CA2228506C - Toner for developing electrostatically charged image of heat roller type copier or printer - Google Patents

Toner for developing electrostatically charged image of heat roller type copier or printer Download PDF

Info

Publication number
CA2228506C
CA2228506C CA002228506A CA2228506A CA2228506C CA 2228506 C CA2228506 C CA 2228506C CA 002228506 A CA002228506 A CA 002228506A CA 2228506 A CA2228506 A CA 2228506A CA 2228506 C CA2228506 C CA 2228506C
Authority
CA
Canada
Prior art keywords
toner
copolymer
weight
electrostatically charged
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002228506A
Other languages
French (fr)
Other versions
CA2228506A1 (en
Inventor
Toru Nakamura
Toshimi Nishioka
Takuya Hoga
Junichi Fuzukawa
Nobuyuki Kurokawa
Horst-Tore Land
Freddy Helmer-Metzmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ticona GmbH
Original Assignee
Ticona GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP35406395A external-priority patent/JP3274052B2/en
Application filed by Ticona GmbH filed Critical Ticona GmbH
Publication of CA2228506A1 publication Critical patent/CA2228506A1/en
Application granted granted Critical
Publication of CA2228506C publication Critical patent/CA2228506C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08735Polymers of unsaturated cyclic compounds having no unsaturated aliphatic groups in a side-chain, e.g. coumarone-indene resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08704Polyalkenes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08791Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by the presence of specified groups or side chains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08793Crosslinked polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

This invention relates to a toner for developing an electrostatically charged image of a heat roller type copier or printer, the toner consisting essentially of a binder resin, a colorant and a charge control agent, in which the binder resin at least includes a polyolefin resin having a cyclic structure, and a polyolefin resin of a cyclic structure having an intrinsic viscosity (i.v.) of 0.25 dl/g or more, a heat distortion temperature (HDT) by DIN53461-B of 70 °C or higher, and a number average molecular weight of 7,500 or more and a weight average molecular weight of 15,000 or more, as measured by GPC, is contained in a proportion of less than 50% by weight based on the entire binder resin. The toner for developing an electrostatically charged image according to the invention is excellent in fixability, light transmission, and anti-toner spent properties, giving a sharp, high quality image, can be applied to any of a dry one-component magnetic toner, a dry one-component nonmagnetic toner, a dry two-component toner anal a liquid toner, and exhibits marked effects particularly when used in a color toner.

Description

HOE ~5~F 338 ~HILJ 95/B 018D) TONER FOF: DEVELOPING ELECTROSTATICALLY CHARGED IMAGE OF
HEAT ROLLER TYPE COPIER OR PRINTER
Technical Field The present invention relates to a toner for developing an electrostatically charged image of a heat roller type <:opier o~_ printer. More specifically, this invention relates to a dry one-component magnetic toner, a dry one-<:omponent nonmagnetic toner, a dry two-component toner or a :Liquid toner which, when fixed, is excellent in anti-spent toner effect, and can form a well fixed, highly transparent, sharp image.
Background Art Heat ro7Ller fixing type electrostatically charged image developing copiers and printers are gaining popularity because of widespread office automation. With this background, demand is growing for high grade or sharp .copied or printed images which are highly light transmissive and well fixed. General formulations for toners in heat roller fixing type electrostatically charged image developing copiers and printers are shown in Table 1.
One of the main factors for improving the sharpness, light transmission and strength of fixing of the image is a binder reain, a chief component of the toner. That is, a heat roller fixing type electrostatically charged image developing copier or printer feeds a toner to an electrost:atically charged image on a latent image carrier to obtain a visible image, then transfers the resulting toner im~ige to a plain paper ar an OHP film, and fixes the transferred image. Currently, styrene-acrylate resin and polyester resin are widely used as binder resins. With the former resin, however, the light transmission and clarity of the resulting toner are not fully satisfactory, resultin~3 in difficulty in obtaining a high grade image.
The latter resin, on the other hand, imparts sufficient light transmission, but the resin is yellowish in color, thus decreasing clarity.
Table 1 (Unit: wt.%) Binder ColoringCharge FunctioningMagneticSolvent resin agent controlagent powder agent ' Dry two 50-100 0-20 0-10 0-20 -component system Dry 50-100 0-20 0-10 0-20 - -nonmagnetic one component system Dry magnetic0-100 0-20 0-10 0-20 0-60 -ona component spetem Liquid 15-50 0-10 0-5 0-10 - 50-70 toner The present invention has been accomplished in the light of the aforementioned problems and is directed to addressing or ameliorating one or more of such problems, or at least to providing a useful alternative to existing toners.
Summary of the invention A first aspect of the present invention relates to a toner for developing an electrostatically charged image of a heat roller type copier or printer, said toner consisting essentially of a binder resin, a colorant and a charge control agent, wherein said binder resin at least includes a copolymer of an alpha-olefin with an alicyclic compound having a double bond, the copolymer having an intrinsic viscosity (i.v.) of 0.25 dl/g or more, a heat distortion temperature (HDT) by DIN53461-B of 70 °C or higher, a number average molecular weight of 7,500 or more and a weight average molecular weight of 15,000 or more, as measured by GPC, and being contained in a proportion of greater than 0% and less than 50% by weight based on the entire binder resin.
A second aspect of the invention is to provide the toner for developing an electrostatically charged image according the first aspect of the invention, in which the binder resin consists of 1 to 100 parts by weight of the copolymer and 0 to 99 parts by weight of a least one resin selected from polyester resins, epoxy resins, polyolefin resins, vinyl acetate resins, vinyl acetate copolymer resins, styrene-acrylate resins, and other acrylate resins.
A third aspect of the invention is to provide the toner for developing an electrostatically charged image according the first or second aspect of the invention, in which the copolymer has at least one functional group selected from a carboxyl grop, a hydroxyl group and an amino group.
A fourth aspect of the invention is to provide the toner for developing an electrostatically charged image according the first, second or third aspect of the invention, in which the copolymer is an ionomer, or has a diene-crosslinked structure.
To address the aforementioned problems, we, the inventors, have worked out a measure involving the use of a colorless, highly transparent resin. Examples of such a resin are polycarbonates, polyacrylates, polymethacrylates and polystyrenes. These resins, however, are known to be unsatisfactory in terms of the properties required of binder resins, such as fixing strength and heat response characteristic, and to be questionable when used as binder resins. We have conducted extensive studies to correct these drawbacks, and have found that a toner providing a high grade image can be produced by using a colorless, transparent, highly light transmissive polyolefin resin having a cyclic structure, the polyolefin resin containing less than 50~ by weight of a high-viscosity resin based on the entire binder resin. This finding has led us to -- accomplish the present invention. A toner using as a binder resin a polyolefin resin of a cyclic structure satisfying these characteristics is excellent in fixability, heat reaponse characteristic, and light transmission, achieves a high grade, sharp image, and when used as a color toner, can exhibit its features.
The pre:cent invention will now be described in detail.
The toner for developing an electrostatically charged image of a heat roller type capier or printer according to the present invention consists essentially of a binder resin, in which the binder resin at least includes a polyolefi.n resin having a cyclic structure, and a polyolefi.n resin of a cyclic structure having an intrinsic viscosit~~ (i.v.) of 0.25 dl/g or more, a heat distortion temperature (HDT) by DIN53461-B of 70 ~ or higher, and a - number average molecular weight of 7,500 or more and a weight average molecular weight of 15,000 or more, as measured by GPC, is contained in a proportion of less than 50~ by wE:ight based on the entire binder resin.
The po:Lyolefin resin having a cyclic structure used herein is, for example, a copolymer of an alpha olefin, such as ethylene, propylene or butylene, with an alicyclic compound having a double bond, such as cyclohexene or norbornene, which copolymer i.s colorless and transparent, and has Izigh light transmittance. This polyolefin having a cyclic structure is a polymer obtained, for instance, by a polymerization method using a metallocene catalyst or a Ziegler catalyst.
PreferrE:d as the colorless, transparent, highly light-transmissive polyolefin of a cyclic structure used in the present invention are a low-viscosity resin having a number average molecular weight of 1,000 to 7,500, preferably 3,000 to 7,500, and a weight average molecular weight of 1,000 to 15,000, preferably 4,000 to 15,000, as measured by - GPC, an intrinsic viscosity (i..v.) of less than 0.25 dl/g, and a heat distortion temperature (HDT) by DIN53461-B of - lower than 70~, and a high-viscosity resin having a number average molecular weight of 7,500 or more, preferably 7,500 to 50,OOO~, and a weight average molecular weight of 15,000 or more, preferably 15,000 to 100,000, as measured by GPC, an i.v. of 0.25 dl/g or more, and an HDT of 70'~ or higher.
The low-viscosity polyolefin having a cyclic structure has the above-mentioned number average molecular weight Mn, weight average molecular weight Mw, intrinsic viscosity (i.v.) and heat distortion temperature (HDT). The Mw/Mn ratio, used as a measure of the degree of dispersion of molecular weight distribution, is as small as from 1 to 2.5, namely, a. nearly monodisperse state. Thus, a toner having a quick heat response and a high fixing strength, properties required of a toner, can be realised. This polyolefi.n resin having a cyclic structure according to the present invention is characterized by the following facts:
To T745 with a number average molecular weight of 4,000 to - be shown later in Table 2, for example, there was added 5~
of the ~izo pigment Permanent Rubin F6B (Hoechst). The mixture was thoroughly dispersed with a kneader, then formed into a sheet by means of a press , and measured for light transmittance using the Macbeth densitometer RD914 (filter 3PI red) with visible light of 624 nm. Its light transmitt:ance was 12Ø Whereas styrene-acrylate resin showed light transmittance of 7.0~, and polyester resin, 15.5. Hence, the polyolefin resin having a cyclic structurE: was confirmed to have high transparency even in a pigment-dispersed system, and to be usable for a color toner as is polyester resin. Measurement by DSC has shown this pol~tolefin resin to require very low heat of fusion.
Thus, this resin can be expected to markedly reduce energy consumption for fixing.
The hi~3h-viscosity polyolefin resin having a cyclic structure; has the aforesaid properties. Compared with the - same resin with a low viscosity, therefore, this resin imparts structural viscosity to the toner, thereby improving offset preventing effect and adhesion to a material to be copied on, such as a paper or film. The low-viscosity polyolefin resin having a cyclic structure, on the other hand, improves the melt flowability of the toner, and satisfies toner characteristics requiring instantaneous melting and solidifying behaviors.
If the .amount of the high-viscosity resin used is 50~ or more, however, the uniform kneadability of the resin-pigment mixture extremely will decline, deteriorating toner performance. As a result, the toner will become poor in fixabilit:y and heat response characteristic, thus resulting in the failure to obtain a high grade, sharp image.
In the present invention, a toner using a binder resin comprising a mixture of other resin with the polyolefin resin having a cyclic structure, which satisfies the - foregoing characteristics, also achieves an image of a high grade, i.e., with high fixing strength and sharpness. In - this case, it is preferred that the proportions of the polyolef~~n resin having a cyclic structure and the other resin in the binder resin are to be 1 to 100, preferably 20 to 90, more preferably 50 to 90 parts by weight of the former, ,and 0 to 99, preferably 10 to 80, more preferably to 50 parts by weight of t:he latter. If the amount of the former resin is less than 1 part by weight, it becomes difficult to obtain a high grade image.
If a carboxyl group is introduced into the polyolefin resin having a cyclic structure by the melt air oxidation method or modification with malefic anhydride, its compatib=Llity with the other resin and the dispersability of the pigment can be improved. The same improvement can be achieved by introducing a hydroxyl group or an amino group by a known method.
Furthermore, fixability can be improved by copolymerizing the polyolefin resin having a cyclic structure with a diene - monomer such as norbornadiene or cyclohexadiene, or by introducing a crosslinking structure into the polyolefin resin of a cyclic structure, which has a carboxyl group introducE:d therein, by adding a metal such as zinc, copper or calcium.
The toner for developing an electrostatically charged image of a heat roller type copier or printer according to the presE;nt invention can be obtained by adding a colorant, a charge control agent, and if desired, a functioning agent, and other additives to the aforementioned binder resin, and performing known methods such as kneading, grinding and sifting. If desired, a flowing agent may be further added.
The colorant may be a known one, such as carbon black, diazo yellow, phthalocyanine blue, quinacridone, carmine 6B, monoazo red or perylene.
Example: of the charge control agent are known ones such as Nigro~sine dyes, fatty acid modified Nigrosine dyes, - metallizE:d Nigrosine dyes, metallized fatty acid modified NigrosinE: dyes, chromium complexes of 3,5-di-tert-butylsalicylic acid, quaternary ammonium salts, tripheny_Lmethane dyes, and azochromium complexes.
If desired, a known functioning agent, preferably, wax with a melting point of 60 to 170 °C , may be added to the toner of the present invention in order to enhance the offset p:ceventing properties during fixing by a heat roller.
Examples of the wax with this melting point are carnauba wax, montan wax, and glycerol monostearate.
To the toner of the present invention, there may be further added a flowing agent such as colloidal silica, aluminum oxide or titanium oxide, and a lubricant comprising a fatty acid metal salt such as barium stearate, calcium stearate or barium laurate.
The toner of the present invention may be used as a toner for one component developers or two component developers.
Moreover,. the toner of the present invention may be used as a one component magnetic toner by incorporating a magnetic - powder, or may be used as a full color toner.
The pre:aent invention will be described in more detail by - referencE: to Examples and Comparative Examples.
<Toner preparation method I>
Dry nonmagnetic one component system and dry two component: system:
Five ~ by weight of a charge control agent (Copy Charge NX, Hoechst), 2.5$ by weight of wax (Hoechst Wax E, Hoechst), 0.5~ by weight of aerosol silica (HDK-H2000, Wacker Chemie), 5~ by weight of magenta pigment (Permanent Rubin F613, Hoechst), and 87~ by weight of a binder resin were mixed , and melt kneaded at 130 ~ by a two roll mill .
Then, the mixture was cooled down to solidification, and crushed, followed by powderizing the particles using a jet mill. The resulting fine particles were sieved or sifted to select particles with an average particle diameter of about 10 micrometers, thereby preparing a toner.
- <Toner preparation method II>
Dry magnetic one component system:
. Forty ~ by weight of a magnetic powder (BL100, Titanium Industry;l, 5~ by weight of a charge control agent (Copy Charge N:~, Hoechst), 2.5~ by weight of wax (Hostastat FE-2, Hoechst), 0.5~ by weight of aerosol silica (HDK-H2000, Wacker Chemie), 2~ by weight of calcium carbonate (Shiraishi Calcium), and 50~ by weight of a binder resin were mixed, and melt kneaded at 150~C by a two roll mill.
Then, the mixture was cooled down to soidification, and crushed, followed by powderizing the particles using a jet mill. Tlhe resulting fine particles were sifted to select particles with an average particle diameter of about 10 micrometers, thereby preparing a toner.
<Toner preparation method III>
Liquid 'toner:
Forty ~ by weight of a mixture consisting of 1 part by weight of carbon black (MA-7, Mitsubishi Kagaku) as a colorant,. 0.5 part by weight of a charge control agent (Reflex 131ue R51, Hoechst), and 98.5 parts by weight of a binder :resin was mixed with 60$ by weight of an electrolytic solution (Isopar H, Exxon). The mixture was kneaded with a sand mill to prepare a toner.
Examples 1 to 27 and Comparative Examples 1 to 6 Using t:he toner preparation methods and binder resins shown in Table 2 below, toners of Examples 1 to 27 and Comparat~_ve Examples 1 through 6 were produced. Table 3 presents the fundamental properties of the polyolefin resins having a cyclic structure used, and the trade names of other resins used.
Table 2-1 Formulation of Ex. or Connp. Method of Toner binder resin Ex. No. - preparation Samule No.wt.~ Sample No. wt.~
Ex.

w 11 II 1 30 8 20 18 III 1 39.4 - -19 III 1 24 2 15.4 20 III 1 24 7 15.4 21 III 1 24 8 15.4 22 III 3 39.4 - -23 III 3 24 7 15.4 24 III 3 24 8 15.4 25 III 5 39.4 - -26 III 5 24 7 15.4 27 III 5 24 8 15.4 Comp. Ex.

1 I 7 87 - _ III 7 39.4 - -6 III 8 39.4 - -Table 3 Sample No- Product Mw Mn i.v. HDT D Tg 1 T745 7000 3800 0.19 <70 1.8 68 2 S-8007 70000 35000 0.8 X70 2.0 80 3 T-745-MO 6800 3400 <0.25 <70 2.0 78 5 T-745-CL 12000 3400 <0.25 <70 3.5 76 7 Tafton NE 2155 Polyester resin of Kao Corp.

8 MC100 Styrene-acrylate resin of Nihon Carbide <Evaluat:Lo ns >

The toners prepared by the above toner preparation method I or II were each placed in a commercially available electroplaotographic copier (PC100, Canon Inc.), and subjected to performance test. Then, the toners prepared by the toner preparation method III were each placad in a commercially available electrophotographic copier (FT400i, Ricoh Co.,, Ltd.), and subjected to performance test. The results a.re shown in Table 4.
Table 4-1 Imacre sharbness Fixability Thin line Light Anti-toner 10 copies resolving Gray transmission spent per min power scale 624 nm properties Ex.l O O O O O

Ex.2 O O O O O

Ex.3 O 0 0 0 0 Ex.4 O O O O O

Ex.5 O O O O O

Ex.6 O O O O O

Ex.7 O 0 0 ~ 0 Ex.8 O O O - O

Ex.9 O O O - O

Ex.lO O O O - 0 Ex.l1 O O O -' Ex.l2 O O O - O

Ex.l3 O O O - O

Ex.l4 O O O - O

Ex.l5 O O O - O

Ex.l6 O O O - D

Ex.l7 O O O -Ex.l8 O O O - O

Ex.l9 O O O - O

Ex.20 ~ ~ ~ - -Ex.21 ~ ~ ~ - -Ex.22 ~ ~ ~ - -Ex.23 ~ ~ ~ - -Ex.24 ~ ~ ~ - -Ex.25 ~ 0 ~ - -Ex.26 ~ ~ ~ - -Ex.27 ~ ~ ~ - -Comp.
Ex.l X D O ~ X
Comp.
Ex.2 X X X X X
Comp.
Ex.3 X ~ ~ - X
Comp.
Ex.4 X 0 0 - X
Comp.
Ex.5 X ~ ~ - X
Comp.
Ex.6 X ~ ~ - X
Evaluatic>n methods and evaluation criteria 1 ) Fixabi:Lity The toners prepared with the respective formulations were each used for copying onto recycled papers at a copying rate of 10 copies/min at a fixing temperature of 110 to 140' , with the fixing temperature for each copying cycle being raised by 10~C . The resulting copy samples were rubbed 10 times with an eraser by using an abrasion tester of SouthE:rland. The load during the test was 40 g/cm2. The tested samples were measured for the printing density using a Macbet:h reflection densitometer. The symbol X was assigned when even one of the measured values at the respecti~Je temperatures was Less than 65~. The symbol D

was assigned when the measured values at the respective temperatures were 65~ or more but less than 75~. The symbol C) was assigned when the measured values at the respective temperatures were 75~ or more.
2 ) Image :sharpness The tonE:rs prepared with the respective formulations were each used for copying onto recycled papers. The resulting samples were checked against sample images of Data Quest.
- The thin line resolving power and gray scale of the copy image were used as bases for evaluation. The symbol X was assigned when the thin line resolving power was 200 dots/inch. or less, D for a thin line resolving power of 201 to 300 dots/inch, and ~ for a thin line resolving power of 301 dots/inch or more. The ratio of the reflection density of the copy image to that of the reflection density of the sample image, at each step of the gray scale, was evaluated as X when less than 65~, D when 65~ or more but less than 75~, and ~ when 75~ or more.
3 ) Light l.ransmission The magE:nta-colored toners prepared with the formulations of the Examples and the Comparative Examples were each used to produce sheet-shaped samples 100 micrometers thick. The light transmission of each sheet sample was measured using an optical filter having a peak at 624 nm. The light transmitt,ance at 624 nm was evaluated as X when less than 8~, D when 8~ or more but less than 11~, and ~ when 11~ or more.
4)Anti-toner spent properties The toner described in each of the Examples and the Comparative Examples and a ferrite carrier of Powdertech were put in predetermined amounts into a developer box.
After thE: mixture was stirred and triboelectrically treated for 1 weE:k, 5 g of the toner-deposited carrier was weighed.
This carrier was put in water with soap to remove the toner electrosi=atically adhering to the surface. Only the carrier magnetic powder was collected using a magnet. The magnetic powder was immersed in acetone to dissolve and remove the spent toner fused to the surface . A change in the weight after immersion compared with the weight before immersion: was evaluated as ~ when less than 0 . 2~ , D when 0.2 or more but less than 0.5~, and X when 0.5~ or more.
The toner for developing an electrostatically charged image of a heat roller type copier or printer according to the present invention contains a binder resin at least including a polyolefin resin having a cyclic structure, in which a high-viscosity polyolefin resin having a cyclic ' structure is contained in a proportion of less than 50~ by weight based on the entire binder resin. Thus, the toner is excel7.ent in fixability, light transmission, and anti-toner spent properties, gives a high quality sharp image, and exhibits its features particularly when used in a color toner.

Claims (6)

What is claimed is:
1. A toner for developing an electrostatically charged image of a heat roller type copier or printer, said toner consisting essentially of a binder resin, a colorant and a charge control agent, wherein said binder resin at least includes a copolymer of an alpha-olefin with an alicyclic compound having a double bond, the copolymer having an intrinsic viscosity (i.v.) of 0.25 dl/g or more, a heat distortion temperature (HDT) by DIN53461-B of 70 °C or higher, a number average molecular weight of 7,500 or more and a weight average molecular weight of 15,000 or more, as measured by GPC, and being contained in a proportion of greater than 0% and less than 50% by weight based on the entire binder resin.
2. The toner for developing an electrostatically charged image as claimed in claim 1, wherein said binder resin consists of 1 to 100 parts by weight of the copolymer and 0 to 99 parts by weight of at least one resin selected from polyester resins, epoxy resins, polyolefin resins, vinyl acetate resins, vinyl acetate copolymer resins, styrene-acrylate resins, and other acrylate resins.
3. The toner for developing an electrostatically charged image as claimed in claim 1 or 2, wherein said copolymer has at least one functional group selected from a carboxyl group, a hydroxyl group and an amino group.
4. The toner for developing an electrostatically charged image as claimed in claim 1, 2 or 3, wherein said copolymer has a structure crosslinked by metal ions or dienes.
5. The toner as claimed in any one of claims 1 to 4, wherein the copolymer comprises additional comonomers.
6. The toner as claimed in any one of claims 1 to 5, wherein the copolymer is a copolymer of ethylene and norbornene.
CA002228506A 1995-08-02 1996-07-29 Toner for developing electrostatically charged image of heat roller type copier or printer Expired - Fee Related CA2228506C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP21675195 1995-08-02
JP7/216751 1995-08-02
JP7/354063 1995-12-29
JP35406395A JP3274052B2 (en) 1995-08-02 1995-12-29 Heating roller fixing type electrostatic image developing toner
PCT/JP1996/002133 WO1997005529A1 (en) 1995-08-02 1996-07-29 Hot-roller fixing toner for developing electrostatically charged images

Publications (2)

Publication Number Publication Date
CA2228506A1 CA2228506A1 (en) 1997-02-13
CA2228506C true CA2228506C (en) 2006-09-12

Family

ID=36999309

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002228506A Expired - Fee Related CA2228506C (en) 1995-08-02 1996-07-29 Toner for developing electrostatically charged image of heat roller type copier or printer

Country Status (1)

Country Link
CA (1) CA2228506C (en)

Also Published As

Publication number Publication date
CA2228506A1 (en) 1997-02-13

Similar Documents

Publication Publication Date Title
JP3588213B2 (en) Toner for developing electrostatic images containing polyolefin resin having cyclic structure
US7252918B2 (en) Hot-roller fixing toner for developing electrostatically charged images
CA1326154C (en) Magnetic toner for developing electrostatic images
EP1035449A1 (en) Toner
EP0843222B1 (en) Electrophotographic toner
DE60211091T2 (en) Color toner for oil-free fixing
CA2228506C (en) Toner for developing electrostatically charged image of heat roller type copier or printer
US4845002A (en) Toner for development of electrostatically charged image
JP2000275905A (en) Electrostatic charge image developing toner
JP2003015355A (en) Electrostatic image developing toner
WO2006051890A1 (en) Non-magnetic one-component developer
KR101033800B1 (en) Full-color toner for oilless fixing
JP2001272816A (en) Electrostatic charge image developing toner
JP4023037B2 (en) Toner additive and toner for developing electrostatic image
JP2681788B2 (en) Magnetic toner for developing electrostatic images
JP2003091098A (en) Electrostatic image developing toner
EP0871073A1 (en) Coated carrier for developing electrostatically charged images
JPH06313983A (en) Electrophotographic toner

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed