CA2169053C - Concrete mixing system with cement/water premixer - Google Patents
Concrete mixing system with cement/water premixerInfo
- Publication number
- CA2169053C CA2169053C CA002169053A CA2169053A CA2169053C CA 2169053 C CA2169053 C CA 2169053C CA 002169053 A CA002169053 A CA 002169053A CA 2169053 A CA2169053 A CA 2169053A CA 2169053 C CA2169053 C CA 2169053C
- Authority
- CA
- Canada
- Prior art keywords
- conveyor
- outlet
- cementitious material
- inlet
- screw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/60—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
- B01F27/72—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices
- B01F27/725—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with two or more helices in respective separate casings, e.g. one casing inside the other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28C—PREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28C5/00—Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
- B28C5/08—Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
- B28C5/10—Mixing in containers not actuated to effect the mixing
- B28C5/12—Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers
- B28C5/14—Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers the stirrers having motion about a horizontal or substantially horizontal axis
- B28C5/145—Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers the stirrers having motion about a horizontal or substantially horizontal axis with several mixing chambers arranged one after the other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/60—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
- B01F27/72—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices
- B01F27/726—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with two helices with opposite pitch on the same shaft; with two helices on the same axis, driven in opposite directions or at different speeds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28C—PREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28C7/00—Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
- B28C7/04—Supplying or proportioning the ingredients
- B28C7/12—Supplying or proportioning liquid ingredients
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Dispersion Chemistry (AREA)
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
Abstract
A system (10) for mixing cementatious material, liquid and aggregate to form concrete includes a cementatious material measuring device (12) which provides dry cementatious material to an enclosed screw conveyor assembly (14). The dry cementatious material is thoroughly mixed with a liquid (68) within the screw conveyor (14) to form a flowable slurry without producing external cement dust pollution. The slurry is output by the screw conveyor (14) into a final product mixing chamber (16) where the flowable slurry is mixed together with aggregate to form concrete. The screw conveyor assembly (14) has an in-line input (20) and output (22), and space-saving diverging/converging conveyor sections (28, 56) to facilitate the retrofitting of existing concrete mixing plants. The conveyor assembly (14) includes a cement metering function as well as a slurry mixing function. A selectively openable and closable bypass gate (90) permits the dry cementatious material to be sent directly to the final product mixing chamber (16) in the event of conveyor failure.
Description
2 1 6 9 0 5 3 PCTI~ 5 . 1 u .- ~ 9 2 _ IPEA/VS c; ^. !994 CONCRETE MIXING SYSTEM WITH CEMENT/WATER PREMIXER
Backqround of the Invention This invention relates to a system for mixing cementitious material, liquid and aggregate to form concrete. More particularly, this invention relates to a compact and inexpensive apparatus whereby the cementi-tious material portion and liquid portion of concrete are precisely metered and thoroughly mixed to form a flowable slurry within an enclosed~screw conveyor before being mixed together with aggregate (e.g. sand and gravel) in a final product mixing chamber. Because the cementitious material and liquid are fully enclosed during the flow-able slurry mixing step, the amount of airborne cementi-tious part-iculate matter, i.e. "dust," that is usually attendant in such mixing operations is greatly reduced.
The need to apply copious quantities of water to wash the dust off the equipment and other surfaces in the mixing area is also proportionately reduced. Moreover, the time required to mix a given quantity of concrete is likewise reduced using this apparatus, which results in more efficient equipment utilization and greater output.
Increasingly strict local, state and federal pollution regulations have become an onerous burden to the operators of concrete mixing plants, particularly small mixing plant operators. Limits on airborne partic-ulates and yLou~ ater runoff and contamination require expensive modifications to existing concrete mixing plant equipment and operating procedures. New equipment that has become available only incidentally addresses these problems, and is complex and generally unsuitable for an existing mixing plant retrofit.
In addition to the need to reduce airborne particulates and groundwater runoff and contamination, there is an increased awareness that water is a very finite resource that needs to be conserved. While water is a minor component in the concrete mixture per se, it 21 69053 PCT/!'~ 9 1rl ~ ~92 lPEA/'JS - -^- 19~
is a major component in the cleanup process for the concre~e mixing area.
- .In addition, there are potential quality control issues that can arise when a specific concrete mixture requires a precise ratio of materials. Materials that are carefully measured should also be added together in a precise metered manner and thoroughly mixed to produce complete hydration. Obviously, when a portion of the cement that has been carefully measured according to a ratio for inclusio~ in a mixture is lost as airborne particulate, the characteristics of the final concrete mixture are altered. Likewise, mixing equipment that relies primarily on gravity to dispense and meter cement can easily clog, resulting in uneven metering, mixing, and an inferior end product.
Prior art improvements in the field of concrete mixing apparatus have generally been either technically complex attempts to solve particular problems affecting the very specific needs of small segments of the industry, or attempts to increase overall efficiency.
Ono et al. U.S. Patent No. 5,100,239 discloses a method to produce concrete for mass concrete members by spraying liquid nitrogen onto a~e~ate (particularly sand) within enclosed conveyor screws prior to combining the nitrogen cooled aggregate with cement, water, and coarser a~y~e~ates for the final mixing operation. Ono does not recognize nor address the need to control cement dust pollution in a concrete mixing system by providing an in~y~e~cive retrofittable apparatus.
Raypholtz U.S. Patent No. 2,486,323 discloses a complicated variable output mixing system for mixing aggregate and bituminous material that operates similar to a pugmill without recognition of the foregoing pollution problem.
Owen U.S. Patent No. 1,735,716 discloses a screw conveyor mixer particularly suited to producing a grout mixture for cementing oil wells. Owen does not 2169053 PC~/jJ~
- IPEA,"~
provide nor suggest a final product mixing chamber for mixing a flowable cement slurry with aggregate to form concrete,.nor recognize the foregoing pollution problem.
Haws U.S. Patent No. 4,586,824 discloses a mobile concrete mixing apparatus wherein a conveyor initially carries aggregate from a storage bin. Dry cement is dumped on top of this aggregate as it travels on the conveyor, and water is sprayed on the aggregate and dry cement as it is dumped into a feed screw for mixing. Nothing in the system prevents cement dust pollution.
Dunton et al. U.S. Patent Nos. 4,904,089 and 4,830,S05 disclose a method of mixing particulate cement and water in a primary mixing vessel to form a slurry and delivering-the slurry to an auxiliary mixing vessel for mixing with a~e~ate. The method and apparatus dis-closed in Dunton '505 and '089 illustrates the recognized desirability and advantages produced by premixing con-crete and liquid to form a slurry before mixing with aggregate. However, Dunton's solution is very complex and expensive, requiring the use of high velocity pumps and multiple rotary agitators to create the flowable slurry, and lacking easy retrofit adaptability to existing concrete mixing plants.
Summary of the Invention The present invention provides a system that enables a user to mix cementitious material, liquid, and a~y~e~ate material to produce a high quality final product while minimizing both polluting airborne partic-ulates and the need to expend large quantities of water to wash particulates off of the mixing plant equipment and other surfaces, which creates ground water pollution and runoff problems. Mixing plant equipment can also be used more efficiently, decreasing the total time required to produce each batch of the final mixed product and resulting in increased plant output.
