwoven web likewise comprises a substantially uniform material. The particular polymers) or polymer blends used in the second nonwoven web can be selected to achieve the desired strength, abrasion resistance and/or other desired characteristics. The second or downstream nonwoven web desirably has a basis weight between about 15 g/m2 and about 225 g/mz and still more desirably has a basis weight between about 30 g/mz and about 100 g/mz. In one embodiment of the present invention, both the first and second nonwoven webs can comprise through-air bonded high-loft, multicomponent spunbond fiber webs. Further, it is desirable that the second nonwoven web likewise comprise a polymer having a softening and/or melting point which is the same as or substantially similar to the low melting component of the upstream or first nonwoven web so as to allow autogenous bonding of the entire laminate without the need for externally applied adhesive, point bonding andlor other additional means of attachment. However, where additional integrity is desired the multiple layers can be bonded as desired by one or more means known in the art such as use of an adhesive, mechanical crimping or stitching, thermal bonding, and/or ultrasonic bonding. The potential negative impact of adhesives or point bonding on filtration properties may be limited and/or eliminated by bonding only the edges of the multilayer filtration material.
In a further aspect of the present invention, the upstream side of the filter media can comprise a plurality of substantially uniform and autogenously bonded layers. In reference to FIG. 3, the multilayer filter media 20 can comprise a nonwoven composite material 22 having first side 24 and second side 26. First autogenously bonded nonwoven web 30 can be attached to first side 24 of nonwoven composite material 22.
Second autogenously bonded nonwoven web 28 can be attached to the second side 26 of nonwoven composite material 22. Third autogenously bonded nonwoven web 32 can be attached to the first autogenously bonded nonwoven web 30 thereby forming a four-layer laminate. Desirably, the first and third nonwoven webs 30 and 32 comprise fibers having at least one polymer having the same or substantially similar melting points.
Still more desirably, the first and third autogenously bonded nonwoven webs 30 and 32 comprise the same materials. The first and third nonwoven webs 30 and 32 can have the same or different basis weights. Further, the first and third autogenously bonded nonwoven webs can comprise materials having the same or different pore structures.
Desirably, the nonwoven fabric having a larger average pore size is preferably positioned upstream of the lower loft, lower density structure thereby allowing the layers to act as a depth filter and provide a filter medium having improved filter life and/or capacity. As a particular example, the first nonwoven web can comprise crimped polyethylene/polypropylene bicomponent spunbond fiber web having a density in the range between about 0.01 and 0.2 glcm' and the third nonwoven web can comprise s crimped polyethylenelpolypropylene bicomponent spunbond fiber web having a lower density than the first web. In one embodiment, the third layer can have a lower density by comprising a nonwoven web of spunbond fibers with a higher degree of crimp than that of the first nonwoven web.
In reference to FIG. 4, a process line 50 for fabricating a laminate of the present invention is disclosed. Hoppers 52a and 52b may be filled with the respective polymeric components 53a and 53b. The polymeric components are then melted and extruded by the respective extruders 54a and 54b through polymer conduits 56a and 56b and through spinneret 58. Spinnerets are well known to those skilled in the art and, generally, include a housing containing a spin pack which includes a plurality of plates stacked one on top of the another with a pattern of openings arranged to create the desired flow paths through the spinneret. As the extruded filaments extend below spinneret 58, a stream of air from quench blower 60 quenches bicomponent filaments 62. The filaments B2 are drawn into a fiber draw unit or aspirator 64 and then onto traveling fvraminous surface 66, with the aid of vacuum 68, to form an unbonded layer of bicomponent spunbond fibers 70. The unbonded bicomponent fiber layer 70 may be lightly compressed by compression or compaction rollers 72. The bicomponent fiber layer can optionally be through-air bonded prior to formation of the composite nonwoven material. Those skilled in the art will appreciate that a bonded spunbond fiber web could be made previously and wound on a supply roll and fed into the present process.
Fine fiber composite material 101 can be made using the desired process equipment such as coform apparatus 80. Polymer is progressively heated to a molten state as it advances through extruder 82 and into meltblowing dies 84 and B5.
Meltblowing dies 84 and 85 can be configured so that two streams of attenuating gas per die converge to form a single stream of gas which entrains and attenuates molten threads 88, as the threads 88 exit small holes or orifices 86 of the meltblowing dies 84 and 85.
The molten threads 88 are attenuated into fibers and desirably, depending upon the degree of attenuation, microfibers. Thus, each meltbiowing die 84 and 85 has a corresponding single stream of gas (not shown) containing entrained and attenuated polymer fibers. The gas streams containing polymer fibers are~aligned to converge at an impingement zone 90.
One or more types of secondary fibers 92 and/or particulates are added to the two streams of thermoplastic polymer fibers or microfibers at the impingement zone 90.
Introduction of the secondary fibers 92 into the two streams of thermoplastic polymer fibers 88 is designed to produce a graduated distribution of secondary fibers 92 within the combined streams of thermoplastic polymer fibers. This may be accomplished by merging a secondary gas stream containing the secondary fibers 92 between the two streams of thermoplastic polymer fibers 88 so that all three gas streams converge in a controlled manner.
Apparatus for accomplishing this merger may include a conventional picker roll assembly 96 which has a plurality of teeth that are adapted to separate a mat or batt 98 of secondary fibers into the individual secondary fibers 92. The mat or batt 98 of secondary fibers which is fed to the picker roll 96 may be a sheet of pulp fibers (if a two-component mixture of thermoplastic polymer fibers and secondary pulp fibers is desired), a mat of staple fibers (if a two-component mixture of thermoplastic polymer fibers and a secondary staple fibers is desired) or both a sheet of pulp fibers and a mat of staple fibers (if a three-component mixture of thermoplastic polymer fibers, secondary staple fibers and secondary pulp fibers is desired). FIG. 4 further illustrates that the secondary gas stream 94 carrying the secondary fibers 92 is directed between the streams of thermoplastic polymer fibers 88 so that the streams contact at the impingement zone 90. Due to the fact that the thermoplastic polymer fibers 88 are usually still semi-molten and tacky at the time of incorporation of the secondary fibers 92 into the thermoplastic polymer fiber streams, the secondary fibers 92 are usually not only mechanically entangled within the matrix formed by the thermoplastic polymer fibers 88 but are also thermally bonded or joined to the thermoplastic polymer fibers 88. The merged stream 100 of thermoplastic polymer fibers and secondary fibers are collected to form a coherent matrix of fibers, which is nonwoven composite web 101, an the surface of the spunbond fibers 70.
Vacuum boxes (not shown) can assist in retention and/or formation of the matrix on the surface of the spunbond fibers. Alternately, a collecting device can be located in the path of the composite stream and the nonwoven composite web fed onto the multicomponent spunbond fiber material.
A second nonwoven web 104, such as an autogenously bonded bicomponent spunbond fiber web, can be unwound from a supply roll 102 and fed over the nonwoven composite web 101. The three layers can then, while in a face-to-face relation, be fed through through-air bonder 108 thereby bonding the respective layers to form an integrated, autogenously bonded three layer laminate 110. The laminate 110 can be wound on winder roll 112 or further processed and/or converted in-line as desired.
The method set forth above, for making a laminate of the present invention, can be modified in one or more ways as desired. As an example, the entire laminate can be made in-line, replacing the unwind 102 with a second spunbond forming apparatus.
Additionally, to achieve the desired basis weights or web characteristics it may likewise be desirable to employ a series of spunbond or coform forming apparatus. Still further, each of the individual layers can be made off-line and unwound in series, and bonded together to form the filter media. However, typically the coform material lacks sufficient integrity to be wound/unwound without the use of a carrier sheet such as, for example, a lightweight spunbond sheet. Carrier sheets often have basis weights between about 10 g/mz and 16 g/m2. Further, adhesive can be applied to one or more of the materials in order to increase the peel strength of the multilayer laminate. Still further, additional materials can be added to the multilayer laminate in order to further improve the strength, abrasion resistance or other properties of the multilayer laminate as desired.
The filtration media of the present invention can have a variety of uses. The filter media can be converted as desired for use with a support member or within a filter element such as, for example, filter cartridges, frames, wire mesh, screen supports and so forth. As specific examples thereof the fabric can be used in filtration systems associated with metal working, auto grinding, aluminum rolling, sewage or waste water treatment and so forth. In reference to Fig. 5, filtration media 152 can be unwound from supply roll 150 and travels in the direction of the arrow associated therewith. Container 154 holds contaminated liquid 156 having particulate matter therein.
Contaminated liquid 156 is drawn through filtration media 152 thereby producing filtered liquid 158 that is collected in second container 160. The liquid flows through the filter media in the direction of the arrows associated therewith. Filtration media 152 can be supported on an open or foraminous surface 159 such as, for example, a mesh screen, a series of pinner bars, or another substantially open structure. As filtration media 152 filters particulate matter within contaminated liquid 156 the filter media eventually becomes saturated forming spent filter medium 153. The spent filtration medium 153 can be fed to a waste disposal apparatus 162 and/or recycling apparatus. The filtration media 152 is desirably cycled through the filtration system such that filter medium is at least substantially saturated at or fully saturated at or near the end of the filtering window. In this regard, contaminated liquid 156 can be drawn through filter medium 152 with the aid of a vacuum (not shown) and, as the filtration medium becomes more highly saturated, the pressure drop across the fabric increases. When a particular pressure drop is reached the filtration medium can be cycled through the filtration zone or window. Additionally and/or alternatively, the filtration medium can simply be cycled through the filtration window at a predetermined rate, e.g. at a constant rate or at set intervals. Desirably, the filtration media has a filtration efficiency of at least 50% for particles ranging in size from about 5~ to about 25~.

Example 1 A 51 g/m2 nonwoven web of crimped bicomponent spunbond fibers is formed in accord with US Patent 5,382,400 to Pike et al. The bicomponent spunbond fibers comprise 50/50 components of polypropylene (Exxon Chemical Co. polypropylene 3155) and polyethylene (Dow Chemical Co. polyethylene 6811 ) having a side-by-side configuration.
The bicomponent spunbond fiber webs are through-air bonded to form an autogenously bonded nonwoven web having inter-fiber bonds dispersed throughout the web. The autogenously bonded bicomponent spunbond fiber web is then slit to the desired width and wound onto a winder roll. The autogenously bonded spunbond fiber web is subsequently unwound from the winder roll and fed onto a foraminous surface. A coform material is formed directly upon the surface of the autogenously bonded spunbond fiber web forming a two-layer spunbond/coform material which is then wound on a winder roll. The 90 g/m2 coform material is made in accord with US Patent 4,100,324 to Anderson et al.
The meltblown fibers comprise polypropylene (Montell North America polypropylene PF015) and the secondary fibers comprise a fluff pulp (Georgia Pacific fluff pulp RM 4821 ) with the fluff pulp comprising about 60%, by weight, of the coform. The two-layer spunbond/coform material is subsequently unwound from the winder roll and fed onto a foraminous surface.
Bicomponent spunbond fibers, the same as those described above with regard to the 51 g/m2 spunbond fiber web, are formed directly upon the coform layer of the spunbond/coform material. The three layers are then passed through a through-air bonder thereby forming a cohesive three-layer laminate.
While various patents and other reference materials have been incorporated herein by reference, to the extent there is any inconsistency between incorporated material and that of the written specification, the written specification shall control. In addition, while the invention has been described in detail with respect to specific embodiments thereof, it will be apparent to those skilled in the art that various alterations, modifications and other changes may be made to the invention without departing from the spirit and scope of the present invention. It is therefore intended that the appended claims cover all such modifications, alterations and other changes.

