CA2226718C - Transcorneal drug-release system - Google Patents

Transcorneal drug-release system Download PDF

Info

Publication number
CA2226718C
CA2226718C CA002226718A CA2226718A CA2226718C CA 2226718 C CA2226718 C CA 2226718C CA 002226718 A CA002226718 A CA 002226718A CA 2226718 A CA2226718 A CA 2226718A CA 2226718 C CA2226718 C CA 2226718C
Authority
CA
Canada
Prior art keywords
micro
active substance
pins
reservoir
transcorneal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002226718A
Other languages
French (fr)
Other versions
CA2226718A1 (en
Inventor
Joachim Eicher
Bernd Zierenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim GmbH
Original Assignee
Boehringer Ingelheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim GmbH filed Critical Boehringer Ingelheim GmbH
Priority to CA002606885A priority Critical patent/CA2606885C/en
Publication of CA2226718A1 publication Critical patent/CA2226718A1/en
Application granted granted Critical
Publication of CA2226718C publication Critical patent/CA2226718C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • A61M31/002Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M2037/0007Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/003Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a lumen

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Dermatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

The invention provides a transcorneal system for the controlled release of an active substance, comprising an active substance reservoir, a device with micro-pins having capillary openings or micro-blades which are at least 10 µm long and are connected to the active substance reservoir via a liquid-conveying connection for actively transporting the active substance from the reservoir through the micro-pins or along the micro-blades, a device for actively releasing the active substance from the reservoir through the micro--pins or along the micro-blades, wherein the device for actively releasing the active substance is an integrated pump with electronic actuating means. The transcorneal system described is for the controlled release of a drug from a reservoir.

Description

TRANSCORNEAL DRUG-RELEASE SYSTEM

The present invention relates to a new drug release system for the controlled release of drugs over a long period of time.

According to the invention, a transcorneal system for the controlled supply of drugs avoiding the gastrointestinal tract is claimed, which consists essentially of a device which makes it possible to administer a medicinal composition over a long period of time whilst avoiding the corneal skin layers.

According to one aspect of the present invention, there is provided a transcorneal,system for the controlled release of an active substance, comprising an active substance reservoir, a device with micro-pins having capillary openings or micro-blades which are at least 10 pm long and are connected to the active substance reservoir via a liquid-conveying connection for actively transporting the active substance from the reservoir through the micro-pins or along the micro-blades, a device for actively releasing the active substance from the reservoir through the micro-pins or along the micro-blades, wherein the device for actively releasing the active substance is an integrated pump with electronic actuating means.

The apparatus according to the invention consists essentially of a reservoir for the drug and at least one -typically several - micro-pins provided with capillary openings which are connected to the reservoir in such a way that the drug in the form of a solution containing the active substance passes from the reservoir into the micro-pins. When the transcorneal system is placed on the skin, the Stratum corneum and possibly the epidermis are - la -penetrated by the micro-pins so as to provide direct access to the innervated layer of the skin. In this way the drug can pass from the reservoir through the capillary openings of the micro-pins into vascularized sections of the skin from where it is absorbed into the bloodstream through the capillary circulatory system. Instead of the micro-pins, micro-blades may be used, which scratch the skin when the system is applied.

An essential advantage of the system according to the invention is that the skin barrier for transdermally administered drugs, namely the Stratum corneum, is circumvented with the system according to the invention.
It is precisely the individually different properties of the uppermost horny layer in patients which are the reason for problems such as insufficient bioavailability and allergies when active substances are administered transdermally. One particular advantage of transcorneal administration is that this method of administration is not restricted to those active substances which penetrate through the skin, as is the case with transdermal administration, for example. Examples of suitable active substances include pain killers such as morphine, naltrexone, fentanyl, oxymorphone; anti-Parkinson's agents such as L-dopa, pramipexole; heart and circulatory drugs, nitroglycerin, drugs to combat high blood pressure and vasodilatory disorders, such as clonidine, nifidepine, verapamil and diltiazam; anti-coagulants such as heparin and hirudin; agents for long-term therapy in cancers and immune diseases; agents for the long-term treatment of addiction; peptides; ACE-inhibitors; neurokinin antagonists; and hormones such as oestradiol.

Usually, the active substance is present in the form of a solution to allow satisfactory travel through the capillary openings of the micro-pins of the transcorneal system. Theoretically, all physiologically acceptable solvents or solvent mixtures in which the active substance is soluble in a sufficient quantity may be used. The phrase "sufficient quantity" is taken to mean those concentrations of active substance in the solvent which make it possible to administer a therapeutically effective quantity of active substance.

The preferred solvents are water and ethanol. if it should be necessary, solubilisers and complexing agents may be used to increase the solubility of the active substance in the solvent. Delicate active substances may be mixed with additives to increase their shelf life.
The system according to the invention contains a reservoir for storing the active substance solution, whilst a liquid-conveying connection between the reservoir and the micro-pins makes it possible for the drug to be conveyed from the reservoir through the capillary openings of the micro-pins and below the Stratum corneum, so that the drug can be introduced directly into the bloodstream whilst avoiding the outer horny layers.

The transportation of the drug - e.g. in the form of an aqueous solution - may be either "passive", i.e.
achieved by the existing concentration gradient between the concentration of the active substance solution in the reservoir and in the blood, or "active", e.g. by means of an overpressure stored in the reservoir, electrostatic or capillary forces, or a pump integrated in the system. Preferably, the solution of active substance is transported actively, e.g. by means of a pump or a piezoelectric membrane. The flow volume (ml/time) of the drug may be adjusted or monitored by means of one or more additional valves or a constriction between the reservoir and the micro-pins.

Depending on the size of the reservoir, the concentration of active substance and the therapeutic dose needed, the transcorneal system according to the invention is suitable for a period of administration of one or more days up to 4 weeks or longer, preferably 7 to 14 days.

In one embodiment, the system is so miniaturised in terms of its dimensions and weight, that it can readily be carried on the skin or fixed in the skin, like a plaster or a wristwatch, for a lengthy period. The transcorneal system may be secured by means of an armband, an adhesive tolerated by the skin or by the micro-pins themselves.
The manufacture of the system according to the invention and the filling of the reservoir are carried out under controlled conditions - for reasons of drug safety, the system according to the invention may be sealed or packed in airtight manner under sterile conditions until ready for use.

Usually, the reservoir and micro-pins of the system according to the invention form a one-part or multi-part constructional unit in a housing. However, embodiments are conceivable in which the reservoir and micro-pins are structurally separate from one another and joined together by a thin tube or capillary. This is particularly advantageous when large quantities of drug are to be administered over a lengthy period.

The technical and constructional design of the micro-pins and the capillary openings which serve to deliver the solution of active substance are of crucial importance to the functioning of the transcorneal system according to the invention.

In order to penetrate the Stratum corneum, the micro-pins must have a length of at least 10 m, preferably 50 to 100 m more preferably up to 1 mm. The micro-pins according to the invention extend conically or cylindrically, the rounding radii of the tips of the pins typically being in the micron range, preferably smaller than 10 m. This minimises the injury to the skin and the sensation of pain during administration.
In order to ensure an adequate delivery of the solution of active substance into the capillary circulation of the patient, the micro-pins according to the invention have capillary openings, e.g. in the form of bores or slots or a combination of both. Micro-pins consisting of a material having a defined porosity also enable the solution of active substance to be delivered.
Particular embodiments of the micro-pins according to the invention may, for example, have capillary openings in the form of a combination of a central bore with outward slots.

The transporting of the solution of active substance may be aided or regulated, depending on the viscosity of the solution, by mechanical, electrical, chemical and/or surfactant forces. For reasons of redundancy - but also in order to adjust the flow volume and the line resistance - it is preferable to use a plurality of micro-pins for each transcorneal system. Usually, the micro-pins are arranged on a surface which forms the side of the transcorneal system facing the skin. This surface may be between a few square millimetres and a few square centimetres. A typical number of micro-pins is between 10 and 100, although this number should not restrict the inventive concept in any way.

The active substance from which the micro-pins are produced must be tolerated by the skin and be biocompatible. In the interests of cheap mass production, as well as ceramic materials, glasses and metals such as titanium are suitable. Easily workable plastics are preferred. Biodegradable polymers such as polylactides and the like have the advantage that any particles of the pins remaining in the skin can be broken down. Biodegradable polymers have long been known in the art and have proved useful, for example, as suturing material and bone pins.

Figure 1 shows a particularly simple embodiment of the transcorneal system (20) in axial section. The system consists of a container (21) with micro-pins (23) formed on the base (22). The interior of the container acts as a reservoir (24) for receiving the solution of active substance (25). Depending on the viscosity, the solution of active substance is present as such directly in the reservoir or is stored in a matrix, e.g. of an absorbent material or a polymer.

The container and micro-pins have a fluidtight outer wall (26) which is mechanically strong enough to ensure that the system for activating the drug release can be placed on the skin and the micro-pins can be pressed into the skin using light pressure. Since the outer wall (26) is pierced in the region of the tips (27) of the micro-pins and forms an outlet opening (28), the solution of active substance is able to enter the capillary circulatory system by capillary force, thereby circumventing the transcorneal layer of skin, and from there it develops its systemic activity. In the region of the reservoir there may be a device (29) for providing a pressure equalising ventilation. Usually, the ventilation device is provided with a filter to ensure that no impurities can enter the system. In order to aid the flow of active substance solution, a device may be provided to exert additional pressure on the reservoir. The system is filled, for example, by injecting the solution of active substance into the reservoir, by immersing the system in a solution of active substance or by placing a matrix impregnated with the active substance in the system. It is obvious that in the latter case the transcorneal system is of two-part construction, e.g. it comprises a lower part which forms the micro-pins and an upper part with which the system is closed off once the active substance matrix has been put in. Depending on the type of active substance, this may be present in dissolved form in an aqueous or organic physiologically acceptable solvent or mixture of solvents. Examples of suitable solvents include water, ethanol, propanol and mixtures thereof.
However, the active substances may also be dissolved in a matrix consisting of a gel, e.g. a polymeric material.
Materials which may be used to produce the container and the micro-pins include primarily thermoplastic materials which may be sintered in a mould starting from fine granules. By a suitable choice of the parameters of pressure, temperature (typically and below the melting temperature of the material) and time, a reproducible porosity (typically 50%) is achieved. By subsequently melting the surface of the component in a controlled manner it is sealed so as to produce a porous container with a leaktight outer wall. Areas of the wall which should be kept permeable, such as the ventilation devices and the tips of the pins, are kept below the melting temperature by cooling. In order to seal off the porous wall, it is also possible to use coatings and sealants, but these are technically more complex. The degree of porosity and the cross-sections of release at the tips of the pins are variable within wide limits and thus constitute parameters for adjusting the metering rate. Examples of other suitable materials include polyethylenes, polypropylenes or polysulphones.

A further developed system is shown in Figure 2. The transcorneal system (30) consists of a lower housing part (31a) and an upper housing part (31b). The lower housing part (31a) contains, on the side facing the surface of the skin, micro-pins (32) with the capillary openings (33), only three of which are shown in the drawings, albeit on a larger scale in the interests of clarity. The reservoir (34) for the solution of active substance is formed by a movable plunger (37) and at the sides of the lower part of the housing by a concertina seal (38). The concertina seal may, naturally, be replaced by other sealing provisions, e.g. by precision guiding of the plunger in the lower part of the housing.
The upper housing part contains the micropump (39) which exerts a defined pressure on the plunger and thereby administers the active substance through the micro-pins into the capillary circulatory system. On the inside of the lower housing part, microvalves (39a) may be provided in front of the capillary openings to prevent premature release of the drug. The pressure on the plunger may be exerted pneumatically by the pump, but in another embodiment it may be provided by means of a miniaturised electric motor and a transmission connected thereto, by a purely mechanical method.

In order to improve the controllability and adjustability of the metering of active substance, the system may be extended to include microsensors (39c), microactuators (39e), e.g. for actively controlling the microvalves (not shown), an electronic circuit (39b) with input/output possibilities (39d) and a current supply. The sensors serve primarily to detect and monitor controlled variables and disturbance variables, such as, for example, the concentration of active substance in the blood, the temperature or activity level of the patient, and to detect and monitor system variables such as time, throughflow, pressure and temperature. The memory area of the electronic circuit can be programmed with nominal data and parameters by the manufacturer or by the doctor or patient using a suitable interface. The measurements picked up by the sensors are detected by the electronics and further processed. The control signals for the microactuators are derived therefrom depending on the given control and regulating function.

An essential component of the transcorneal system according to the invention is the construction of the micro-pins.

Embodiments of pins (41) are shown in Figure 3. Figure 3a shows a pin (41) which is porous at the tip and is therefore made permeable for the solution of active substance. Figure 3b shows a pin (42) with a totally sealed outer wall. The tip has an extension (44) which breaks off at its root, the frangible point (43), when stuck in and thereby opens the previously sealed tip of the pin at the frangible point. Another possible method of opening the tips of the pins consists in covering the pin tips with a sealing film (45) which is torn away so as to "tear open" the pin tips (Fig. 3c). In order to anchor the transcorneal system, barbs may be formed on the pins, see Fig. 3d. The pins are basically made of a biologically acceptable material, e.g. a metal, ceramic or polymer, e.g. biodegradable polymers based on glycolide and/or lactide, preferably as a copolymer with other biodegradable polymers. The pins may be made from a porous material which is permeable to the active substance, e.g. a thermoplastic plastics material so that the active substance is released over the entire area of the pins.

Figure 4 shows a tank-shaped reservoir (50) in which the solution of active substance (51) is sealed off from the outside by means of an elastic membrane (54). Depending on the embodiment of the transcorneal system according to the invention, the reservoir and the micro-pins (53) penetrating into the skin form a constructional unit.
The reservoir wall (55) and the pins (53) are made of a porous material, as described above, the outer surface of which is sealed. The solution of active substance is injected into the active substance matrix (52) under slight overpressure. The overpressure is held by the elastic membrane (54) and thus helps to maintain a constant throughflow rate. The throughflow can also be briefly increased from the outside (by the patient) by pressing the membrane in order to achieve an additional dose. Figure 4a shows the system according to the invention in its initial state; the outwardly convex membrane (54) ensures that the solution of active substance is under pressure and it is forced into the reservoir of active substance (52). The active substance passes through the micro-pins (53) and through the transcorneal layer of the skin in order to achieve a systemic activity. Figure 4b shows the membrane (54) after the majority of the active substance solution has been used up.

Figure 5 shows a section through a transcorneal system (1). The housing (10) contains an active substance reservoir (2) which is sealed off at the top by a concertina (3). In the active substance reservoir is the active substance solution (4) which passes, at the bottom of the active substance reservoir, through an inlet channel (5) into a pump chamber (6). The solution runs through an outlet channel (7) to the micro-pins (8) arranged on the underside of the housing and from there through the capillary openings (9) of the micro-pins and out. The side parts (10a) of the housing and the underside (lOb) of the housing together with the micro-pins form a structural unit, preferably of a thermoplastic plastics material. The lid of the housing contains the energy supply in the form of a battery (11) as well as electronic controls (12), whilst a ventilator (13) enables the concertina to adapt to the reduced volume as the solution of active substance is delivered through the micro-pins. The active substance solution is conveyed by means of a piezoelectric membrane (14), which performs an electrically controlled pumping movement. The inlet channel (5) is constructed so that the solution of active substance is pumped by the piezoelectric member (14) to the outlets of the micro-pins. This is done either by means of a valve or by the fact that the cross-section of the inlet channel is smaller than that of the outlet channel (7). Before the transcorneal system is used, the micro-pins are protected by a pin protector (15), e.g. in the form of a cap.

Figure 6 shows some embodiments of the micro-pins according to the invention, in section and in plan view.
Figure 6a shows a micro-pin having a central opening (9) and cylindrical outer shape (8) and a conical tip (10).
Figure 6b shows a micro-pin having an opening in the form of a slot (9) and a cylindrical outer shape (8).
Figure 6c shows a micro-pin with flattened outer sides (8), the opening being provided in the form of a slot.
Figure 6d shows a micro-pin with cylindrical outer shape and an inclined tip (10).

Figure 6e shows an embodiment of the micro-blades according to the invention, which may be used instead of the micro-pins, in section and in plan view.

The openings (9) for the solution of active substance are usually close to the blade (8a) on the under side (10b) of the reservoir (see Figure 5), so that the solution of active substance passes from there through the scratched surface of the skin and is able to develop its systemic activity.

Figure 6f shows an embodiment of a micro-blade in the form of a grain with short edges (8b) which scratch the skin. The opening or openings (9) is or are close to the grain.

The dimensions of the micro-blades are of approximately the same order of magnitude as the micro-pins described hereinbefore.

The individual micro-pins or micro-blades are typically arranged on the underside of the transcorneal system and form a structural unit; they may number between 10 and 100, for example.
The metering of the drug may be controlled by means of the flow volumes, which in turn depend on the total of the cross-sections of the openings in the micro-pins.

Claims (16)

CLAIMS:
1. A transcorneal system for the controlled release of an active substance, comprising an active substance reservoir, a device with micro-pins having capillary openings or micro-blades which are at least 10 µm long and are connected to the active substance reservoir via a liquid-conveying connection for actively transporting the active substance from the reservoir through the micro-pins or along the micro-blades, a device for actively releasing the active substance from the reservoir through the micro-pins or along the micro-blades, wherein the device for actively releasing the active substance is an integrated pump with electronic actuating means.
2. A transcorneal system according to claim 1, wherein microvalves are provided between the reservoir and the capillary openings of the micro-pins.
3. A transcorneal system according to claim 1 or 2, wherein each micro-pin has a capillary opening in the form of a central bore or a slot which terminates at a tip of the bore or slot in an outlet opening and connects the opening to the active substance reservoir.
4. A transcorneal system according to claim 2 or 3, wherein the micro-pins consist of a porous, fluid-pervious material for adjusting dosage rate of the active substance.
5. A transcorneal system according to any one of claims 1 to 4, wherein the integrated pump is an electrically actuated piezoelectric membrane.
6. A transcorneal system according to any one of claims 1 to 5, wherein the integrated pump is a micropump.
7. A transcorneal system according to any one of claims 1 to 6, wherein at least one boundary surface of the reservoir is of movable construction.
8. A transcorneal system according to claim 7, wherein the at least one movable boundary surface is a plunger.
9. A transcorneal system according to claim 7, wherein the at least one movable boundary surface is a membrane.
10. A transcorneal system according to claim 7, wherein the at least one movable boundary surface is a concertina seal.
11. A transcorneal system according to any one of claims 1 to 10, wherein means for pressure equalisation are provided.
12. A transcorneal system according to any one of claims 1 to 11, wherein the micro-pins are integral components of the reservoir.
13. A transcorneal system according to any one of claims 1 to 12, wherein the micro-pins or micro-blades consist of a thermoplastic material.
14. A transcorneal system according to any one of claims 1 to 13, wherein the micro-pins or micro-blades have a tip with a radius of curvature of less than 10 µm.
15. A transcorneal system according to any one of claims 1 to 14, wherein the active substance is a systemically acting medicament.
16. A transcorneal system according to any one of claims 1 to 15, wherein the active substance is present in the reservoir in the form of a solution.
CA002226718A 1995-07-14 1996-07-15 Transcorneal drug-release system Expired - Fee Related CA2226718C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002606885A CA2606885C (en) 1995-07-14 1996-07-15 Micro-pin for a drug-release system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19525607.7 1995-07-14
DE19525607A DE19525607A1 (en) 1995-07-14 1995-07-14 Transcorneal drug delivery system
PCT/EP1996/003090 WO1997003718A1 (en) 1995-07-14 1996-07-15 Transcorneal drug-release system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA002606885A Division CA2606885C (en) 1995-07-14 1996-07-15 Micro-pin for a drug-release system

Publications (2)

Publication Number Publication Date
CA2226718A1 CA2226718A1 (en) 1997-02-06
CA2226718C true CA2226718C (en) 2007-12-11

Family

ID=7766771

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002226718A Expired - Fee Related CA2226718C (en) 1995-07-14 1996-07-15 Transcorneal drug-release system

Country Status (34)

Country Link
US (1) US6132755A (en)
EP (1) EP0840634B1 (en)
JP (1) JPH11509123A (en)
KR (1) KR100430703B1 (en)
CN (1) CN1183979C (en)
AR (1) AR004499A1 (en)
AT (1) ATE207769T1 (en)
AU (1) AU722943B2 (en)
BG (1) BG63142B1 (en)
BR (1) BR9609796A (en)
CA (1) CA2226718C (en)
CO (1) CO4700491A1 (en)
CZ (1) CZ290458B6 (en)
DE (2) DE19525607A1 (en)
DK (1) DK0840634T3 (en)
EE (1) EE04006B1 (en)
ES (1) ES2163035T3 (en)
HK (1) HK1010844A1 (en)
HU (1) HU222342B1 (en)
IL (1) IL122907A0 (en)
MX (1) MX9800401A (en)
NO (1) NO316313B1 (en)
NZ (1) NZ313984A (en)
PL (1) PL181658B1 (en)
PT (1) PT840634E (en)
RO (1) RO118738B1 (en)
RU (1) RU2209640C2 (en)
SK (1) SK284358B6 (en)
TR (1) TR199800048T1 (en)
TW (1) TW375528B (en)
UA (1) UA62918C2 (en)
UY (1) UY24277A1 (en)
WO (1) WO1997003718A1 (en)
ZA (1) ZA965931B (en)

Families Citing this family (288)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2195151T3 (en) * 1996-06-18 2003-12-01 Alza Corp IMPROVEMENT OR SAMPLING DEVICE FOR TRANSDERMAL AGENTS.
US6746688B1 (en) * 1996-10-13 2004-06-08 Neuroderm Ltd. Apparatus for the transdermal treatment of Parkinson's disease
KR100453132B1 (en) * 1996-12-20 2004-10-15 앨자 코포레이션 Device and method for enhancing transdermal agent flux
JP3879785B2 (en) * 1997-05-20 2007-02-14 日東電工株式会社 Killer T cell activator
US6918901B1 (en) 1997-12-10 2005-07-19 Felix Theeuwes Device and method for enhancing transdermal agent flux
ATE302041T1 (en) * 1997-12-11 2005-09-15 Alza Corp DEVICE FOR INCREASE THE TRANSDERMAL FLOW OF ACTIVE INGREDIENTS
KR100557261B1 (en) 1997-12-11 2006-03-07 알자 코포레이션 Device for enhancing transdermal agent flux
US7344499B1 (en) 1998-06-10 2008-03-18 Georgia Tech Research Corporation Microneedle device for extraction and sensing of bodily fluids
US6503231B1 (en) * 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
JP2002517300A (en) * 1998-06-10 2002-06-18 ジョージア テック リサーチ コーポレイション Microneedle devices and methods of manufacture and uses thereof
GB9815820D0 (en) * 1998-07-22 1998-09-16 Secr Defence Improvements relating to micro-machining
GB9815819D0 (en) * 1998-07-22 1998-09-16 Secr Defence Transferring materials into cells and a microneedle array
CN1315877A (en) 1998-08-31 2001-10-03 强生消费者公司 Electrotransport device comprising blades
US7048723B1 (en) * 1998-09-18 2006-05-23 The University Of Utah Research Foundation Surface micromachined microneedles
CA2344398A1 (en) * 1998-09-18 2000-03-30 The University Of Utah Surface micromachined microneedles
EP1140275A1 (en) * 1998-12-18 2001-10-10 Minimed Inc. Insertion sets with micro-piercing members for use with medical devices and methods of using the same
DE60018726T2 (en) 1999-04-16 2006-04-13 Johnson & Johnson Consumer Companies, Inc. DEVICE FOR IONTOPHORETIC ADMINISTRATION OF MEDICAMENTS WITH INTERNAL SENSORS
US6611707B1 (en) 1999-06-04 2003-08-26 Georgia Tech Research Corporation Microneedle drug delivery device
ATE462468T1 (en) * 1999-06-04 2010-04-15 Georgia Tech Res Inst DEVICES FOR ENLARGED MICRONEEDLES PENETRATION IN BIOLOGICAL SKIN LAYERS
US6743211B1 (en) 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US6256533B1 (en) * 1999-06-09 2001-07-03 The Procter & Gamble Company Apparatus and method for using an intracutaneous microneedle array
US6312612B1 (en) 1999-06-09 2001-11-06 The Procter & Gamble Company Apparatus and method for manufacturing an intracutaneous microneedle array
US6379324B1 (en) * 1999-06-09 2002-04-30 The Procter & Gamble Company Intracutaneous microneedle array apparatus
US6890553B1 (en) 1999-07-08 2005-05-10 Johnson & Johnson Consumer Companies, Inc. Exothermic topical delivery device
AU6076200A (en) 1999-07-08 2001-01-30 Johnson & Johnson Consumer Companies, Inc. Exothermic bandage
US7133717B2 (en) 1999-08-25 2006-11-07 Johnson & Johnson Consumer Companies, Inc. Tissue electroperforation for enhanced drug delivery and diagnostic sampling
US7113821B1 (en) 1999-08-25 2006-09-26 Johnson & Johnson Consumer Companies, Inc. Tissue electroperforation for enhanced drug delivery
US6623457B1 (en) * 1999-09-22 2003-09-23 Becton, Dickinson And Company Method and apparatus for the transdermal administration of a substance
US6835184B1 (en) * 1999-09-24 2004-12-28 Becton, Dickinson And Company Method and device for abrading skin
ES2238333T3 (en) 1999-12-10 2005-09-01 Alza Corporation DERMAL TREATMENT DEVICE FOR THE PROLONGED ADMINISTRATION OF PHARMACOS VIA TRANSDERMICA.
EP1239916B1 (en) 1999-12-10 2005-11-23 ALZA Corporation Device and method for enhancing microprotrusion skin piercing
US6622035B1 (en) 2000-01-21 2003-09-16 Instrumentarium Corp. Electrode for measurement of weak bioelectrical signals
EP1164928B1 (en) * 2000-01-21 2005-06-01 Instrumentarium Corporation Method of fabricating a medical electrode
AU2001245472A1 (en) * 2000-03-09 2001-09-17 Nanopass Ltd. Systems and methods for the transport of fluids through a biological barrier andproduction techniques for such systems
IL134997A0 (en) * 2000-03-09 2001-05-20 Yehoshua Yeshurun Health care system based on micro device
US7404815B2 (en) 2000-05-01 2008-07-29 Lifescan, Inc. Tissue ablation by shear force for sampling biological fluids and delivering active agents
US6659982B2 (en) 2000-05-08 2003-12-09 Sterling Medivations, Inc. Micro infusion drug delivery device
US6629949B1 (en) 2000-05-08 2003-10-07 Sterling Medivations, Inc. Micro infusion drug delivery device
US6595947B1 (en) 2000-05-22 2003-07-22 Becton, Dickinson And Company Topical delivery of vaccines
US6565532B1 (en) 2000-07-12 2003-05-20 The Procter & Gamble Company Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup
US6589202B1 (en) 2000-06-29 2003-07-08 Becton Dickinson And Company Method and apparatus for transdermally sampling or administering a substance to a patient
US6656147B1 (en) * 2000-07-17 2003-12-02 Becton, Dickinson And Company Method and delivery device for the transdermal administration of a substance
GB0017999D0 (en) * 2000-07-21 2000-09-13 Smithkline Beecham Biolog Novel device
US6533949B1 (en) * 2000-08-28 2003-03-18 Nanopass Ltd. Microneedle structure and production method therefor
CN100421653C (en) 2000-09-08 2008-10-01 阿尔扎公司 Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
JP2002085561A (en) * 2000-09-14 2002-03-26 Terumo Corp Liquid injection needle
WO2002030506A2 (en) * 2000-10-12 2002-04-18 Ink Jet Technology Ltd. Transdermal method
US7419481B2 (en) 2000-10-13 2008-09-02 Alza Corporation Apparatus and method for piercing skin with microprotrusions
JP4659332B2 (en) 2000-10-13 2011-03-30 アルザ・コーポレーシヨン Apparatus and method for perforating skin using microprojections
MXPA03003301A (en) 2000-10-13 2004-12-13 Johnson & Johnson Microblade array impact applicator.
RU2278623C2 (en) 2000-10-13 2006-06-27 Алза Корпорейшн Micro-protruding member's holder for power applicator
US7828827B2 (en) 2002-05-24 2010-11-09 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
US7131987B2 (en) * 2000-10-16 2006-11-07 Corium International, Inc. Microstructures and method for treating and conditioning skin which cause less irritation during exfoliation
US7108681B2 (en) * 2000-10-16 2006-09-19 Corium International, Inc. Microstructures for delivering a composition cutaneously to skin
JP4659336B2 (en) 2000-10-26 2011-03-30 アルザ・コーポレーシヨン Transdermal drug delivery device with coated microprojections
US6638246B1 (en) 2000-11-28 2003-10-28 Scimed Life Systems, Inc. Medical device for delivery of a biologically active material to a lumen
US9302903B2 (en) 2000-12-14 2016-04-05 Georgia Tech Research Corporation Microneedle devices and production thereof
AU2002231207A1 (en) 2000-12-21 2002-07-01 Biovalve Technologies, Inc. Microneedle array systems
DE10065168A1 (en) * 2000-12-23 2002-07-11 Lohmann Therapie Syst Lts Device for transdermal administration of active substances, with a plurality of micro needles or blades on a plaster for penetration of the outer skin layer, is provided with a biocidal agent
US6663820B2 (en) 2001-03-14 2003-12-16 The Procter & Gamble Company Method of manufacturing microneedle structures using soft lithography and photolithography
US6855372B2 (en) 2001-03-16 2005-02-15 Alza Corporation Method and apparatus for coating skin piercing microprojections
BR0209046A (en) 2001-04-20 2004-11-09 Alza Corp Microprojection array having beneficial coating-containing agent
EP3251722B1 (en) 2001-04-20 2020-06-17 ALZA Corporation Microprojection array having a beneficial agent containing coating and method of forming the coating thereon
US6591124B2 (en) 2001-05-11 2003-07-08 The Procter & Gamble Company Portable interstitial fluid monitoring system
EP1395328B1 (en) * 2001-06-08 2006-08-16 Becton, Dickinson and Company Device for manipulating a needle or abrader array
SE0102736D0 (en) * 2001-08-14 2001-08-14 Patrick Griss Side opened out-of-plane microneedles for microfluidic transdermal interfacing and fabrication process of side opened out-of-plane microneedles
US6881203B2 (en) * 2001-09-05 2005-04-19 3M Innovative Properties Company Microneedle arrays and methods of manufacturing the same
US8361037B2 (en) 2001-09-19 2013-01-29 Valeritas, Inc. Microneedles, microneedle arrays, and systems and methods relating to same
WO2003024508A2 (en) * 2001-09-21 2003-03-27 Biovalve Technologies, Inc. Gas pressure actuated microneedle arrays, and systems and methods relating to same
US6830562B2 (en) 2001-09-27 2004-12-14 Unomedical A/S Injector device for placing a subcutaneous infusion set
CA2500453A1 (en) * 2001-09-28 2003-04-03 Biovalve Technologies, Inc. Microneedle with membrane
US20030135166A1 (en) * 2001-09-28 2003-07-17 Gonnelli Robert R. Switchable microneedle arrays and systems and methods relating to same
US6689100B2 (en) 2001-10-05 2004-02-10 Becton, Dickinson And Company Microdevice and method of delivering or withdrawing a substance through the skin of an animal
US20040120964A1 (en) * 2001-10-29 2004-06-24 Mikszta John A. Needleless vaccination using chimeric yellow fever vaccine-vectored vaccines against heterologous flaviviruses
AU2002365144A1 (en) * 2001-10-29 2003-06-30 Becton, Dickinson And Company Method and device for the delivery of a substance
US6908453B2 (en) 2002-01-15 2005-06-21 3M Innovative Properties Company Microneedle devices and methods of manufacture
US7858112B2 (en) 2002-02-28 2010-12-28 Lintec Corporation Percutaneous absorption system and percutaneous absorption method
JP4608187B2 (en) * 2002-02-28 2011-01-05 リンテック株式会社 Transdermal preparation
WO2003074102A2 (en) * 2002-03-04 2003-09-12 Nano Pass Technologies Ltd. Devices and methods for transporting fluid across a biological barrier
BR0308694A (en) 2002-03-26 2007-01-09 Becton Dickinson Co multistage fluid delivery device and method
JP4026745B2 (en) * 2002-03-26 2007-12-26 財団法人大阪産業振興機構 Medical system and manufacturing method thereof
US6780171B2 (en) * 2002-04-02 2004-08-24 Becton, Dickinson And Company Intradermal delivery device
US7115108B2 (en) * 2002-04-02 2006-10-03 Becton, Dickinson And Company Method and device for intradermally delivering a substance
US7047070B2 (en) * 2002-04-02 2006-05-16 Becton, Dickinson And Company Valved intradermal delivery device and method of intradermally delivering a substance to a patient
US6945952B2 (en) * 2002-06-25 2005-09-20 Theraject, Inc. Solid solution perforator for drug delivery and other applications
CA2490137C (en) * 2002-06-25 2012-01-03 Sung-Yun Kwon Rapidly dissolving micro-perforator for drug delivery and other applications
US6899838B2 (en) * 2002-07-12 2005-05-31 Becton, Dickinson And Company Method of forming a mold and molding a micro-device
EP1523367A1 (en) * 2002-07-19 2005-04-20 3M Innovative Properties Company Microneedle devices and microneedle delivery apparatus
CN100479875C (en) * 2002-07-22 2009-04-22 贝克顿·迪金森公司 Patch-like infusion device
US20040051019A1 (en) 2002-09-02 2004-03-18 Mogensen Lasse Wesseltoft Apparatus for and a method of adjusting the length of an infusion tube
US8062573B2 (en) * 2002-09-16 2011-11-22 Theraject, Inc. Solid micro-perforators and methods of use
DE10243917A1 (en) * 2002-09-20 2004-04-01 Udo Dr. Auweiler Device for subcutaneous delivery of a pharmaceutical product is introducible through the skin so that its subcutaneous part contains a system for controlled release of the product
US20040106904A1 (en) * 2002-10-07 2004-06-03 Gonnelli Robert R. Microneedle array patch
IL152573A (en) * 2002-10-31 2009-11-18 Transpharma Medical Ltd Transdermal delivery system for anti-emetic medication
IL152575A (en) * 2002-10-31 2008-12-29 Transpharma Medical Ltd Transdermal delivery system for water insoluble drugs
IL152912A0 (en) * 2002-11-18 2003-06-24 Nanopass Ltd Micro needle systems
DK200201823A (en) 2002-11-26 2004-05-27 Maersk Medical As Connection piece for a hose connection
EP1426662A1 (en) * 2002-12-06 2004-06-09 Boehringer Ingelheim International GmbH Piston pump
US7578954B2 (en) 2003-02-24 2009-08-25 Corium International, Inc. Method for manufacturing microstructures having multiple microelements with through-holes
JP4509100B2 (en) 2003-05-08 2010-07-21 ノボ・ノルデイスク・エー/エス Infusion device attachable to skin with removable needle insertion actuation
EP1475113A1 (en) * 2003-05-08 2004-11-10 Novo Nordisk A/S External needle inserter
WO2004098683A1 (en) 2003-05-08 2004-11-18 Novo Nordisk A/S Internal needle inserter
CA2530531A1 (en) 2003-06-30 2005-01-20 Alza Corporation Formulations for coated microprojections containing non-volatile counterions
EP1502613A1 (en) 2003-08-01 2005-02-02 Novo Nordisk A/S Needle device with retraction means
DK3395396T3 (en) 2003-08-12 2020-09-28 Becton Dickinson Co Plaster-like infusion device
AU2004268616B2 (en) 2003-08-25 2010-10-07 3M Innovative Properties Company Delivery of immune response modifier compounds
AU2004285484A1 (en) 2003-10-24 2005-05-12 Alza Corporation Pretreatment method and system for enhancing transdermal drug delivery
BRPI0415986A (en) 2003-10-28 2007-01-23 Alza Corp method and apparatus for reducing the incidence of tobacco use
EP1680154B1 (en) 2003-10-31 2012-01-04 ALZA Corporation Self-actuating applicator for microprojection array
US7753888B2 (en) * 2003-11-21 2010-07-13 The Regents Of The University Of California Method and/or apparatus for puncturing a surface for extraction, in situ analysis, and/or substance delivery using microneedles
US8017145B2 (en) * 2003-12-22 2011-09-13 Conopco, Inc. Exfoliating personal care wipe article containing an array of projections
US20070083151A1 (en) * 2003-12-29 2007-04-12 Carter Chad J Medical devices and kits including same
WO2005082593A1 (en) * 2004-02-17 2005-09-09 Avery Dennison Corporation Method of making microneedles
EP1718452A1 (en) * 2004-02-23 2006-11-08 3M Innovative Properties Company Method of molding for microneedle arrays
US7591618B2 (en) 2004-02-25 2009-09-22 Agency For Science, Technology And Research Machining method for micro abraders and micro abraders produced thereby
JP2005246595A (en) * 2004-03-05 2005-09-15 Ritsumeikan Microneedle array and method of producing the same
EP1737357B1 (en) 2004-03-24 2019-12-11 Corium, Inc. Transdermal delivery device
ES2323793T3 (en) 2004-03-26 2009-07-24 Unomedical A/S INFUSION SET
WO2005094920A1 (en) 2004-03-30 2005-10-13 Novo Nordisk A/S Actuator system comprising lever mechanism
CN100402107C (en) * 2004-03-31 2008-07-16 中国科学院理化技术研究所 Metal micro-needle array chip and preparation method and application thereof
WO2005123173A1 (en) * 2004-06-10 2005-12-29 3M Innovative Properties Company Patch application device and kit
US8062250B2 (en) 2004-08-10 2011-11-22 Unomedical A/S Cannula device
ITPD20040252A1 (en) * 2004-10-14 2005-01-14 Bidoia Sas Di Gianfranco Bidoi SURGICAL IRRIGATOR
AU2005306422A1 (en) 2004-11-18 2006-05-26 3M Innovative Properties Company Low-profile microneedle array applicator
US8057842B2 (en) 2004-11-18 2011-11-15 3M Innovative Properties Company Method of contact coating a microneedle array
CN101060882B (en) 2004-11-18 2010-06-16 3M创新有限公司 Microneedle array applicator and retainer
JP4927751B2 (en) * 2004-11-18 2012-05-09 スリーエム イノベイティブ プロパティズ カンパニー Microneedle array coating method
EP2388078B1 (en) 2004-11-18 2013-03-20 3M Innovative Properties Co. Method of contact coating a microneedle array
US20080009800A1 (en) * 2004-12-02 2008-01-10 Nickel Janice H Transdermal drug delivery device
EP2067599B1 (en) 2004-12-07 2016-10-26 3M Innovative Properties Company Method of molding a microneedle
AU2005313662B2 (en) 2004-12-10 2011-07-14 Unomedical A/S Cannula inserter
EP1669100A1 (en) * 2004-12-13 2006-06-14 Debiotech S.A. Micro-needle
CN100571800C (en) 2005-01-24 2009-12-23 诺和诺德公司 Armarium with protected transcutaneous device
KR100679714B1 (en) 2005-02-07 2007-02-07 재단법인서울대학교산학협력재단 Microspikes structured of three dimensions and method of manufacturing the same
US7985199B2 (en) 2005-03-17 2011-07-26 Unomedical A/S Gateway system
JP4793806B2 (en) * 2005-03-22 2011-10-12 Tti・エルビュー株式会社 Iontophoresis device
WO2006101146A1 (en) * 2005-03-22 2006-09-28 Transcutaneous Technologies Inc. Iontophoresis device
EP1885210A1 (en) * 2005-03-23 2008-02-13 Velcro Industries B.V. Molding touch fastener elements
EP1869414A4 (en) 2005-03-29 2010-07-28 Arkal Medical Inc Devices, systems, methods and tools for continuous glucose monitoring
US7601284B2 (en) * 2005-04-06 2009-10-13 Velcro Industries B.V. Molding fastener elements on folded substrate
US10035008B2 (en) 2005-04-07 2018-07-31 3M Innovative Properties Company System and method for tool feedback sensing
US20070270738A1 (en) * 2005-04-25 2007-11-22 Wu Jeffrey M Method of treating ACNE with stratum corneum piercing patch
US20060253079A1 (en) * 2005-04-25 2006-11-09 Mcdonough Justin Stratum corneum piercing device
US20080009802A1 (en) * 2005-04-25 2008-01-10 Danilo Lambino Method of treating acne with stratum corneum piercing device
US20060283465A1 (en) * 2005-06-16 2006-12-21 Nickel Janice H Smart drug delivery system and a method of implementation thereof
US20080195035A1 (en) 2005-06-24 2008-08-14 Frederickson Franklyn L Collapsible Patch and Method of Application
JP2008543528A (en) * 2005-06-27 2008-12-04 スリーエム イノベイティブ プロパティズ カンパニー Microneedle cartridge assembly and application method
WO2007002521A2 (en) 2005-06-27 2007-01-04 3M Innovative Properties Company Microneedle array applicator device
US20070060837A1 (en) * 2005-08-18 2007-03-15 Seoul National University Industry Foundation Barb-wired micro needle made of single crystalline silicon and biopsy method and medicine injecting method using the same
US8118753B2 (en) * 2005-08-18 2012-02-21 Seoul National University Industry Foundation Barb-wired micro needle made of single crystalline silicon and biopsy method and medicine injecting method using the same
DE102005040251A1 (en) * 2005-08-24 2007-03-01 Boehringer Ingelheim Pharma Gmbh & Co. Kg Transcorneal drug delivery system
CA2629393C (en) * 2005-09-06 2014-06-10 Theraject, Inc. Solid solution perforator containing drug particle and/or drug-adsorbed particles
US9358033B2 (en) * 2005-09-07 2016-06-07 Ulthera, Inc. Fluid-jet dissection system and method for reducing the appearance of cellulite
US9486274B2 (en) 2005-09-07 2016-11-08 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US9011473B2 (en) 2005-09-07 2015-04-21 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US10548659B2 (en) 2006-01-17 2020-02-04 Ulthera, Inc. High pressure pre-burst for improved fluid delivery
US8518069B2 (en) 2005-09-07 2013-08-27 Cabochon Aesthetics, Inc. Dissection handpiece and method for reducing the appearance of cellulite
PL1762259T3 (en) 2005-09-12 2011-03-31 Unomedical As Inserter for an infusion set with a first and second spring units
WO2007038555A1 (en) * 2005-09-30 2007-04-05 Tti Ellebeau, Inc. Iontophoretic device and method of delivery of active agents to biological interface
US20080262416A1 (en) * 2005-11-18 2008-10-23 Duan Daniel C Microneedle Arrays and Methods of Preparing Same
CA2629193C (en) * 2005-11-18 2016-03-29 3M Innovative Properties Company Coatable compositions, coatings derived therefrom and microarrays having such coatings
US7885793B2 (en) 2007-05-22 2011-02-08 International Business Machines Corporation Method and system for developing a conceptual model to facilitate generating a business-aligned information technology solution
US9248317B2 (en) 2005-12-02 2016-02-02 Ulthera, Inc. Devices and methods for selectively lysing cells
USD655807S1 (en) 2005-12-09 2012-03-13 Unomedical A/S Medical device
WO2007075614A1 (en) * 2005-12-21 2007-07-05 3M Innovative Properties Company Microneedle devices
WO2007071255A1 (en) 2005-12-23 2007-06-28 Unomedical A/S Device for administration
US20070191811A1 (en) * 2006-02-10 2007-08-16 Joseph Berglund System and Method for Treating a Vascular Condition
AU2007219546B8 (en) 2006-02-28 2012-07-05 Unomedical A/S Inserter for infusion part and infusion part provided with needle protector
CN101400320A (en) * 2006-03-10 2009-04-01 阿尔扎公司 Microprojection array application with high barrier retainer
JP2009530880A (en) 2006-03-13 2009-08-27 ノボ・ノルデイスク・エー/エス Secure pairing of electronic devices using complex communication means
US9119945B2 (en) 2006-04-20 2015-09-01 3M Innovative Properties Company Device for applying a microneedle array
US9399094B2 (en) 2006-06-06 2016-07-26 Novo Nordisk A/S Assembly comprising skin-mountable device and packaging therefore
WO2007140783A2 (en) 2006-06-07 2007-12-13 Unomedical A/S Inserter for transcutaneous sensor
MX2008015247A (en) 2006-06-09 2008-12-15 Unomedical As Mounting pad.
WO2008014791A1 (en) 2006-08-02 2008-02-07 Unomedical A/S Cannula and delivery device
US20080058726A1 (en) * 2006-08-30 2008-03-06 Arvind Jina Methods and Apparatus Incorporating a Surface Penetration Device
NZ576637A (en) * 2006-10-25 2012-05-25 Novartis Ag Powder dispersion apparatus with and mediciment receptacles that are cut open using an elliptical arc shaped knife blade oriented to yaw between 4 and 12 degrees
EP1917990A1 (en) 2006-10-31 2008-05-07 Unomedical A/S Infusion set
WO2008091602A2 (en) 2007-01-22 2008-07-31 Corium International, Inc. Applicators for microneedle arrays
FR2912919B1 (en) * 2007-02-22 2009-05-01 Bernard Perriere MINIATURIZED INJECTION DEVICE FOR MEDICAL USE
AU2008241470B2 (en) 2007-04-16 2013-11-07 Corium Pharma Solutions, Inc. Solvent-cast microneedle arrays containing active
US8439861B2 (en) 2007-04-24 2013-05-14 Velcro Industries B.V. Skin penetrating touch fasteners
DK2155311T3 (en) 2007-06-20 2013-02-04 Unomedical As METHOD AND APPARATUS FOR PREPARING A CATHETIC
JP2010531692A (en) 2007-07-03 2010-09-30 ウノメディカル アクティーゼルスカブ Inserter with bistable equilibrium
US8486003B2 (en) 2007-07-10 2013-07-16 Unomedical A/S Inserter having two springs
WO2009010396A1 (en) 2007-07-18 2009-01-22 Unomedical A/S Insertion device with pivoting action
KR20090015449A (en) * 2007-08-08 2009-02-12 현대자동차주식회사 Method for the preparation of porous graphite carbon with high crystallinity using sucrose as a carbon precursor
US8439940B2 (en) 2010-12-22 2013-05-14 Cabochon Aesthetics, Inc. Dissection handpiece with aspiration means for reducing the appearance of cellulite
WO2009048607A1 (en) 2007-10-10 2009-04-16 Corium International, Inc. Vaccine delivery via microneedle arrays
WO2009056616A1 (en) 2007-10-31 2009-05-07 Novo Nordisk A/S Non-porous material as sterilization barrier
JP2011511688A (en) 2008-02-13 2011-04-14 ウノメディカル アクティーゼルスカブ Seal between cannula part and flow path
EP2259816B1 (en) 2008-02-20 2015-10-21 Unomedical A/S Insertion device with horizontally moving part
EP2100850A1 (en) * 2008-03-11 2009-09-16 Stichting Voor De Technische Wetenschappen Microneedle array and a method for manufacturing microneedles
WO2009142741A1 (en) * 2008-05-21 2009-11-26 Theraject, Inc. Method of manufacturing solid solution peforator patches and uses thereof
KR20110127642A (en) 2008-12-22 2011-11-25 우노메디컬 에이/에스 Medical device comprising adhesive pad
WO2010099321A1 (en) 2009-02-26 2010-09-02 The University Of North Carolina At Chapel Hill Interventional drug delivery system and associated methods
JP5820805B2 (en) * 2009-04-24 2015-11-24 コリウム インターナショナル, インコーポレイテッド Process for manufacturing microprojection arrays
EP2275164A1 (en) 2009-07-15 2011-01-19 Debiotech S.A. Multichannel micro-needles
RU2012107433A (en) 2009-07-30 2013-09-10 Уномедикал А/С HORIZONTAL MOVING PART INTRODUCTION DEVICE
CA2769102C (en) 2009-07-31 2017-09-19 3M Innovative Properties Company Hollow microneedle arrays
MX2012000778A (en) 2009-08-07 2012-07-30 Unomedical As Delivery device with sensor and one or more cannulas.
US9358064B2 (en) 2009-08-07 2016-06-07 Ulthera, Inc. Handpiece and methods for performing subcutaneous surgery
US11096708B2 (en) 2009-08-07 2021-08-24 Ulthera, Inc. Devices and methods for performing subcutaneous surgery
US8062568B2 (en) * 2009-08-27 2011-11-22 Korea University Research And Business Foundation Nano pattern writer
HU227748B1 (en) 2009-09-21 2012-02-28 Zoltan Dr Piros Microinfusion device for dosing insuline in the treatment of diabetes
US20110144591A1 (en) * 2009-12-11 2011-06-16 Ross Russell F Transdermal Delivery Device
DK2512579T3 (en) 2009-12-16 2017-03-13 Becton Dickinson Co Self Injection Device
DK2512560T3 (en) 2009-12-16 2018-07-16 Becton Dickinson Co Even injector device
JP5650755B2 (en) 2009-12-16 2015-01-07 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Self injection device
CN102753226B (en) 2009-12-16 2015-08-19 贝克顿·迪金森公司 From injection device
ES2929490T3 (en) 2009-12-16 2022-11-29 Becton Dickinson Co self injection device
DK2781228T3 (en) 2009-12-16 2016-03-21 Becton Dickinson Co A device for self-injection
WO2011121023A1 (en) 2010-03-30 2011-10-06 Unomedical A/S Medical device
PT2563450T (en) 2010-04-28 2017-08-28 Kimberly Clark Co Device for delivery of rheumatoid arthritis medication
US9586044B2 (en) 2010-04-28 2017-03-07 Kimberly-Clark Worldwide, Inc. Method for increasing the permeability of an epithelial barrier
CN102985131B (en) 2010-04-28 2016-06-29 金伯利-克拉克环球有限公司 For delivering the medical treatment device of siRNA
JP5860453B2 (en) 2010-04-28 2016-02-16 キンバリー クラーク ワールドワイド インコーポレイテッド Composite microneedle array with nanostructures on the surface
AU2011248108B2 (en) 2010-05-04 2016-05-26 Corium Pharma Solutions, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US9125625B2 (en) 2010-06-10 2015-09-08 The Regents Of The University Of California Textile-based printable electrodes for electrochemical sensing
CN101905856B (en) * 2010-06-11 2012-10-10 北京大学 Method for preparing plane hollow microneedle for transdermal administration
DE102010038733A1 (en) * 2010-07-30 2012-02-02 Robert Bosch Gmbh Modular microneedle transport device
JP5718622B2 (en) * 2010-08-31 2015-05-13 Asti株式会社 Microneedle array device
CN103153360B (en) 2010-09-02 2016-04-06 贝克顿·迪金森公司 Have band activate interceptor pin lid from injection device
EP2618873B1 (en) * 2010-09-21 2020-03-11 Israel Shamir Lebovitz Speculum with plurality of extendable multi-directional injection needles
EP2433663A1 (en) 2010-09-27 2012-03-28 Unomedical A/S Insertion system
EP2436412A1 (en) 2010-10-04 2012-04-04 Unomedical A/S A sprinkler cannula
US10441767B2 (en) * 2010-10-27 2019-10-15 Asti Corporation Jig for microneedle array placement and microneedle array device
CN102641549B (en) * 2011-02-18 2016-05-04 帕洛阿尔托研究中心公司 Comprise saturating mucosal drug conveying device and the method for micropin
US8696637B2 (en) 2011-02-28 2014-04-15 Kimberly-Clark Worldwide Transdermal patch containing microneedles
KR101241059B1 (en) * 2011-03-04 2013-03-11 연세대학교 산학협력단 Device and Method for Delivery of Drug to the Exterior of Vascular Vessels using Micro-needle
US8636696B2 (en) 2011-06-10 2014-01-28 Kimberly-Clark Worldwide, Inc. Transdermal device containing microneedles
EP2739333A1 (en) * 2011-08-05 2014-06-11 Unitract Syringe Pty Ltd Cannula with controlled depth of insertion
AU2012326664A1 (en) 2011-09-02 2014-04-03 North Carolina State University Microneedle arrays for biosensing and drug delivery
US11197689B2 (en) 2011-10-05 2021-12-14 Unomedical A/S Inserter for simultaneous insertion of multiple transcutaneous parts
EP2583715A1 (en) 2011-10-19 2013-04-24 Unomedical A/S Infusion tube system and method for manufacture
US20170246439A9 (en) 2011-10-27 2017-08-31 Kimberly-Clark Worldwide, Inc. Increased Bioavailability of Transdermally Delivered Agents
US9440051B2 (en) 2011-10-27 2016-09-13 Unomedical A/S Inserter for a multiplicity of subcutaneous parts
EP3574950B1 (en) 2011-10-27 2021-02-17 Sorrento Therapeutics, Inc. Transdermal delivery of high viscosity bioactive agents
PL3542851T3 (en) 2011-10-27 2022-04-25 Sorrento Therapeutics, Inc. Implantable devices for delivery of bioactive agents
JP5845808B2 (en) * 2011-10-28 2016-01-20 凸版印刷株式会社 Microneedle device and manufacturing method thereof
JP5788019B2 (en) * 2011-11-18 2015-09-30 南部化成株式会社 Transdermal administration device
KR102265808B1 (en) 2012-12-21 2021-06-16 코리움, 인크. Microarray for delivery of therapeutic agent and methods of use
US10646702B2 (en) 2013-01-21 2020-05-12 Paean Aesthetics Inc. Microneedle, mould for producing same, and production method for same
CN103157178B (en) * 2013-02-05 2014-12-31 北京化工大学 Seal type tool capable of accurately controlling microneedle insertion length
JP6487899B2 (en) 2013-03-12 2019-03-20 コリウム インターナショナル, インコーポレイテッド Microprojection applicator
EP4194028A1 (en) 2013-03-15 2023-06-14 Corium Pharma Solutions, Inc. Multiple impact microprojection applicators
MX2015012933A (en) 2013-03-15 2016-09-19 Corium Int Inc Microarray for delivery of therapeutic agent and methods of use.
AU2014233541B2 (en) 2013-03-15 2018-11-22 Corium Pharma Solutions, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
JP2016514133A (en) 2013-03-15 2016-05-19 コリウム インターナショナル, インコーポレイテッド MICROARRAY CONTAINING FINE STRUCTURE CONTAINING NO POLYMER, MANUFACTURING METHOD AND USE METHOD
US20150038897A1 (en) 2013-07-30 2015-02-05 Zosano Pharma, Inc. Low-Profile Microneedle Patch Applicator
US9987427B1 (en) 2014-06-24 2018-06-05 National Technology & Engineering Solutions Of Sandia, Llc Diagnostic/drug delivery “sense-respond” devices, systems, and uses thereof
EP2974758A1 (en) * 2014-07-15 2016-01-20 LTS LOHMANN Therapie-Systeme AG Cylinder-piston unit with cannulas
EP3188714A1 (en) 2014-09-04 2017-07-12 Corium International, Inc. Microstructure array, methods of making, and methods of use
JP5967595B2 (en) * 2014-09-08 2016-08-10 株式会社かいわ Puncture device
NL2013654B1 (en) * 2014-10-20 2016-08-11 Helène Tamara Witteman Amber Portable injection device for portable attachment to a body part, for injecting a drug through the skin of the body part in a wearable condition.
JP6906885B2 (en) 2014-11-14 2021-07-21 ロレアル Microneedle sheet to reduce wrinkles
CN104307098B (en) * 2014-11-15 2016-09-07 唐晨 Micropin doser and manufacture method thereof
JP6622818B2 (en) * 2014-12-16 2019-12-18 チュビック インコーポレイテッドJuvic Inc. Fine room microstructure and manufacturing method thereof
WO2016132996A1 (en) * 2015-02-16 2016-08-25 凸版印刷株式会社 Microneedle
CN111643804B (en) * 2015-03-18 2022-07-19 凸版印刷株式会社 Medicament administration device
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
KR102206955B1 (en) * 2016-01-28 2021-01-25 가부시키가이샤 리코 Microneedle Array and Microneedle Sheet
JP2017176652A (en) * 2016-03-31 2017-10-05 花王株式会社 Minute hollow projection tool
CN105963855A (en) * 2016-06-22 2016-09-28 成都市亿泰科技有限公司 Microneedle drug delivery patch containing separable drug capsule
CN105999533B (en) * 2016-06-30 2022-01-25 山东中医药大学附属医院 Medicine sandwich application bag
US11045142B1 (en) 2017-04-29 2021-06-29 Biolinq, Inc. Heterogeneous integration of silicon-fabricated solid microneedle sensors and CMOS circuitry
US20210128897A1 (en) * 2017-08-17 2021-05-06 New York University Bone growth stimulator and methods of use
TWI657842B (en) * 2017-10-27 2019-05-01 研能科技股份有限公司 Liquid supplying device for human insulin injection
TWI666036B (en) * 2017-10-27 2019-07-21 研能科技股份有限公司 Wearable liquid supplying device for human insulin injection
TWI656893B (en) * 2017-10-27 2019-04-21 研能科技股份有限公司 Wearable liquid supplying device for human insulin injection
WO2019136133A1 (en) * 2018-01-03 2019-07-11 The Trustees Of Columbia University In The City Of New York Microneedle for local delivery of therapeutic agent
JP7305311B2 (en) 2018-05-30 2023-07-10 ロレアル microneedle sheet
JP2020002084A (en) 2018-06-29 2020-01-09 ロレアル Cosmetic process using microneedle sheet
JP7335061B2 (en) 2018-06-29 2023-08-29 ロレアル Beauty method using microneedle sheet
JP2020018327A (en) 2018-07-17 2020-02-06 ロレアル Microneedle sheet
JP2020099513A (en) 2018-12-21 2020-07-02 ロレアル Kit and cosmetic process using microneedle sheet
WO2020188484A1 (en) * 2019-03-19 2020-09-24 King Abdullah University Of Science And Technology Miniaturized delivery system and method
CN110478613B (en) 2019-08-22 2022-08-09 京东方科技集团股份有限公司 Device for delivering a formulation, apparatus and method of making a needle array in a device
JP2021094146A (en) 2019-12-16 2021-06-24 ロレアル Cosmetic method using microneedle sheet
JP2023514926A (en) * 2019-12-20 2023-04-12 アレス トレーディング ソシエテ アノニム Microneedle array, actuator and usage
EP3854375A1 (en) 2020-01-23 2021-07-28 Paean Aesthetics Inc Micro-spicule composition to control its shape and method for producing the same
FR3113843B1 (en) 2020-09-07 2024-03-15 Oreal KIT AND COSMETIC TREATMENT USING A MICRO-NEEDLE SHEET
CN115551584A (en) 2020-06-17 2022-12-30 莱雅公司 Kit and cosmetic method using microneedle sheet
DK4048152T3 (en) 2020-07-29 2024-03-11 Biolinq Incorporated SYSTEM FOR CONTINUOUS ANALYTE MONITORING WITH MICRON NEEDLE ARRANGEMENT
DE102020133395A1 (en) 2020-12-14 2022-06-15 Lts Lohmann Therapie-Systeme Ag. drug delivery system
WO2022240700A1 (en) 2021-05-08 2022-11-17 Biolinq Incorporated Fault detection for microneedle array based continuous analyte monitoring device
FR3135206A1 (en) 2022-05-05 2023-11-10 L'oreal Cosmetic process using microneedle sheet
FR3139007A1 (en) 2022-08-23 2024-03-01 L'oreal COMPOSITION SUITABLE FOR COSMETIC TREATMENTS OF KERATINOUS SUBSTANCE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964482A (en) * 1971-05-17 1976-06-22 Alza Corporation Drug delivery device
US4622031A (en) * 1983-08-18 1986-11-11 Drug Delivery Systems Inc. Indicator for electrophoretic transcutaneous drug delivery device
GB2221394B (en) * 1988-08-05 1992-03-04 Eilert Eilertsen An injection device
CA2149836C (en) * 1994-05-23 1999-07-06 Sang Bae Choi Perforating device for dermal administration

Also Published As

Publication number Publication date
NO316313B1 (en) 2004-01-12
HU222342B1 (en) 2003-06-28
SK4998A3 (en) 1998-09-09
UA62918C2 (en) 2004-01-15
ES2163035T3 (en) 2002-01-16
NO980147L (en) 1998-03-13
DE19525607A1 (en) 1997-01-16
ZA965931B (en) 1998-03-12
CN1183979C (en) 2005-01-12
EP0840634A1 (en) 1998-05-13
NZ313984A (en) 2000-04-28
ATE207769T1 (en) 2001-11-15
NO980147D0 (en) 1998-01-13
PL324530A1 (en) 1998-06-08
UY24277A1 (en) 1996-12-31
EE04006B1 (en) 2003-04-15
DE59608081D1 (en) 2001-12-06
JPH11509123A (en) 1999-08-17
AU722943B2 (en) 2000-08-17
TW375528B (en) 1999-12-01
WO1997003718A1 (en) 1997-02-06
EP0840634B1 (en) 2001-10-31
HUP9802773A3 (en) 2000-06-28
RU2209640C2 (en) 2003-08-10
MX9800401A (en) 1998-04-30
BR9609796A (en) 1999-03-16
CZ290458B6 (en) 2002-07-17
SK284358B6 (en) 2005-02-04
AU6656796A (en) 1997-02-18
CO4700491A1 (en) 1998-12-29
DK0840634T3 (en) 2002-02-18
PL181658B1 (en) 2001-08-31
EE9800025A (en) 1998-08-17
KR100430703B1 (en) 2004-07-22
HUP9802773A2 (en) 1999-06-28
KR19990028966A (en) 1999-04-15
PT840634E (en) 2002-02-28
CN1190904A (en) 1998-08-19
RO118738B1 (en) 2003-10-30
HK1010844A1 (en) 1999-07-02
IL122907A0 (en) 1998-08-16
AR004499A1 (en) 1998-12-16
BG102200A (en) 1998-08-31
TR199800048T1 (en) 1998-04-21
CZ11898A3 (en) 1998-06-17
BG63142B1 (en) 2001-05-31
US6132755A (en) 2000-10-17
CA2226718A1 (en) 1997-02-06

Similar Documents

Publication Publication Date Title
CA2226718C (en) Transcorneal drug-release system
MXPA98000401A (en) Transcorneal medication release system
US9302903B2 (en) Microneedle devices and production thereof
Herrlich et al. Osmotic micropumps for drug delivery
Stevenson et al. Reservoir-based drug delivery systems utilizing microtechnology
US7115108B2 (en) Method and device for intradermally delivering a substance
EP1590034B1 (en) Microneedle array patch
CN107660138B (en) Microneedle system for delivering liquid formulations and method for manufacturing microneedle system
JP2006524120A (en) Apparatus and method for repetitively delivering drug by microjet
Nuxoll et al. BioMEMS devices for drug delivery
Gurman et al. Clinical applications of biomedical microdevices for controlled drug delivery
CA2606885C (en) Micro-pin for a drug-release system
WO2017027376A1 (en) Subcutaneous drug delivery device with manual activation and deactivation of drug release
Forouzandeh et al. A modular microreservoir for active implantable drug delivery
Vachhani et al. Microchip as a Controlled Drug Delivery Device
AU2002253812A1 (en) Microneedle devices and production thereof

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20160715