2169053 P~T/IJ~ 94102892 - IPEA/'~S ~ .CT 19~4 Whereas most prior concrete mixing plant operations have been little more than automated, high-v~lume versions of dumping a bag of cement in a container and stirring in water and aggregate, the present inven-tion provides for the premixing of the cementitious mate-rial and liquid into a flowable slurry within a unique enclosed screw conveyor assembly. A screw conveyor rotates within a tubular housing assembly to thoroughly mix cementitious material, received through an enclosed inlet from a measuring device with a liquid to form the flowable slurry. The slurry is moved toward an outlet of the screw conveyor where it is deposited into a final mixing chamber and mixed with aggregate to form the final concrete product, all without the production of external cement dust.
The screw conveyor assembly is not only technically simple and inexpensive, but has a unique in-line inlet and outlet arrangement making it especially adaptable for easy retrofitting of existing concrete plants. The operator of a small mixing plant is able to incorporate the screw conveyor assembly directly between the plant's existing cementitious materials measuring device(s) and final product mixing chamber(s).
Moreover, the conveyor assembly incorporates a unique diverging-converging pair of screw conveyors to limit its space requirements while maximizing its rate of production, thereby further increasing its easy adaptability to existing concrete mixing plants.
In addition, the conveyor assembly incorporates a cement metering function with its slurry mixing func-tion, providing the plant with a much more accurate concrete mixing system.
The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings.
MI~NDD SH~ET
P~riU~ 941G~,92 21 69053 IPEA/'~
Brief Description of the Drawin~s FIG. 1 is a side elevation view of a preferred embodiment of the apparatus of the present invention.
FIG. 2 is a top view of the apparatus of FIG. 1.
FIG. 3 is a side sectional view of the apparatus of FIG. 1.
FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 1.
FIG. 5 i8 a cr~ss-sectional view taken along lines 5-5 of FIG. 1.
Preferred Embodiment of the Invention With reference in particular to FIGS. 1-3, the exemplary ~pparatus 10 of the present invention is shown.
At the outset it is important to note the relationship between the major subassemblies of the apparatus 10: the cementitious material measuring device 12, screw conveyor 14 and final product mixing chamber 16. In the exemplary apparatus the three major components are shown positioned in-line with each other.
The cementitious material measuring device 12 dispenses (by gravity or otherwise) a measured (by volume or weight) quantity of cementitious material, e.g.
cement, fly ash, etc. The material outlet 18 of the measuring device 12 is in-line with the conveyor inlet 20, which feeds to a first conveyor screw assembly 28 of scr~w conveyor 14. The screw conveyor 14, which moves and mixes the cementitious material received from measur-ing device 12 with ~ liquid such as water to form a flow-able slurry, has a conveyor outlet 22 in the bottom of a second conveyor screw assembly 56, the outlet 22 being positioned in-line with the inlet 20. Positioned below conveyor outlet 22 is the final product mixing chamber 16 where the flowable slurry emitted from conveyor outlet 22 is mixed together with a measured quantity of aggregate material (such as rock and sand) to form concrete.
AM~ 'rT
2169053 PCT~'~ 9~ 2 392 IPEA/US ~ - CCT 1994 In this exemplary apparatus 10 the dimensions of the screw conveyor 14 are such that it may be easily and inexpensively retrofitted between the device 12 and mixing chamber 16 already being used in most existing concrete mixing plants. Flanges 24 may be used to seal-ingly couple measuring device outlet 18 to the conveyor inlet 22. Depending on the particular final product mixing chamber 16 to be used, the conveyor outlet 22 may also be coupled to the top of the mixing chamber 16 by flanges 26. If the final product mixing chamber 16 is a mobile mixer, physical coupling may be unnecessary and the flowable slurry may "free-fall" from conveyor outlet 22 into final product mixing chamber 16 without the danger of any airborne particulate matter being emitted.
Dry cementitious material entering the conveyor inlet 20 of screw conveyor 14 from cementitious material measuring device 12 is moved by the rotation of the first conveyor screw assembly 28 enclosed within a first tubular housing 30. The dry cementitious material is moved in opposite diverging directions away from the conveyor inlet 20 and toward a first outlet 32 and a second outlet 34 located at opposite ends of the first tubular housing 30.
First conveyor screw assembly 28 has a pair of opposed single flight, stAn~Ard pitch conveyor screws 46, 48 on a common shaft 50. Suitable conveyor screw aseemblies are readily available from such manufacturers as Thomas Conveyor Co., Ft. Worth, Texas. In the exem-plary apparatus conveyor screws having a diameter of approximately six inches have been found to be suitable.
First conveyor screw assembly 28 can be rotated by any suitable power source, here a hydraulic drive motor 36 shown coupled to common shaft 50 by a belt 38 and pulleys 52, 54. The rate of rotation of first conveyor screw assembly 28 should be variable to allow control over the rate that the dry cementitious material is moved. A hydraulic motor 36 of approximately A~NDED S.Y~ET
2 1 6 7 0 5 3 PCT,7~ C ^ ~J ~ 2 IPEA/~1S ~ ? rrr 1 5 horsepower rotating at approximately 204 rpm has been found to work adequately. Flanged ball bearings 110 and shaft seal~s 112 are used with shaft 50.
When the dry cementitious material moved by the first conveyor screw assembly 28 reaches the first outlet 32 and the second outlet 34 located at the opposite ends of first tubular housing 30, the dry cementitious mate--rial falls by gravity through first outlet 32 and second outlet 34 into and through respective first and second inlets 40, 42 of the~second tubular housing assembly 44 of the second conveyor screw assembly 56 positioned beneath and substantially parallel to the first tubular housing assembly 30. The second conveyor screw assembly 56 is a pair of opposed conveyor screws 58, 60 on a common shaft 62 which also has flanged ball bearings 110 and shaft seals 112. Unlike first conveyor screw assembly 28 which is designed simply to move the dry cementitious material away from the conveyor inlet 20 toward the first outlet 32 and second outlet 34 at a controlled, metered rate, the design and function of second conveyor screw assembly 56 is different. In the second conveyor screw assembly 56 the dry cementitious material must be thoroughly mixed with liquid to form a flowable slurry as it is simultaneously moved away from the first and second inlets 40, 42 at the opposite ends of the second tubular housing assembly 44 converging inward toward the conveyor outlet 22.
The design of a screw conveyor to mix material as it is being moved is well known in the art, and depen~ing upon such variables as the particular cemen-titious material to be mixed and the power source(s) (motors 36, 64), the second conveyor screw assembly 56 could include paddles (not shown) to perform the mixing operation. There are also conveyor screws, well known in the art, of cut flight, cut and folded flight and multi-ple ribbon flight design that could be used to move and mix the materials.
AMENO~O S~FE~
2 1 6 9 0 5 3 PC /!, 5 -. i iJ ~ 9 2 P~A/US 21 OCT l9g4 The liquid, generally water, necessary to create the flowable slurry may be introduced as a wide a-ngle spray 68 as shown in FIG. 4. The liquid introduc-tion means may be easily constructed of readily available standard plumbing pipe and fittings. In the exemplary embodiment 10, shown in FIGS. 1 and 4, a hose 70 connects distribution manifold 72 to a liquid, e.g. water, sourc-e (not shown) that can be controlled and regulated to meter the flow rate of the liquid. A flow rate of 60 gpm at 60 to 80 psi is adeq~at~. The manifold 72, here made out of iron pipe and fittings, is shown supplying the water to nozzles 76 which produce a wide angle spray 68 of approx-imately 100-. One end of çach length of flexible tubing 74 is connected at regular intervals along the length of both sides of manifold 72 by appropriate fittings 80.
The other end of each length of flexible tubing 74 is connected to a nozzle 76 which is inserted into the second tubular housing assembly 44. The overlapping spray 68 pattern is achieved by positioning the nozzles 76 such that they are fairly high up the sides of the second tubular housing assembly 44 and in matched opposed pairs.
The second conveyor screw assembly 56 can be rotated by any suitablé power source, here a hydraulic motor 64, shown coupled to common shaft 62 by a belt 84 and pulleys 86 and 88. The rate of rotation of second ~Gllveyor screw assembly 56 should be variable to allow c~ ol of the rate of movement and mixing of the cemen-titious and liquid material. A hydraulic motor 64 of approximately 5 horsepower rotating at approximately 457 rpm (slightly more than twice the rpm of motor 36) has been found adequate. Thus, due to either higher speed or more aggressive screw configuration, or both, the second conveyor screw assembly 56 agitates the mixture to a much greater degree than does the first conveyor screw assembly 28. As explained previously, it is desirable that the rates of rotation of both the first conveyor 216~053 PCTil~ 9' /0_~,92 ` IPEAt~S ? 7 9CT 1994 screw assembly 28 and second conveyor screw assembly 56 be independently controllable and variable, and that the flow rate.of liquid be meterable. By altering these variables relative to each other, the quality and quantity of the flowable slurry may be controlled.
There is no one standard "final product," and some final products may require the addition of addi-tional chemicals to create the needed properties. If the chemicals are in liquid form they may be easily added through the liquid i~troduction means.
The exemplary apparatus 10 also includes a selectively openable and closable bypass gate 90 shown in its normally closed position in FIG. 5. The bypass gate 90 comprises a plate 92 positioned in-line with conveyor inlet 20 and conveyor outlet 22. When the bypass gate 90 is in its open position the dry cementitious material that enters conveyor inlet 20 flows from the measuring device 12 into the final product mixing chamber 16 with-out being moved by the first conveyor screw assembly 28 or second conveyor screw assembly 56. The bypass gate 90 can be opened in the event of an emergency or if a particular final product requires the addition of dry cementitious material or other material directly into the final product mixing chamber 16. One end of a threaded rod 94 is attached to the plate 92 by a shackle 96, nut 98 and bolt 100. The other end of threaded rod 94 passes through a hole in bracket 102. In FIG. 5, nuts 104 and 106 are shown threaded on rod 94 such that movement of the plate 92 is prevented and bypass gate 90 is closed.
To open bypass gate 90 so that the opening 108 in plate 92 is positioned to permit the flow of dry material, nut 104 may be rotated inward and threaded rod 94 may be pulled outward until the opening 108 in plate 92 is posi-tioned as desired. Nut 106 may then be threaded inward until it seats against bracket 102. The bypass gate 90 can thus be adjusted to any position between fully opened and fully closed. The bypass gate 90 shown in FIGS. 2 AJUEI~ D ~,'I~ET
2169053 PCT/J~ 9~/ 02 892 - IPEA/US 21 OCT lâ~
and 5 is manually operated. It is to be understood that the design could easily be modified to be automatically actuated and operated by pneumatic, hydraulic, or electric motors, or other means.
Depending upon the particular properties of the materials being used, it may be desirable to have a liner or a coating on the inside of the first tubular housing assembly 30 and/or second tubular housing assembly 44 for friction and wear prevention.
The terms ~nd e~pressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expres-sions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
A~C~,~ C;~ET
Backqround of the Invention This invention relates to a system for mixing cementitious material, liquid and aggregate to form concrete. More particularly, this invention relates to a compact and inexpensive apparatus whereby the cementi-tious material portion and liquid portion of concrete are precisely metered and thoroughly mixed to form a flowable slurry within an enclosed~screw conveyor before being mixed together with aggregate (e.g. sand and gravel) in a final product mixing chamber. Because the cementitious material and liquid are fully enclosed during the flow-able slurry mixing step, the amount of airborne cementi-tious part-iculate matter, i.e. "dust," that is usually attendant in such mixing operations is greatly reduced.
The need to apply copious quantities of water to wash the dust off the equipment and other surfaces in the mixing area is also proportionately reduced. Moreover, the time required to mix a given quantity of concrete is likewise reduced using this apparatus, which results in more efficient equipment utilization and greater output.
Increasingly strict local, state and federal pollution regulations have become an onerous burden to the operators of concrete mixing plants, particularly small mixing plant operators. Limits on airborne partic-ulates and yLou~ ater runoff and contamination require expensive modifications to existing concrete mixing plant equipment and operating procedures. New equipment that has become available only incidentally addresses these problems, and is complex and generally unsuitable for an existing mixing plant retrofit.
In addition to the need to reduce airborne particulates and groundwater runoff and contamination, there is an increased awareness that water is a very finite resource that needs to be conserved. While water is a minor component in the concrete mixture per se, it 21 69053 PCT/!'~ 9 1rl ~ ~92 lPEA/'JS - -^- 19~
is a major component in the cleanup process for the concre~e mixing area.
- .In addition, there are potential quality control issues that can arise when a specific concrete mixture requires a precise ratio of materials. Materials that are carefully measured should also be added together in a precise metered manner and thoroughly mixed to produce complete hydration. Obviously, when a portion of the cement that has been carefully measured according to a ratio for inclusio~ in a mixture is lost as airborne particulate, the characteristics of the final concrete mixture are altered. Likewise, mixing equipment that relies primarily on gravity to dispense and meter cement can easily clog, resulting in uneven metering, mixing, and an inferior end product.
Prior art improvements in the field of concrete mixing apparatus have generally been either technically complex attempts to solve particular problems affecting the very specific needs of small segments of the industry, or attempts to increase overall efficiency.
Ono et al. U.S. Patent No. 5,100,239 discloses a method to produce concrete for mass concrete members by spraying liquid nitrogen onto a~e~ate (particularly sand) within enclosed conveyor screws prior to combining the nitrogen cooled aggregate with cement, water, and coarser a~y~e~ates for the final mixing operation. Ono does not recognize nor address the need to control cement dust pollution in a concrete mixing system by providing an in~y~e~cive retrofittable apparatus.
Raypholtz U.S. Patent No. 2,486,323 discloses a complicated variable output mixing system for mixing aggregate and bituminous material that operates similar to a pugmill without recognition of the foregoing pollution problem.
Owen U.S. Patent No. 1,735,716 discloses a screw conveyor mixer particularly suited to producing a grout mixture for cementing oil wells. Owen does not 2169053 PC~/jJ~
- IPEA,"~
provide nor suggest a final product mixing chamber for mixing a flowable cement slurry with aggregate to form concrete,.nor recognize the foregoing pollution problem.
Haws U.S. Patent No. 4,586,824 discloses a mobile concrete mixing apparatus wherein a conveyor initially carries aggregate from a storage bin. Dry cement is dumped on top of this aggregate as it travels on the conveyor, and water is sprayed on the aggregate and dry cement as it is dumped into a feed screw for mixing. Nothing in the system prevents cement dust pollution.
Dunton et al. U.S. Patent Nos. 4,904,089 and 4,830,S05 disclose a method of mixing particulate cement and water in a primary mixing vessel to form a slurry and delivering-the slurry to an auxiliary mixing vessel for mixing with a~e~ate. The method and apparatus dis-closed in Dunton '505 and '089 illustrates the recognized desirability and advantages produced by premixing con-crete and liquid to form a slurry before mixing with aggregate. However, Dunton's solution is very complex and expensive, requiring the use of high velocity pumps and multiple rotary agitators to create the flowable slurry, and lacking easy retrofit adaptability to existing concrete mixing plants.
Summary of the Invention The present invention provides a system that enables a user to mix cementitious material, liquid, and a~y~e~ate material to produce a high quality final product while minimizing both polluting airborne partic-ulates and the need to expend large quantities of water to wash particulates off of the mixing plant equipment and other surfaces, which creates ground water pollution and runoff problems. Mixing plant equipment can also be used more efficiently, decreasing the total time required to produce each batch of the final mixed product and resulting in increased plant output.
2169053 P~T/IJ~ 94102892 - IPEA/'~S ~ .CT 19~4 Whereas most prior concrete mixing plant operations have been little more than automated, high-v~lume versions of dumping a bag of cement in a container and stirring in water and aggregate, the present inven-tion provides for the premixing of the cementitious mate-rial and liquid into a flowable slurry within a unique enclosed screw conveyor assembly. A screw conveyor rotates within a tubular housing assembly to thoroughly mix cementitious material, received through an enclosed inlet from a measuring device with a liquid to form the flowable slurry. The slurry is moved toward an outlet of the screw conveyor where it is deposited into a final mixing chamber and mixed with aggregate to form the final concrete product, all without the production of external cement dust.
The screw conveyor assembly is not only technically simple and inexpensive, but has a unique in-line inlet and outlet arrangement making it especially adaptable for easy retrofitting of existing concrete plants. The operator of a small mixing plant is able to incorporate the screw conveyor assembly directly between the plant's existing cementitious materials measuring device(s) and final product mixing chamber(s).
Moreover, the conveyor assembly incorporates a unique diverging-converging pair of screw conveyors to limit its space requirements while maximizing its rate of production, thereby further increasing its easy adaptability to existing concrete mixing plants.
In addition, the conveyor assembly incorporates a cement metering function with its slurry mixing func-tion, providing the plant with a much more accurate concrete mixing system.
The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings.
MI~NDD SH~ET
P~riU~ 941G~,92 21 69053 IPEA/'~
Brief Description of the Drawin~s FIG. 1 is a side elevation view of a preferred embodiment of the apparatus of the present invention.
FIG. 2 is a top view of the apparatus of FIG. 1.
FIG. 3 is a side sectional view of the apparatus of FIG. 1.
FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 1.
FIG. 5 i8 a cr~ss-sectional view taken along lines 5-5 of FIG. 1.
Preferred Embodiment of the Invention With reference in particular to FIGS. 1-3, the exemplary ~pparatus 10 of the present invention is shown.
At the outset it is important to note the relationship between the major subassemblies of the apparatus 10: the cementitious material measuring device 12, screw conveyor 14 and final product mixing chamber 16. In the exemplary apparatus the three major components are shown positioned in-line with each other.
The cementitious material measuring device 12 dispenses (by gravity or otherwise) a measured (by volume or weight) quantity of cementitious material, e.g.
cement, fly ash, etc. The material outlet 18 of the measuring device 12 is in-line with the conveyor inlet 20, which feeds to a first conveyor screw assembly 28 of scr~w conveyor 14. The screw conveyor 14, which moves and mixes the cementitious material received from measur-ing device 12 with ~ liquid such as water to form a flow-able slurry, has a conveyor outlet 22 in the bottom of a second conveyor screw assembly 56, the outlet 22 being positioned in-line with the inlet 20. Positioned below conveyor outlet 22 is the final product mixing chamber 16 where the flowable slurry emitted from conveyor outlet 22 is mixed together with a measured quantity of aggregate material (such as rock and sand) to form concrete.
AM~ 'rT
2169053 PCT~'~ 9~ 2 392 IPEA/US ~ - CCT 1994 In this exemplary apparatus 10 the dimensions of the screw conveyor 14 are such that it may be easily and inexpensively retrofitted between the device 12 and mixing chamber 16 already being used in most existing concrete mixing plants. Flanges 24 may be used to seal-ingly couple measuring device outlet 18 to the conveyor inlet 22. Depending on the particular final product mixing chamber 16 to be used, the conveyor outlet 22 may also be coupled to the top of the mixing chamber 16 by flanges 26. If the final product mixing chamber 16 is a mobile mixer, physical coupling may be unnecessary and the flowable slurry may "free-fall" from conveyor outlet 22 into final product mixing chamber 16 without the danger of any airborne particulate matter being emitted.
Dry cementitious material entering the conveyor inlet 20 of screw conveyor 14 from cementitious material measuring device 12 is moved by the rotation of the first conveyor screw assembly 28 enclosed within a first tubular housing 30. The dry cementitious material is moved in opposite diverging directions away from the conveyor inlet 20 and toward a first outlet 32 and a second outlet 34 located at opposite ends of the first tubular housing 30.
First conveyor screw assembly 28 has a pair of opposed single flight, stAn~Ard pitch conveyor screws 46, 48 on a common shaft 50. Suitable conveyor screw aseemblies are readily available from such manufacturers as Thomas Conveyor Co., Ft. Worth, Texas. In the exem-plary apparatus conveyor screws having a diameter of approximately six inches have been found to be suitable.
First conveyor screw assembly 28 can be rotated by any suitable power source, here a hydraulic drive motor 36 shown coupled to common shaft 50 by a belt 38 and pulleys 52, 54. The rate of rotation of first conveyor screw assembly 28 should be variable to allow control over the rate that the dry cementitious material is moved. A hydraulic motor 36 of approximately A~NDED S.Y~ET
2 1 6 7 0 5 3 PCT,7~ C ^ ~J ~ 2 IPEA/~1S ~ ? rrr 1 5 horsepower rotating at approximately 204 rpm has been found to work adequately. Flanged ball bearings 110 and shaft seal~s 112 are used with shaft 50.
When the dry cementitious material moved by the first conveyor screw assembly 28 reaches the first outlet 32 and the second outlet 34 located at the opposite ends of first tubular housing 30, the dry cementitious mate--rial falls by gravity through first outlet 32 and second outlet 34 into and through respective first and second inlets 40, 42 of the~second tubular housing assembly 44 of the second conveyor screw assembly 56 positioned beneath and substantially parallel to the first tubular housing assembly 30. The second conveyor screw assembly 56 is a pair of opposed conveyor screws 58, 60 on a common shaft 62 which also has flanged ball bearings 110 and shaft seals 112. Unlike first conveyor screw assembly 28 which is designed simply to move the dry cementitious material away from the conveyor inlet 20 toward the first outlet 32 and second outlet 34 at a controlled, metered rate, the design and function of second conveyor screw assembly 56 is different. In the second conveyor screw assembly 56 the dry cementitious material must be thoroughly mixed with liquid to form a flowable slurry as it is simultaneously moved away from the first and second inlets 40, 42 at the opposite ends of the second tubular housing assembly 44 converging inward toward the conveyor outlet 22.
The design of a screw conveyor to mix material as it is being moved is well known in the art, and depen~ing upon such variables as the particular cemen-titious material to be mixed and the power source(s) (motors 36, 64), the second conveyor screw assembly 56 could include paddles (not shown) to perform the mixing operation. There are also conveyor screws, well known in the art, of cut flight, cut and folded flight and multi-ple ribbon flight design that could be used to move and mix the materials.
AMENO~O S~FE~
2 1 6 9 0 5 3 PC /!, 5 -. i iJ ~ 9 2 P~A/US 21 OCT l9g4 The liquid, generally water, necessary to create the flowable slurry may be introduced as a wide a-ngle spray 68 as shown in FIG. 4. The liquid introduc-tion means may be easily constructed of readily available standard plumbing pipe and fittings. In the exemplary embodiment 10, shown in FIGS. 1 and 4, a hose 70 connects distribution manifold 72 to a liquid, e.g. water, sourc-e (not shown) that can be controlled and regulated to meter the flow rate of the liquid. A flow rate of 60 gpm at 60 to 80 psi is adeq~at~. The manifold 72, here made out of iron pipe and fittings, is shown supplying the water to nozzles 76 which produce a wide angle spray 68 of approx-imately 100-. One end of çach length of flexible tubing 74 is connected at regular intervals along the length of both sides of manifold 72 by appropriate fittings 80.
The other end of each length of flexible tubing 74 is connected to a nozzle 76 which is inserted into the second tubular housing assembly 44. The overlapping spray 68 pattern is achieved by positioning the nozzles 76 such that they are fairly high up the sides of the second tubular housing assembly 44 and in matched opposed pairs.
The second conveyor screw assembly 56 can be rotated by any suitablé power source, here a hydraulic motor 64, shown coupled to common shaft 62 by a belt 84 and pulleys 86 and 88. The rate of rotation of second ~Gllveyor screw assembly 56 should be variable to allow c~ ol of the rate of movement and mixing of the cemen-titious and liquid material. A hydraulic motor 64 of approximately 5 horsepower rotating at approximately 457 rpm (slightly more than twice the rpm of motor 36) has been found adequate. Thus, due to either higher speed or more aggressive screw configuration, or both, the second conveyor screw assembly 56 agitates the mixture to a much greater degree than does the first conveyor screw assembly 28. As explained previously, it is desirable that the rates of rotation of both the first conveyor 216~053 PCTil~ 9' /0_~,92 ` IPEAt~S ? 7 9CT 1994 screw assembly 28 and second conveyor screw assembly 56 be independently controllable and variable, and that the flow rate.of liquid be meterable. By altering these variables relative to each other, the quality and quantity of the flowable slurry may be controlled.
There is no one standard "final product," and some final products may require the addition of addi-tional chemicals to create the needed properties. If the chemicals are in liquid form they may be easily added through the liquid i~troduction means.
The exemplary apparatus 10 also includes a selectively openable and closable bypass gate 90 shown in its normally closed position in FIG. 5. The bypass gate 90 comprises a plate 92 positioned in-line with conveyor inlet 20 and conveyor outlet 22. When the bypass gate 90 is in its open position the dry cementitious material that enters conveyor inlet 20 flows from the measuring device 12 into the final product mixing chamber 16 with-out being moved by the first conveyor screw assembly 28 or second conveyor screw assembly 56. The bypass gate 90 can be opened in the event of an emergency or if a particular final product requires the addition of dry cementitious material or other material directly into the final product mixing chamber 16. One end of a threaded rod 94 is attached to the plate 92 by a shackle 96, nut 98 and bolt 100. The other end of threaded rod 94 passes through a hole in bracket 102. In FIG. 5, nuts 104 and 106 are shown threaded on rod 94 such that movement of the plate 92 is prevented and bypass gate 90 is closed.
To open bypass gate 90 so that the opening 108 in plate 92 is positioned to permit the flow of dry material, nut 104 may be rotated inward and threaded rod 94 may be pulled outward until the opening 108 in plate 92 is posi-tioned as desired. Nut 106 may then be threaded inward until it seats against bracket 102. The bypass gate 90 can thus be adjusted to any position between fully opened and fully closed. The bypass gate 90 shown in FIGS. 2 AJUEI~ D ~,'I~ET
2169053 PCT/J~ 9~/ 02 892 - IPEA/US 21 OCT lâ~
and 5 is manually operated. It is to be understood that the design could easily be modified to be automatically actuated and operated by pneumatic, hydraulic, or electric motors, or other means.
Depending upon the particular properties of the materials being used, it may be desirable to have a liner or a coating on the inside of the first tubular housing assembly 30 and/or second tubular housing assembly 44 for friction and wear prevention.
The terms ~nd e~pressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expres-sions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
A~C~,~ C;~ET
Claims (9)
1. An apparatus for mixing cementitious material, liquid, and aggregate material together, including:
(a) a cementitious material measuring device having a material outlet;
(b) a screw conveyor having a conveyor screw assembly enclosed within a tubular housing assembly, said tubular housing assembly having a conveyor inlet located in-line with said material outlet to receive a quantity of said cementitious material from said measuring device, said conveyor screw assembly being capable of moving said cementitious material from said conveyor inlet toward a conveyor outlet in said tubular housing assembly located in-line with both said material outlet and said conveyor inlet;
(c) liquid introduction means located in said tubular housing assembly between said conveyor inlet and said conveyor outlet for depositing a quantity of a liquid into said cementitious material as said cementitious material is being moved from said conveyor inlet toward said conveyor outlet so that said liquid and said cementitious material are agitated and mixed together by movement of said conveyor screw assembly, forming a flowable slurry as said conveyor screw assembly moves said cementitious material and said liquid toward said conveyor outlet;
(d) final product mixing chamber means in receiving relationship to said conveyor outlet for receiving a quantity of said flowable slurry emanating from said conveyor outlet and for mixing said slurry with a measured quantity of aggregate material; and (e) a selectively openable and closable bypass gate interposed in-line between said conveyor inlet and said conveyor outlet to permit said cementitious material to flow from said measuring device into said final product mixing chamber means without being moved by said conveyor screw assembly.
(a) a cementitious material measuring device having a material outlet;
(b) a screw conveyor having a conveyor screw assembly enclosed within a tubular housing assembly, said tubular housing assembly having a conveyor inlet located in-line with said material outlet to receive a quantity of said cementitious material from said measuring device, said conveyor screw assembly being capable of moving said cementitious material from said conveyor inlet toward a conveyor outlet in said tubular housing assembly located in-line with both said material outlet and said conveyor inlet;
(c) liquid introduction means located in said tubular housing assembly between said conveyor inlet and said conveyor outlet for depositing a quantity of a liquid into said cementitious material as said cementitious material is being moved from said conveyor inlet toward said conveyor outlet so that said liquid and said cementitious material are agitated and mixed together by movement of said conveyor screw assembly, forming a flowable slurry as said conveyor screw assembly moves said cementitious material and said liquid toward said conveyor outlet;
(d) final product mixing chamber means in receiving relationship to said conveyor outlet for receiving a quantity of said flowable slurry emanating from said conveyor outlet and for mixing said slurry with a measured quantity of aggregate material; and (e) a selectively openable and closable bypass gate interposed in-line between said conveyor inlet and said conveyor outlet to permit said cementitious material to flow from said measuring device into said final product mixing chamber means without being moved by said conveyor screw assembly.
2. The apparatus of claim 1 wherein said screw conveyor includes a first conveyor screw assembly and a second conveyor screw assembly within respective first and second tubular housings for moving said cemen-titious material simultaneously in different directions from said conveyor inlet toward said conveyor outlet.
3. The apparatus of claim 2 wherein said different directions are generally transverse to the in-line alignment direction of said inlet and outlets.
4. The apparatus of claim 1 wherein said conveyor inlet is positioned vertically above said conveyor outlet and said bypass gate is located vertically therebetween.
5. The apparatus of claim 1 wherein one portion of said conveyer screw assembly includes means for imparting a higher degree of agitation to said cementitious material than does another portion of said conveyor screw assembly.
6. An apparatus for mixing cementitious material, liquid, and aggregate material together, including:
(a) a cementitious material measuring device;
(b) a screw conveyor including:
(i) a first tubular housing enclosing a first conveyor screw assembly, said first tubular housing having an inlet in receiving relationship to said measuring device for receiving a quantity of said cementitious material from said measuring device and having first and second out-lets, said conveyor screw assembly having different portions for simultaneously moving said cemen-titious material away from said inlet in diverging directions toward said first and second outlets, and (ii) a second tubular housing, substantially parallel to said first tubular housing, enclosing a second conveyor screw assembly, said second tubular housing having spaced first and second inlets connected to said first and second outlets of said first tubular housing and having a further out-let, said second conveyor screw assembly having different portions for simultaneously moving said cementitious material from said first and second inlets in converging directions toward said further outlet;
(c) liquid introduction means located in said second tubular housing for depositing a quantity of a liquid into said cementi-tious material as said cementitious material is being moved toward said further outlet so that said liquid and said cementitious material are agitated and mixed together by movement of said second conveyor screw assembly, forming a flowable slurry as said second conveyor screw assembly moves said cementitious material and said liquid toward said further outlet: and (d) final product mixing chamber means in receiving relationship to said further outlet for receiving a quantity of said flowable slurry emanating from said further outlet and for mixing said slurry with a measured quantity of aggregate material.
(a) a cementitious material measuring device;
(b) a screw conveyor including:
(i) a first tubular housing enclosing a first conveyor screw assembly, said first tubular housing having an inlet in receiving relationship to said measuring device for receiving a quantity of said cementitious material from said measuring device and having first and second out-lets, said conveyor screw assembly having different portions for simultaneously moving said cemen-titious material away from said inlet in diverging directions toward said first and second outlets, and (ii) a second tubular housing, substantially parallel to said first tubular housing, enclosing a second conveyor screw assembly, said second tubular housing having spaced first and second inlets connected to said first and second outlets of said first tubular housing and having a further out-let, said second conveyor screw assembly having different portions for simultaneously moving said cementitious material from said first and second inlets in converging directions toward said further outlet;
(c) liquid introduction means located in said second tubular housing for depositing a quantity of a liquid into said cementi-tious material as said cementitious material is being moved toward said further outlet so that said liquid and said cementitious material are agitated and mixed together by movement of said second conveyor screw assembly, forming a flowable slurry as said second conveyor screw assembly moves said cementitious material and said liquid toward said further outlet: and (d) final product mixing chamber means in receiving relationship to said further outlet for receiving a quantity of said flowable slurry emanating from said further outlet and for mixing said slurry with a measured quantity of aggregate material.
7. The apparatus of claim 6 wherein said second conveyor screw assembly includes means for impart-ing a higher degree of agitation to said cementitious material than does said first conveyor screw assembly.
8. The apparatus of claim 6, further including a selectively openable and closable bypass gate interposed between said first tubular housing and said second tubular housing in such a manner as to allow said cementitious material to flow from said measuring device into said final product-mixing chamber means without being moved by said first, and second conveyor screw assemblies.
9. A method of mixing cementitious material, liquid, and aggregate material together, comprising the steps of:
(a) interposing a screw conveyor between a material outlet and a final product mixing chamber inlet to a final product mixing chamber, said final product mixing chamber inlet located in-line with said material outlet, said screw conveyor comprising a first portion and a second portion succeeding said first portion along a flow direction;
(b) dispensing said cementitious material through said material outlet;
(c) receiving said cementitious material into said screw conveyor through a conveyor inlet located in-line with said material outlet, and moving said cementitious material by means of said screw conveyor along said flow direction from said conveyor inlet toward a conveyor outlet;
(d) imparting a higher degree of agitation to said cementitious material in said second portion of said screw conveyor than in said first portion of said screw conveyor;
(e) introducing liquid water into said screw conveyor at a location along said flow direction between said conveyor inlet and said conveyor outlet, and thereby deposit-ing a quantity of said liquid water into said cementitious material as said cementitious material is moving from said conveyor inlet toward said conveyor outlet;
(f) agitating and mixing said liquid water and said cementitious material together by movement of said screw conveyor, said agitating and mixing thereby forming a flowable slurry of said liquid water and cementitious material as said screw conveyor moves said cementitious material and said liquid water toward said conveyor outlet;
(g) performing step (f) in said second position of said screw conveyor, but not in said first portion of said screw conveyor;
(h) discharging said flowable slurry from said conveyor outlet at a position located in-line with said material outlet, said conveyor inlet, and said final product mixing chamber inlet so that said material outlet and said final product mixing chamber inlet remain in-line with each other; and (i) introducing said slurry into said final product mixing chamber and mixing said slurry with said aggregate material in said final product mixing chamber.
(a) interposing a screw conveyor between a material outlet and a final product mixing chamber inlet to a final product mixing chamber, said final product mixing chamber inlet located in-line with said material outlet, said screw conveyor comprising a first portion and a second portion succeeding said first portion along a flow direction;
(b) dispensing said cementitious material through said material outlet;
(c) receiving said cementitious material into said screw conveyor through a conveyor inlet located in-line with said material outlet, and moving said cementitious material by means of said screw conveyor along said flow direction from said conveyor inlet toward a conveyor outlet;
(d) imparting a higher degree of agitation to said cementitious material in said second portion of said screw conveyor than in said first portion of said screw conveyor;
(e) introducing liquid water into said screw conveyor at a location along said flow direction between said conveyor inlet and said conveyor outlet, and thereby deposit-ing a quantity of said liquid water into said cementitious material as said cementitious material is moving from said conveyor inlet toward said conveyor outlet;
(f) agitating and mixing said liquid water and said cementitious material together by movement of said screw conveyor, said agitating and mixing thereby forming a flowable slurry of said liquid water and cementitious material as said screw conveyor moves said cementitious material and said liquid water toward said conveyor outlet;
(g) performing step (f) in said second position of said screw conveyor, but not in said first portion of said screw conveyor;
(h) discharging said flowable slurry from said conveyor outlet at a position located in-line with said material outlet, said conveyor inlet, and said final product mixing chamber inlet so that said material outlet and said final product mixing chamber inlet remain in-line with each other; and (i) introducing said slurry into said final product mixing chamber and mixing said slurry with said aggregate material in said final product mixing chamber.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/036,192 US5352035A (en) | 1993-03-23 | 1993-03-23 | Concrete mixing system with cement/water premixer |
US08/036,192 | 1993-03-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2169053A1 CA2169053A1 (en) | 1994-09-29 |
CA2169053C true CA2169053C (en) | 1998-06-09 |
Family
ID=21887173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002169053A Expired - Lifetime CA2169053C (en) | 1993-03-23 | 1994-03-16 | Concrete mixing system with cement/water premixer |
Country Status (4)
Country | Link |
---|---|
US (2) | US5352035A (en) |
AU (1) | AU6447794A (en) |
CA (1) | CA2169053C (en) |
WO (1) | WO1994021434A1 (en) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6267495B1 (en) * | 1994-10-25 | 2001-07-31 | Process Control Corporation | Blender apparatus with precision low-rate metering unit |
DE29514183U1 (en) * | 1995-09-05 | 1995-11-02 | INOTEC GmbH Transport- und Fördersysteme, 79761 Waldshut-Tiengen | Mortar mixer |
DE19601696A1 (en) * | 1996-01-18 | 1997-10-09 | Bayosan Wachter Gmbh & Co Kg | Process for the production of flowable and / or pumpable building materials, in particular flowing screeds |
US6123445A (en) * | 1996-09-16 | 2000-09-26 | Grassi; Frank | Dual stage continuous mixing apparatus |
US5718508A (en) * | 1996-10-29 | 1998-02-17 | Haltec Corporation | Self-cleaning mixer for cement slurry |
US6050721A (en) * | 1998-07-01 | 2000-04-18 | Rainey; Thomas David | Mixing machine for plasticizable compounds |
US6126738A (en) * | 1998-07-06 | 2000-10-03 | Transash | Method for producing aggregate |
US6991361B2 (en) * | 2000-04-05 | 2006-01-31 | Advanced Concrete Innovations, Inc. | Portable concrete plant |
US6565252B2 (en) * | 2001-01-12 | 2003-05-20 | Renegade Tool Company | Apparatus for automated finishing of interior surfaces |
US7004615B2 (en) * | 2003-03-24 | 2006-02-28 | Despres Etienne | Distributor for dry cement |
US7320539B2 (en) * | 2004-04-05 | 2008-01-22 | Mcneilus Truck And Manufacturing, Inc. | Concrete batching facility and method |
US20050219939A1 (en) * | 2004-04-05 | 2005-10-06 | Mcneilus Truck And Manufacturing, Inc. | Concrete batching pre-mixer and method |
US7387425B2 (en) * | 2004-07-06 | 2008-06-17 | Dean Christopher J | Mobile grout plant |
US8123394B2 (en) * | 2005-10-17 | 2012-02-28 | Evonik Degussa Gmbh | Mixer for liquid colorants and method for mixing liquid colorants |
US7736048B2 (en) * | 2006-08-22 | 2010-06-15 | Swa Holding Company, Inc. | Segmented auger for a concrete dispensing apparatus |
US20080099133A1 (en) * | 2006-11-01 | 2008-05-01 | United States Gypsum Company | Panel smoothing process and apparatus for forming a smooth continuous surface on fiber-reinforced structural cement panels |
US7754052B2 (en) * | 2006-11-01 | 2010-07-13 | United States Gypsum Company | Process and apparatus for feeding cementitious slurry for fiber-reinforced structural cement panels |
US7524386B2 (en) | 2006-11-01 | 2009-04-28 | United States Gypsum Company | Method for wet mixing cementitious slurry for fiber-reinforced structural cement panels |
US7513963B2 (en) | 2006-11-01 | 2009-04-07 | United States Gypsum Company | Method for wet mixing cementitious slurry for fiber-reinforced structural cement panels |
US9194092B2 (en) * | 2010-01-26 | 2015-11-24 | Mark Kline | Mechanism for automated mixing of liquid solutions and granular materials |
KR101219660B1 (en) * | 2010-07-30 | 2013-01-08 | 한라엔컴 주식회사 | Pre-Mixer |
EP2548766A1 (en) * | 2011-07-22 | 2013-01-23 | Solvay Sa | Unloading device, process and unloaded powder |
US8845940B2 (en) | 2012-10-25 | 2014-09-30 | Carboncure Technologies Inc. | Carbon dioxide treatment of concrete upstream from product mold |
EP2951122B1 (en) | 2013-02-04 | 2020-05-27 | Carboncure Technologies Inc. | System and method of applying carbon dioxide during the production of concrete |
US9376345B2 (en) | 2013-06-25 | 2016-06-28 | Carboncure Technologies Inc. | Methods for delivery of carbon dioxide to a flowable concrete mix |
US9388072B2 (en) | 2013-06-25 | 2016-07-12 | Carboncure Technologies Inc. | Methods and compositions for concrete production |
US10927042B2 (en) | 2013-06-25 | 2021-02-23 | Carboncure Technologies, Inc. | Methods and compositions for concrete production |
WO2015123769A1 (en) | 2014-02-18 | 2015-08-27 | Carboncure Technologies, Inc. | Carbonation of cement mixes |
CA2943791C (en) | 2014-04-07 | 2023-09-05 | Carboncure Technologies Inc. | Integrated carbon dioxide capture |
CN106715065B (en) | 2014-05-02 | 2022-06-17 | 建筑机器人有限责任公司 | Mortar conveying system |
US9909398B2 (en) * | 2014-06-17 | 2018-03-06 | Schlumberger Technology Corporation | Oilfield material mixing and metering system with auger |
EP3072580A1 (en) * | 2015-03-26 | 2016-09-28 | MAT Mischanlagentechnik, Zweigniederlassung der BAUER Maschinen GmbH | Mixing device and mixing method |
EP3442761A4 (en) | 2016-04-11 | 2019-12-11 | Carboncure Technologies Inc. | Methods and compositions for treatment of concrete wash water |
CN106113258A (en) * | 2016-08-11 | 2016-11-16 | 北京隆翔环保科技有限公司 | A kind of concrete product additive colo(u)r system and control method thereof |
CN106422856A (en) * | 2016-08-18 | 2017-02-22 | 浙江铭叶磁材科技有限公司 | Stirring device of metal magnetic powder core powder and use method thereof |
EP3642170A4 (en) | 2017-06-20 | 2021-03-10 | Carboncure Technologies Inc. | Methods and compositions for treatment of concrete wash water |
DK3600808T3 (en) * | 2017-08-09 | 2023-07-31 | Sika Tech Ag | SYSTEM FOR APPLICATION OF A BUILDING MATERIAL |
CN107471438A (en) * | 2017-10-11 | 2017-12-15 | 钟晓芳 | A kind of Multifunctional cement stirring device |
US11092528B2 (en) | 2019-12-15 | 2021-08-17 | Neil Edward Bollin | Device and method for calibrating and correlating slump in a concrete mixer |
US11305459B2 (en) | 2019-12-15 | 2022-04-19 | Neil Edward Bollin | Device and method for semi-automatic concrete mixing and for training operators for use thereof |
CN111805742B (en) * | 2020-06-13 | 2022-02-01 | 苏州一统混凝土有限公司 | Efficient cement mixer |
CN112123583A (en) * | 2020-09-23 | 2020-12-25 | 杭州天佳建材科技有限公司 | Aerated concrete production and processing system |
CN112140345A (en) * | 2020-09-24 | 2020-12-29 | 长沙葡提科技信息有限公司 | Fitment is with adding look lime water mechanical stirring allotment equipment |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1013612A (en) * | 1911-02-25 | 1912-01-02 | Milton C Peters | Mixing apparatus. |
US1753716A (en) * | 1928-04-25 | 1930-04-08 | Jack M Owen | Mixer for cement |
US2486323A (en) * | 1946-04-24 | 1949-10-25 | Overmander Machine Inc | Variable output mixing system |
US2595631A (en) * | 1950-07-01 | 1952-05-06 | Volkart Geb | Method and apparatus for cooling concrete mixture components |
US3006615A (en) * | 1957-07-05 | 1961-10-31 | Hoge Warren Zimmermann Co | Continuous mixing, metering and delivering apparatus |
US3591145A (en) * | 1970-03-24 | 1971-07-06 | Vallance & Co Morley Ltd | Method for continuously mixing powders and oils |
GB1340219A (en) * | 1970-08-01 | 1973-12-12 | Scheer & Cie C F | Devices for plasticising and extruding plastics material |
US3790138A (en) * | 1972-06-19 | 1974-02-05 | Bj Mfg Co Inc | Feed mixer |
IT1079502B (en) * | 1975-05-27 | 1985-05-13 | Mathis Fertigputz | DEVICE FOR THE CONTINUOUS MANUFACTURE OF MATLA IMPASATA |
DE2619810A1 (en) * | 1976-05-05 | 1977-11-24 | Alwin Ing Grad Berents | Continuous toothpaste mfr. - by coarse mixing of metered constituents, air removal by vacuum and mixing |
JPS5840482B2 (en) * | 1979-02-15 | 1983-09-06 | 日本プライブリコ株式会社 | Continuous powder humidifier |
JPS5925614Y2 (en) * | 1981-04-13 | 1984-07-27 | スギウエエンジニアリング株式会社 | On-site remixing device |
US4586824A (en) * | 1982-04-02 | 1986-05-06 | Haws Paul M | Mobile concrete mixing apparatus |
GB8312326D0 (en) * | 1983-05-05 | 1983-06-08 | Coal Industry Patents Ltd | Producing aerated cementitious compositions |
DE3772538D1 (en) * | 1986-12-19 | 1991-10-02 | Shimizu Construction Co Ltd | METHOD FOR PRODUCING CONCRETE AND DEVICE THEREFOR. |
US4904089A (en) * | 1988-05-16 | 1990-02-27 | Standard Concrete Products, Inc. | Particle wetting process and apparatus |
US4830505A (en) * | 1988-05-16 | 1989-05-16 | Standard Concrete Materials, Inc. | Particle wetting process and apparatus |
JPH0777722B2 (en) * | 1989-09-22 | 1995-08-23 | 株式会社大林組 | Concrete cooling system |
-
1993
- 1993-03-23 US US08/036,192 patent/US5352035A/en not_active Expired - Lifetime
-
1994
- 1994-03-16 AU AU64477/94A patent/AU6447794A/en not_active Abandoned
- 1994-03-16 WO PCT/US1994/002892 patent/WO1994021434A1/en active Application Filing
- 1994-03-16 CA CA002169053A patent/CA2169053C/en not_active Expired - Lifetime
- 1994-06-23 US US08/265,004 patent/US5427448A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US5427448A (en) | 1995-06-27 |
US5352035A (en) | 1994-10-04 |
AU6447794A (en) | 1994-10-11 |
CA2169053A1 (en) | 1994-09-29 |
WO1994021434A1 (en) | 1994-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2169053C (en) | Concrete mixing system with cement/water premixer | |
CA2503855C (en) | Concrete batching pre-mixer and method | |
US5795060A (en) | Method and apparatus for continuous production of colloidally-mixed cement slurries and foamed cement grouts | |
US7320539B2 (en) | Concrete batching facility and method | |
US3967815A (en) | Dustless mixing apparatus and method for combining materials | |
US5609416A (en) | Portable continual mixer | |
US4618294A (en) | Concrete feeder apparatus | |
EP3970843A2 (en) | Plant and method for producing a mineral foam | |
US4981600A (en) | Method and means for treating sludge | |
SK78193A3 (en) | Device for production of pump, mortal material | |
CN1198120A (en) | Process and plant for production of fluid fine paste hardenable after molding | |
GB2090761A (en) | Mixing apparatus | |
DE2130257A1 (en) | Method and device for the pneumatic application of a viscous material | |
US4004782A (en) | Machine for mixing aggregate and resin | |
CN107225685B (en) | A kind of construction site travelling mixer | |
CN210561592U (en) | Asphalt metering and spraying discharging device | |
US20200408052A1 (en) | Ex-situ solidification system | |
CN208152608U (en) | Self-walking terrace crack mending device | |
JPH07180355A (en) | Pressure conveying device and method for hydraulic fluid and spraying method using the same | |
CN118437215B (en) | Asphalt concrete apparatus for producing | |
CN214982098U (en) | Dry-mixed mortar mixing equipment | |
CN214521065U (en) | Mixer is used in road bridge construction | |
RU2722194C1 (en) | Mobile concrete-mixing plant | |
CN212352440U (en) | Premixing device for concrete stirring | |
CN221419960U (en) | Polymer waterproofing membrane processing raw materials loading attachment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKEX | Expiry |
Effective date: 20140317 |