Claims (20)

1. Filtration media comprising:
a nonwoven composite material having a first and second side and comprising a stabilized matrix of thermoplastic microfibers having within said microfiber matrix at least about 50%, by weight, of a secondary material;
a first nonwoven web adjacent said first side of said nonwoven composite material wherein said first nonwoven web comprises a substantially uniform nonwoven web having inter-fiber bonds throughout the web; and a second nonwoven web adjacent said second side of said nonwoven composite material and wherein said first and second nonwoven webs and said nonwoven composite material comprise an integrated autogenously bonded multilayer laminate.
2. The filtration media of claim 1 wherein said nonwoven composite material has a basis weight between about 30 g/m2 and about 300 g/m2.
3. The filtration media of claim 2 wherein said secondary material of the nonwoven composite material comprises a fibrous material selected from pulp, polymeric staple fibers, and feathers.
4. The filtration media of claim 2 wherein said secondary material of the nonwoven composite material comprises a fibrous, non-polymeric material.
5. The filtration media of claim 4 wherein said secondary material of the nonwoven composite material comprises pulp.
6. The filtration media of claim 3 wherein said first nonwoven web comprises a nonwoven web of continuous fibers selected from the group consisting of multicomponent and multiconstituent fibers.
7. The filtration media of claim 6 wherein said first nonwoven web comprises an autogenously bonded web of crimped multicomponent spunbond fibers having a density between about 0.01 g/cm3 and about 0.2 g/cm3.
8. The filtration media of claim 7 wherein said first nonwoven web of multicomponent spunbond fibers comprises a web of polyethylene/polypropylene bicomponent spunbond fibers.
9. The filtration media of claim 8 wherein said second nonwoven web comprises a nonwoven web of continuous fibers selected from the group consisting of multicomponent and multiconstituent fibers.
10. The filtration media of claim 8 wherein said composite material comprises meltblown fibers having an average fiber size less than about 15µ.
11. The filtration media of claim 9 wherein said second nonwoven web comprises a substantially uniform, autogenously bonded nonwoven web of crimped multicomponent spunbond fibers and further wherein said fibers of said second nonwoven web comprise polyethylene and a second polymer.
12. The filtration media of claim 11 wherein said first autogenously bonded nonwoven web has a basis weight between about 30 g/m2 and 150 g/m2, and said second nonwoven web has a basis weight of between about 30 g/m2 and 150 g/m2.
13. The filtration media of claim 7 further comprising a third nonwoven web wherein said third nonwoven web comprises a substantially uniform and autogenously bonded nonwoven web of crimped multicomponent spunbond fibers and further wherein said third nonwoven web has a density greater than the density of said first nonwoven web.
14. The filtration media of claim 13 wherein said nonwoven composite material has a basis weight between about 50 g/m2 and 300 g/m2, said first and third nonwoven webs have a combined basis weight between about 50 g/m2 and 150 g/m2, and said second nonwoven web a basis weight of between about 30 g/m2 and 150 g/m2.
15. A method of filtering a contaminated liquid comprising:
providing the filter media of claim 1;
supporting said filter media on an open surface;
drawing a contaminated liquid through said filter media, said contaminated liquid having particulate matter therein, wherein said particulate matter is entrapped in said filter media and said liquid passes therethrough.
16. The method of claim 15 wherein said contaminated liquid contains a significant level of particulate matter having a particle size of from 5 µ to about 25 µ.
17. A method of filtering a contaminated liquid comprising:
providing the filter media of claim 12;
supporting said filter media on an open surface;
drawing a contaminated liquid through said filter media, said contaminated liquid having particulate matter therein, wherein said particulate matter is entrapped in said filter media and said liquid passes therethrough.
18. The method of claim 18 wherein said contaminated liquid contains a significant level of particulate matter having a particle size of from 5 µ to about 25 µ.
19. A method of filtering a contaminated liquid comprising:
providing the filter media of claim 14;
supporting said filter media on an open surface;
drawing a contaminated liquid through said filter media, said contaminated liquid having particulate matter therein, wherein said particulate matter is entrapped in said filter media and said liquid passes therethrough.
20. The method of claim 19 wherein said contaminated liquid contains a significant level of particulate matter having a particle size of from 5 µ to about 25 µ.
CA002279174A 1998-08-31 1999-07-30 Fine particle liquid filtration media Abandoned CA2279174A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US9852698P 1998-08-31 1998-08-31
US60/098,526 1998-08-31
US09/358,125 1999-07-20
US09/358,125 USH2086H1 (en) 1998-08-31 1999-07-20 Fine particle liquid filtration media

Publications (1)

Publication Number Publication Date
CA2279174A1 true CA2279174A1 (en) 2000-02-29

Family

ID=28677808

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002279174A Abandoned CA2279174A1 (en) 1998-08-31 1999-07-30 Fine particle liquid filtration media

Country Status (2)

Country Link
US (1) USH2086H1 (en)
CA (1) CA2279174A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10821384B2 (en) * 2017-08-28 2020-11-03 Ronie Reuben Down feather filter medium

Families Citing this family (401)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003217975A1 (en) * 2002-03-11 2003-09-29 Polymer Group, Inc. Extensible nonwoven fabric
US20030203694A1 (en) * 2002-04-26 2003-10-30 Kimberly-Clark Worldwide, Inc. Coform filter media having increased particle loading capacity
US20090283519A1 (en) * 2003-02-21 2009-11-19 Gloria Newton Disposable microwave protector
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
JP4302458B2 (en) * 2003-07-31 2009-07-29 株式会社ニフコ Fuel filter device
DE102004010062B3 (en) * 2004-03-02 2005-09-08 Drägerwerk AG Device for dosing substances
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US20060054571A1 (en) * 2004-09-10 2006-03-16 Lopez Gerardo V Continuous loop filter media and method of filtering particulate
MX2007005395A (en) 2004-11-05 2007-06-19 Donaldson Co Inc Filter medium and structure.
US8021457B2 (en) * 2004-11-05 2011-09-20 Donaldson Company, Inc. Filter media and structure
EP4026600A1 (en) 2004-11-05 2022-07-13 Donaldson Company, Inc. Filter medium and structure
US8057567B2 (en) 2004-11-05 2011-11-15 Donaldson Company, Inc. Filter medium and breather filter structure
CN101151084B (en) 2005-02-04 2013-02-13 唐纳森公司 Aerosol separator
WO2006091594A1 (en) 2005-02-22 2006-08-31 Donaldson Company, Inc. Aerosol separator
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
JP2010529902A (en) 2007-02-22 2010-09-02 ドナルドソン カンパニー インコーポレイテッド Filter element and method
WO2008103821A2 (en) 2007-02-23 2008-08-28 Donaldson Company, Inc. Formed filter element
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8267681B2 (en) 2009-01-28 2012-09-18 Donaldson Company, Inc. Method and apparatus for forming a fibrous media
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8950587B2 (en) 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US8951420B2 (en) * 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8679218B2 (en) 2010-04-27 2014-03-25 Hollingsworth & Vose Company Filter media with a multi-layer structure
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9386988B2 (en) * 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US20120183861A1 (en) 2010-10-21 2012-07-19 Eastman Chemical Company Sulfopolyester binders
EP2670507B1 (en) 2011-02-03 2021-06-30 Donaldson Company, Inc. Filter media pack, filter assembly, and method
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
BR112014024102B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US9694306B2 (en) 2013-05-24 2017-07-04 Hollingsworth & Vose Company Filter media including polymer compositions and blends
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10343095B2 (en) 2014-12-19 2019-07-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US20180168633A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments and staple-forming anvils
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1453447A (en) 1972-09-06 1976-10-20 Kimberly Clark Co Nonwoven thermoplastic fabric
US4100324A (en) 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
CA1073648A (en) * 1976-08-02 1980-03-18 Edward R. Hauser Web of blended microfibers and crimped bulking fibers
US4047534A (en) 1977-01-03 1977-09-13 Kimberly-Clark Corporation Nursing pad
US4375718A (en) 1981-03-12 1983-03-08 Surgikos, Inc. Method of making fibrous electrets
US4436780A (en) 1982-09-02 1984-03-13 Kimberly-Clark Corporation Nonwoven wiper laminate
US4795668A (en) 1983-10-11 1989-01-03 Minnesota Mining And Manufacturing Company Bicomponent fibers and webs made therefrom
US4818464A (en) 1984-08-30 1989-04-04 Kimberly-Clark Corporation Extrusion process using a central air jet
US4973503A (en) 1985-06-26 1990-11-27 Kimberly-Clark Corporation Mixed fiber tow or tube and method of making
US4824451A (en) 1985-12-31 1989-04-25 Kimberly-Clark Corporation Melt-blown filter medium
US5213881A (en) 1990-06-18 1993-05-25 Kimberly-Clark Corporation Nonwoven web with improved barrier properties
US5464688A (en) 1990-06-18 1995-11-07 Kimberly-Clark Corporation Nonwoven web laminates with improved barrier properties
US5227107A (en) 1990-08-07 1993-07-13 Kimberly-Clark Corporation Process and apparatus for forming nonwovens within a forming chamber
CA2053930C (en) 1991-07-17 1997-01-07 Robert Emmet Kirby Bodyside cover for an absorbent article
US5382400A (en) 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5370830A (en) 1992-09-23 1994-12-06 Kimberly-Clark Corporation Hydrosonic process for forming electret filter media
US5350624A (en) 1992-10-05 1994-09-27 Kimberly-Clark Corporation Abrasion resistant fibrous nonwoven composite structure
CA2124389C (en) 1993-11-16 2005-08-23 Richard D. Pike Nonwoven filter media
US5534339A (en) 1994-02-25 1996-07-09 Kimberly-Clark Corporation Polyolefin-polyamide conjugate fiber web
US5498463A (en) 1994-03-21 1996-03-12 Kimberly-Clark Corporation Polyethylene meltblown fabric with barrier properties
US5582907A (en) 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
SE503272C2 (en) * 1994-08-22 1996-04-29 Moelnlycke Ab Nonwoven material prepared by hydroentangling a fiber web and method for making such nonwoven material
US5736473A (en) 1994-09-14 1998-04-07 Kimberly-Clark Corp. Fibrous composite structure including particulates
AU697204B2 (en) 1994-10-31 1998-10-01 Kimberly-Clark Worldwide, Inc. High density nonwoven filter media
US5603830A (en) 1995-05-24 1997-02-18 Kimberly-Clark Corporation Caffeine adsorbent liquid filter with integrated adsorbent
US5906743A (en) 1995-05-24 1999-05-25 Kimberly Clark Worldwide, Inc. Filter with zeolitic adsorbent attached to individual exposed surfaces of an electret-treated fibrous matrix
AU5747396A (en) * 1995-05-25 1996-12-11 Kimberly-Clark Worldwide, Inc. Filter matrix
US5620785A (en) * 1995-06-07 1997-04-15 Fiberweb North America, Inc. Meltblown barrier webs and processes of making same
US5705251A (en) 1995-06-27 1998-01-06 Kimberly-Clark Worldwide, Inc. Garment with liquid intrusion protection
US5709735A (en) 1995-10-20 1998-01-20 Kimberly-Clark Worldwide, Inc. High stiffness nonwoven filter medium
US5721180A (en) 1995-12-22 1998-02-24 Pike; Richard Daniel Laminate filter media
US5667562A (en) 1996-04-19 1997-09-16 Kimberly-Clark Worldwide, Inc. Spunbond vacuum cleaner webs
US5773375A (en) * 1996-05-29 1998-06-30 Swan; Michael D. Thermally stable acoustical insulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10821384B2 (en) * 2017-08-28 2020-11-03 Ronie Reuben Down feather filter medium

Also Published As

Publication number Publication date
USH2086H1 (en) 2003-10-07

Similar Documents

Publication Publication Date Title
USH2086H1 (en) Fine particle liquid filtration media
US5817584A (en) High efficiency breathing mask fabrics
US5709735A (en) High stiffness nonwoven filter medium
US5707735A (en) Multilobal conjugate fibers and fabrics
AU689167B2 (en) Nonwoven filter media
EP0874677B1 (en) Laminate filter media
US8410006B2 (en) Composite filter media with high surface area fibers
US6169045B1 (en) Nonwoven filter media
US7425517B2 (en) Nonwoven fabric with abrasion resistance and reduced surface fuzziness
WO1997039817A1 (en) Spunbond vacuum cleaner webs
US20070289920A1 (en) Pool and spa filter
US20030045192A1 (en) Rigidified nonwoven and method of producing same
WO2008084233A1 (en) Microfiber split film filter felt and method of making same
DE10332439B3 (en) Two-layer synthetic filter element
US20030203694A1 (en) Coform filter media having increased particle loading capacity
US20050148266A1 (en) Self-supporting pleated electret filter media
MXPA99007929A (en) Fine particle liquid filtration media
CA2231507C (en) High stiffness nonwoven filter medium
CA2249317A1 (en) Spunbond vacuum cleaner webs
MXPA98008570A (en) Fabrics for cleaner with vacuum united by hil

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued