CA2203044A1 - Rail track surface structure - Google Patents

Rail track surface structure

Info

Publication number
CA2203044A1
CA2203044A1 CA 2203044 CA2203044A CA2203044A1 CA 2203044 A1 CA2203044 A1 CA 2203044A1 CA 2203044 CA2203044 CA 2203044 CA 2203044 A CA2203044 A CA 2203044A CA 2203044 A1 CA2203044 A1 CA 2203044A1
Authority
CA
Canada
Prior art keywords
rail
insert member
sealingly
track
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2203044
Other languages
French (fr)
Inventor
John K. Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CA 2203044 priority Critical patent/CA2203044A1/en
Publication of CA2203044A1 publication Critical patent/CA2203044A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B21/00Track superstructure adapted for tramways in paved streets
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2204/00Characteristics of the track and its foundations
    • E01B2204/11Embedded tracks, using prefab elements or injecting or pouring a curable material

Abstract

Rail track insert assembly for use between rails and adjacent road surfaces in a road-level rail bed comprising a first resiliently flexible elongate insert member contoured to and sealingly engaging with each of the rail-side and guage-side of each of the rails and a second rigid panel member sealingly engaging with each of the first rail insert members at a planar generally vertical or moderately canted slip plane at their interface, to accomodate vertical movement of the rail in response to the passage of rail car wheels, while sealing against intrusion of surface water and detritus. An elongated channel defined in the under surface of each of the insert members accomodates rail clips securing the rail to the underlying track bed.

Description

TO ALL WHOM IT MAY CONCERN:

BE IT KNOWN that JOHN K. MARTIN, a Canadian citizen, residing in the City of Calgary, Province of Alberta, Canada, has invented certain new and useful improvements in:

RAIL TRACK SURFACE STRUCTURE

and do hereby declare that the following is a full, clear and exact description of the invention such as will enable those skilled in the art to which it appertains to make and use the same.

RAIL TRACK SURFACE STRUCTURE
BACKGROUND OF THE INVENTION

The invention relates to rail track surface structures and more particularly to a new and improved rail track surface structure employing closure inserts between each side of the rails and adjacent road surfaces, In rail track construction, it is frequently necessary to align the rail head with adjacent road surfaces.
In heavy weight rallway trackage, this occurs at level crossings, where vehicular roadways intersect railway trackage, and in light rail trackage in urban areas where street surfaces are aligned with rail head levels to facilitate pedestrian and vehicular movement.
Rails employed in both railway and light rail urban transport include a base, a vertical web, and a head portion;
each pair of rails forming a track having inner sides designated "gauge" sides, facing each other, and outer sides designated "field" sides.
Rail design conventionally employed in railway trackage uses a T-rail section, generally symmetrical in cross-section, in which the flange of the railway wheel laterally engages the gauge side of the head portion of the rail, with no underlying engagement of the flange. However, for light rail transportation such as in typical urban light rail transportation systems, a girder-rail section is being increasingly employed, in which a flangeway is formed integrally in a gauge side lateral extension of the head of the rail, to accommodate the downwardly depending flange of the railcar wheel, the upstanding leg of the rail head so defining the flangeway then engaging the road surface between the rails to accommodate vehicular and pedestrian traffic.
It is with each of these rail designs that the present invention is concerned, as will be apparent as this disclosure proceeds.

Considerable effort and ingenuity has heretofore been displayed to improve rail track surface structures to reduce maintenance at the lnterface between rail and adjacent road surface.
Degradation of the structure results from water and solid particulate foreign matter ("detritus") intrusion adjacent the rails, which passes downwardly to the rail bed, causing deterioration of the structure and frequent maintenance, A further problem resulting from unwanted water intrusion into the rail bed results from the breakdown in the electrical insulation normally existing between the metal rail and the ground. In this regard, the rails are frequently employed as conductors of low-voltage currents used in signalling, or in applications of light rail transport in which the locomotive is electrically powered, the rail functioning as a conductor in the power circuit. Negative consequences result in stray currents escaping from the metal into surrounding structures or the ground, when water is permitted to intrude into the rail bed. The problem of water intrusion into the rail bed is further aggravated when dissolved road salts, entrained in the surface water, reach the metal in the rail bed, resulting in costly corrosion.
Conventionally, rail track surface structures have employed resilient electrically nonconductive inserts adapted for insertion in the space defined on both gauge and field sides of the rail members between the rails and the adjacent road surfaces, the purpose of which has been to attempt to seal the adjacent rail members from water and detritus while permitting the use of conventional asphalt materials between and against adjacent rails, on the gauge sides and field sides thereof, respectively. Typical of such level crossing inserts are those shown in U.S. Pat. Nos. 4,461,421 to Maass;
4,899,933 to Martin and 3,469,783 to Uralli, each of which discloses a railway crossing insert of resilient material, resting on the base of the rail, cooperating with the rail on the one side, and interfacing with the adjacent road surface on the other side.
Much of the sealing problem is occasioned by the necessary provision for accommodation of downward flexing of the rail and track bed consequent on the passage of heavy rail loadings from rail traffic. Such deflections are unavoidable and normally are of the order of several millimetres, which movement is largely manifest at the interface between the insert and the adjacent road surface, the insert itself moving with the rail. This rail and insert movement, however, is attendant with negative consequences, due to spalling, crumbling and cracking of the asphalt material on the adjacent road surface where it interfaces with the insert, requiring maintenance and restoration of the road surface.
Other problems in rail track surface structure insert design arise due to the necessity of providing sufficient support to the insert to stand up under automobile and truck traffic passing over the road level railway, causing such seals to break down.
It will be understood by those familiar with modern track construction, and particularly with light urban transit track, that tracks are frequently laid on a rail bed comprising steel track plates laid on concrete slabs, with electrical insulation between the base of the rail and the track plate; heavy rubber extrusions are usual for such purpose.
In such rail bed construction, known as "Direct Fixation", the track plates are secured to the concrete slab by electrically insulated hold-down bolts set in the concrete slab; rail clips of the Pandrol (trademark) or similar type, flexibly secure the rail to the track plates underlying the electrical insulation, under downward spring biasing.
Further attention to insert design has been directed to modification of the bottom surface of the insert in order to accommodate such flexible rail clips used to secure the rail to the underlying track plates. Typical of such designs are those shown in U.S. Pat. Nos. 4,606,498 to Grant and 4,899,933 to Martin, each of which discloses means of relieving the undersurface of the insert adjacent the rail clips, thereby to form a chamber in order to accommodate the rail clips.
It will be recognized that the rail space between the rail members and the adjacent road surface will, in cross-section, be generally that of a truncated pyramid, having stepped sides, so dictated by the practical considerations of minimizing the width of the rail space at its top surface where exposure to surface traffic occurs, and increasing the width of the rail space at its bottom surface to accommodate the width of the rail base and rail securing clips. This generally truncated pyramidal cross-sectional shape dictates the design of the track surface structure insert assembly.
It is the object of the present invention to address and overcome each of these problems by providing a rail track surface structure for use in direct fixation track construction comprising insert members which adapt to both T-rail and girder rails, and accommodate vertical flexing of therail relative to the adjacent road surface without resulting degradation of the adjacent road surface, while continuing to seal against the intrusion of water and solid detritus into the rail bed.

SU~ RY OF THE INVENTION
Accordingly, the present invention comprises a rail track surface structure insert assembly comprising electrically non-conductive and flexible rail-engaging sealing members for insertion on each of the gauge side and field side of the rail, in combination with cooperating rigid panels interfacing with the rail-engaging members. In the preferred embodiment, each insert assembly comprises a longitudinally extending first rail insert member sealingly registering with and contoured to fit against the head, web and base of the rail on each of its field side and gauge side and a longitudinally extending second insert member operatively interfacing with each of the first rail insert members at a generally vertical slippage plane formed therewith, while sealingly registering and interfacing with the adjacent road surface.
Each first rail insert member is extruded or moulded to a cross-sectional profile having a rail-engaging surface conforming to the adjacent surface of an adjacent rail, and an outer generally vertical planar surface registering with a corresponding planar surface of a cooperating second insert member, thereby defining a slip plane to permit relative movement of the first rail insert member with the second insert member consequent on the flexing of the a adjacent track rail when under rolling load.
Unlike the prior seals of this type, the present seal assembly provides a sealing system which permits flexing of the rail by accommodating relative movement of the first rail insert member against the second insert member along a slip plane defined at their vertical planar interface, without disengagement or relative movement of the second insert member with the adjacent road surface, while spacially accommodating the underlying rail clips.
In the preferred embodiment the second insert member comprises a panel member in the configuration of a rectangular prism having a planar edge surface registering with the corresponding planar edge surface of the cooperating first rail insert member, thereby to define a slip plane at their generally vertical planar interface in order to accommodate flexing of the rail. Such panel members may be pre-cast, to rest directly on the underlying rail bed, without any additional or third support means, and will form a major portion of the road surface adjacent the rail track.
In a second embodiment intended primarily for rail crossing installations, the slip plane of the second embodiment is modestly canted off vertical, downwardly and outwardly from the adjacent rail by approximately 5~, thereby to create a wedging action between the first rail insert member and the panel member at the slip plane on rebound of the rail upon its unloading, in order to promote tight engagement of the first rail insert member and the panel member.
BRIEF DESCRIPTION OF THE DRAWINGS
The novel features believed to be characteristic of this invention are set forth with particularity in the appended claims. The invention itself, both as to its organization and method of operation, together with further objects and advantages therof, may best be understood by reference to the following description taken in connection with the accompanying drawings in which:
FIG. 1 is a perspective view of a grade crossing according to the invention, the rails being of girder rail section;
FIG. 2 is an enlarged cross-sectional view in elevation taken along line 2-2 of FIG. 1;
FIG. 3 is a partial enlarged cross-sectional view in elevation taken along line 3-3 of FIG. 1;
FIG. 4 is a partial enlarged cross-sectional view in elevation taken along line 4-4 of FIG. 1;
FIG. 5 is a perspective view of the first rail insert members for use in the structure depicted in FIGS. 1 through 4;
FIG. 6 is an enlarged partial cross-sectional view in elevation depicting the insert assemblies of this invention used with a T-rail;
FIG. 7 is a partial enlarged cross-sectional view in elevation corresponding to the view of FIG. 3, depicting the second embodiment of the invention, in use with a T-rail.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
As depicted in FIG. 1, the intersection of a railway track 10, having a pair of steel rails 11, 11' intersects with a vehicular road 12.

The road 12 adjacent the track 10 is normally comprised of a rock base 13 on top of a subgrade 14 and a finish layer 15 which may be asphalt or concrete. Such a road construction on the field sides of the rails, FIG. 1, accommodates the insert assembly of this invention. Normally, the road surface will extend as closely as possible towards the adjacent rail, in order to expose the maximum of road surface to vehicular traffic.
Rails 11, 11' are supported on a sub-structure of which the base is concrete ties or a concrete slab, depicted at 17, into which are set hold-down bolt assemblies 18, depicted in detail in FIGS. 2 and 3.
Track plates 19, drilled to accommodate the hold-down bolts 18, rest on the concrete slab or ties, 17, and elastomeric pads 20, underlying the bottom flange 23 of the rails 11, 11' electrically insulate the metal rails from the ground. Pandrol (trademark) rail clips 22 secure the rails 11, 11' to the track plates 19 by engagement with the bottom flange 23 of the rails as depicted in FIGS. 2 and 3.
The rails 11, 11' of FIGS. 1, 2 and 3 are of the girder-type, having a flangeway 24 formed on the rail head 25 on its gauge side 26 opposed by its field side 27. It will be understood that the flangeway 24 accommodates the dowwardly depending flange of a railway wheel, not shown.
In FIGS. 2 and 3 may be seen the details of the profile of the insert members of a first preferred embodiment of this invention. Proceeding to describe the insert members in detail, reference will first be made to the pair of insert members abutting the rail, designated 30 and 40 respectively in FIGS. 2 and 3 which are designated herein as first rail insert members, one of which, designated 30, is contoured and dimensioned to abut the field side 27 of the associated rail member, and is referred to in this disclosure as the "field side first rail insert member", and the other of which is designated 40 and is referred to as the "gauge side first rail insert member". The field side first rail insert member 30, is formed having a rail engaging profile 31 on its rail side contoured and dimensioned to bear against the field side 27 of the ad]acent rail 11, having a top surface 32, a side surface 33 contoured to fit snugly against the field side of the rail 11, and a bottom surface 34 contoured to rest on the horizontally extending bottom flange 23 of the rail.
The gauge side first rail insert member 40 is similarly profiled on its rail side to bear against the outwardly extending flangeway on the gauge side of the rail, as depicted in FIG. 3.
The field side 35 of the field side first rail insert member 30 and the gauge side 35 of the gauge side first rail insert member 40 are each provided with a planar vertical surface 36, 36' respectively in FIGS. 2 and 3, which engages with a registering surface of the second insert member, as will be hereinafter explained as this description proceeds.
A recess 37, FIGS. 3 and 4, formed on the lower outside corner 38 of each of the first rail insert members 30, 40, forms a longitudinal channel in the first rail insert member to accommodate the rail clip 22, in overlying relationship.
The gauge side first rail insert member 40, FIGS. 2, 3 and 4 is contoured and dimensioned at its top surface 41 to register with the outwardly extending flange 24 on the gauge side 26 of the rail 11. Otherwise, the flange side first rail insert member 40 in the embodiment for usage with the girder rail, is a mirror image in cross-section to the field side first rail insert member 30, heretofore described in detail.
Having thus described the first rail insert member of the preferred embodiment of this invention designed for a girder-type rail, attention will now be directed to a similar type ofassembly for a T-type rail, for which reference is further made to FIG. 6. Since the T-rail is symmetrical in cross-section, the first rail insert member generally designated 130, 140, heretofore described in detail, will be similar in mirror image on the field side and the gauge side, except for the gauge recess 160, formed on the gauge side of the first rail insert member 140 to accommodate the wheel flange of a rail car, not depicted.
Turning now to a description of the second insert member of the preferred embodiment of the invention, depicted in the accompanying drawings, the first rail insert members 30, 40, interface at their respective planar vertical faces 36, 36', FIGS. 3 and 4, with the planar vertical faces 51 of a pair of panels generally designated 50, thereby defining the vertical slip planes designated A and B accommodating flexing movement of the rails and the cooperating first rail insert members 30, 40. Each of the panel members 50 will provide a major portion of the track road surface and is configured at its inward rail-facing edge in profile to accommodate the rail clip 22 in cooperation with the recess 37 of the first insert member 30, 40, by defining a longitudinally-extending channel therefor, as described. At its bottom surface 54, the second insert member 60 rests on the rail tie or rail bed slab 17, as depicted in FIGS. 1, 2 and 3, and at its rail-facing vertical planar surface 55 will register in closely engaging interfacing relationship with the planar vertical surface 36 of the first rail insert members 30 and 40, respectively, to define slippage planes A and B.
It will be understood that in order to permit free flexing movement of the first rail insert members 30, 40, relative to and against the second insert members, the planar generally vertical faces of the second insert members must present a relatively smooth non-frangible surface at the slip planes A and B.
In a modification of the second insert members primarily intended for rail crossing installations, the generally vertical slip planes A on the gauge sides of each of the rails 11, 11', are inclined downwardly and outwardly away from the adjacent rail at an angle of approximately 5~ to the vertical, as depicted in FIG. 7, thereby to create a wedging action between the panel member and the adjacent first rail insert member 60 during installation and also upon rebound of the rail and first rail insert member following passage of the train and the consequent unloading of the rail. This wedging action functions to promote tight engagement of the first rail insert member with the adjacent stationary panel between the rails 11, 11' FIG. 1, which is enhanced during installation of the structure by horizontal compression of the first rail insert member against the adjacent rail.
