CA2182811C - Method of manufacturing a corrugated metallic pipe and a tool for effecting same - Google Patents

Method of manufacturing a corrugated metallic pipe and a tool for effecting same Download PDF

Info

Publication number
CA2182811C
CA2182811C CA002182811A CA2182811A CA2182811C CA 2182811 C CA2182811 C CA 2182811C CA 002182811 A CA002182811 A CA 002182811A CA 2182811 A CA2182811 A CA 2182811A CA 2182811 C CA2182811 C CA 2182811C
Authority
CA
Canada
Prior art keywords
corrugation
pipe
mandrel
preformed
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002182811A
Other languages
French (fr)
Other versions
CA2182811A1 (en
Inventor
Christian Lutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Supervis
Original Assignee
Supervis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Supervis filed Critical Supervis
Publication of CA2182811A1 publication Critical patent/CA2182811A1/en
Application granted granted Critical
Publication of CA2182811C publication Critical patent/CA2182811C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D15/00Corrugating tubes
    • B21D15/04Corrugating tubes transversely, e.g. helically
    • B21D15/06Corrugating tubes transversely, e.g. helically annularly

Abstract

A method of manufacturing a corrugated metallic pipe, including inserting into a smooth cylindrical metallic pipe a first mandrel having an axially extending corrugation having a predetermined shape and height, and radially expanding the first mandrel against cheek means, which surrounds the pipe and has a corrugation at least approximately corresponding to the corrugation of the first mandrel, to provide a first preformed corrugation on the metallic pipe, thereafter, inserting into the pipe with the first preformed corrugation, a second mandrel having an outer diameter corresponding to an inner diameter of the first corrugation, thereafter, radially displacing into corrugation hollows disc-shaped, axially spaced from each other, jaws which surround the pipe with the first preformed corrugation, and axially displacing the jaws toward each other, effecting folding up of the first preformed corrugation to obtain a final predetermined corrugation of the pipe.

Description

BACRGROUND OF THE INVENTION

1. Field of the Invention The present invention relates to a method of manufacturing a corrugated metallic pipe and which includes providing a mandrel having an axially extending corrugation having a predetermined shape and height, and inserting the mandrel into a smooth cylindrical metallic pipe and radially expanding the mandrel against cheek means, which surrotnds the pipe and has a corrugation at least approximately corresponding to the corrugation of the mandrel, to provide a corrugation on the metallic pipe. The present invention also relates to a tool for effecting the above-described method.
2. Description of the Prior Art The prior art discloses a plurality of methods and tools for manufacturing corrugated metallic pipes. Such methods and tools are disclosed, e.g., in German patents Nos.
3,035,234; 2,851,944; 2,909,142; 3,224,308; German publications DE-AS 2,407,226; DE-05 2,027,638; DE-OS
3,004,838; European Patent No. 298,852, French Patent No.

2,176,707, British patent publication No. 2,268,429; and U.S.
Patent No. 1,890,039.

According to German patent No. 3,035,234, a shaft with a plurality of corrugation discs supported thereon in inserted into a to-be-corrugated pipe, with the pipe being acted upon from outside by another plurality of corrugation discs, which correspond to the corrugation discs provided inside the pipe but are offset relative to the inside corrugation discs. The outer corrugation discs are likewise mounted on a shaft. The rotatable discs are displaced simultaneously toward each other and are axially displaced on their respective shafts. This method is inapplicable to forming corrugations on pipes with a small cross-section because the corrugation discs carrying shafts should be very strong and, thus, should have increased dimensions so that they would not be deformed by an operational pressure generated during the formation of the pipe corrugation.

According to German Publication DE-AS 2,407,226, a smooth cylindrical pipe is inserted into a matrix having a corrugated wall. Then, an elastic pressing member is inserted into the pipe and is compressed from opposite sides with dies, with the pipe being sectionally deformed. This method is very expensive and is applicable to forming corrugations only in pipes having thin walls.

The German patent publication DE-OS 2,027,638, which corresponds to British patent No. 1,341,744, discloses inserting into a to-be-corrugated pipe of a radially expandable mandrel, with sector-shaped discs acting on the pipe from outside, with the discs being displaced radially against the pipe. The desired corrugation is obtained.by simultaneous actions of the inner mandrel and the outer discs.
According to German patents Nos. 2,851,944 and 2,909,142, the final corrugation is formed by forming one corrugation after another by applying inner pressure. This method and a tool for effecting the method are very expensive.
However, the advantage of this method in comparison with the previously described methods consists in that the wall thickness of the pipe remains substantially unchanged in the corrugation region.

German patent No. 3,224,308 discloses a tool with which a corrugation hollow is formed on a cylindrical pipe step by Zf~Z~I~

step. Shaped members are placed into the corrugation hollows of the preformed pipe from outside. Then, a high hydraulic pressure is generated inside of the pipe subjecting the pipe to an axial pressure force which shortens the pipe, whereby the pipe sections, which lie between the hollows supported by the shaped members are displaced outwardly. This method is likewise very expensive.

According to European Patent No. 298,832, a radially expandable corrugated mandrel is inserted into a to-be-corrugated pipe. Sector-shaped cheek plates having a corrugation corresponding to the mandrel corrugation act on the pipe hammering it. The so obtained corrugation has a wall thickness which, because of stretching of the pipe in the corrugation region, is thinner than the thickness of the non-deformed wall.

French Patent No. 2,176,707 likewise discloses a radially expandable corrugated mandrel. As outer jaws, a plurality of gears, which surround the pipe, are used. The gears are so arranged that they coincide with the mandrel corrugation. The gears are supported on a slide displaceable along the pipe. With this arrangement, thinning of the pipe material in the corrugation region is also unavoidable.
British publication No. 2,268,429 discloses a radially expandable mandrel divided in an axial direction into a plurality of discs the outer surfaces of which form a corrugation. From the outside, the pipe is surrounded with sector-shaped disc-like jaws which, together with the mandrel, form the pipe corrugation. A similar method is disclosed in U.S. Patent No. 1,890,039.

German patent publication No. 3,004,838 discloses a method for producing a corrugated pipe with a distinctive transverse corrugation. The device for forming the corrugation includes a plurality of axially spaced jaws. A
to-be-corrugated pipe is inserted into the device, with the outer surface of the pipe engaging the jaws. After the pipe is inserted, it is sealed at its opposite ends, and a high hydrostatic pressure is generated in the interior of the pipe, causing bulging of the pipe sections located between the spaced jaws. Then, press pistons are applied while the high hydrostatic pressure is maintained inside the pipe. This causes folding of the bulged pipe sections. During application of the high hydrostatic pressure in the interior of the pipe, the axial sections of the pipe, which engage the jaws, are stretched out. This causes thinning of the wall in the region of these axial sections resulting in their weakening. During the subsequent axial displacement of the jaws, while the high hydrostatic pressure is maintained, which is necessary not only for further displacement outward of the pipe bulging sections but also for providing an adequate fiction force between the jaws and the pipe sections which engage them, the wall thickness of the jaw engaging pipe sections is further reduced. Thus, the finished corrugated pipe has a smallest wall thickness in the regions of the corrugations hollows. The above-mentioned friction force should be sufficiently high in order to prevent sliding of the jaws relative to the pipe during displacement of the jaws against the small bulge sections of the pipes, which are located between the jaws, which sliding would not permit to obtained a corrugation with predetermined dimensions.
Generally, such corrugated pipes are used with steering columns of motor vehicle and serve as intermediate energy-absorbing elements during an accident. The corrugated pipes, which are located inside of the steering columns, serve for transmitting a rotational torque in steering motor vehicles.
The corrugated pipe, which is produced with the above-discussed method have the smallest wall thickness in its interior region, and it is this region which is subjected to the highest stress during the transmission of the rotational torque. Therefore, for forming corrugated pipes used in steering columns, pipes with an increased wall thickness are selected so that the corrugated pipe is not subjected to inadmissible stress even in its inner region which is subjected to the highest stresses.

Accordingly, an object of the present invention is a method of manufacturing corrugated pipes with a very distinctive corrugation in which the wall thickness of the corrugated pipe in its interior region is not only retained but is rather increased.

Another object of the invention is a method of manufacturing of a corrugated pipe in which the ratio of a height of a single corrugation protrusion to a length of the corrugation protrusion is approximately 1:1.
SUMMARY OF THE IN-VENTIOPF

These and other objects of the invention, which will become apparent hereinafter, are achieved by providing a method of manufacturing a corrugated metallic pipe having a predetermined corrugation, comprising the steps of:
providing a plurality of first mandrels having each an axially extending corrugation having a predetermined shape and height; with the heights of the first mandrels progressively increasing from one first mandrel to another first mandrel but with a length of a corrugation protrusion of each of the first mandrels exceeding the height of each of the first mandrel in at least two times;
inserting one after another in a predetermined sequence each of the plurality of the first mandrel into a smooth cylindrical metallic pipe, radially expanding an inserted first mandrel against exchangeable complementary cheek means and displacing the complementary cheek means, which surrounds the pipe and has a corrugation at least approximately corresponding to the corrugation of the inserted first mandrel, radially inwardly into the pipe to provide a first preformed corrugation different from the predetermined corrugation of the pipe and having corrugation protrusions a length of which exceeds a height thereof in at least two times;
thereafter, inserting into the pipe, having the first preformed corrugation, a second mandrel having an outer diameter corresponding to an inner diameter of the first preformed corrugation;
thereafter, radially displacing into first corrugation hollows disc-shaped, axially spaced from each other, jaws which surround the pipe; and axially displacing the jaws toward each other, effecting folding up of the first, preformed corrugation to obtain the predetermined corrugation of the pipe.
The method according to the present invention permits to eliminate the drawbacks of a corrugated pipe, which is produced by the method disclosed in German Publication No.
3,004,838, with simple means. By using a multi-step formation of the pipe corrugation with a plurality of tool elements having appropriate shapes and dimensions, a very distinctive corrugation is formed in which the wall thickness of the interior region is not only retained but is even increased.
This results from pressing inward of the small inner corrugation hollows which leads to the reduction of the inner diameter in comparison with the diameter of the initial cylindrical pipe, which results in material accumulation. The distinctive corrugation results in such deformation of the inner region in the area of small inner hollows that their flanks are sharply inclined, with the mean flank angle being at least 45 and, preferably, 65 . During subsequent folding, a simple tool can so support that inner region that during the pleating or folding step, the pipe sections located between the jaws are not subjected to any significant inner pressure.
The jaws engage in the little folded hollows and are not displaced therefrom during their subsequent axial displacement. A reliable form-locking connection is provided between the foldable pipe corrugation and the outer jaws which insures a reliable retention of the pipe sections, which are located between the jaws, during the axial displacement of the jaws, without a need to provide an outwardly acting pressure inside the pipe.

The present invention permits to produce corrugated pipes which have, in their inner circular region, a wall thickness greater than the wall thickness of the smooth cylindrical pipe, which make the so produced corrugated pipes especially suitable for their designated purpose, as they have an increased thickness in the region where the highest stresses are generated during the transmission of the rotational torque.

In order to transform the preformed corrugation into the predetermined distinctive corrugation, the jaws are arranged pairwise in a plurality of parallel planes, and each jaw has a semi-circular recess, the limiting surface of which has a stepped profile with the step height corresponding to the height of the predetermined corrugation.
BRIEF DESCRIPTION OF THE DRAWINGS

The features and objects of the present invention will become more apparent, and the invention itself will be best understood from the following detailed description of the preferred embodiments when read with reference to the accompanying drawings, wherein:

Fig. 1 is a longitudinal vertical cross-sectional view of a tool according to the present invention for preforming corrugations on a pipe;

Fig. 2 is a view showing the preformed corrugations;
Fig. 3 is a longitudinal vertical cross-sectional view of a mandrel for supporting the pipe with the preformed corrugation thereon;

Figs. 4-6 is a longitudinal vertical cross-sectional view similar to that of Fig. 3 but with the jaws occupying different positions during the manufacturing process; and Fig. 7 is a plan view of a jaw.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

According to the present invention, manufacturing of corrugated metallic pipes is effected as follows. A mandrel 2 is inserted into a smooth cylindrical pipe 1. Two mandrels 2 are inserted into the pipe 1 from opposite sides. However, often the mandrel 2 can be inserted only from one side. The mandrel 2 is formed of a plurality of sector-shaped sections 3 between which, for effecting a radial expansion, a wedge-shaped shaft 4 is introduced (in a direction indicated with arrow 5). For holding the pipe 1, there are provided outer cheeks 6 which are likewise sector-shaped. Along their length L, both the outer cheeks 6 and the sections 3 are provided, on their adjacent sides, with cophasal, substantially identically formed corrugations 7 and 8, with the corrugation trains having relatively small hollows and relatively elongate crests.

Such a tool can be used only when several similar tools are used in a manufacturing process. Separate tools distinguish from each other by the shape of their corrugations. The first tool has a relatively small corrugation, i.e., a corrugation with a small height, with the corrugation height increasing from a tool to a following tool.
For the sake of simplicity and clarity, only one corrugating tool is shown in the drawings.

The smooth surface of the pipe 1, which lies between the mandrel 2 and the outer cheeks 6, is deformed by the radial expansion of the mandrel 2 and by the radial displacement of the jaw 6 toward the mandrel 2 (in the direction of arrow 11). Thereby, the pipe 1 is provided with the corrugations along the length L which distinguish from tool to tool until they acquire the shape shown in Fig. 2 at an increased scale. Fig. 2 shows that the corrugations hollows 9 are relatively small and the corrugation crests 10 have a relatively large extent. With the corrugation 20 shown in Fig. 2, the corrugation length L exceeds the corrugation height H by several times, e.g., by three to four times. With such shape of the corrugation 20, the length 1, of the corrugation hollow 9, which is directed toward the pipe inside, constitute only a fraction of the length 12 of the outwardly directed corrugation crest 10. This ratio, e.g., amounts to about from 0.3 to 0.6, with the lengths 11112 being measured at the half of the corrugation height H. The corrugation hollow 9 is shaped so and has such a depth that the mean flank angle a is at least 45 and, preferably, 600 and more.

The corrugation 20 shown in Fig. 2 is produced in several operational steps with several tools. The separate tools so differ from each other that the corrugation is formed with ever increasing complementing surface of the tools, i.e., the corrugation height H increases from one tool to another, with the flank angle becoming steeper and steeper. As a rule, a double increase in dimensions of a set of tools is sufficient. With such a formation of the corrugations shown in Fig. 2, not only the wall thickness of the pipe 1 remains substantially unchanged, but it even increases in the regions of the corrugation hollows 9.

Such preformed pipe 1 which, in the example shown in the drawings, is closed at one end and has, at that closed end, an extension 12. The preformed pipe 1 is placed on a cylindrical mandrel 13 having a smooth outer surface. The mandrel 13 is formed, preferably, in the same way as the mandrel 2 shown in Fig. 1, but with the separate sector-shaped sections having, as it has already been mentioned above, smooth surfaces. The mandrel 13 is expanded radially, by introducing a wedge-shaped shaft, to such an extent that its outer diameter contacts the inner diameter of the corrugations 20, i.e., the inner surfaces of the corrugation hollows 9 of the preformed pipe 1 lie on the smooth cylindrical outer surface of the mandrel 13.

The mandrel 13 is arranged between jaws 15 as shown in Figs. 4-6. A plan view of a jaw 15 is shown in Fig. 7. The jaws 15 lie in a plurality of planes and are arranged pairwise with respect to the mandrel 13, as shown in Fig. 4. Each of the jaws 15 has a semi-circular recess 16 limited by a stepped surface 17, with the height h of the step corresponding to at least the height to which the preformed corrugation, which is shown in Fig. 2, should be corrugated. By using appropriate guide and positioning means (not shown), the jaws 15 are so positioned that the projecting portions of the jaws 15 lie in the planes of the corrugation hollows 9 of the corrugations 20 of the pipe 1. These jaws 15 are displaced toward the mandrel 15, which extends through the pipe 1 (Fig. 5), so that the projecting portions of the jaws 15 extend into the 2i$2811 corrugation hollows 9, with the jaws 15 encompassing the pipe 1. Because of the increased wall thickness of the corrugation hollows 9 and steep flanks, form-locking positions of the jaws 15 is obtained, which insures a following proper pleating, without any pressure being generated in the interior of the pipe 1. The mandrel 15 insures an adequate support for the corrugation hollows during pleating.

Finally, a die 18 is advanced against the uppermost jaw 15 and displaces the pairs of jaws 15, which are spaced from each other, toward each other, with the lowermost jaw 15 being supported by a stop designated with an arrow 19 (Fig. 6). By the mutual displacement of the jaws 15, first, the flat corrugation crests 10 fold up with a simultaneous reduction of the length 1, forming a pipe with a very distinctive corrugation. A very distinctive corrugation, according to the present invention, is a corrugation with a ratio of a corrugation protrusion length to the corrugation protrusion height being approximately 1:1. Upon the corrugation having been formed, the die 18 is displaced upward, the jaws 15 are displaced sidewise away from the pipe 1, and the mandrel 13 is radially contracted by the wedge shaft being withdrawn therefrom. Then, the finished corrugated pipe 1 is taken off from the mandrel 15. The corrugated pipe 1 may represent a single pipe or be formed of several pipes inserted one into another.

Though the present invention was shown and described with reference to the preferred embodiments, various modifications thereof will be apparent to those skilled in the art and, therefore, it is not intended that the invention be limited to the disclosed embodiments or details thereof, and departure can be made therefrom within the spirit and scope of the appended claims.

Claims (7)

1. A method of manufacturing a corrugated metallic pipe having a predetermined corrugation, comprising the steps of:
providing a plurality of first mandrels having each an axially extending corrugation having a predetermined shape and height; with the heights of the first mandrels progressively increasing from one first mandrel to another first mandrel but with a length of a corrugation protrusion of each of the first mandrels exceeding the height of each of the first mandrel in at least two times;
inserting one after another in a predetermined sequence each of the plurality of the first mandrel into a smooth cylindrical metallic pipe, radially expanding an inserted first mandrel against exchangeable complementary cheek means and displacing the complementary cheek means, which surrounds the pipe and has a corrugation at least approximately corresponding to the corrugation of the inserted first mandrel, radially inwardly into the pipe to provide a first preformed corrugation different from the predetermined corrugation of the pipe and having corrugation protrusions a length of which exceeds a height thereof in at least two times;
thereafter, inserting into the pipe, having the first preformed corrugation, a second mandrel having an outer diameter corresponding to an inner diameter of the first preformed corrugation;
thereafter, radially displacing into first corrugation hollows disc-shaped, axially spaced from each other, jaws which surround the pipe; and axially displacing the jaws toward each other, effecting folding up of the first, preformed corrugation to obtain the predetermined corrugation of the pipe.
2. A method as set forth in claim 1, wherein the protrusion length exceeds the protrusion height in 3 to 4 times.
3. A method as set forth in claim 1, wherein a length of a corrugation hollow of the first preformed corrugation measured at a half of a corrugation height equals a fraction of a length of a corrugation crest of the first preformed corrugation.
4. A method as set forth in claim 3, wherein the length of the corrugation hollow equals from .3 to .6 of the length of the corrugation crest.
5. A method as set forth in claim 3, wherein the corrugation hollow has a flank angle of at least 45°.
6. A method as set forth in claim 5, wherein the flank angle is 65°.
7. A method as set forth in claim 1, wherein a ratio of a length of a corrugation protrusion of the predetermined corrugation of the pipe to a corrugation protrusion height of the predetermined corrugation is about 1:1.
CA002182811A 1995-08-12 1996-08-06 Method of manufacturing a corrugated metallic pipe and a tool for effecting same Expired - Fee Related CA2182811C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19529731.8 1995-08-12
DE1995129731 DE19529731A1 (en) 1995-08-12 1995-08-12 Prodn. of corrugated metal pipes - with use of an expandable mandrel and external, axially displaceable disk-shaped jaws

Publications (2)

Publication Number Publication Date
CA2182811A1 CA2182811A1 (en) 1997-02-13
CA2182811C true CA2182811C (en) 2008-12-09

Family

ID=7769359

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002182811A Expired - Fee Related CA2182811C (en) 1995-08-12 1996-08-06 Method of manufacturing a corrugated metallic pipe and a tool for effecting same

Country Status (7)

Country Link
EP (1) EP0782891B1 (en)
JP (1) JP4022273B2 (en)
KR (1) KR970009918A (en)
BR (1) BR9604092A (en)
CA (1) CA2182811C (en)
DE (2) DE19529731A1 (en)
ES (1) ES2169777T3 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10211743A1 (en) 2002-03-14 2003-11-06 Thyssenkrupp Presta Ag Eschen Steering spindle of a steering column for a motor vehicle
DE102006005736A1 (en) 2006-02-07 2007-08-09 Thyssenkrupp Presta Ag corrugated pipe
JP2011121103A (en) * 2009-12-14 2011-06-23 Jtekt Corp Method for manufacturing hollow rack shaft and hollow rack shaft
JP5745785B2 (en) * 2010-06-18 2015-07-08 坂本工業株式会社 Method and apparatus for forming cylindrical molded product
EP2845664A1 (en) * 2013-09-10 2015-03-11 Nexans Method and device for producing a corrugated metal pipe
KR101968665B1 (en) * 2017-05-22 2019-04-12 정원재 Pipe level groove forming device
CN109047424B (en) * 2018-07-13 2023-05-30 浙江和良智能装备有限公司 Corrugated pipe forming machine
CN111545591A (en) * 2020-05-19 2020-08-18 王清伟 Manufacturing, forming and processing method of double-layer composite aluminum foil air pipe
CN112958670B (en) * 2021-03-29 2022-12-27 西安恒热热力技术有限责任公司 Compensator machining equipment and machining method
CN113399491B (en) * 2021-06-03 2022-06-21 浙江长兴和良智能装备有限公司 Multistation type pipe end extrusion and bulging forming equipment, system and composite die assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE34537C (en) * S. FOX in Leeds-Forge, New -Wortley, Leeds, York, England Prefswerk for the production of corrugated tubes with grooves to protect the seam
US3577621A (en) * 1969-05-14 1971-05-04 Koppy Tool Corp Stretch method for making a tubular product
DE3004838C2 (en) * 1980-02-09 1984-09-13 Benteler-Werke Ag Werk Neuhaus, 4790 Paderborn Device for the production of a tubular body with transverse waves
DE3514485A1 (en) * 1985-04-22 1986-10-23 Heinz 4000 Düsseldorf Regenhardt Method and apparatus for the production of slot-bridge filter tubes
FR2617415B1 (en) * 1987-07-02 1991-08-09 Nacam METHOD AND DEVICE FOR HAMMERING A WAVE TUBE AND ITS APPLICATION TO TUBES FOR THE AUTOMOTIVE INDUSTRY

Also Published As

Publication number Publication date
KR970009918A (en) 1997-03-27
JPH09103826A (en) 1997-04-22
DE19529731A1 (en) 1997-02-13
CA2182811A1 (en) 1997-02-13
EP0782891B1 (en) 2001-12-12
DE59608440D1 (en) 2002-01-24
JP4022273B2 (en) 2007-12-12
EP0782891A3 (en) 1997-11-05
ES2169777T3 (en) 2002-07-16
BR9604092A (en) 1998-06-16
EP0782891A2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
CA2182811C (en) Method of manufacturing a corrugated metallic pipe and a tool for effecting same
EP0062067B1 (en) Manufacturing method for a tubular shell of a universal joint
JP3509217B2 (en) Forming method and forming apparatus for deformed cross-section pipe
US4722216A (en) Radial forging method
US5983695A (en) Method of manufacturing a corrugated metallic pipe and corrugated pipe produced by the method
US3577621A (en) Stretch method for making a tubular product
JPH07115091B2 (en) Box Forming Method
US5027996A (en) Method of manufacturing a hollow shaft with internal swellings of revolution and shaft obtained by this method
US4524595A (en) Method of manufacturing sheet metal made poly-V pulleys
US4509353A (en) Method of and apparatus for forming gears
US4625537A (en) Localized boss thickening by cold swaging
EP0650779B1 (en) A process for shaping the end of a tube with an oblong cross-section to a circular cross-section
EP0156567B1 (en) Poly-v pulley formed of sheet metal and method and apparatus for making the same
KR100349706B1 (en) Manufacturing method of hub plate and press roler manufactured by the same
US6044678A (en) Method and device for manufacturing a tubular hollow body with spaced-apart increased diameter portions
US5594988A (en) Method of making a wheel rim
US20210163058A1 (en) Steering shaft for a vehicle and method for producing said steering shaft
US4751839A (en) Method for removing certain of the corrugations in a helically corrugated pipe
JP2624949B2 (en) Stub shaft manufacturing method
SU1041023A3 (en) Method for making intermediate products for making commutators for electric motors
KR960002909B1 (en) Method of making pulleys with v-shaped grooves
US5396789A (en) Procedure for manufacturing corrugated tubes
US3375689A (en) Manufacture of corrugated metal tubes or bellows
EP0323456B1 (en) Process and apparatus for the cold shaping of pipes or fittings, and articles thus obtained
SU1696050A1 (en) Method of progressive lateral corrugation of tubular blanks

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20130806