CA2259547A1 - High-gain amplifier - Google Patents

High-gain amplifier Download PDF

Info

Publication number
CA2259547A1
CA2259547A1 CA002259547A CA2259547A CA2259547A1 CA 2259547 A1 CA2259547 A1 CA 2259547A1 CA 002259547 A CA002259547 A CA 002259547A CA 2259547 A CA2259547 A CA 2259547A CA 2259547 A1 CA2259547 A1 CA 2259547A1
Authority
CA
Canada
Prior art keywords
cover
waveguides
amplification
amplifier
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002259547A
Other languages
French (fr)
Inventor
Philippe Rampazzo
Jean-Christophe Guillard
Bernard Rattay
Michel Soulard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SA filed Critical Alcatel SA
Publication of CA2259547A1 publication Critical patent/CA2259547A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)
  • Waveguides (AREA)

Abstract

Pour réaliser un amplificateur à grand gain dans une bande hyperfréquence, on propose de relier ensemble, des circuits d'amplification et de recouvrir le boîtier qui les contient, d'un couvercle (31). On ménage dans l'espace (33) situé entre le couvercle et les circuits d'amplification, à l'intérieur du boîtier, des guides d'onde (41-43) dont la fréquence de coupure est telle qu'elle ne laisse se propager aucun des modes pouvant régner aux fréquences de la bande utile. On montre qu'en formant ces guides d'onde dans cet espace, au lieu de le remplir d'absorbants, on obtient une bien meilleure isolation radioélectrique entre la sortie et l'entrée pour éviter des réinjections parasites. De ce fait on peut, dans un même boîtier, réaliser une amplification pouvant aller jusqu'à 90 dB alors qu'auparavant la limite à 45 dB par boîtier était infranchissable.To make a high gain amplifier in a microwave band, it is proposed to connect together, amplification circuits and to cover the box which contains them, with a cover (31). In the space (33) located between the cover and the amplification circuits, inside the housing, waveguides (41-43) are used whose cut-off frequency is such that it does not allow propagate any of the modes which may prevail at the frequencies of the useful band. We show that by forming these waveguides in this space, instead of filling it with absorbents, we obtain a much better radioelectric isolation between the output and the input to avoid parasitic reinjections. Therefore we can, in the same case, achieve an amplification of up to 90 dB while previously the limit of 45 dB per case was impassable.

Description

Amplificateur à grand gain.
La présente invention a pour objet, un amplificateur à grand gain utilisable dans le domaine des hyperfréquences. Elle peut être utilisée notamment dans le domaine du radar, dans celui des faisceaux hertziens, dans les transmissions par satellites, et dans les systèmes de distribution w multipoints de télévision (LMDS). Les gammes de fréquence concernées par l'invention sont plus particulièrement des gammes de fréquence allant de 1 GHz à 100 GHz. Des utilisations peuvent néanmoins être considérées en dehors de ces domaines et en dehors de cette plage. L'invention trouve sa place dès qu'une propagation radioélectrique est envisagée.
L'invention a pour objet de proposer un amplificateur à grand gain et à
faible coût. Par grand gain, on entend des amplifications supérieures à 40 dB
et pouvant aller jusqu'à 100 dB.
Les circuits utilisés pour réaliser ces fonctions d'amplification, comportent des composants à base de circuits dits MMIC, monolithic microwave integrated circuit. Ces composants MMIC comportent des circuits intégrés reliés entre eux par des lignes de transmission. L'architecture, les longueurs et les dispositions des lignes de transmission à l'intérieur de ces composants MMIC sont de nature à constituer un circuit d'amplification hyperfréquence intrinsèquement non oscillant. En pratique, des ensembles d'amplification hyperfréquence comportent une plaquette isolante (par exemple en céramique, en verre-polytétrafluoroéthylène, en résine époxy) dans laquelle sont usinées des alvéoles pour recevoir les composants MMIC.
Cette plaquette isolante porte les pistes conductrices pour relier les composants entre eux. Les composants MMIC possèdent une entrée, par où
est injecté un signal à amplifier, et une sortie d'où sort le signal amplifié.
Un composant MMIC a une forme souvent parallélépipèdique, l'entrée étant située d'un côté du composant MMIC, la sortie étant située sur un côté
opposé au côté d'entrée.
Le signal amplifié rayonne naturellement dans l'espace situé à
proximité de la sortie du composant. Ce rayonnement se propage alors malheureusement jusqu'à l'entrée. II en résulte un phénomène de réinjection à l'entrée des signaux produits à la sortie. Ce phénomène est un phénomène de radio-émission.
High gain amplifier.
The subject of the present invention is a high gain amplifier usable in the microwave domain. It can be used especially in the field of radar, in that of radio-relay systems, in satellite transmissions, and in distribution systems w multipoint television (LMDS). The frequency ranges concerned by the invention are more particularly frequency ranges from 1 GHz to 100 GHz. Uses can nevertheless be considered in outside these areas and outside this range. The invention finds its place as soon as radio propagation is considered.
The object of the invention is to propose a high gain amplifier with low cost. By large gain is meant amplifications greater than 40 dB
and up to 100 dB.
The circuits used to perform these amplification functions, contain components based on circuits called MMIC, monolithic microwave integrated circuit. These MMIC components have circuits integrated interconnected by transmission lines. Architecture, lengths and arrangements of the transmission lines inside these MMIC components are likely to constitute an amplification circuit intrinsically non-oscillating microwave. In practice, sets of amplification microwave include an insulating plate (for example in ceramic, glass-polytetrafluoroethylene, epoxy resin) in which cells are machined to receive the MMIC components.
This insulating plate carries the conductive tracks to connect the components together. MMIC components have an input, where a signal to be amplified is injected, and an output from which the amplified signal comes out.
A
MMIC component has an often parallelepiped shape, the input being located on one side of the MMIC component, the outlet being located on one side opposite the entry side.
The amplified signal naturally radiates into the space located near the component outlet. This radiation then propagates unfortunately until the entrance. This results in a reinjection phenomenon at the input of the signals produced at the output. This phenomenon is a phenomenon radio broadcast.

2 Pour limiter les effets perturbateurs de ces phénomènes, il est prévu de munir les composants MMIC d'un capot métallique et de matériaux absorbants environnants. Ainsi, des matériaux absorbants sont placés d'une part entre les circuits intégrés du composant MMIC et le capot. D'autre part, le composant MMIC muni de son capot est lui-même placé dans un boïtier possédant une entrée en regard de l'entrée du composant MMIC et une sortie en regard de la sortie du composant MMIC. L'espace entre un couvercle de ce boîtier et le capot, est également rempli de matériaux absorbants de manière à éviter la propagation récursive des ondes amplifiées. Le boîtier est relié quant à lui à d'autres circuits par des câbles de liaison blindés.
L'inconvénient présenté par les absorbants est qu'ils remplissent imparfaitement leur rôle. De ce fait, malgré le soin apporté au choix des absorbants et à leur disposition, les limites d'amplification atteignables avec un tel circuit d'amplification, dans son boîtier, sont de l'ordre de 40 dB. Au-delà, pour certaines composantes spectrales de la bande de fréquence, le composant MMIC entre en oscillation (le gain est très important). Ou alors cette réinjection provoque une atténuation importante. En définitive, dans la bande utile, le gain effectivement réalisé évolue d'une manière anarchique, bien au-delà ou bien en deçà de la valeur d'amplification qui lui avait été
assignée. De tels amplificateurs ne sont alors pas utilisables, ils produisent trop de distorsions du signal amplifié.
Pour remédier à ce problème, pour par exemple réaliser une amplification de 90 dB, il est prévu de mettre en cascade plusieurs boîtiers, par exemple trois boîtiers, comportant des circuits d'amplification. Ceci évidemment, multiplie le prix sensiblement par trois.
En outre, les matériaux absorbants présentent l'inconvénient de dégazer. Par sublimation, ils diffusent des particules qui vont, en particulier, s'introduire dans les canaux de conduction des transistors à l'arséniure de gallium, AsGa, utilisés dans les circuits intégrés. Ce dégazage conduit à une détérioration de ces transistors. Par ailleurs, entre le capot et le couvercle) le pouvoir d'amortissement des matériaux absorbants est pratiquement limité à
50 dB, dans le meilleur des cas_ L'invention a pour objet de remédier à ce problème en proposant une solution qui permette de concevoir des amplificateurs à grand gain, par
2 To limit the disruptive effects of these phenomena, provision is made provide MMIC components with a metal cover and materials surrounding absorbents. Thus, absorbent materials are placed in a part between the integrated circuits of the MMIC component and the cover. On the other hand, the MMIC component fitted with its cover is itself placed in a case having an entry next to the entry of the MMIC component and a output next to the output of the MMIC component. The space between a cover of this case and the cover, is also filled with materials absorbents so as to avoid recursive wave propagation amplified. The box is connected to other circuits by cables shielded connection.
The disadvantage of absorbents is that they fill their role imperfectly. Therefore, despite the care taken in the choice of absorbent and at their disposal, the achievable amplification limits with such an amplification circuit, in its housing, are of the order of 40 dB. At-beyond, for certain spectral components of the frequency band, the MMIC component enters into oscillation (the gain is very important). Or this reinjection causes significant attenuation. Ultimately, in the useful band, the gain actually achieved evolves in an anarchic way, well above or well below the amplification value that had been assigned. Such amplifiers are therefore not usable, they produce too much distortion of the amplified signal.
To remedy this problem, for example to carry out a 90 dB amplification, it is planned to cascade several boxes, for example three boxes, comprising amplification circuits. This obviously, multiplies the price significantly by three.
In addition, absorbent materials have the disadvantage of degas. By sublimation, they diffuse particles which go, in particular, get into the conduction channels of the arsenide transistors of gallium, AsGa, used in integrated circuits. This degassing leads to a deterioration of these transistors. Furthermore, between the hood and the cover) the absorbing power of absorbent materials is practically limited to 50 dB, in the best of cases_ The object of the invention is to remedy this problem by proposing a solution which makes it possible to design high gain amplifiers, by

3 exemple couramment de 60 dB voire de 80 ou 90 dB, sans avoir à souffrir du phénomène de réinjection parasite. Dans ces conditions, il sera possible de constituer dans un même boîtier un amplificateur à grand gain : le coüt de l'ensemble peut être globalement considéré comme divisé par trois.
Le principe de l'invention consiste à ménager dans les espaces qui sont situés, à l'endroit du capot du circuit MMIC, au-dessus et en dessous de ce capot, des guides d'onde, appelés auxiliaires et complémentaires respectivement. La fréquence de coupure de ces guides d'onde auxiliaires et complémentaires est choisie pour être supérieure à la limite haute de la bande passante utile à amplifier. De ce fait, tous les signaux produits dans la bande utile auront une fréquence inférieure à la fréquence de coupure des guides d'onde constitués : ils ne pourront pas s'y propager. De ce fait, la réaction de la sortie du circuit d'amplification sur son entrée va être à ce point réduite qu'elle ne viendra pas les perturber. II est alors possible de concevoir des circuits d'amplification à très grands gains. En pratique, l'invention a été
testée avec des gains allant entre 80 et 90 dB.
L'avantage de l'invention est bien entendu, de permettre la constitution de guides d'onde remplis de matériaux n'ayant plus nécessairement de très bonnes caractéristiques d'absorption mais ayant par ailleurs l'avantage de ne pas dégazer et donc de ne pas polluer les transistors des composants MMIC.
L'invention a donc pour objet un amplificateur à grand gain pour amplifier des signaux électriques distribués dans une bande haute fréquence, comportant un circuit d'amplification, ce circuit d'amplification étant monté sur un support, par exemple une semelle métallique à l'intérieur d'un composant MMIC, et étant recouvert d'un capot, et ce circuit d'amplification possédant, d'un premier coté une entrée de signal et, d'un deuxième coté opposé à ce premier coté, une sortie de signal, caractérisé en ce qu'il comporte des moyens de morceler en guides d'onde auxiliaires l'espace situé entre le capot et le support) les caractéristiques des guides d'onde ainsi réalisés étant insuffisantes pour propager entre la sortie et l'entrée un signal dont la fréquence est située dans la bande haute fréquence de l'amplificateur. De préférence, l'espace situé au dessus du capot est morcelé de la méme manière, avec des guides d'ondes complémentaires présentant les mêmes caractéristiques que les guides d'onde auxiliaires.
L'invention sera mieux comprise à la lecture de la description qui suit
3 common example of 60 dB or even 80 or 90 dB, without having to suffer from parasitic reinjection phenomenon. Under these conditions, it will be possible to constitute in a single box a high gain amplifier: the cost of the whole can be generally considered to be divided by three.
The principle of the invention consists in providing in spaces which are located, at the location of the MMIC circuit cover, above and below this cover, waveguides, called auxiliary and complementary respectively. The cutoff frequency of these auxiliary waveguides and is chosen to be greater than the upper limit of the useful bandwidth to be amplified. Therefore, all the signals produced in the useful band will have a frequency lower than the cut-off frequency of wave guides formed: they will not be able to propagate there. Therefore, the reaction of the output of the amplifier circuit on its input is going to be at this point reduced that it will not disturb them. It is then possible to design amplification circuits with very large gains. In practice, the invention has summer tested with gains ranging between 80 and 90 dB.
The advantage of the invention is of course, to allow the constitution waveguides filled with materials no longer necessarily having very good absorption characteristics but also having the advantage of not not degas and therefore not to pollute the transistors of the MMIC components.
The subject of the invention is therefore a high gain amplifier for amplify electrical signals distributed in a high band frequency, comprising an amplification circuit, this amplification circuit being mounted on a support, for example a metallic sole inside of an MMIC component, and being covered by a cover, and this circuit amplifier having, on the first side a signal input and, a second side opposite this first side, a signal output, characterized in what it includes means of breaking up into auxiliary waveguides the space between the cover and the support) the characteristics of the guides wave thus produced being insufficient to propagate between the output and the input a signal whose frequency is located in the high frequency band of the amplifier. Preferably, the space located above the hood is broken up in the same way, with complementary waveguides having the same characteristics as the auxiliary waveguides.
The invention will be better understood on reading the description which follows

4 et à l'examen des figures qui l'accompagnent. Celles-ci ne sont données qu'à
titre indicatif et nullement limitatif de l'invention. Les figures montrent Figures 1 et 2 : une représentation respectivement en coupe et vue de dessus d'un composant MMIC réalisant un amplificateur à grand gain selon l'invention ;
Figure 3 : une représentation schématique des gains en amplification obtenus par l'amplificateur de l'invention et par des amplificateurs de l'état de la technique ;
Figures 4 et 5 : des vues en perspective d'un boitier avec son couvercle) muni d'un composant MMIC d'amplification selon l'invention ;
Figure 6 : une variante de la figure 5.
Les figures 1 et 2 montrent un amplificateur à grand gain selon l'invention. Sur la figure 2, l'amplificateur comporte au moins un circuit 1 d'amplification. Ce circuit comporte des composants électroniques 2 et 3 en circuit intégré. Ces composants 2 et 3 sont reliés entre eux par des connexions 4 et 5 dont la géométrie et la répartition sont particulièrement adaptées au caractère hyperfréquence du circuit d'amplification. Les connexions sont réalisées sous formes de fils aériens, évidemment sans contact avec une masse de ce circuit. Le circuit 1 possède, d'un premier côté
une entrée 6 de signal et d'un deuxième côté, opposé au premier côté, une sortie 7 de signal. Le signal entre par l'entrée 6, est traité par les circuits intégrés 2 et 3 et sort, amplifié, à la sortie 7.
La figure 1 montre schématiquement en coupe, ces éléments. Elle montre que les circuits 2 et 3 sont implantés sur un support. Le support comporte une plaquette 8 isolante. La plaquette 8 comporte dans un évidement central une semelle métallique 9. Des métallisations 10 réalisées sur la plaquette 8 permettent de transmettre aux circuits intégrés 2 et 3 des signaux de commande, notamment l'alimentation électrique et des signaux de commande de gain, pour amplifier les signaux admis sur la connexion 6.
Les signaux de commande ont en tous les cas des fréquences bien inférieures à la fréquence du signal haute fréquence à amplifier. En pratique, ces signaux sont soit continus, il s'agit alors de l'alimentation électrique du circuit intégré, soit basse fréquence, au plus haut 100 MHz.
Le circuit 1 est recouvert d'un capot métallique 11. Le capot 11 est retenu sur la semelle 9 par des piliers ou murs métalliques non représentés.

J~
Dans l'état de la technique, un espace 12 situé entre la semelle 9 et le capot 11 était bourré de matériaux absorbants avec les inconvénients qu'on a dits.
La largeur 13 du capot est suffisante pour qu'à l'intérieur de l'espace entre la plaquette 8 et le capot 11, puissent se propager des modes de propagation radioélectrique du signal amplifié et disponible à la sortie 7.
Dans l'invention, pour éviter cette propagation, on a morcelé la largeur 13 en plusieurs guides d'onde, ici 3 guides d'onde : les guides d'onde 14, 15 et 16. Comme on montrera plus loin, les caractéristiques d'épaisseur et de largeur de ces guides sont telles quelles sont insuffisantes pour propager un mode quelconque du signal amplifié disponible à la sortie 7. On sait que pour empêcher la propagation d'un mode dit TE01 dans un guide d'onde, il suffit que la largeur du guide d'onde soit inférieure à ~,/4, ~, étant la longueur d'onde, dans le diélectrique du guide d'onde, de l'onde propagée. En présence d'une plaquette comportant des lignes microbandes, le mode le plus permissif est le mode LSM11 (longitudinal magnétique) dont les dimensions caractéristiques ne sont pas ~,/4 : elles sont inférieures et complexes à calculer. Néanmoins, même pour ce mode, il existe une fréquence de coupure, calculable, en deçà de laquelle sa propagation est impossible. Et si ce mode LSM11 ne se propage pas) aucun autre mode supérieur ne se propage.
L'idée de l'invention est donc, pour chacun des guides d'onde 14 à 16, d'en connaître les caractéristiques. C'est facile puisqu'on connaît la largeur 13 et qu'on connaît le nombre de morceaux et la taille des sections qu'on se détermine à réaliser. Pour les caractéristiques des guides d'onde ainsi constitués, on calcule la fréquence de coupure du mode LSM11. Ces calculs sont complexes mais de type connu. Ils sont par exemple disponibles dans l'ouvrage Handbook of Microwave Integrated Circuit de Reinmut K.
HOFFMANN, publié chez ARTECH HOUSE, à NORWOOD, ETATS UNIS
d'AMERIQUE. On détermine alors avec ces calculs une fréquence de coupure. On regarde ensuite si cette fréquence de coupure ainsi trouvée est supérieure à la limite haute de la bande haute fréquence pour laquelle on destine le circuit d'amplification. Si cette fréquence de coupure est supérieure à la limite haute de la bande haute fréquence, ta répartition envisagée en morceaux des guides d'onde est acceptable. Si ce n'est pas le cas, il faut faire morceler encore plus l'espace 13 avec des guides d'onde à

s sections réduites.
Dans l'exemple représenté sur la figure 1, qui est un exemple pratique, on a ainsi réalisé deux barrettes respectivement 17 et 18 complètement métalliques. Le matériau interne des barrettes 17 et 18 présente par ailleurs l'avantage d'ëtre stable : de ne pas dégazer. Dans un exemple c'est du métal usiné. On peut aussi utiliser une céramique avec des trous métallisés. Les barrettes 17 et 18 sont disposées au contact entre la semelle 9 et le capot 11 de façon à constituer des séparations entre guides d'onde. Un premier guide d'onde auxiliaire 14 est alors formé par un mur métallique qui borde le composant MMIC sur la gauche (figure 1 ), la semelle 9 en dessous, le capot 11 au dessus) et la barrette 17 à droite. Un deuxième guide d'onde auxiliaire 16 est formée symétriquement, à droite, avec le concours de la barrette 18.
Le troisième espace 15 est un guide d'onde auxiliaire à air dont les parois métalliques sont constituées par le capot 11 d'une part, et les parois des barrettes 17 et 18, d'autre part. En tout état de cause, le morcellement en trois de l'espace 13 ainsi constitué a été tout à fait suffisant pour conduire au résultat recherché.
La figure 2 montre par ailleurs, un deuxième circuit d'amplification 19 monté en cascade et dans les mêmes conditions que le circuit 1. Le circuit d'amplification global ainsi constitué comporte un capot 11 unique qui s'étend de l'entrée 6 à une sortie 20 du circuit 19. On distingue le guide d'onde central 15 formé par les barrettes 17 et 18 placées sur les bords des circuits intégrés 2 et 3.
Dans une utilisation particulière) pour des raisons particulières d'amplification entre la sortie 7 du circuit 1 et une entrée 21 du circuit 19) la fréquence des signaux a dû étre doublée. En conséquence, les contraintes de fréquences de coupures sont plus fortes. Aussi, pour éviter que des signaux, à fréquence double, ne se propagent de la sortie 20 jusqu'à l'entrée 6, même par l'intermédiaire du guide d'onde 15 (de section trop grande pour une onde à fréquence double et qui la laisserait passer)) on a placé dans un espace de transition 22 entre la sortie 7 du circuit 1 et l'entrée 21 du circuit 19, d'autres barrettes 23 et 24 respectivement. En définitive, dans l'espace de transition 22, on trouve les sections métalliques 17, 23, 24 et 18 ainsi qu'un espace à air libre entre les structures 23 24 et le capot 11. La réduction de la largeur de l'espace 22 permet de s'affranchir des conséquences du doublement de la fréquence. A l'endroit de l'espace 22, les caractéristiques des guides d'onde auxiliaires sont donc modifiées : le guide d'onde 15 y est lui-même réduit en largeur.
La plaquette 8 forme, à l'endroit de l'entrée 6 et de la sortie 20, avec des languettes métallisées correspondantes et une métallisation 25 sous jacente à la plaquette 8, des guides d'onde. L'impédance caractéristique de ces derniers dépend de la largeur 26 de ces languettes et de l'épaisseur 27 de la plaquette 8. Une impédance caractéristique de ces guides d'onde) dans un exemple, est de 50 Ohms.
La figure 4 montre un boîtier 30 et son couvercle 31 qui contiennent un composant d'amplification MMIC comme celui décrit sur les figures 1 et 2.
De ce dernier, on distingue essentiellement le capot 11, une barrette latérale 17 et les plots 10 de connexion de commande à l'intérieur du composant MMIC. Ces plots 10 sont reliés au circuit d'amplification par des connexions 32. Les connexions 32 peuvent passer en extrémité des structures 17 (pour ne pas entrer en contact avec elles), ou encore passer entre deux tronçons 171 et 172 longitudinaux de la structure 17 qui est alors divisée en deux parties. Dans un exemple les deux tronçons 171 et 172 sont d'égale longueur. On distingue également la couche 25 de métallisation inférieure de la plaquette 8. Celle-ci s'étend également en dessous et au contact de la semelle 9.
La figure 5 montre le couvercle 31 seul, en position retournée. Le couvercle 31 comporte une cavité 33 profonde qui est ménagée dans un canal 34. Ainsi) le couvercle 31 possède des parois latérales 35 et 36 situées de part et d'autre du canal 34. Dans l'exemple représenté, le couvercle est en métal, massif. Par exemple, il est taillé dans un bloc d'aluminium argenté
ou de laiton, par fraisage ou il est réalisé directement en fonderie.
Comme le montre la figure 4, la cavité profonde 33 sert à recevoir, au dessus de la plaquette 8, l'encombrement présenté par le composant MMIC
11. Le canal 34 sert à recevoir des pistes 35 qui mènent d'une face avant 371 du boîtier 30 à l'entrée 6 du composant MMIC 11, et de la sortie 7 ou 20 du composant MMIC 11 jusqu'à une face arrière 372 du boitier 30. Les pistes peuvent être réalisées dans la continuité des pistes 6, 7, 21, et 20. Quand 35 il y a deux composants MMIC dans un même boîtier, il a deux cavités profondes. Si le composant MMIC est double, comme sur les figures 1 et 2) il n'y en a qu'une seule. Les pistes 35 sont reliées fonctionnellement notamment par un fil soudé 39 à des broches telles que 38 de type coaxial montées sur les faces 36 et 37.
A la sortie du composant MMIC, dans le canal 34, malgré l'adaptation la plus parfaite possible présentée par les pistes 35 sur la plaquette 8, l'onde amplifiée rayonne et se propage en retour vers l'entrée selon un parcours 40.
Autrement dit, l'onde emprunte le canal 34, passe par la cavité profonde 33 et a tendance à vouloir se propager dans le canal jusqu'à l'entrée du composant d'amplification MMIC11.
Sur la figure 5, on montre que la propagation 40 est contrariée par la présence, au fond de la cavité profonde 33, de guides d'onde 41 à 43 qui morcellent l'espace situé dans cette cavité profonde 33 entre le couvercle 31 et le capot 11 (non représenté sur la figure 5). De préférence, les guides d'onde 41 à 43 seront réalisés par des matériaux élastiques de façon à être sûr que les faces conductrices de ces guides 41 et 43 entrent en contact, d'une part avec le fond de la cavité profonde 33, et d'autre part avec le capot 11 quand le couvercle 31 est mis en place sur le boitier 30.
Les hauteur 44 et largeur 45 des guides 41 à 43 sont déterminées comme précédemment pour amener à une fréquence de coupure du mode TE10, ici, qui soit supérieure à la limite haute de la bande passante utile dans l'application d'amplification envisagée. L'espace au dessus du capot est ainsi morcelé en plusieurs guides d'onde complémentaires, chacun d'eux possédant des caractéristique inférieure à la coupure.
En pratique, le matériau utilisé pour les guides d'onde complémentaires est tout simplement du joint de blindage électromagnétique, utilisable pour blinder les feuillures des portes des armoires électroniques. C'est très bon marché et convient tout à fait pour l'usage indiqué. Les parois extérieures de ces tronçons de joint forment les quatre faces de chacun des guides complémentaires. L'intérieur de ces joint peut être une simple mousse isolante, ou une mousse chargée en métal, car ceci constitue essentiellement l'intérieur diélectrique des guides d'onde complémentaires.
En extrapolant, il est possible de ne placer qu'un tronçon de joint sur deux dans le sens de la largeur. Ceci réduit la quantité de joint requis et le temps de pose dans un processus industriel. Dans ce cas, certains guides d'onde complémentaires seront formés par les parois adjacentes des guides placés de part et d'autre et ces guides d'onde comporteront de l'air comme diélectrique à la place de la mousse isolante. Cette configuration est illustrée sur la figure 6. Dans celle-ci, des guides d'onde 60 et 61 comportent de l'air comme diélectrique, ce qui permet, dans cet exemple, de n'utiliser que trois joints 41 42 43 au lieu de cinq joints. On pourrait également placer deux joints aux positions 60 et 61 au lieu des joints 41 42 et 43. Les tronçons 41-43 formeraient ainsi des guides d'onde remplis d'air.
Les parois 35 et 36 possèdent par ailleurs, des créneaux 46 et 47. Le créneau 47 montré sur la figure 4, est utile pour permettre le passage des connexions 32 de commande à destination du composant MMIC 11. Par ailleurs, les parois 35 et 36 reposent, de part et d'autre des créneaux, sur des métallisations telles que 48 réalisées au-dessus de la plaquette 8. Les métallisations 48 sont de préférence reliées par des trous métallisés 49 à la couche conductrice 25 de la plaquette 8. La couche 25 est de préférence portée à la masse.
Dans un exemple, la hauteur 50 du créneau 46 est de l'ordre de 1 mm alors que la profondeur 51 du canal 34 est de l'ordre de 2 mm. De ce fait, le boitier 30 et le couvercle 31, forment avec la plaquette 8 un ensemble parfaitement étanche à la propagation d'onde électromagnétiques produites par le composant MMIC 11. Le couvercle 31 est fixé sur le boîtier 30 par des pattes 52 munies d'un alésage 53 de vissage.
Une des caractéristiques de l'invention est donc que le capot du composant MMIC 11 est métallique au lieu d'âtre formé, comme dans l'état de la technique, d'un matériau céramique isolant. Les caractéristiques de conduction du capot 11 sont de nature à constituer les guides d'onde à
l'intérieur et à l'extérieur du composant d'amplification MMIC.
On s'est aperçu que si les guides d'onde 41 à 43 ne sont pas aboutés contre des flancs d'entrée 52 et de sortie 53 de la cavité profonde 33, le phénomène de coupure est exactement le méme. La propagation de l'onde inverse est empëchée. Tout se passe bien comme si les guides 41 à 43 constituaient des passages privilégiés, mais en impasse, pour les ondes de retour. Bien entendu, si la fréquence de l'onde à bloquer augmente, il suffit d'augmenter le nombre des guides 41 à 43, en réduisant corrélativement leur taille.
La figure 3 montre, dans un exemple pour une amplification moyenne de 60 dB, une courbe 28 d'amplification obtenue avec l'amplificateur de l'invention et une courbe 29 obtenue dans les mêmes conditions dans l'état
4 and examining the accompanying figures. These are only given indicative and in no way limitative of the invention. The figures show Figures 1 and 2: a representation respectively in section and view of above an MMIC component producing a high gain amplifier according to the invention;
Figure 3: a schematic representation of the amplification gains obtained by the amplifier of the invention and by state amplifiers of the technique ;
Figures 4 and 5: perspective views of a box with sound cover) provided with an amplification MMIC component according to the invention;
Figure 6: a variant of Figure 5.
Figures 1 and 2 show a high gain amplifier according to the invention. In FIG. 2, the amplifier comprises at least one circuit 1 amplification. This circuit includes electronic components 2 and 3 in integrated circuit. These components 2 and 3 are interconnected by connections 4 and 5 whose geometry and distribution are particularly adapted to the microwave nature of the amplification circuit. The connections are made in the form of overhead wires, obviously without contact with a ground in this circuit. Circuit 1 has, on the first side a signal input 6 and on a second side, opposite the first side, a signal output 7. The signal enters through input 6, is processed by the circuits integrated 2 and 3 and output, amplified, at output 7.
Figure 1 shows schematically in section, these elements. She shows that circuits 2 and 3 are installed on a support. The support comprises an insulating plate 8. The plate 8 comprises in a central recess a metallic sole 9. Metallizations 10 produced on the wafer 8 make it possible to transmit integrated circuits 2 and 3 control signals, including power and signals gain control, to amplify the signals admitted on connection 6.
The control signals in all cases have frequencies well lower than the frequency of the high frequency signal to be amplified. In practice, these signals are either continuous, this is then the power supply of integrated circuit, ie low frequency, at the highest 100 MHz.
The circuit 1 is covered with a metal cover 11. The cover 11 is retained on the sole 9 by pillars or metal walls not shown.

J ~
In the prior art, a space 12 located between the sole 9 and the cover It was stuffed with absorbent materials with the disadvantages that have been said.
The width 13 of the cover is sufficient so that inside the space between the plate 8 and the cover 11, can propagate modes of radio propagation of the amplified signal available at output 7.
In the invention, to avoid this propagation, the width has been broken up 13 in several waveguides, here 3 waveguides: waveguides 14, 15 and 16. As will be shown later, the characteristics of thickness and width of these guides are such that they are insufficient to propagate a any mode of the amplified signal available at output 7. We know that for prevent the propagation of a mode called TE01 in a waveguide, it suffices that the width of the waveguide is less than ~, / 4, ~, being the length wave, in the waveguide dielectric, of the propagated wave. In presence of a plate containing microstrip lines, the mode more permissive is the LSM11 (longitudinal magnetic) mode whose characteristic dimensions are not ~, / 4: they are smaller and complex to calculate. However, even for this mode, there is a cutoff frequency, calculable, below which its propagation is impossible. And if this LSM11 mode does not propagate) no other mode higher does spread.
The idea of the invention is therefore, for each of the waveguides 14 to 16, to know its characteristics. It's easy since we know the width 13 and we know the number of pieces and the size of the sections determines to achieve. For the characteristics of the waveguides as well the LSM11 mode cutoff frequency is calculated. These calculations are complex but of known type. They are for example available in Reinmut K's Handbook of Microwave Integrated Circuit HOFFMANN, published by ARTECH HOUSE, in NORWOOD, UNITED STATES
from AMERICA. We then determine with these calculations a frequency of break. We then look if this cutoff frequency thus found is higher than the upper limit of the high frequency band for which we for the amplification circuit. If this cutoff frequency is higher than the upper limit of the high frequency band, your distribution viewed in pieces of the waveguides is acceptable. If not case, space 13 needs to be further fragmented with waveguides to s reduced sections.
In the example shown in Figure 1, which is an example practical, two bars 17 and 18 respectively were produced completely metallic. The internal material of bars 17 and 18 also has the advantage of being stable: of not degassing. In one example it is machined metal. You can also use ceramic with metallized holes. The bars 17 and 18 are arranged in contact between the sole 9 and cover 11 so as to constitute separations between guides wave. A first auxiliary waveguide 14 is then formed by a wall metallic which borders the MMIC component on the left (figure 1), the sole 9 below, cover 11 above) and bar 17 on the right. A second auxiliary waveguide 16 is formed symmetrically, to the right, with the bar competition 18.
The third space 15 is an auxiliary air waveguide whose metal walls are formed by the cover 11 on the one hand, and the walls bars 17 and 18, on the other hand. In any event, the fragmentation in three of the space 13 thus constituted was quite sufficient to drive the desired result.
FIG. 2 also shows a second amplification circuit 19 cascaded and under the same conditions as circuit 1. The circuit overall amplification thus formed comprises a single cover 11 which extends from input 6 to output 20 of circuit 19. We distinguish the waveguide central 15 formed by the bars 17 and 18 placed on the edges of the circuits integrated 2 and 3.
In a particular use) for specific reasons amplification between output 7 of circuit 1 and an input 21 of circuit 19) the signal frequency had to be doubled. Consequently, the constraints cutoff frequencies are higher. Also, to prevent signals, at double frequency, only propagate from output 20 to the input 6, even via the waveguide 15 (of section too large for a wave with double frequency and which would let it pass)) we placed in a transition space 22 between output 7 of circuit 1 and input 21 of circuit 19, other bars 23 and 24 respectively. Ultimately, in space transition 22, there are metal sections 17, 23, 24 and 18 as well that an open space between the structures 23 24 and the cover 11. The reduction the width of the space 22 overcomes the consequences of the doubling the frequency. At the location of space 22, the characteristics auxiliary waveguides are therefore modified: the waveguide 15 is there itself reduced in width.
The plate 8 forms, at the location of the inlet 6 and the outlet 20, with corresponding metallized tongues and 25 metallization adjacent to the plate 8, waveguides. The characteristic impedance of these depend on the width 26 of these tabs and the thickness 27 of the wafer 8. A characteristic impedance of these waveguides) in an example, is 50 Ohms.
Figure 4 shows a housing 30 and its cover 31 which contain an MMIC amplification component like that described in FIGS. 1 and 2.
From the latter, there is essentially a cover 11, a side bar 17 and the control connection pads 10 inside the component MMIC. These pads 10 are connected to the amplification circuit by connections 32. The connections 32 can pass at the end of the structures 17 (for do not come into contact with them), or even pass between two sections 171 and 172 longitudinal of structure 17 which is then divided into two parts. In an example the two sections 171 and 172 are equal length. A distinction is also made between the lower metallization layer 25 of the plate 8. This also extends below and in contact with the sole 9.
Figure 5 shows the cover 31 alone, in the inverted position. The cover 31 has a deep cavity 33 which is formed in a channel 34. Thus) the cover 31 has side walls 35 and 36 located on either side of channel 34. In the example shown, the cover is solid metal. For example, it is cut from a silver aluminum block or brass, by milling or it is made directly in foundry.
As shown in Figure 4, the deep cavity 33 is used to receive, at above the wafer 8, the size presented by the MMIC component 11. The channel 34 is used to receive tracks 35 which lead from a front face 371 of the housing 30 at the input 6 of the MMIC component 11, and of the output 7 or 20 from the MMIC component 11 to a rear face 372 of the housing 30. The tracks can be carried out in the continuity of tracks 6, 7, 21, and 20. When 35 there are two MMIC components in one housing, it has two cavities deep. If the MMIC component is double, as in Figures 1 and 2) it there is only one. Tracks 35 are functionally connected in particular by a wire welded 39 to pins such as 38 of the coaxial type mounted on faces 36 and 37.
At the output of the MMIC component, in channel 34, despite the adaptation the most perfect possible presented by the tracks 35 on the wafer 8, the wave amplified radiates and propagates back towards the entrance along a route 40.
In other words, the wave borrows the channel 34, passes through the deep cavity 33 and tends to want to spread in the canal up to the entrance of the MMIC11 amplifier component.
In FIG. 5, it is shown that the propagation 40 is thwarted by the presence, at the bottom of the deep cavity 33, of waveguides 41 to 43 which split the space located in this deep cavity 33 between the cover 31 and the cover 11 (not shown in FIG. 5). Preferably, the guides wave 41 to 43 will be made with elastic materials so as to be sure that the conductive faces of these guides 41 and 43 come into contact, on the one hand with the bottom of the deep cavity 33, and on the other hand with the hood 11 when the cover 31 is put in place on the case 30.
The height 44 and width 45 of the guides 41 to 43 are determined as before to bring to a mode cutoff frequency TE10, here, which is greater than the upper limit of the useful bandwidth in the proposed amplification application. The space above the hood is thus fragmented into several complementary waveguides, each of them having characteristics lower than the cut.
In practice, the material used for the waveguides is simply shielding joint electromagnetic, usable for shielding door rebates electronic cabinets. It is very inexpensive and very suitable for the use indicated. The outer walls of these joint sections form the four sides of each of the complementary guides. The interior of these seals can be a simple insulating foam, or a foam loaded with metal, because this essentially constitutes the dielectric interior of the waveguides complementary.
By extrapolating, it is possible to place only one section of joint on two across the width. This reduces the amount of seal required and the exposure time in an industrial process. In this case, some guides complementary waveforms will be formed by the adjacent walls of the guides placed on either side and these waveguides will include air as dielectric instead of insulating foam. This configuration is illustrated in Figure 6. In this one, waveguides 60 and 61 have air as a dielectric, which allows, in this example, to use only three joints 41 42 43 instead of five joints. We could also place two joints at positions 60 and 61 instead of joints 41 42 and 43. The sections 41-43 would thus form waveguides filled with air.
The walls 35 and 36 also have slots 46 and 47. The slot 47 shown in Figure 4, is useful to allow the passage of 32 control connections to the MMIC component 11. By elsewhere, the walls 35 and 36 rest, on either side of the slots, on metallizations such as 48 produced above the wafer 8. The metallizations 48 are preferably connected by metallized holes 49 to the conductive layer 25 of the wafer 8. The layer 25 is preferably brought to earth.
In one example, the height 50 of the slot 46 is of the order of 1 mm while the depth 51 of the channel 34 is of the order of 2 mm. Therefore, the case 30 and cover 31, form with the wafer 8 a set perfectly sealed against the propagation of electromagnetic waves produced by the MMIC component 11. The cover 31 is fixed to the housing 30 by tabs 52 provided with a screwing bore 53.
One of the characteristics of the invention is therefore that the cover of the component MMIC 11 is metallic instead of hearth formed, as in the state technique, an insulating ceramic material. The characteristics of conduction of the cover 11 are such as to constitute the waveguides to inside and outside of the MMIC amplifier component.
We noticed that if the waveguides 41 to 43 are not abutted against the input 52 and output 53 sides of the deep cavity 33, the cutoff phenomenon is exactly the same. Wave propagation reverse is prevented. Everything is going well as if guides 41 to 43 constituted privileged passages, but in dead end, for the waves of return. Of course, if the frequency of the wave to be blocked increases, it is enough increase the number of guides 41 to 43, by correspondingly reducing their cut.
Figure 3 shows, in an example for an average amplification 60 dB, an amplification curve 28 obtained with the amplifier the invention and a curve 29 obtained under the same conditions in the state

5 de la technique. Si avec les signaux de commande appliqués sur les plots 10, on augmentait encore le gain, te caractère anarchique de l'amplification 29 s'exprimerait encore plus. L'amplificateur ne serait pas utilisable car il amplifie trop fortement des compostantes spectrales (il oscille quasiment), alors qu'il amortit complètement d'autres composantes spectrales. Par 10 contre, dans l'invention, le gain est le même quelle que soit la valeur de la composante spectrale. 5 of the technique. If with the control signals applied to the pads 10, the gain was further increased, the anarchic nature of the amplification 29 would be expressed even more. The amplifier would not be usable because it amplifies spectral compostants too strongly (it almost oscillates), while it completely dampens other spectral components. Through 10 against, in the invention, the gain is the same regardless of the value of the spectral component.

Claims (9)

REVENDICATIONS 11 1 - Amplificateur à grand gain pour amplifier des signaux électriques distribués dans une bande (28) haute fréquence, comportant un circuit (1) d'amplification, ce circuit d'amplification étant monté sur un support et étant recouvert d'un capot (11), et ce circuit d'amplification possédant, d'un premier coté (6) une entrée de signal et, d'un deuxième coté (7) opposé à ce premier coté, une sortie de signal, caractérisé en ce qu'il comporte des moyens (17, 18) de morceler en guides d'onde auxiliaires (13-15) l'espace situé entre le capot et le support, les caractéristiques des guides d'onde ainsi réalisés étant insuffisantes pour propager entre la sortie et l'entrée un signal dont la fréquence est située dans la bande haute fréquence de l'amplificateur. 1 - High gain amplifier to amplify electrical signals distributed in a high frequency band (28), comprising a circuit (1) amplification, this amplification circuit being mounted on a support and being covered with a cover (11), and this amplification circuit having, of a first side (6) a signal input and, on a second side (7) opposite to this first side, a signal output, characterized in that it includes means (17, 18) of dividing the space into auxiliary waveguides (13-15) located between the cover and the support, the characteristics of the waveguides so insufficient to propagate between exit and entry a signal whose frequency is located in the high frequency band of the amplifier. 2 - Amplificateur selon la revendication 1, caractérisé en ce que les moyens de morceler comportent une barrette (17) à surface extérieure conductrice, aligné dans un sens allant de l'entrée à la sortie de l'amplificateur, et placée, entre le support et le capot, sur le bord de circuits intégrés formant le circuit d'amplification. 2 - Amplifier according to claim 1, characterized in that the fragmenting means include a bar (17) with an outer surface conductive, aligned in a direction from the input to the output of the amplifier, and placed, between the support and the cover, on the edge of circuits integrated forming the amplification circuit. 3 - Amplificateur selon la revendication 2, caractérisé en ce que la barrette est réalisée en deux tronçons (17, 172) alignés. 3 - Amplifier according to claim 2, characterized in that the strip is produced in two aligned sections (17, 172). 4 - Amplificateur selon l'une des revendications 1 à 3, caractérisé en ce que le circuit d'amplification comporte un espace (22) de transition, à
fréquence de coupure basse plus élevée que la bande haute fréquence, et en ce que, à l'endroit de cet espace de transition, les caractéristiques (23, 24) des guides d'onde auxiliaires sont modifiées.
4 - Amplifier according to one of claims 1 to 3, characterized in that the amplification circuit includes a transition space (22), lower cutoff frequency higher than the high frequency band, and in that, at the location of this transition space, the characteristics (23, 24) auxiliary waveguides are changed.
- Amplificateur selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte un boîtier (30) muni d'un couvercle (31) et, à l'intérieur du boîtier, au moins un circuit (1) d'amplification, et en ce qu'un espace (33) entre ce couvercle et le capot du circuit d'amplification est morcelé par des guides d'onde (41-43) complémentaires dont les caractéristiques sont insuffisantes pour propager un signal dont la fréquence est située dans la bande haute fréquence de l'amplificateur. - Amplifier according to one of claims 1 to 4, characterized in that it comprises a housing (30) provided with a cover (31) and, inside of housing, at least one amplification circuit (1), and in that a space (33) between this cover and the cover of the amplification circuit is broken up by complementary waveguides (41-43) whose characteristics are insufficient to propagate a signal whose frequency is within the high frequency band of the amplifier. 6 - Amplificateur selon la revendication 5, caractérisé en ce que l'espace entre le couvercle et le capot est morcelé par des barrettes élastiques à surface extérieure conductrice. 6 - Amplifier according to claim 5, characterized in that the space between the cover and the cover is broken up by bars elastic with conductive outer surface. 7 - Amplificateur selon l'une des revendications 5 à 6, caractérisé en ce que le couvercle possède une cavité profonde ménagée dans un canal (34), cette cavité profonde recevant les guides d'onde complémentaires, le canal servant à relier et isoler l'entrée (6) et la sortie (20) du circuit d'amplification respectivement à une entrée (39) et une sortie (38) du boîtier. 7 - Amplifier according to one of claims 5 to 6, characterized in that the cover has a deep cavity in a channel (34), this deep cavity receiving the complementary waveguides, the channel used to connect and isolate the input (6) and the output (20) of the circuit amplification respectively at an input (39) and an output (38) of the housing. 8 - Amplificateur selon l'une des revendications 1 à 7, caractérisé en ce que les dimensions des guides auxiliaires ou complémentaires sont insuffisantes pour laisser se propager le mode LSM11 ou le mode TE10. 8 - Amplifier according to one of claims 1 to 7, characterized in what the dimensions of the auxiliary or complementary guides are insufficient to allow LSM11 or TE10 mode to propagate. 9 - Amplificateur selon l'une des revendications 1 à 8, caractérisé en ce que le capot (11) est métallique. 9 - Amplifier according to one of claims 1 to 8, characterized in that the cover (11) is metallic.
CA002259547A 1998-03-19 1999-02-05 High-gain amplifier Abandoned CA2259547A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9803355A FR2776435B1 (en) 1998-03-19 1998-03-19 BIG GAIN AMPLIFIER
FR9803355 1998-03-19

Publications (1)

Publication Number Publication Date
CA2259547A1 true CA2259547A1 (en) 1999-09-19

Family

ID=9524219

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002259547A Abandoned CA2259547A1 (en) 1998-03-19 1999-02-05 High-gain amplifier

Country Status (9)

Country Link
US (1) US6121833A (en)
EP (1) EP0944115A1 (en)
JP (1) JP4212177B2 (en)
AU (1) AU747128B2 (en)
CA (1) CA2259547A1 (en)
EA (1) EA199900214A3 (en)
FR (1) FR2776435B1 (en)
ID (1) ID22243A (en)
NO (1) NO991319L (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265774B1 (en) * 1998-11-19 2001-07-24 Trw Inc. Millimeter wave adjustable cavity package
US6545573B1 (en) * 2000-03-21 2003-04-08 Mindaugas F. Dautartas Resonance elimination in high speed packages
ATE376264T1 (en) * 2001-04-17 2007-11-15 Alcatel Lucent INTEGRATED MICROWAVE MODULE AND CORRESPONDING METHOD FOR PRODUCING SAME
JP5377385B2 (en) * 2010-03-26 2013-12-25 株式会社東芝 High frequency amplifier

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4429286A (en) * 1981-10-13 1984-01-31 Raytheon Company Divider/combiner amplifier
JPS60210853A (en) * 1984-03-06 1985-10-23 Fujitsu Ltd Semiconductor device
US4672328A (en) * 1985-12-10 1987-06-09 Nippon Hoso Kyokai Waveguide-mounted amplifier
JPH04113705A (en) * 1990-09-03 1992-04-15 Matsushita Electric Ind Co Ltd Microwave multi-stage amplifier
US5115245A (en) * 1990-09-04 1992-05-19 Hughes Aircraft Company Single substrate microwave radar transceiver including flip-chip integrated circuits
JPH04256203A (en) * 1991-02-07 1992-09-10 Mitsubishi Electric Corp Package for microwave band ic
EP0634890B1 (en) * 1993-07-12 1996-12-04 Nec Corporation Packaging structure for microwave circuit

Also Published As

Publication number Publication date
EA199900214A3 (en) 2000-04-24
JP4212177B2 (en) 2009-01-21
EP0944115A1 (en) 1999-09-22
ID22243A (en) 1999-09-23
EA199900214A2 (en) 1999-10-28
JPH11298265A (en) 1999-10-29
FR2776435A1 (en) 1999-09-24
NO991319L (en) 1999-09-20
AU747128B2 (en) 2002-05-09
AU1951899A (en) 1999-09-30
NO991319D0 (en) 1999-03-18
FR2776435B1 (en) 2000-04-28
US6121833A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
EP0210903B1 (en) Coupling device between a metallic waveguide, a dielectric waveguide and a semiconductor component, and mixer using such a device
FR2528633A1 (en) DIELECTRIC WAVEGUIDE
FR2747239A1 (en) COMPACT MICROWAVE MODULE
WO2009077501A1 (en) Radial power amplification device with phase dispersion compensation of the amplification paths
WO2008055920A1 (en) Flat antenna ground plane supporting body including quarter-wave traps
CA2259547A1 (en) High-gain amplifier
CA2759537C (en) Power amplifier device with reduced bulk
EP1766719A1 (en) Transition device between a waveguide and two redundant circuits coupled each to a coplanar line
FR3040242A1 (en) DIVIDER / COMBINER SYSTEM FOR MICROWAVE WAVE
CA1293564C (en) Orthogonal polarization duplex microwage tranceiver front end
FR2644631A1 (en) CASE FOR INTEGRATED CIRCUIT HYPERFREQUENCES
EP2159922A1 (en) Controlled active microwave duplexer
WO2009112377A1 (en) Multi-source spatial power amplifier
EP0015838B1 (en) Wide-band hyperfrequency mixer
EP0237099A1 (en) Wideband distributed amplifier circuit in the ultra-high frequency region
FR2813995A1 (en) DIRECTIONAL COUPLER, ANTENNA DEVICE AND RADAR SYSTEM
EP0073165B1 (en) Microwave switch
FR2529385A1 (en) MICROBOITIER FOR ENCAPSULATION OF LOGIC INTEGRATED CIRCUITS OPERATING IN VERY HIGH FREQUENCY
FR2614150A1 (en) DIELECTRIC RESONATOR OSCILLATOR AND VARACTOR ELECTRONIC FREQUENCY ACCORDING, PARTICULARLY IN THE 22 GHZ RANGE
FR3073085A1 (en) WAVE GUIDE ASSEMBLY AND ASSOCIATED ASSEMBLY METHOD
EP1680799B1 (en) Low spurious radiation microwave tube
WO2024132675A1 (en) Wave transmission line
FR2788403A1 (en) HIGH FREQUENCY CIRCUIT ASSEMBLY WITH ELECTROMAGNETIC SHIELDING
EP0188966B1 (en) Surface-wave non-reciprocal microwave device, and isolator with a high isolation using such a device
FR2567695A1 (en) STRUCTURE OF A BALANCED AMPLIFIER STAGE OPERATING IN HYPERFREQUENCIES

Legal Events

Date Code Title Description
FZDE Discontinued