As depicted in FIG. 7, the wedging of the lateral surface edges of the second insert member into compressive engagement with the first rail insert member is restricted in practice to the gauge side of each of the rails 11, 11' where a road surface panel is installed between the rails. Such is because of the practical difficulty in exerting compressive engagement of a field side second insert member on the field side of the rail; weighted mechanical equipment can readily load the second insert member as a center panel into downward wedging engagement between the rigidly fixed rails and gauge side first rail insert members, while on the field side, normally lacking in any rigid abutment facing the rail, wedging is impractical, and therefore a vertical interface B is depicted in FIG. 7.
The benefit of the embodiment of the invention including the inclined interface as depicted in FIG. 7 is manifest both in imbedded light rail trackage and in railroad grade crossing installations. In imbedded light rail track installations, vertical movement of the rail consequent on the loading/unloading thereof is minimal, since the rail bed is normally laid on concrete ties or similar rigid base structure laterally spanning the rails and extending generously beyond into the field sides.
In such imbedded track installations, the second rail insert member being vertically supported by the same rigid tie or base, relative vertical movement at the slip plane of the first and second rail insert members will be minimal.
Conversely, with railroad grade crossing installations, where a motor vehicle road crosses the railroad with a center panel spanning between the rails, movement of the rail and its associated first rail insert member relative to the second insert member comprising a center panel at the slip plane results from the "pumping" action of the rail under intermittent loading.
Nevertheless, the advantage resulting from the minor inclination of the interface between the first rail insert member and the second rail insert member registering therewith, is significant in both cases: in the first case referred to, with imbedded trackage and limited relative movement at the interface, the wedging of the panel constituting the second rail insert member, with the first rail insert member results in more effective sealing at the interface consequent on the compression during installation of the resilient first rail insert member against the adjacent rail surface. And in the second case referred to, with railroad grade crossing and greater relative movement at the interface, the inclined interface will accommodate relative downward movement of the rail and first rail insert member under rail loading while maintaining some compression against the second rail insert member, and upon unloading of the rail upward movement of the rail and first rail insert member will result in complete recompression against the second rail insert member at the inclined interface, thereby completely and effectively resealing the insert assembly.
In installation, each first rail insert member is positioned against the corresponding lateral surface of the associated rail 11, 11', following which the second insert members are then placed snugly against each of the first insert members, compressing its interfacing engagement at its vertical planar surface with the vertical planar surface of the registering first rail insert member. The upper surface of the first rail insert member, the upper surface of the second insert member and the adjacent asphalt road surface on each of the field side and the flange side of the rail are substantially even and level with the upper surface of the rail head 11 so as to present a uniform surface to vehicles and pedestrian traffic.
Downward deflection of the rails 11, 11' resulting from railway car loading will be accommodated by slippage movement of the planar surface 36 of the rail insert members 30, 40 against the associated and registering planar surfaces of the adjacent second insert members 50, at the slip planes A and B, FIGS. 3 and 4. Subsequent unloading of the rail following passage of the railway car, permits the realignment of the first rail insert members at their upper surfaces in level engagement with the upper surface of the second insert members.
Thus, with the assembly of this invention as depicted and described vertical deflection movement of the rail is confined to the interface between the first rail insert member and the second insert member, rather than the interface with the adjacent road surface. In this manner, the likelihood of crumbling, cracking and spalling of the road surface at its rail-facing edge is minimized or eliminated.
The close engagement of the planar edge surface of the first rail insert members with the corresponding planar edge surface of the associated second insert members, prevents the intrusion of water and detritus into the underlying rail bed.
The second insert members, when formed as road surface panels, of convenient rectangular configuration, may be either preformed of concrete, or of poured-in-place concrete with suitable concrete forms to define the rail-facing edge surfaces described, and may be installed in rail trackage on the gauge side of each rail between members of a pair of rails or on the field side of rail members.
The first rail insert members may be readily and economically formed by extrusion of comminuted used rubber stock obtained from discarded automobile tires, producing an elastomeric material having a Shore durometer rating of between about 65 and 70. Other non-rigid high molecular weight materials may alternatively be used, such as polyurethane, having good impact strength and resistance to abrasion, low coefficient of thermal expansion and chemical resistance, with high electrical insulating properties.
It will, of course, be understood that the insert assembly of this invention has application in both rail level grade crossings and in urban installation of light rail transit, where extensive sections of track are laid in street surfaces also used by motor vehicle and pedestrian traffic.
While the invention has been described with respect to certain specific embodiments, it will be appreciated that many modifications and changes may be made by those skilled in the art without departing from the spirit of the invention. It is intended, therefore, by the appended claims to cover such modifications and changes as fall within the true spirit and scope of the invention.

Claims (16)

1. A rail track surface structure insert assembly for use in the space defined between a track rail and an adjacent road surface, wherein said rail is secured to a rail bed by rail clips, and comprises a rail head, rail base and an intermediate web connecting said rail head and the rail base and having a gauge side and a field side, said insert assembly comprising, in combination:
a longitudinally extending resiliently flexible first rail insert member having a top surface, a bottom surface, a rail-engaging side surface and an opposite side surface, said top surface adapted to lie in the general plane of the top surface of said rail head; said bottom surface sealingly registering with the upper surface of the base of said rail;
said rail engaging side surface contoured to sealingly register on a major portion thereof with said web of said rail and on a minor portion thereof to sealingly register with the side of the head of said rail; said opposite side surface including a generally vertical planar surface when the first rail insert member is installed in registering contact with said rail;
a longitudinally extending second rail insert member having a top surface, a bottom surface, a road surface-engaging side surface and an opposite side surface, said top surface adapted to lie in said general plane of the top surface of said rail head when installed in registering contact with said first rail insert member; said bottom surface sealingly registering with the underlying rail bed;
said road surface-engaging side surface adapted to fixedly and sealingly register with said adjacent road surface; and said opposite side surface including a vertical planar surface adapted to sealingly register with said vertical planar surface of said first rail insert member, thereby to provide a slip plane to accommodate relative movement of said first rail insert member with said second insert member consequent on the vertical flexing movement of said first rail insert member and said adjacent track rail in fixed registration therewith.
2. The rail track surface structure insert assembly of Claim 1 wherein each member of a pair of said first rail insert members registers with said track rail on the opposing gauge side and field side thereof, and wherein each member of a pair of said second rail insert members interfaces with a first rail insert member and registers with an adjacent road surface on the gauge side and the field side thereof respectively, of said track rail.
3. The rail track surface structure insert assembly of Claim 1 for use with a girder rail having a laterally extending rail car wheel flangeway wherein the gauge side of the gauge side first rail insert member is recessed to accommodate the laterally extending flangeway on said rail.
4. The rail track surface structure insert assembly of Claim 1 in which the bottom surface of each of said first rail insert member and said second rail insert member is recessed to define a longitudinally extending chamber adapted to accommodate the rail clips securing the rail to the rail bed when said first and second insert members are installed in the space defined between the track rail and adjacent road surfaces.
5. The rail track surface structure of Claim 1 in which the second rail insert member comprises a panel in the configuration of a rectangular prism forming a major portion of the road surface adjacent the rail track.
6. The rail track surface structure insert assembly of Claim 5 in which the second rail insert member comprises a panel including a planar road surface adapted to lie in the general plane of the top surface of the rail head when installed in registering contact with said first rail insert member; and a planar bottom surface registering with the underlying rail bed.
7. A rail track surface structure insert assembly for use in the space defined between a track rail and an adjacent road surface, wherein said rail is secured to a rail bed by rail clips, and comprises a rail head, rail base, and an intermediate web connecting said rail head and the rail base and having a gauge side and a field side, said insert assembly comprising, in combination:
~ a longitudinally extending resiliently flexible first rail insert member having a top surface, a bottom surface, a rail-engaging side surface and an opposite side surface, said top surface adapted to lie in the general plane of the top surface of said rail head; said bottom surface sealingly registering with the upper surface of the base of said rail;
said rail-engaging side surface contoured to sealingly register on a major portion thereof with said web of said rail and on a minor portion thereof to sealingly register with the side of the head of said rail; said opposite side surface including a generally vertical planar surface when the first rail insert member is installed in registering contact with said rail;
~ a longitudinally extending second rail insert member adapted to cooperate and interface with said first rail insert member and fixedly to register with the adjacent road surface, including:
~ a top surface adapted to lie in the general plane of the top surface of the rail head;
~ a road surface-engaging side surface adapted fixedly and sealingly to register with said adjacent road surface;
~ an opposite side surface including a vertical planar surface adapted to sealingly and snugly register with said vertical planar surface of said first rail insert member;
~ a bottom surface adapted to sealingly rest on the underlying rail bed;
said second rail insert member including recess means whereby an inclined lower portion of said second rail insert member inclines downwardly and outwardly from said rail when installed in said space in order to define a longitudinally extending space adapted to accommodate a plurality of rail clips securing the rail to the rail bed.
8. In a rail track surface structure for use with a rail track comprising a pair of rails supported by and secured by rail clips to an underlying rail bed, each of said rails having an inwardly facing gauge side and an outwardly facing field side and a rail head, a base and an interconnecting web;
an adjacent road surface on each of said field sides of said rails and an intermediate gauge side road surface spanning between the gauge sides of said rails, all generally level with the top of said pair of rails; a space defined between each of the field side and the gauge side of each of said rails and the adjacent road surfaces; the rail track surface structure comprising, on each side of each of said rails, in combination:
~ a longitudinally extending resiliently flexible first rail insert member having a top surface lying in the plane of the top of said pair of rails; a bottom surface sealingly registering with the upper surface of the base of said rail; a rail-engaging side contoured to sealingly register with the side of the head of said rail; and an opposite side surface including a generally vertical planar surface when the first rail insert member is installed in registering contact with said rail;
~ a longitudinally extending second rail insert member having a top surface, a bottom surface, a road surface-engaging side surface and an opposite side surface, said top surface adapted to lie in said general plane of the top surface of said pair of rails when the first rail insert member is installed in registering contact with said first rail insert member; said bottom surface sealingly registering with the underlying rail bed; said road surface-engaging side surface adapted to fixedly and sealingly register with said adjacent road surface; and said opposite side surface including a generally vertical planar surface adapted to sealingly register with said generally vertical planar surface of said first rail insert member, thereby to provide a slip plane to accommodate relative movement of said first rail insert member with said second rail insert member and said adjacent rail in fixed registration therewith.
9. In a rail track surface structure for use with a rail track comprising a pair of rails supported by and secured by rail clips to an underlying rail bed, each of said rails having an inwardly facing gauge side and an outwardly facing field side and a rail head, a base and an interconnecting web;
an adjacent road surface on each of said field sides of said rails and an intermediate flange side road surface spanning between the gauge sides of said rails, all generally level with the plane of the top of said pair of rails; a space defined between each of the field side and the gauge side of each of said rails and the adjacent road surfaces; the rail track surface structure comprising, on each side of each of said rails, in combination:
~ a longitudinally extending resiliently flexible first rail insert member having a top surface lying in the plane of the top of said pair of rails; a bottom surface sealingly registering with the upper surface of the base of said rail; a rail-engaging side contoured to sealingly register with the side of the head of said rail; and an opposite side surface including a generally vertical planar surface when the first rail insert member is installed in registering contact with said rail;
~ a longitudinally extending second rail insert member adapted to cooperate and interface with said first rail insert member and fixedly to register with the adjacent road surface, including:
~ a top surface adapted to lie in the general plane of the top surface of the rail head;
~ a road surface-engaging side surface adapted fixedly and sealingly to register with said adjacent road surface;

~ an opposite side surface including a generally vertical planar surface adapted to sealingly and snugly register with said generally vertical planar surface of said first rail insert member when said second rail insert member is installed in registering contact with said first rail insert member;
~ a bottom surface adapted to sealingly rest on the underlying rail bed;
said second rail insert member including recess means whereby an inclined lower portion of said second rail insert member inclines downwardly and outwardly from said rail when installed in said space in order to define a longitudinally extending space adapted to accommodate a plurality of rail clips securing the rail to the rail bed.
10. A rail track surface structure insert assembly for use on a rail bed wherein each of two rails defining a track are mounted on the rail bed between adjacent road surfaces each having rail-facing edges and wherein each of said rails is secured to the rail bed by rail clips and comprises a rail head, rail base and having a gauge side and a field side, the insert assembly comprising in combination:
~ a resiliently flexible first rail insert member extending longitudinally along the gauge side and the field side of each rail, each first rail insert member having top surface, a bottom surface, a rail-engaging side surface and an opposite side surface, said top surface adapted to lie in the general plane of the top surface of said rail head; said bottom surface sealingly registering with the upper surface of the base of said rail; said rail-engaging side surface contoured to sealingly register on a major portion thereof with said web of said rail and on a minor portion thereof to sealingly register with the side of the head of said rail;
said opposite side surface including a generally vertical planar surface when the first rail insert member is installed in registering contact with said rail;

~ a second rail insert member extending longitudinally along the rail-facing edge of each of said adjacent road surfaces, each second rail insert member having a top surface, a bottom surface, a road surface-engaging side surface and an opposite side surface, said top surface adapted to lie in the general plane of the top surface of said rail head when installed in registering contact with said first rail insert member; said bottom surface sealingly registering with the underlying rail bed; said road surface-engaging side surface adapted to fixedly and sealingly register with said adjacent road surface; and said opposite side surface including a generally vertical planar surface adapted to sealingly register with said generally vertical planar surface of said first rail insert member, thereby to provide a slip plane to accommodate relative movement of said first rail insert member with said second rail insert member consequent on the vertical flexing movement of said first rail insert member and said adjacent track rail in fixed registration therewith.
11. In a rail track surface structure insert assembly as in Claims 1 or 7, a longitudinally extending second rail insert member in the configuration of a rectangular panel having a top surface, a bottom surface, a road surface-engaging side surface and an opposite side surface, ~ said top surface adapted to lie in said general plane of the top surface of said rail head when installed in registering contact with said first rail insert member;
~ said bottom surfaces sealingly registering with the underlying rail bed;
~ said road surface-engaging surface adapted to fixedly and sealingly register with said adjacent road surface; and ~ said opposite side surface including a generally vertical planar surface adapted to sealingly register with said generally vertical planar surface of said first rail insert member, thereby to provide a slip plane to accommodate relative movement of said first rail insert member with said second insert member consequent on the vertical flexing movement of said first rail insert member and said adjacent track rail in fixed registration therewith.
12. In a rail track surface structure insert assembly as in Claim 1 or 7, a longitudinally extending first rail insert member having a top surface, a bottom surface, a rail-engaging side surface and an opposite side surface, ~ said top surface adapted to lie in the general plane of the top surface of said rail head when installed in registering contact with said rail, ~ said bottom surface sealingly registering with said rail base when installed in registering contact with said rail, ~ said rail-engaging side surface contoured to sealingly register on a major portion thereof with said web of said rail and on a minor portion thereof to sealingly register with the side of the head of said rail when installed in registering contact with said rail, ~ said opposite side surface including a generally vertical planar surface when the first rail insert member is installed in registering contact with said rail.
13. A rail track surface structure insert, as in Claim 12 in which the opposite side surface includes a planar surface inclined downwardly and outwardly away from the adjacent rail at a minor acute angle to the vertical when installed in operative engagement with said rail.
14. A rail track surface structure insert, as in Claim 11 in which the opposite side surface includes a planar surface inclined downwardly and outwardly away from the adjacent rail at a minor acute angle to the vertical when installed in operative engagement with said first rail insert member.
15. A rail track surface structure insert assembly as in Claims 5 or 6 in which the planar generally vertical surface of each of said first rail insert members and said panels are inclined downwardly and outwardly away from the adjacent rail at a minor angle to the vertical when installed in operative engagement with said rail, thereby to produce a compressive wedging of said panel against said first rail insert member.
16. The rail track surface structure of Claim 15 in which said minor angle is approximately 5 degrees.
CA 2203044 1997-04-18 1997-04-18 Rail track surface structure Abandoned CA2203044A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA 2203044 CA2203044A1 (en) 1997-04-18 1997-04-18 Rail track surface structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2203044 CA2203044A1 (en) 1997-04-18 1997-04-18 Rail track surface structure

Publications (1)

Publication Number Publication Date
CA2203044A1 true CA2203044A1 (en) 1998-10-18

Family

ID=4160462

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2203044 Abandoned CA2203044A1 (en) 1997-04-18 1997-04-18 Rail track surface structure

Country Status (1)

Country Link
CA (1) CA2203044A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3460125B1 (en) * 2017-09-26 2021-05-05 Süß, Joachim Railway track construction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3460125B1 (en) * 2017-09-26 2021-05-05 Süß, Joachim Railway track construction

Similar Documents

Publication Publication Date Title
US4793545A (en) Embedded track assembly
US5622312A (en) Rail track surface structure
US5181657A (en) Composite rubber/concrete railroad grade crossing system
CA1114345A (en) Arrangement by crossing between roads and railroads
US4899933A (en) Railway crossing insert
US6726116B2 (en) Railway crossing structure
CA2255943C (en) Covering level with rails for railway tracks
US4461421A (en) Railroad crossing structure
US6129288A (en) Railroad crossing panel filler
MXPA00011902A (en) Railway or tramway rail and rail fastening system.
US3866830A (en) Elastomeric railroad crossing structure
JPS6024244B2 (en) Railway crossing board
US4009827A (en) Flexible, resilient, and wear resistant railroad crossing structure
US6427925B1 (en) Prefabricated railway track system
US5988519A (en) Precast concrete curved grade crossing with restraining rail
US6415988B1 (en) Rail track surface structure
CA2203044A1 (en) Rail track surface structure
RU70900U1 (en) PREFABRICATED REINFORCED CONCRETE COVERING OF WAYS, LOCKERS (OPTIONS) AND REINFORCED CONCRETE PLATES FOR HIM
RU2001985C1 (en) Railway crossing
US1725410A (en) Railway-crossing pavement
KR101338375B1 (en) Railway and bridge
RU2676772C1 (en) Railway crossing
CN210657802U (en) Road bed
RU216666U1 (en) TRACK PLATE FOR INSTALLATION OF TRAMWAY TRACKS
CN219137268U (en) Ballast track structure

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead