CA2143247A1 - Anvil pockets for surgical stapler - Google Patents
Anvil pockets for surgical staplerInfo
- Publication number
- CA2143247A1 CA2143247A1 CA 2143247 CA2143247A CA2143247A1 CA 2143247 A1 CA2143247 A1 CA 2143247A1 CA 2143247 CA2143247 CA 2143247 CA 2143247 A CA2143247 A CA 2143247A CA 2143247 A1 CA2143247 A1 CA 2143247A1
- Authority
- CA
- Canada
- Prior art keywords
- staple
- staples
- anvil
- jaw member
- cam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000002788 crimping Methods 0.000 claims description 4
- 210000005069 ears Anatomy 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 210000000056 organ Anatomy 0.000 description 5
- 238000005452 bending Methods 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000003562 lightweight material Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000003872 anastomosis Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
- A61B17/07207—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
- A61B2017/07214—Stapler heads
- A61B2017/07257—Stapler heads characterised by its anvil
- A61B2017/07264—Stapler heads characterised by its anvil characterised by its staple forming cavities, e.g. geometry or material
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
In accordance with the invention, a surgical stapling instrument comprises first and second cooperating elongate jaw members one of the jaw members including stapling carrying means adapted to receive a plurality of staples arranged in at least one row, and the other jaw member including adapted and improved anvil means adapted to form the staples, pusher means for driving the staples from the staple carrying means into tissue gripped between the jaw members and forming the staples against the anvil means to produce at least one row of staples in the tissue, knife means for cutting the tissue gripped between the jaw members along a line adjacent to the row of staples, and jaw clamping means for applying clamping forces to the jaw members to resist the forces exerted on the staple carrying means and anvil means when the staples are formed. The improved anvil means are able to more readily form the staples, and comprise a skewed surface, either in the lateral or depth direction, which results in the points of the staple always missing one another upon forming.
Description
. - 21432~7 IMPROVED ANVIL ~O~h~8 FOR ~URGICAL 8TAPLER
FIELD OF THE l~v~.-.ION
The present invention relates to a surgical stapling instrument and, more particularly, to a gastrointestinal anastomotic stapling instrument for producing one or more rows of staples when the staples are formed.
BACRGROUND OF TRE l~v~N~ION
In recent years, there has been an increasing tendency for surgeons to use stapling instruments to suture body organs and tissues such as lung, esophagus, stomach, duodenum and other body organs in the intestinal tract. The use of an appropriate stapling instrument in most instances performs a better job in less time and simplifies previously difficult surgical procedures such as gastrointestinal anastomoses.
Typically, a linear anastomotic stapling instrument includes a pair of cooperating elongate jaw members, each adapted to be inserted into internal, tubular body organs to be anastomosed. One of the jaw members supports a staple cartridge with at least two laterally spaced rows of staples, and the other jaw member supports an anvil with staple-forming pockets aligned with the rows of staples in the cartridge. Generally, a single pusher bar and knife assembly is slidable longitudinally along the jaw members to sequentially eject staples from the cartridge via camming surfaces which activate a plurality of staple drivers carried by the cartridge and associated with the individual staples to close the staples against the anvil and form laterally spaced rows of staples in the - 21~32~7 tissue gripped between the jaw members. A knife blade which trails the pusher bars cuts the tissue along a line between the staple rows. Yet, no provision is made in typical staplers for the points of the stapler contacting one another in the anvil pockets.
~UMMARY OF THE INVENTION
In accordance with the invention, a surgical stapling instrument comprises first and second cooperating elongate jaw members one of the jaw members including stapling carrying means adapted to receive a plurality of staples arranged in at least one row, and the other jaw member including adapted and improved anvil means adapted to form the staples, pusher means for driving the staples from the staple carrying means into tissue gripped between the jaw members and forming the staples against the anvil means to produce at least one row of staples in the tissue, knife means for cutting the tissue gripped between the jaw members along a line adjacent to the row of staples, and jaw clamping means for applying clamping forces to the jaw members to resist the forces exerted on the staple carrying means and anvil means when the staples are formed. The improved anvil means are able to more readily form the staples, and comprise a skewed surface, either in the lateral or depth direction, which results in the points of the staple always missing one another upon forming.
BRIEF DE8CRIPTION OF THE DRA~ING8 Figure 1 is an overall perspective view of a linear anastomotic stapling instrument embodying the principles of the present invention;
21432~17 Figure 2 is a side elevation showing the anastomotic stapling instrument partially disassembled with its upper anvil carrying jaw member detached from its lower staple cartridge carrying jaw member;
Figure 3 is a side elevation showing the anastomotic stapling instrument in its assembled configuration;
Figure 4 is a side elevation, partially in section, of the anastomotic stapling instrument showing a cam mechanism for urging the rear portions of the upper and lower jaw members apart;
Figure 5 is a bottom view of the anvil carrying jaw member of the anastomotic stapling instrument;
Figure 6 is a top view of the staple cartridge carrying jaw member of the anastomotic stapling instrument;
Figure 7 is a bottom view of the anastomotic stapling instrument;
Figure 8 is a front end view of the anastomotic stapling instrument;
Figure 9 is a rear end view of the anastomotic stapling instrument;
Figure 10 is an enlarged perspective view of a pusher bar and knife blade assembly of the anastomotic stapling instrument;
- 21432'17 Figure 11 is an enlarged perspective view of a pusher block and an actuator knob which are components of the pusher bar and knife blade assembly of the anastomotic stapling instrument;
Figure 12 is an enlarged elevation, partially in section, of the rear portion of the anastomotic stapling instrument illustrating the cam mechanism in its inoperative position;
Figure 13 is an enlarged elevation, partially in section, of the rear portion of the anastomotic stapling instrument illustrating the cam mechanism in its operative position;
Figure 14 is an enlarged side view of the staple cartridge of the anastomotic stapling instrument;
Figure 15 is an enlarged top view of the staple cartridge of the anastomotic stapling instrument;
Figure 16 is an enlarged bottom view of the staple cartridge of the anastomotic stapling instrument;
Figure 17 is an enlarged, partially cutaway view of the anvil and staple cartridge carrying jaw members of the anastomotic stapling instrument;
Figure 18 is an enlarged, partially cutaway view of the anvil and staple cartridge carrying jaw members illustrating the operation of the pusher bar and knife blade assembly;
~1~32'17 Figure 19 is an enlarged vertical section of the anastomotic stapling instrument taken along line 19-19 of Figure 4;
Figure 20 is an enlarged vertical section of the anastomotic stapling instrument taken along line 20-20 of Figure 4;
Figure 21 is an enlarged section of a portion of the anvil and staple cartridge shown in Figure 18;
Figures 22 and 22a are views of anvil pockets able to form a single staple;
Figure 23 is a view of an alternate embodiment of the anvil pocket configuration of Figure 22; and Figures 24, 24(a), 24(b), 25, 25(c) and 25(d) are alternate configurations of anvil pockets embodying the present invention.
DET~TT~n DE8CRIPTION OF THF lNv~.,ION
There is described in this invention a particularly modified anvil for forming surgical staples. Of course, it is to be realized that while the embodiment disclosed herein is a linear stapler, any type stapler is possible to use with this invention. Thus, the stapler may be circular in cross section, apply a single row of staples, or any other conceivable embodiments without departing from the scope of this invention.
Referring to Figures 1 and 2, the present invention is embodied in a linear anastomotic stapling instrument, 21432~7 generally 20, comprising an upper elongated anvil carrying jaw member 22 and a lower elongated staple cartridge carrying jaw member 24. Upper anvil carrying jaw member 22 is supported by a handle 26 with a front portion of the jaw member extending forwardly therefrom. Lower staple cartridge carrying jaw member 24 is supported by a handle 28 with a front portion of the jaw member extending forwardly therefrom. As shown in Figure 3, upper handle 26 and lower handle 28 are suitably shaped to form a hand grip to facilitate the handling and operation of the stapling instrument by a surgeon. An enlarged front protrusion 27 and a small rear protrusion 29 are provided on each handle for this purpose. Preferably, handles 26 and 28 are made of plastic of other lightweight material, while jaw members 22 and 24 are made of stainless steel or other similar material.
As shown in Figure 5, upper jaw member 22 comprises a one-piece elongated channel-shaped frame including a pair of opposed, elongated side walls 30 connected by a top wall 31. Upper handle 26 includes a pair of depending ears 32 located inside the upper handle adjacent to its front end. Upper jaw member 22 includes a slot 34 (Figure 4) formed at an intermediate position along its top wall 31 through which depending ears 32 project downward. A
latch pin 36 extends through circular holes formed in side walls 30 of upper jaw member 22 and through circular holes formed in depending ears 32 to pivotally connect the upper jaw member to upper handle 26.
Referring to Figure 5, the front portion of upper jaw member 22 is provided with a pair of elongated inwardly extending flanges 38 which define an anvil 40 of the stapling instrument. Flanges 38 are separated by a central longitudinal slot 42 which extends along the entire length of anvil 40. At the proximal end of central slot 42, the flanges 38 are provided with inwardly sloped guide surfaces 41. Each flange 38 is also provided with S two longitudinal rows of uniformly spaced staple-forming pockets 44.
Referring to Figures 4 and 5, a tapered anvil tip 46 is mounted at the front of anvil carrying jaw member 22 to facilitate the insertion of the jaw member into hollow, tubular body organs. Anvil tip 46 includes an elongated body 48 (Figure 4) which is inserted through the longitudinal passageway above anvil 40 defined by side walls 30 and flanges 38 of the upper jaw member. This elongated body 48 extends between depending ears 32 above latch pin 36 and includes an enlarged rear portion S0 located behind ears 32 to hold anvil tip 46 in place on upper jaw member 22.
Referring to Figures 2 and 6, lower cartridge carrying jaw member 24 comprises a one-piece elongated channel-shaped frame including a pair of opposed, elongated side walls 52 connected by a bottom wall S3.
Along the rearward portion of lower jaw member 24, a pair of spaced, elongated upstanding side flanges 54 (Figure 2) extend upward from its opposed side walls S2. As shown in Figures 5 and 6, the width of lower jaw member 24 between its side flanges S4 is greater than the width of upper jaw member 22 between its side walls 30 to permit the rear portion of the upper jaw member to be received between side flanges S4 of the lower jaw member when the stapling instrument is assembled for operation. As shown in Figure 2, each side flange 54 of lower jaw member 24 includes a vertical notch S6 located in alignment with latch pin 36 ~1 ~324 7 on upper jaw member 22. When upper jaw member 22 and lower jaw member 24 are assembled, the opposite ends of latch pin 36 are received in notches 56.
As shown in Figures 2 and 6, lower jaw member 24 supports a staple cartridge 60 which is adapted to receive a plurality of surgical staples 61 (Figure 18) arranged in at least two laterally spaced longitudinal rows. Staple cartridge 60 is mounted at the front portion of lower jaw member 24 between its side walls 52. Staple cartridge 60 is divided longitudinally by a central, elongated slot 62 (Figure 6) which extends from the proximal end of the cartridge toward its distal end. Preferably, a plurality of staple openings 64 formed in staple cartridge 60 is arranged in two pairs of laterally spaced rows, with each pair of rows disposed on opposite sides of central longitudinal slot 62. A plurality of surgical staples 61 (Figure 18) are mounted within openings 64 of cartridge 60. As shown in Figure 6, the staple openings 64 in adjacent rows are staggered to provide more effective stapling of the tissue when the instrument is operated.
Referring to Figures 15 and 16, staple cartridge 60 includes a pair of longitudinal slots 66 located on opposite sides of elongated central slot 62 and disposed between the staggered rows of openings 64 on each side of the central slot. Each longitudinal slot 66 extends from the proximal end of cartridge 60 towards its distal end.
As shown in Figure 17, a plurality of staple drivers 65 is slidably mounted in staple openings 64 for actuating the staples 61 which are loaded into staple cartridge 60.
Referring to Figure 6, each staple driver 65 is designed to simultaneously actuate two staples 61 located in the adjacent rows provided in staple cartridge 60. Thus, a - 21432~7 first set of staple drivers 65 is provided for actuating the staples 61 in the staggered rows located on one side of central longitudinal slot 62, and a second set of staple drivers 65 is provided for actuating the staples 61 in the pair of adjacent rows located on the other side of central longitudinal slot 62.
As shown in Figures 2 and 3, the front or distal end of staple cartridge 60 includes a tapered tip 68 to facilitate the insertion of lower jaw member 24 into a hollow, tubular body organ. Immediately behind its tapered tip 68, staple cartridge 60 is provided with a pair of rearwardly extending protrusions 70 (one shown in Figure 14) which re received in corresponding notches provided in side walls 52 of lower jaw member 24. At the rear of staple cartridge 60, a pair of depending arms 72 extends downwardly from the cartridge. Each arm 72 is notched to provide a side opening 74. When cartridge 60 is assembled on lower jaw member 24, its protrusions 70 are received in corresponding notches provided at the front ends of side walls 52 and its depending arms 72 extend downwardly through an opening 76 (Figure 4) formed in bottom wall 53 of jaw member 24. Lower jaw member 24 includes a pair of depending ears 78 (Figure 19) extending downwardly from its side walls 52 on opposite sides of opening 76. A pivot pin 80 extends through holes formed in depending ears 78 of lower jaw member 24 and through side openings 74 of lower jaw member 24 and through side openings 74 of depending arms 72 on staple cartridge 60 to fasten the staple cartridge to the lower jaw member.
Referring to Figure 2, the stapling instrument 20 includes a latching mechanism, generally 90, for latching upper jaw member 22 and lower jaw member 24 together at an `. 214324~
intermediate position along the jaw members. Preferably, jaw members 22 and 24 are latched together at a position adjacent to the proximal ends of anvil 40 and staple cartridge 60. In the preferred embodiment, latching mechanism 90 comprises a latch arm 92 (Figure 2) pivotally connected to lower jaw member 24 via pivot pin 80 (Figure 4). Latch arm 92 is channel-shaped in configuration and includes a pair of opposed, elongated side walls 90 (Figure 6) which are spaced apart by a distance sufficient to span side walls 52 of lower jaw member 24. Each side wall 94 of latch arm 92 includes an upwardly and forwardly extending hook member 96 provided with a forwardly facing slot 98 for receiving latch pin 36. A shroud 100 is mounted on the lower surface of latch arm 92. When latch arm 92 is closed, as shown in Figure 3, shroud 100 is aligned with the bottom of lower handle 28 to facilitate the handling and operation of stapling instrument 20 by the surgeon. Preferably, shroud 100 is made of plastic or other light-weight material, while latch arm 92 is made of stainless steel. As shown in Figure 7, shroud 100 includes elongated flanges 102 and 104 extending outwardly from its opposite sides which serve as finger grips to enable latch arm 92 to be pivoted downward from its latched to it unlatched position. When latch arm 92 is moved to its closed or latched position, the surfaces of slots 98 of hook members 96 cooperate with latch pin 36, acting as an over-center latch to maintain latch arm 92 in its latched position.
Referring to Figures 6 and 10, the preferred embodiment of stapling instrument 20 includes an improved pusher bar and knife blade assembly, generally 110, which is slidably mounted for longitudinal movement relative to upper and lower jaw members 22 and 24, respectively, for driving staples 61 from staple cartridge 60 into tissue gripped between the jaw members, forming staples 61 against anvil 40, and cutting the tissue along a line between the rows of staples formed in the tissue. Pusher bar and knife blade assembly 110 includes a pusher block 112 (Figure 6) which is slidably received within the lower channel-shaped jaw member 24 between its upstanding side flanges 54. As shown in Figure 11, pusher block 112 is attached to an actuator knob 114 by a flange 116 which includes a laterally projecting finger 118 provided with a longitudinally extending notch 119 on its top surface.
Finger 118 is snap-fitted into a lateral slot 120 formed in pusher block 112 to locate notch 119 underneath a longitudinal locking bar 121 to secure pusher block 112 and actuator knob 114 together. Flange 116 of actuator knob 114 extends through and rides along an elongated slot 122 (Figure 2) formed in one side flange 54 of lower jaw member 24.
The pusher bar and knife blade assembly 110 includes a pair of staple pusher bars 124 (Figure 10) projecting forwardly from pusher block 112 and slidably received in elongated slots 66 (Figure 16) of staple cartridge 60.
Pusher block 112 is provided with a pair of vertical slots 126 (Figure 11) in which pusher bars 124 are secured. As shown in Figure 10, the front end of each staple pusher bar 124 is provided with a wedge-shaped tip 128 which defines an inclined cam surface 130 for engaging staple drivers 65 as pusher bars 124 are advanced into staple cartridge 60. As shown in Figure 21, each staple driver 65 is provided with a sloped surface 132 oriented at the same angle as cam surface 130 of each staple pusher bar 124 to provide a flat, sliding contact between the surfaces.
~1432~7 Referring to Figures 6 and 10, the pusher bar and knife blade assembly 110 includes a knife block 134 which is slidably mounted for longitudinal movement along lower jaw member 24 between it upstanding side flanges 54.
Knife block 134 includes a knife support bar 136 which extends forwardly into central longitudinal slot 62 of staple cartridge 60. An inclined knife blade 138 is provided with a beveled cutting edge 140 is located at the front end of knife support bar 136. The beveled cutting edge of knife blade 138 is oriented at an angle relative to elongate jaw members 22 and 24 and is slidably received in central longitudinal slot 62 of staple cartridge 60.
In the preferred embodiment of stapling instrument lS 20, knife block 134 includes a pair of longitudinal slots 135 (Figure 20) extending therethrough which slidably receive staple pusher bars 124 to permit pusher block 112 to slide relative to the knife block. Accordingly, when pusher block 112 is advanced toward staple cartridge 60 by actuator knob 114, staple pusher bars 124 slide through knife block 134 which remains stationary until the pusher block moves into engagement with the knife block. After knife block 134 is engaged by pusher block 112, the knife block and pusher block advance simultaneously toward staple cartridge 60. As shown in Figure 18, knife blade 138 is advanced through staple cartridge 60 along with staple pusher bars 124, forming staples 61 in the tissue gripped between the jaw members and cutting the tissue between the staple rows. Thereafter, when actuator knob 114 is retracted, pusher block 112 initially slides staple pusher bars 124 backward through knife block 134 which remains stationary. Each staple pusher bar 124 includes an offset portion 142 which moves into engagement with knife block 134 after staple pusher bars 124 are withdrawn ~1~32'17 by a predetermined distance. With offset portions 142 of staple pusher bars 124 engaging knife block 134, pusher block 112 and knife block 134 are simultaneously retracted by actuator knob 114 to return pusher bars 124 and knife blade 138 to the start position.
In accordance with the invention, stapling instrument 20 is provided with jaw clamping means for applying clamping forces to the jaw members to urge staple cartridge 60 and anvil 40 together during the formation of staples 61. The jaw clamping means includes means for urging the jaw members apart at a position remote from the latching mechanism to resist the forces exerted on staple cartridge 60 and anvil 40 when staples 61 are formed. In the preferred embodiment, a cam means is mounted on one of the jaw members and engageable with the other jaw member for moving said jaw members apart the remote position to urge staple cartridge 60 and anvil 40 together.
Preferably, a cam member is pivotally mounted on one of the jaw members at a position remote from the latching mechanism. The cam member is pivotable from a first inoperative position to a second operative position to move the remote ends of the jaw members apart. The cam member is operable by pusher block 112 of pusher bar and knife blade assembly 110 to more to its operative position when the pusher block is advanced and to return to its inoperative position when the pusher block is retracted.
In the preferred embodiment of the stapling instrument 20, a cam mechanism, generally 150, is located adjacent to the rear end of lower jaw member 24, as shown in Figure 4. Cam mechanism 150 includes a cam member 152 pivotally mounted on a transverse pivot pin extending between upstanding side flanges 54 of lower jaw member 24.
- 21~3~17 Cam member 152 includes a first lower cam surface 156 for engaging top wall 31 of upper jaw member 22 with cam 152 in its first inoperative position (Figure 12) and a second higher cam surface 158 for engaging the top wall 31 of upper jaw member 22 with cam 152 disposed in its second operative position (Figure 13). First cam surface 156 is arranged to maintain upper and lower jaw members substantially parallel with cam 152 in its inoperative position. Second cam surface 158 is arranged to raise the rear end of upper jaw member 22 by approximately 0.125 inch (3.2mm) when cam 152 pivots from its inoperative position to its operative position. In addition, upper jaw member 22 is sufficiently flexible to permit the rear portion of upper jaw member 22 to bend upward away from lower jaw member 24 when cam member 152 is moved from its inoperative position to its operative position.
As shown in Figure 4, cam member 152 includes a radially extending notch 160 which divides the cam into a large front finger 162 and a small rear finger 164. Front cam finger 162 includes a flat, rearwardly facing surface 165, and rear cam finger 164 includes a sloped, forwardly facing surface 166. With cam 152 in its inoperative position, front cam finger 162 and rear cam finger 164 extend downwardly through an elongated slot 168 formed in bottom wall 53 of lower jaw member 24.
In the preferred embodiment, cam member 152 is operable by pusher block 112 to move from its inoperative position to its operative position when the pusher block is advanced. As shown in Figure 11, pusher block 112 includes a pair of rearwardly extending arms 170 which are spaced apart to define a gap 172 therebetween. The rear ends of arms 170 are connected by a cam actuator pin 174 - 21~3247 which extends across gap 172. Referring to Figures 4 and 11, with cam member 152 disposed in its inoperative position, front cam finger 162 extends through gap 172 between arms 170 of pusher block 112, while cam actuator pin 174 is received in notch 160 between front finger 162 and rear finger 164 of the cam member.
As shown in Figure 12, with cam member 152 disposed in its first inoperative position, top wall 31 of upper jaw member 22 rests on first cam surface 156 of the cam member. With cam member 152 in its inoperative position, top wall 31 of upper jaw member 22 is substantially parallel to bottom wall 53 of lower jaw member 24. ~n addition, pusher block 112 is located in its start position spaced rearwardly from knife block 134. When pusher block 112 is advanced, as indicated by arrow 182 (Figure 13), cam actuator pin 174 engages rear surface 165 of front cam finger 162 to rotate cam member 152 in a counter-clockwise direction, as indicated by arrow 184, to pivot the cam member to its second operative position and move its second cam surface 158 into engagement with top wall 31 of upper jaw member 22. With cam member 152 pivoted to its operative position, the top wall 31 of upper jaw member 22 is bent upwardly, as indicated by arrow 186, away from bottom wall 53 of lower jaw member 24. The cam member applies forces to upper jaw member 22 and lower jaw member 24 which bend the rear portions of jaw members apart. As a result of the bending the rear portions of upper jaw member 22 and lower jaw member 24 apart, additional clamping forces are applied to the front portions of upper jaw member 22 and lower jaw member 24 to clamp anvil 40 and staple cartridge 60 against the tissue gripped between the jaw members. Thus, anvil 40 and staple cartridge 60 are urged together to resist the - 21~324~
forces exerted on the anvil and staple cartridge when pusher bar and knife blade assembly 110 is advanced to form staples 61 and cut the tissue.
Referring to Figure 13, when pusher block 112 is retracted after staples 61 are formed, cam actuator pin 174 engages sloped surface 166 of rear cam finger 164 to pivot cam member 152 in a clockwise direction. As cam actuator pin 174 moves along sloped surface 166 into notch 160, cam member 152 pivots in a clockwise direction and returns to its first inoperative position (Figure 12) with its first cam surface 156 in engagement with top wall 31 of upper jaw member 22. As a result, the forces exerted on the rear portions of upper jaw member 22 and lower jaw member 24 by cam 152 are released and top wall 31 of upper jaw member 22 returns to a substantially parallel relationship with bottom wall 53 of lower jaw member 24.
Similarly, the clamping forces applied to the front portions of jaw members 22 and 24 are released to unclamp anvil 40 and staple cartridge 60.
The preferred embodiment of stapling instrument 20 includes spacer means mounted on one of the jaw members for maintaining a predetermined gap between staple cartridge 60 and anvil 40 of the stapling instrument.
Referring to Figures 4 and 6, this spacer means is embodied as spacer pin 190 mounted adjacent to the distal end of staple cartridge 60. Spacer pin 190 extends vertically upward from bottom wall 53 of lower jaw member 24 through staple cartridge 60 and projects upwardly from the top of the staple cartridge by a predetermined distance. As shown in Figure 5, one flange 38 of anvil 40 includes a flange section 192 adjacent to its distal end for engaging spacer pin 190. With the stapling instrument 21i32~7 assembled for operation (Figure 4), spacer pin 190 engages flange section 192 to maintain a predetermined gap between anvil 40 and staple cartridge 60.
In the operation of stapling instrument 20, the tissue to be stapled and cut must be initially placed between jaw members 22 and 24 and clamped by the jaw members. Thus, handles 26 and 28 are unlatched by pivotal movement of latch arm 92 downward to its unlatched position (Figure 2). As a result, the opposite ends of latch pin 36 are disengaged from slots 98 formed in hook member 96 of latching arm 92. Thereafter, upper and lower jaw members 22 and 24 can be separated by disengaging latch pin 36 from slots 56 formed in side flanges 54 of the lower jaw member.
Next, the tissue to be stapled and cut is placed on jaw members 22 and 24. For example, as shown in Figure 17, a piece of tubular, intestinal tissue may be slipped onto the front portion of each jaw member. After the tissue is placed on the jaw member, stapling instrument 20 is reassembled. The reassembly can be accomplished by aligning latch pin 36 with vertical slots 56 formed in upstanding side flanges 54 of lower jaw member 24.
Thereafter, side flanges 54 of lower jaw member 24 are positioned inside upper handle 26, spanning side walls 30 of upper jaw member 22, while the opposite ends of latch pin 36 are inserted into vertical slots 56. Finally, latch arm 92 is pivoted upward to its latched position (Figure 3) with its cover 100 flush with the bottom of lower handle 28. As a result, hook members 92 are pivoted over latch pin 36 and slots 98 receive the opposite ends of the latch pin. Thus, upper jaw member 22 and lower jaw member 24 are latched together at an intermediate position -- C~43247 there along adjacent to anvil 40 and staple cartridge 60.
In addition, spacer pin 190 engages flange section 192 of anvil 40 through the body tissue to maintain a predetermined gap between anvil 40 and staple cartridge 60.
After the tissue is clamped between the jaw members, stapling instrument 20 is fired by advancing actuator knob 114 to actuate the pusher bar and knife blade assembly 110. Initially, in the actuation of cam mechanism 150, pusher block 112 and pusher bars 124 (Figure 4) are advanced, while knife block 134 remains stationary. Since only pusher block 112 and its pusher bars 124 are advanced to actuate cam member 152, the initial force required to operate stapling instrument 20 is minimized.
Referring to Figure 12, during the initial advance of pusher block 112, pusher bars 124 slide through knife block 134 and the wedge-shaped tips 128 of the pusher bars begin to advance through slots 66 of staple cartridge 60. As pusher block 112 advances toward knife block 134, its cam actuator pin 174 engages rear surface 165 of front cam finger 162 to pivot cam 152 counter-clockwise, as indicated by arrow 184 of Figure 13, to move the second cam surface 158 of the cam member into engagement with top wall 31 of upper jaw member 22. Cam member 152 applies forces to upper jaw member 22 and lower jaw member 24 which bend the rear portions of the jaw members apart. As a result, the rear end of top wall 31 of upper jaw member 222 is bent upward by approximately 0.125 inch (3.2 mm) relative to the rear end of bottom wall 53 of lower jaw member 24. The bending of the rear ends of jaw members 22 and 24 apart results in additional clamping forces on the front portions of the jaw members to clamp anvil 40 and EN~-146 ~1432~17 staple cartridge 60 against the tissue gripped between the jaw members. These additional clamping forces tend to resist the fores exerted on anvil 40 and staple cartridge 60, while the tissue is cut and staples 61 are formed against anvil 40, to maintain the desired spacing between anvil 40 and staple cartridge 60 to produce formed staples 61 which are substantially uniform in height.
Referring to Figure 13, after cam mechanism 150 is actuated, pusher block 112 subsequently engages knife block 134 to begin the longitudinal movement of knife block 134 toward staple cartridge 60. Preferably, the initial spacing between pusher block 112 and knife block 134 is arranged such that pusher block 112 engages knife block 134 slightly before cam member 152 arrives at its operative position. Alternatively, the initial spacing between pusher block 112 and knife block 134 can be arranged such that pusher block 112 initially engages knife block 134 after the movement of cam member 152 to its operative position is completed. When pusher block 112 engages knife block 134, the advance of knife blade 138 along central longitudinal slots 42 and 62 of anvil 40 and staple cartridge 60, respectively, is initiated.
Thereafter, staple pusher bars 124 and knife blade 138 are advanced simultaneously to staple and cut the tissue gripped between anvil 40 and staple cartridge 60.
As pusher block 112 is advanced, staple pusher bars 124 are moved longitudinally along slots 66 provided in staple cartridge 60. The two wedge-like cam surfaces 130 of staple pusher bars 124 move through slots 66 into engagement with the sloped surfaces of staple drivers 65 to sequentially drive staples 61 from cartridge 60 and t`o form staple 61 into B-shaped configuration against anvil 21~32 17 flanges 38. The cam surfaces 130 are located at the same distance from pusher block 112 to simultaneously actuate staple drivers 65 located on opposite sides of central longitudinal slot 62. At the same time, knife block 134 S is advanced to move knife blade 138 through central longitudinal slot 42 of anvil 40 and through central longitudinal slot 62 of staple cartridge 60 to cut the tissue gripped between the jaw members. The additional clamping forces applied to the front portions of upper jaw member 22 and lower jaw member 24 via cam mechanism 150 tend to resist the forces exerted on anvil 40 and staple cartridge 60 when staples 61 are formed.
After pusher block 112 is fully advanced to form all of the staples in cartridge 60, the pusher block is retracted toward its start position by retraction of actuator knob 114. Initially, only pusher block 112 moves backward from staple cartridge 60 because staple pusher bars 124 slide through knife block 134 which remains stationary. When offset portions 142 of staple pusher bars 124 engage the front of knife block 134, the knife block is moved backward from staple cartridge 60 along with pusher block 112. As a result, staple pusher bars 124 and knife blade 138 are simultaneously retracted from staple cartridge 60 and anvil 40.
As pusher block 112 returns toward its start position, cam actuator pin 174 engages sloped surface 166 of rear cam finger 164 to pivot cam member 152 in a clockwise direction toward its inoperative position. Cam actuator pin 174 moves along sloped surface 166 into slot 160 between cam fingers 162 and 164 to return cam member 152 to its inoperative position. As a ~esult, second cam surface 158 of cam member 152 is disengaged from the top - 21~32~'~
wall of upper jaw member 22 and rear end of top wall 31 of upper jaw member 22 moves downward into engagement with first cam surface 156. At the same time, front cam finger 162 pivots downward into gap 172 between fingers 170 on pusher block 112, and both cam fingers 162 and 164 pivot downward into slot 168 formed in bottom wall 53 of lower jaw member 24. Thereafter, with cam member 152 in its inoperative position, latching arm 92 can be pivoted downward, as shown in Figure 2, to permit upper jaw member 22 and lower jaw member 24 to be disassembled. At this point, the cut and stapled tissue can be removed from the jaw members.
An improvement to the present invention in shown in Figures 22, 23, 24 and 25. As seen in Figures 22 and 23 one of the potential alternatives to aligning the anvil pockets is described therein. As seen in Figure 22, the anvil pockets 200 have been adjusted for a respective staple along the center line of the staple. Now, the anvil pockets 200 are slightly skewed at an angle to the center line of the staple. For instance, in the staple 201 of Figure 22a, these anvil pockets 200 would engage each of the legs 202a, 202b of a staple. Accordingly, when the staple is crimped, each respective leg 202b of the staple 201 is now skewed with respect to the leg 202a so that when the staple legs 202a, 202b are crimped they do not contact one another with a very high degree of certainty. In contrast, on occasion it would be possible for the staple legs 202a, 202b as shown in Figure 21 to contact one another such that it is difficult to completely form the staple.
An alternative is seen in Figure 23 wherein the base 251 of the anvil 250 is no longer flat but curved to 2 ~ 7 further insure the legs 202a, 202b of the staple do not contact one another upon crimping. Yet another potential embodiment is shown in Figures 24, 24a and 24b as well as Figures 25, 25c and 25d. As seen in the sketch of Figure 24a and 24b, here the bottom 261 of the staple pockets 260 are canted at respected angles ~ one away from one another. In this way, when the staple 201 is formed, the legs 202a, 202b of the staple miss one another because they are slightly crimped out of the plane of the opposite staple leg. Of course, as seen in Figures 24c and 24d the angle ~ can be made far shallower than the angle ~
described in Figure 23. What is important is that the base 261 of the pockets 260 is now no longer perpendicular to the axis L of the pockets 260 but is rather angled or "tilted", so that the legs 202a, 202b of the staple do not contact one another upon crimping.
Naturally, it will be appreciated that the staple formed in the improved pockets will be able to more accurately be formed and crimped. In this fashion, it is an improvement over the stapler disclosed in the embodiment of Figures 1 through 21. Of course, this staple embodiment can be used with other staplers (as previously explained) such as circular staplers and the like. In this fashion, it is believed that the present invention is useful for all sorts of staplers, and is describe by the attached claims.
FIELD OF THE l~v~.-.ION
The present invention relates to a surgical stapling instrument and, more particularly, to a gastrointestinal anastomotic stapling instrument for producing one or more rows of staples when the staples are formed.
BACRGROUND OF TRE l~v~N~ION
In recent years, there has been an increasing tendency for surgeons to use stapling instruments to suture body organs and tissues such as lung, esophagus, stomach, duodenum and other body organs in the intestinal tract. The use of an appropriate stapling instrument in most instances performs a better job in less time and simplifies previously difficult surgical procedures such as gastrointestinal anastomoses.
Typically, a linear anastomotic stapling instrument includes a pair of cooperating elongate jaw members, each adapted to be inserted into internal, tubular body organs to be anastomosed. One of the jaw members supports a staple cartridge with at least two laterally spaced rows of staples, and the other jaw member supports an anvil with staple-forming pockets aligned with the rows of staples in the cartridge. Generally, a single pusher bar and knife assembly is slidable longitudinally along the jaw members to sequentially eject staples from the cartridge via camming surfaces which activate a plurality of staple drivers carried by the cartridge and associated with the individual staples to close the staples against the anvil and form laterally spaced rows of staples in the - 21~32~7 tissue gripped between the jaw members. A knife blade which trails the pusher bars cuts the tissue along a line between the staple rows. Yet, no provision is made in typical staplers for the points of the stapler contacting one another in the anvil pockets.
~UMMARY OF THE INVENTION
In accordance with the invention, a surgical stapling instrument comprises first and second cooperating elongate jaw members one of the jaw members including stapling carrying means adapted to receive a plurality of staples arranged in at least one row, and the other jaw member including adapted and improved anvil means adapted to form the staples, pusher means for driving the staples from the staple carrying means into tissue gripped between the jaw members and forming the staples against the anvil means to produce at least one row of staples in the tissue, knife means for cutting the tissue gripped between the jaw members along a line adjacent to the row of staples, and jaw clamping means for applying clamping forces to the jaw members to resist the forces exerted on the staple carrying means and anvil means when the staples are formed. The improved anvil means are able to more readily form the staples, and comprise a skewed surface, either in the lateral or depth direction, which results in the points of the staple always missing one another upon forming.
BRIEF DE8CRIPTION OF THE DRA~ING8 Figure 1 is an overall perspective view of a linear anastomotic stapling instrument embodying the principles of the present invention;
21432~17 Figure 2 is a side elevation showing the anastomotic stapling instrument partially disassembled with its upper anvil carrying jaw member detached from its lower staple cartridge carrying jaw member;
Figure 3 is a side elevation showing the anastomotic stapling instrument in its assembled configuration;
Figure 4 is a side elevation, partially in section, of the anastomotic stapling instrument showing a cam mechanism for urging the rear portions of the upper and lower jaw members apart;
Figure 5 is a bottom view of the anvil carrying jaw member of the anastomotic stapling instrument;
Figure 6 is a top view of the staple cartridge carrying jaw member of the anastomotic stapling instrument;
Figure 7 is a bottom view of the anastomotic stapling instrument;
Figure 8 is a front end view of the anastomotic stapling instrument;
Figure 9 is a rear end view of the anastomotic stapling instrument;
Figure 10 is an enlarged perspective view of a pusher bar and knife blade assembly of the anastomotic stapling instrument;
- 21432'17 Figure 11 is an enlarged perspective view of a pusher block and an actuator knob which are components of the pusher bar and knife blade assembly of the anastomotic stapling instrument;
Figure 12 is an enlarged elevation, partially in section, of the rear portion of the anastomotic stapling instrument illustrating the cam mechanism in its inoperative position;
Figure 13 is an enlarged elevation, partially in section, of the rear portion of the anastomotic stapling instrument illustrating the cam mechanism in its operative position;
Figure 14 is an enlarged side view of the staple cartridge of the anastomotic stapling instrument;
Figure 15 is an enlarged top view of the staple cartridge of the anastomotic stapling instrument;
Figure 16 is an enlarged bottom view of the staple cartridge of the anastomotic stapling instrument;
Figure 17 is an enlarged, partially cutaway view of the anvil and staple cartridge carrying jaw members of the anastomotic stapling instrument;
Figure 18 is an enlarged, partially cutaway view of the anvil and staple cartridge carrying jaw members illustrating the operation of the pusher bar and knife blade assembly;
~1~32'17 Figure 19 is an enlarged vertical section of the anastomotic stapling instrument taken along line 19-19 of Figure 4;
Figure 20 is an enlarged vertical section of the anastomotic stapling instrument taken along line 20-20 of Figure 4;
Figure 21 is an enlarged section of a portion of the anvil and staple cartridge shown in Figure 18;
Figures 22 and 22a are views of anvil pockets able to form a single staple;
Figure 23 is a view of an alternate embodiment of the anvil pocket configuration of Figure 22; and Figures 24, 24(a), 24(b), 25, 25(c) and 25(d) are alternate configurations of anvil pockets embodying the present invention.
DET~TT~n DE8CRIPTION OF THF lNv~.,ION
There is described in this invention a particularly modified anvil for forming surgical staples. Of course, it is to be realized that while the embodiment disclosed herein is a linear stapler, any type stapler is possible to use with this invention. Thus, the stapler may be circular in cross section, apply a single row of staples, or any other conceivable embodiments without departing from the scope of this invention.
Referring to Figures 1 and 2, the present invention is embodied in a linear anastomotic stapling instrument, 21432~7 generally 20, comprising an upper elongated anvil carrying jaw member 22 and a lower elongated staple cartridge carrying jaw member 24. Upper anvil carrying jaw member 22 is supported by a handle 26 with a front portion of the jaw member extending forwardly therefrom. Lower staple cartridge carrying jaw member 24 is supported by a handle 28 with a front portion of the jaw member extending forwardly therefrom. As shown in Figure 3, upper handle 26 and lower handle 28 are suitably shaped to form a hand grip to facilitate the handling and operation of the stapling instrument by a surgeon. An enlarged front protrusion 27 and a small rear protrusion 29 are provided on each handle for this purpose. Preferably, handles 26 and 28 are made of plastic of other lightweight material, while jaw members 22 and 24 are made of stainless steel or other similar material.
As shown in Figure 5, upper jaw member 22 comprises a one-piece elongated channel-shaped frame including a pair of opposed, elongated side walls 30 connected by a top wall 31. Upper handle 26 includes a pair of depending ears 32 located inside the upper handle adjacent to its front end. Upper jaw member 22 includes a slot 34 (Figure 4) formed at an intermediate position along its top wall 31 through which depending ears 32 project downward. A
latch pin 36 extends through circular holes formed in side walls 30 of upper jaw member 22 and through circular holes formed in depending ears 32 to pivotally connect the upper jaw member to upper handle 26.
Referring to Figure 5, the front portion of upper jaw member 22 is provided with a pair of elongated inwardly extending flanges 38 which define an anvil 40 of the stapling instrument. Flanges 38 are separated by a central longitudinal slot 42 which extends along the entire length of anvil 40. At the proximal end of central slot 42, the flanges 38 are provided with inwardly sloped guide surfaces 41. Each flange 38 is also provided with S two longitudinal rows of uniformly spaced staple-forming pockets 44.
Referring to Figures 4 and 5, a tapered anvil tip 46 is mounted at the front of anvil carrying jaw member 22 to facilitate the insertion of the jaw member into hollow, tubular body organs. Anvil tip 46 includes an elongated body 48 (Figure 4) which is inserted through the longitudinal passageway above anvil 40 defined by side walls 30 and flanges 38 of the upper jaw member. This elongated body 48 extends between depending ears 32 above latch pin 36 and includes an enlarged rear portion S0 located behind ears 32 to hold anvil tip 46 in place on upper jaw member 22.
Referring to Figures 2 and 6, lower cartridge carrying jaw member 24 comprises a one-piece elongated channel-shaped frame including a pair of opposed, elongated side walls 52 connected by a bottom wall S3.
Along the rearward portion of lower jaw member 24, a pair of spaced, elongated upstanding side flanges 54 (Figure 2) extend upward from its opposed side walls S2. As shown in Figures 5 and 6, the width of lower jaw member 24 between its side flanges S4 is greater than the width of upper jaw member 22 between its side walls 30 to permit the rear portion of the upper jaw member to be received between side flanges S4 of the lower jaw member when the stapling instrument is assembled for operation. As shown in Figure 2, each side flange 54 of lower jaw member 24 includes a vertical notch S6 located in alignment with latch pin 36 ~1 ~324 7 on upper jaw member 22. When upper jaw member 22 and lower jaw member 24 are assembled, the opposite ends of latch pin 36 are received in notches 56.
As shown in Figures 2 and 6, lower jaw member 24 supports a staple cartridge 60 which is adapted to receive a plurality of surgical staples 61 (Figure 18) arranged in at least two laterally spaced longitudinal rows. Staple cartridge 60 is mounted at the front portion of lower jaw member 24 between its side walls 52. Staple cartridge 60 is divided longitudinally by a central, elongated slot 62 (Figure 6) which extends from the proximal end of the cartridge toward its distal end. Preferably, a plurality of staple openings 64 formed in staple cartridge 60 is arranged in two pairs of laterally spaced rows, with each pair of rows disposed on opposite sides of central longitudinal slot 62. A plurality of surgical staples 61 (Figure 18) are mounted within openings 64 of cartridge 60. As shown in Figure 6, the staple openings 64 in adjacent rows are staggered to provide more effective stapling of the tissue when the instrument is operated.
Referring to Figures 15 and 16, staple cartridge 60 includes a pair of longitudinal slots 66 located on opposite sides of elongated central slot 62 and disposed between the staggered rows of openings 64 on each side of the central slot. Each longitudinal slot 66 extends from the proximal end of cartridge 60 towards its distal end.
As shown in Figure 17, a plurality of staple drivers 65 is slidably mounted in staple openings 64 for actuating the staples 61 which are loaded into staple cartridge 60.
Referring to Figure 6, each staple driver 65 is designed to simultaneously actuate two staples 61 located in the adjacent rows provided in staple cartridge 60. Thus, a - 21432~7 first set of staple drivers 65 is provided for actuating the staples 61 in the staggered rows located on one side of central longitudinal slot 62, and a second set of staple drivers 65 is provided for actuating the staples 61 in the pair of adjacent rows located on the other side of central longitudinal slot 62.
As shown in Figures 2 and 3, the front or distal end of staple cartridge 60 includes a tapered tip 68 to facilitate the insertion of lower jaw member 24 into a hollow, tubular body organ. Immediately behind its tapered tip 68, staple cartridge 60 is provided with a pair of rearwardly extending protrusions 70 (one shown in Figure 14) which re received in corresponding notches provided in side walls 52 of lower jaw member 24. At the rear of staple cartridge 60, a pair of depending arms 72 extends downwardly from the cartridge. Each arm 72 is notched to provide a side opening 74. When cartridge 60 is assembled on lower jaw member 24, its protrusions 70 are received in corresponding notches provided at the front ends of side walls 52 and its depending arms 72 extend downwardly through an opening 76 (Figure 4) formed in bottom wall 53 of jaw member 24. Lower jaw member 24 includes a pair of depending ears 78 (Figure 19) extending downwardly from its side walls 52 on opposite sides of opening 76. A pivot pin 80 extends through holes formed in depending ears 78 of lower jaw member 24 and through side openings 74 of lower jaw member 24 and through side openings 74 of depending arms 72 on staple cartridge 60 to fasten the staple cartridge to the lower jaw member.
Referring to Figure 2, the stapling instrument 20 includes a latching mechanism, generally 90, for latching upper jaw member 22 and lower jaw member 24 together at an `. 214324~
intermediate position along the jaw members. Preferably, jaw members 22 and 24 are latched together at a position adjacent to the proximal ends of anvil 40 and staple cartridge 60. In the preferred embodiment, latching mechanism 90 comprises a latch arm 92 (Figure 2) pivotally connected to lower jaw member 24 via pivot pin 80 (Figure 4). Latch arm 92 is channel-shaped in configuration and includes a pair of opposed, elongated side walls 90 (Figure 6) which are spaced apart by a distance sufficient to span side walls 52 of lower jaw member 24. Each side wall 94 of latch arm 92 includes an upwardly and forwardly extending hook member 96 provided with a forwardly facing slot 98 for receiving latch pin 36. A shroud 100 is mounted on the lower surface of latch arm 92. When latch arm 92 is closed, as shown in Figure 3, shroud 100 is aligned with the bottom of lower handle 28 to facilitate the handling and operation of stapling instrument 20 by the surgeon. Preferably, shroud 100 is made of plastic or other light-weight material, while latch arm 92 is made of stainless steel. As shown in Figure 7, shroud 100 includes elongated flanges 102 and 104 extending outwardly from its opposite sides which serve as finger grips to enable latch arm 92 to be pivoted downward from its latched to it unlatched position. When latch arm 92 is moved to its closed or latched position, the surfaces of slots 98 of hook members 96 cooperate with latch pin 36, acting as an over-center latch to maintain latch arm 92 in its latched position.
Referring to Figures 6 and 10, the preferred embodiment of stapling instrument 20 includes an improved pusher bar and knife blade assembly, generally 110, which is slidably mounted for longitudinal movement relative to upper and lower jaw members 22 and 24, respectively, for driving staples 61 from staple cartridge 60 into tissue gripped between the jaw members, forming staples 61 against anvil 40, and cutting the tissue along a line between the rows of staples formed in the tissue. Pusher bar and knife blade assembly 110 includes a pusher block 112 (Figure 6) which is slidably received within the lower channel-shaped jaw member 24 between its upstanding side flanges 54. As shown in Figure 11, pusher block 112 is attached to an actuator knob 114 by a flange 116 which includes a laterally projecting finger 118 provided with a longitudinally extending notch 119 on its top surface.
Finger 118 is snap-fitted into a lateral slot 120 formed in pusher block 112 to locate notch 119 underneath a longitudinal locking bar 121 to secure pusher block 112 and actuator knob 114 together. Flange 116 of actuator knob 114 extends through and rides along an elongated slot 122 (Figure 2) formed in one side flange 54 of lower jaw member 24.
The pusher bar and knife blade assembly 110 includes a pair of staple pusher bars 124 (Figure 10) projecting forwardly from pusher block 112 and slidably received in elongated slots 66 (Figure 16) of staple cartridge 60.
Pusher block 112 is provided with a pair of vertical slots 126 (Figure 11) in which pusher bars 124 are secured. As shown in Figure 10, the front end of each staple pusher bar 124 is provided with a wedge-shaped tip 128 which defines an inclined cam surface 130 for engaging staple drivers 65 as pusher bars 124 are advanced into staple cartridge 60. As shown in Figure 21, each staple driver 65 is provided with a sloped surface 132 oriented at the same angle as cam surface 130 of each staple pusher bar 124 to provide a flat, sliding contact between the surfaces.
~1432~7 Referring to Figures 6 and 10, the pusher bar and knife blade assembly 110 includes a knife block 134 which is slidably mounted for longitudinal movement along lower jaw member 24 between it upstanding side flanges 54.
Knife block 134 includes a knife support bar 136 which extends forwardly into central longitudinal slot 62 of staple cartridge 60. An inclined knife blade 138 is provided with a beveled cutting edge 140 is located at the front end of knife support bar 136. The beveled cutting edge of knife blade 138 is oriented at an angle relative to elongate jaw members 22 and 24 and is slidably received in central longitudinal slot 62 of staple cartridge 60.
In the preferred embodiment of stapling instrument lS 20, knife block 134 includes a pair of longitudinal slots 135 (Figure 20) extending therethrough which slidably receive staple pusher bars 124 to permit pusher block 112 to slide relative to the knife block. Accordingly, when pusher block 112 is advanced toward staple cartridge 60 by actuator knob 114, staple pusher bars 124 slide through knife block 134 which remains stationary until the pusher block moves into engagement with the knife block. After knife block 134 is engaged by pusher block 112, the knife block and pusher block advance simultaneously toward staple cartridge 60. As shown in Figure 18, knife blade 138 is advanced through staple cartridge 60 along with staple pusher bars 124, forming staples 61 in the tissue gripped between the jaw members and cutting the tissue between the staple rows. Thereafter, when actuator knob 114 is retracted, pusher block 112 initially slides staple pusher bars 124 backward through knife block 134 which remains stationary. Each staple pusher bar 124 includes an offset portion 142 which moves into engagement with knife block 134 after staple pusher bars 124 are withdrawn ~1~32'17 by a predetermined distance. With offset portions 142 of staple pusher bars 124 engaging knife block 134, pusher block 112 and knife block 134 are simultaneously retracted by actuator knob 114 to return pusher bars 124 and knife blade 138 to the start position.
In accordance with the invention, stapling instrument 20 is provided with jaw clamping means for applying clamping forces to the jaw members to urge staple cartridge 60 and anvil 40 together during the formation of staples 61. The jaw clamping means includes means for urging the jaw members apart at a position remote from the latching mechanism to resist the forces exerted on staple cartridge 60 and anvil 40 when staples 61 are formed. In the preferred embodiment, a cam means is mounted on one of the jaw members and engageable with the other jaw member for moving said jaw members apart the remote position to urge staple cartridge 60 and anvil 40 together.
Preferably, a cam member is pivotally mounted on one of the jaw members at a position remote from the latching mechanism. The cam member is pivotable from a first inoperative position to a second operative position to move the remote ends of the jaw members apart. The cam member is operable by pusher block 112 of pusher bar and knife blade assembly 110 to more to its operative position when the pusher block is advanced and to return to its inoperative position when the pusher block is retracted.
In the preferred embodiment of the stapling instrument 20, a cam mechanism, generally 150, is located adjacent to the rear end of lower jaw member 24, as shown in Figure 4. Cam mechanism 150 includes a cam member 152 pivotally mounted on a transverse pivot pin extending between upstanding side flanges 54 of lower jaw member 24.
- 21~3~17 Cam member 152 includes a first lower cam surface 156 for engaging top wall 31 of upper jaw member 22 with cam 152 in its first inoperative position (Figure 12) and a second higher cam surface 158 for engaging the top wall 31 of upper jaw member 22 with cam 152 disposed in its second operative position (Figure 13). First cam surface 156 is arranged to maintain upper and lower jaw members substantially parallel with cam 152 in its inoperative position. Second cam surface 158 is arranged to raise the rear end of upper jaw member 22 by approximately 0.125 inch (3.2mm) when cam 152 pivots from its inoperative position to its operative position. In addition, upper jaw member 22 is sufficiently flexible to permit the rear portion of upper jaw member 22 to bend upward away from lower jaw member 24 when cam member 152 is moved from its inoperative position to its operative position.
As shown in Figure 4, cam member 152 includes a radially extending notch 160 which divides the cam into a large front finger 162 and a small rear finger 164. Front cam finger 162 includes a flat, rearwardly facing surface 165, and rear cam finger 164 includes a sloped, forwardly facing surface 166. With cam 152 in its inoperative position, front cam finger 162 and rear cam finger 164 extend downwardly through an elongated slot 168 formed in bottom wall 53 of lower jaw member 24.
In the preferred embodiment, cam member 152 is operable by pusher block 112 to move from its inoperative position to its operative position when the pusher block is advanced. As shown in Figure 11, pusher block 112 includes a pair of rearwardly extending arms 170 which are spaced apart to define a gap 172 therebetween. The rear ends of arms 170 are connected by a cam actuator pin 174 - 21~3247 which extends across gap 172. Referring to Figures 4 and 11, with cam member 152 disposed in its inoperative position, front cam finger 162 extends through gap 172 between arms 170 of pusher block 112, while cam actuator pin 174 is received in notch 160 between front finger 162 and rear finger 164 of the cam member.
As shown in Figure 12, with cam member 152 disposed in its first inoperative position, top wall 31 of upper jaw member 22 rests on first cam surface 156 of the cam member. With cam member 152 in its inoperative position, top wall 31 of upper jaw member 22 is substantially parallel to bottom wall 53 of lower jaw member 24. ~n addition, pusher block 112 is located in its start position spaced rearwardly from knife block 134. When pusher block 112 is advanced, as indicated by arrow 182 (Figure 13), cam actuator pin 174 engages rear surface 165 of front cam finger 162 to rotate cam member 152 in a counter-clockwise direction, as indicated by arrow 184, to pivot the cam member to its second operative position and move its second cam surface 158 into engagement with top wall 31 of upper jaw member 22. With cam member 152 pivoted to its operative position, the top wall 31 of upper jaw member 22 is bent upwardly, as indicated by arrow 186, away from bottom wall 53 of lower jaw member 24. The cam member applies forces to upper jaw member 22 and lower jaw member 24 which bend the rear portions of jaw members apart. As a result of the bending the rear portions of upper jaw member 22 and lower jaw member 24 apart, additional clamping forces are applied to the front portions of upper jaw member 22 and lower jaw member 24 to clamp anvil 40 and staple cartridge 60 against the tissue gripped between the jaw members. Thus, anvil 40 and staple cartridge 60 are urged together to resist the - 21~324~
forces exerted on the anvil and staple cartridge when pusher bar and knife blade assembly 110 is advanced to form staples 61 and cut the tissue.
Referring to Figure 13, when pusher block 112 is retracted after staples 61 are formed, cam actuator pin 174 engages sloped surface 166 of rear cam finger 164 to pivot cam member 152 in a clockwise direction. As cam actuator pin 174 moves along sloped surface 166 into notch 160, cam member 152 pivots in a clockwise direction and returns to its first inoperative position (Figure 12) with its first cam surface 156 in engagement with top wall 31 of upper jaw member 22. As a result, the forces exerted on the rear portions of upper jaw member 22 and lower jaw member 24 by cam 152 are released and top wall 31 of upper jaw member 22 returns to a substantially parallel relationship with bottom wall 53 of lower jaw member 24.
Similarly, the clamping forces applied to the front portions of jaw members 22 and 24 are released to unclamp anvil 40 and staple cartridge 60.
The preferred embodiment of stapling instrument 20 includes spacer means mounted on one of the jaw members for maintaining a predetermined gap between staple cartridge 60 and anvil 40 of the stapling instrument.
Referring to Figures 4 and 6, this spacer means is embodied as spacer pin 190 mounted adjacent to the distal end of staple cartridge 60. Spacer pin 190 extends vertically upward from bottom wall 53 of lower jaw member 24 through staple cartridge 60 and projects upwardly from the top of the staple cartridge by a predetermined distance. As shown in Figure 5, one flange 38 of anvil 40 includes a flange section 192 adjacent to its distal end for engaging spacer pin 190. With the stapling instrument 21i32~7 assembled for operation (Figure 4), spacer pin 190 engages flange section 192 to maintain a predetermined gap between anvil 40 and staple cartridge 60.
In the operation of stapling instrument 20, the tissue to be stapled and cut must be initially placed between jaw members 22 and 24 and clamped by the jaw members. Thus, handles 26 and 28 are unlatched by pivotal movement of latch arm 92 downward to its unlatched position (Figure 2). As a result, the opposite ends of latch pin 36 are disengaged from slots 98 formed in hook member 96 of latching arm 92. Thereafter, upper and lower jaw members 22 and 24 can be separated by disengaging latch pin 36 from slots 56 formed in side flanges 54 of the lower jaw member.
Next, the tissue to be stapled and cut is placed on jaw members 22 and 24. For example, as shown in Figure 17, a piece of tubular, intestinal tissue may be slipped onto the front portion of each jaw member. After the tissue is placed on the jaw member, stapling instrument 20 is reassembled. The reassembly can be accomplished by aligning latch pin 36 with vertical slots 56 formed in upstanding side flanges 54 of lower jaw member 24.
Thereafter, side flanges 54 of lower jaw member 24 are positioned inside upper handle 26, spanning side walls 30 of upper jaw member 22, while the opposite ends of latch pin 36 are inserted into vertical slots 56. Finally, latch arm 92 is pivoted upward to its latched position (Figure 3) with its cover 100 flush with the bottom of lower handle 28. As a result, hook members 92 are pivoted over latch pin 36 and slots 98 receive the opposite ends of the latch pin. Thus, upper jaw member 22 and lower jaw member 24 are latched together at an intermediate position -- C~43247 there along adjacent to anvil 40 and staple cartridge 60.
In addition, spacer pin 190 engages flange section 192 of anvil 40 through the body tissue to maintain a predetermined gap between anvil 40 and staple cartridge 60.
After the tissue is clamped between the jaw members, stapling instrument 20 is fired by advancing actuator knob 114 to actuate the pusher bar and knife blade assembly 110. Initially, in the actuation of cam mechanism 150, pusher block 112 and pusher bars 124 (Figure 4) are advanced, while knife block 134 remains stationary. Since only pusher block 112 and its pusher bars 124 are advanced to actuate cam member 152, the initial force required to operate stapling instrument 20 is minimized.
Referring to Figure 12, during the initial advance of pusher block 112, pusher bars 124 slide through knife block 134 and the wedge-shaped tips 128 of the pusher bars begin to advance through slots 66 of staple cartridge 60. As pusher block 112 advances toward knife block 134, its cam actuator pin 174 engages rear surface 165 of front cam finger 162 to pivot cam 152 counter-clockwise, as indicated by arrow 184 of Figure 13, to move the second cam surface 158 of the cam member into engagement with top wall 31 of upper jaw member 22. Cam member 152 applies forces to upper jaw member 22 and lower jaw member 24 which bend the rear portions of the jaw members apart. As a result, the rear end of top wall 31 of upper jaw member 222 is bent upward by approximately 0.125 inch (3.2 mm) relative to the rear end of bottom wall 53 of lower jaw member 24. The bending of the rear ends of jaw members 22 and 24 apart results in additional clamping forces on the front portions of the jaw members to clamp anvil 40 and EN~-146 ~1432~17 staple cartridge 60 against the tissue gripped between the jaw members. These additional clamping forces tend to resist the fores exerted on anvil 40 and staple cartridge 60, while the tissue is cut and staples 61 are formed against anvil 40, to maintain the desired spacing between anvil 40 and staple cartridge 60 to produce formed staples 61 which are substantially uniform in height.
Referring to Figure 13, after cam mechanism 150 is actuated, pusher block 112 subsequently engages knife block 134 to begin the longitudinal movement of knife block 134 toward staple cartridge 60. Preferably, the initial spacing between pusher block 112 and knife block 134 is arranged such that pusher block 112 engages knife block 134 slightly before cam member 152 arrives at its operative position. Alternatively, the initial spacing between pusher block 112 and knife block 134 can be arranged such that pusher block 112 initially engages knife block 134 after the movement of cam member 152 to its operative position is completed. When pusher block 112 engages knife block 134, the advance of knife blade 138 along central longitudinal slots 42 and 62 of anvil 40 and staple cartridge 60, respectively, is initiated.
Thereafter, staple pusher bars 124 and knife blade 138 are advanced simultaneously to staple and cut the tissue gripped between anvil 40 and staple cartridge 60.
As pusher block 112 is advanced, staple pusher bars 124 are moved longitudinally along slots 66 provided in staple cartridge 60. The two wedge-like cam surfaces 130 of staple pusher bars 124 move through slots 66 into engagement with the sloped surfaces of staple drivers 65 to sequentially drive staples 61 from cartridge 60 and t`o form staple 61 into B-shaped configuration against anvil 21~32 17 flanges 38. The cam surfaces 130 are located at the same distance from pusher block 112 to simultaneously actuate staple drivers 65 located on opposite sides of central longitudinal slot 62. At the same time, knife block 134 S is advanced to move knife blade 138 through central longitudinal slot 42 of anvil 40 and through central longitudinal slot 62 of staple cartridge 60 to cut the tissue gripped between the jaw members. The additional clamping forces applied to the front portions of upper jaw member 22 and lower jaw member 24 via cam mechanism 150 tend to resist the forces exerted on anvil 40 and staple cartridge 60 when staples 61 are formed.
After pusher block 112 is fully advanced to form all of the staples in cartridge 60, the pusher block is retracted toward its start position by retraction of actuator knob 114. Initially, only pusher block 112 moves backward from staple cartridge 60 because staple pusher bars 124 slide through knife block 134 which remains stationary. When offset portions 142 of staple pusher bars 124 engage the front of knife block 134, the knife block is moved backward from staple cartridge 60 along with pusher block 112. As a result, staple pusher bars 124 and knife blade 138 are simultaneously retracted from staple cartridge 60 and anvil 40.
As pusher block 112 returns toward its start position, cam actuator pin 174 engages sloped surface 166 of rear cam finger 164 to pivot cam member 152 in a clockwise direction toward its inoperative position. Cam actuator pin 174 moves along sloped surface 166 into slot 160 between cam fingers 162 and 164 to return cam member 152 to its inoperative position. As a ~esult, second cam surface 158 of cam member 152 is disengaged from the top - 21~32~'~
wall of upper jaw member 22 and rear end of top wall 31 of upper jaw member 22 moves downward into engagement with first cam surface 156. At the same time, front cam finger 162 pivots downward into gap 172 between fingers 170 on pusher block 112, and both cam fingers 162 and 164 pivot downward into slot 168 formed in bottom wall 53 of lower jaw member 24. Thereafter, with cam member 152 in its inoperative position, latching arm 92 can be pivoted downward, as shown in Figure 2, to permit upper jaw member 22 and lower jaw member 24 to be disassembled. At this point, the cut and stapled tissue can be removed from the jaw members.
An improvement to the present invention in shown in Figures 22, 23, 24 and 25. As seen in Figures 22 and 23 one of the potential alternatives to aligning the anvil pockets is described therein. As seen in Figure 22, the anvil pockets 200 have been adjusted for a respective staple along the center line of the staple. Now, the anvil pockets 200 are slightly skewed at an angle to the center line of the staple. For instance, in the staple 201 of Figure 22a, these anvil pockets 200 would engage each of the legs 202a, 202b of a staple. Accordingly, when the staple is crimped, each respective leg 202b of the staple 201 is now skewed with respect to the leg 202a so that when the staple legs 202a, 202b are crimped they do not contact one another with a very high degree of certainty. In contrast, on occasion it would be possible for the staple legs 202a, 202b as shown in Figure 21 to contact one another such that it is difficult to completely form the staple.
An alternative is seen in Figure 23 wherein the base 251 of the anvil 250 is no longer flat but curved to 2 ~ 7 further insure the legs 202a, 202b of the staple do not contact one another upon crimping. Yet another potential embodiment is shown in Figures 24, 24a and 24b as well as Figures 25, 25c and 25d. As seen in the sketch of Figure 24a and 24b, here the bottom 261 of the staple pockets 260 are canted at respected angles ~ one away from one another. In this way, when the staple 201 is formed, the legs 202a, 202b of the staple miss one another because they are slightly crimped out of the plane of the opposite staple leg. Of course, as seen in Figures 24c and 24d the angle ~ can be made far shallower than the angle ~
described in Figure 23. What is important is that the base 261 of the pockets 260 is now no longer perpendicular to the axis L of the pockets 260 but is rather angled or "tilted", so that the legs 202a, 202b of the staple do not contact one another upon crimping.
Naturally, it will be appreciated that the staple formed in the improved pockets will be able to more accurately be formed and crimped. In this fashion, it is an improvement over the stapler disclosed in the embodiment of Figures 1 through 21. Of course, this staple embodiment can be used with other staplers (as previously explained) such as circular staplers and the like. In this fashion, it is believed that the present invention is useful for all sorts of staplers, and is describe by the attached claims.
Claims (4)
1. In a surgical stapler containing at least one anvil for crimping a surgical staple, said surgical staple containing a pair of legs attached to a crown, the anvil having pockets which crimp the legs of said staple, and the stapler having a driver which forces said staple legs into said pockets, the improvement comprising:
misaligning said pockets so that each of said pockets forms an angle to a center line drawn between the centers of each of said pockets.
misaligning said pockets so that each of said pockets forms an angle to a center line drawn between the centers of each of said pockets.
2. The stapler of claim 1 wherein said anvil pockets are each straight with respect to the legs of the said staple.
3. The improvement of claim 1 wherein each of said pockets are curved with respect to the legs of said staple.
4. In a surgical stapler containing at least one anvil for crimping a surgical staple, said surgical staple containing a pair of legs attached to a crown, the anvil having pockets which crimp the legs of said staple, and the stapler having a driver which forces said staple legs into said pockets, the improvement comprising:
wherein said anvil pockets are formed with a pair of walls connected by a base, and said base formed at an angle which is not perpendicular to either of said walls.
wherein said anvil pockets are formed with a pair of walls connected by a base, and said base formed at an angle which is not perpendicular to either of said walls.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20184594A | 1994-02-25 | 1994-02-25 | |
US08/201,845 | 1994-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2143247A1 true CA2143247A1 (en) | 1995-08-26 |
Family
ID=22747541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA 2143247 Abandoned CA2143247A1 (en) | 1994-02-25 | 1995-02-23 | Anvil pockets for surgical stapler |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0669104A1 (en) |
JP (1) | JPH0833642A (en) |
AU (1) | AU1347495A (en) |
CA (1) | CA2143247A1 (en) |
Families Citing this family (595)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US8905977B2 (en) | 2004-07-28 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US7673781B2 (en) | 2005-08-31 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with staple driver that supports multiple wire diameter staples |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
US7641091B2 (en) | 2005-10-04 | 2010-01-05 | Tyco Healthcare Group Lp | Staple drive assembly |
US7635074B2 (en) | 2005-10-04 | 2009-12-22 | Tyco Healthcare Group Lp | Staple drive assembly |
US7673783B2 (en) | 2005-11-04 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments structured for delivery of medical agents |
US7799039B2 (en) | 2005-11-09 | 2010-09-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a hydraulically actuated end effector |
US7673780B2 (en) | 2005-11-09 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US7670334B2 (en) | 2006-01-10 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument having an articulating end effector |
US9861359B2 (en) | 2006-01-31 | 2018-01-09 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US7770775B2 (en) | 2006-01-31 | 2010-08-10 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with adaptive user feedback |
US8763879B2 (en) | 2006-01-31 | 2014-07-01 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of surgical instrument |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US7568603B2 (en) | 2006-01-31 | 2009-08-04 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with articulatable end effector |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7766210B2 (en) | 2006-01-31 | 2010-08-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with user feedback system |
US8161977B2 (en) | 2006-01-31 | 2012-04-24 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7644848B2 (en) | 2006-01-31 | 2010-01-12 | Ethicon Endo-Surgery, Inc. | Electronic lockouts and surgical instrument including same |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US8721630B2 (en) | 2006-03-23 | 2014-05-13 | Ethicon Endo-Surgery, Inc. | Methods and devices for controlling articulation |
US8236010B2 (en) | 2006-03-23 | 2012-08-07 | Ethicon Endo-Surgery, Inc. | Surgical fastener and cutter with mimicking end effector |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US7740159B2 (en) | 2006-08-02 | 2010-06-22 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US10130359B2 (en) | 2006-09-29 | 2018-11-20 | Ethicon Llc | Method for forming a staple |
US20080078802A1 (en) | 2006-09-29 | 2008-04-03 | Hess Christopher J | Surgical staples and stapling instruments |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US7900805B2 (en) | 2007-01-10 | 2011-03-08 | Ethicon Endo-Surgery, Inc. | Surgical instrument with enhanced battery performance |
US7721931B2 (en) | 2007-01-10 | 2010-05-25 | Ethicon Endo-Surgery, Inc. | Prevention of cartridge reuse in a surgical instrument |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US7954682B2 (en) | 2007-01-10 | 2011-06-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument with elements to communicate between control unit and end effector |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US7738971B2 (en) | 2007-01-10 | 2010-06-15 | Ethicon Endo-Surgery, Inc. | Post-sterilization programming of surgical instruments |
US8459520B2 (en) | 2007-01-10 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and remote sensor |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US7721936B2 (en) | 2007-01-10 | 2010-05-25 | Ethicon Endo-Surgery, Inc. | Interlock and surgical instrument including same |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US8827133B2 (en) | 2007-01-11 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling device having supports for a flexible drive mechanism |
US8590762B2 (en) | 2007-03-15 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Staple cartridge cavity configurations |
US8056787B2 (en) | 2007-03-28 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with travel-indicating retraction member |
US7490749B2 (en) * | 2007-03-28 | 2009-02-17 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with manually retractable firing member |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US7810693B2 (en) | 2007-05-30 | 2010-10-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with articulatable end effector |
US7798386B2 (en) | 2007-05-30 | 2010-09-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument articulation joint cover |
US8157145B2 (en) | 2007-05-31 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with electrical feedback |
US7819299B2 (en) | 2007-06-04 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US7905380B2 (en) | 2007-06-04 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a multiple rate directional switching mechanism |
US11672531B2 (en) | 2007-06-04 | 2023-06-13 | Cilag Gmbh International | Rotary drive systems for surgical instruments |
US7832408B2 (en) | 2007-06-04 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a directional switching mechanism |
US8534528B2 (en) | 2007-06-04 | 2013-09-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a multiple rate directional switching mechanism |
US7588175B2 (en) | 2007-06-18 | 2009-09-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with improved firing system |
US7658311B2 (en) | 2007-06-22 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with a geared return mechanism |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US7441685B1 (en) | 2007-06-22 | 2008-10-28 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with a return mechanism |
US8308040B2 (en) | 2007-06-22 | 2012-11-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulatable end effector |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US7766209B2 (en) | 2008-02-13 | 2010-08-03 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with improved firing trigger arrangement |
US8561870B2 (en) | 2008-02-13 | 2013-10-22 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
US8540133B2 (en) | 2008-09-19 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Staple cartridge |
US7905381B2 (en) | 2008-09-19 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with cutting member arrangement |
US8453908B2 (en) | 2008-02-13 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with improved firing trigger arrangement |
US8348129B2 (en) * | 2009-10-09 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Surgical stapler having a closure mechanism |
US7819296B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with retractable firing systems |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US7793812B2 (en) | 2008-02-14 | 2010-09-14 | Ethicon Endo-Surgery, Inc. | Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus |
US7913891B2 (en) | 2008-02-14 | 2011-03-29 | Ethicon Endo-Surgery, Inc. | Disposable loading unit with user feedback features and surgical instrument for use therewith |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US8459525B2 (en) | 2008-02-14 | 2013-06-11 | Ethicon Endo-Sugery, Inc. | Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device |
RU2493788C2 (en) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Surgical cutting and fixing instrument, which has radio-frequency electrodes |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US8657174B2 (en) | 2008-02-14 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument having handle based power source |
US7810692B2 (en) | 2008-02-14 | 2010-10-12 | Ethicon Endo-Surgery, Inc. | Disposable loading unit with firing indicator |
US8752749B2 (en) | 2008-02-14 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Robotically-controlled disposable motor-driven loading unit |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US7819297B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with reprocessible handle assembly |
US8584919B2 (en) | 2008-02-14 | 2013-11-19 | Ethicon Endo-Sugery, Inc. | Surgical stapling apparatus with load-sensitive firing mechanism |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US7861906B2 (en) | 2008-02-14 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with articulatable components |
US7857185B2 (en) | 2008-02-14 | 2010-12-28 | Ethicon Endo-Surgery, Inc. | Disposable loading unit for surgical stapling apparatus |
US8622274B2 (en) | 2008-02-14 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Motorized cutting and fastening instrument having control circuit for optimizing battery usage |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US7980443B2 (en) | 2008-02-15 | 2011-07-19 | Ethicon Endo-Surgery, Inc. | End effectors for a surgical cutting and stapling instrument |
US20090206131A1 (en) | 2008-02-15 | 2009-08-20 | Ethicon Endo-Surgery, Inc. | End effector coupling arrangements for a surgical cutting and stapling instrument |
US20090206125A1 (en) | 2008-02-15 | 2009-08-20 | Ethicon Endo-Surgery, Inc. | Packaging for attaching buttress material to a surgical stapling instrument |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US7959051B2 (en) | 2008-02-15 | 2011-06-14 | Ethicon Endo-Surgery, Inc. | Closure systems for a surgical cutting and stapling instrument |
US9585657B2 (en) | 2008-02-15 | 2017-03-07 | Ethicon Endo-Surgery, Llc | Actuator for releasing a layer of material from a surgical end effector |
US8608044B2 (en) | 2008-02-15 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Feedback and lockout mechanism for surgical instrument |
US7922061B2 (en) | 2008-05-21 | 2011-04-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument with automatically reconfigurable articulating end effector |
US7837080B2 (en) | 2008-09-18 | 2010-11-23 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with device for indicating when the instrument has cut through tissue |
US8083120B2 (en) | 2008-09-18 | 2011-12-27 | Ethicon Endo-Surgery, Inc. | End effector for use with a surgical cutting and stapling instrument |
PL3476312T3 (en) | 2008-09-19 | 2024-03-11 | Ethicon Llc | Surgical stapler with apparatus for adjusting staple height |
US9050083B2 (en) | 2008-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8020743B2 (en) | 2008-10-15 | 2011-09-20 | Ethicon Endo-Surgery, Inc. | Powered articulatable surgical cutting and fastening instrument with flexible drive member |
US7918377B2 (en) | 2008-10-16 | 2011-04-05 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with apparatus for providing anvil position feedback |
US8414577B2 (en) | 2009-02-05 | 2013-04-09 | Ethicon Endo-Surgery, Inc. | Surgical instruments and components for use in sterile environments |
US8397971B2 (en) | 2009-02-05 | 2013-03-19 | Ethicon Endo-Surgery, Inc. | Sterilizable surgical instrument |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8485413B2 (en) | 2009-02-05 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising an articulation joint |
US8453907B2 (en) | 2009-02-06 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with cutting member reversing mechanism |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
JP2012517287A (en) | 2009-02-06 | 2012-08-02 | エシコン・エンド−サージェリィ・インコーポレイテッド | Improvement of driven surgical stapler |
US8066167B2 (en) | 2009-03-23 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Circular surgical stapling instrument with anvil locking system |
US20150231409A1 (en) | 2009-10-15 | 2015-08-20 | Covidien Lp | Buttress brachytherapy and integrated staple line markers for margin identification |
US8157151B2 (en) * | 2009-10-15 | 2012-04-17 | Tyco Healthcare Group Lp | Staple line reinforcement for anvil and cartridge |
US9693772B2 (en) | 2009-10-15 | 2017-07-04 | Covidien Lp | Staple line reinforcement for anvil and cartridge |
US10842485B2 (en) | 2009-10-15 | 2020-11-24 | Covidien Lp | Brachytherapy buttress |
US8899466B2 (en) | 2009-11-19 | 2014-12-02 | Ethicon Endo-Surgery, Inc. | Devices and methods for introducing a surgical circular stapling instrument into a patient |
US8136712B2 (en) | 2009-12-10 | 2012-03-20 | Ethicon Endo-Surgery, Inc. | Surgical stapler with discrete staple height adjustment and tactile feedback |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8267300B2 (en) | 2009-12-30 | 2012-09-18 | Ethicon Endo-Surgery, Inc. | Dampening device for endoscopic surgical stapler |
US8608046B2 (en) | 2010-01-07 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Test device for a surgical tool |
US8789740B2 (en) | 2010-07-30 | 2014-07-29 | Ethicon Endo-Surgery, Inc. | Linear cutting and stapling device with selectively disengageable cutting member |
US8801734B2 (en) | 2010-07-30 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Circular stapling instruments with secondary cutting arrangements and methods of using same |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US8360296B2 (en) | 2010-09-09 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Surgical stapling head assembly with firing lockout for a surgical stapler |
US8632525B2 (en) | 2010-09-17 | 2014-01-21 | Ethicon Endo-Surgery, Inc. | Power control arrangements for surgical instruments and batteries |
US9289212B2 (en) | 2010-09-17 | 2016-03-22 | Ethicon Endo-Surgery, Inc. | Surgical instruments and batteries for surgical instruments |
US20120078244A1 (en) | 2010-09-24 | 2012-03-29 | Worrell Barry C | Control features for articulating surgical device |
US8733613B2 (en) | 2010-09-29 | 2014-05-27 | Ethicon Endo-Surgery, Inc. | Staple cartridge |
US8893949B2 (en) | 2010-09-30 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Surgical stapler with floating anvil |
US9307989B2 (en) | 2012-03-28 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorportating a hydrophobic agent |
US8740038B2 (en) | 2010-09-30 | 2014-06-03 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising a releasable portion |
US9220501B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensators |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9332974B2 (en) | 2010-09-30 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Layered tissue thickness compensator |
US9314246B2 (en) | 2010-09-30 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9480476B2 (en) | 2010-09-30 | 2016-11-01 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising resilient members |
US8393514B2 (en) | 2010-09-30 | 2013-03-12 | Ethicon Endo-Surgery, Inc. | Selectively orientable implantable fastener cartridge |
US9232941B2 (en) | 2010-09-30 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a reservoir |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9055941B2 (en) | 2011-09-23 | 2015-06-16 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck |
US9414838B2 (en) | 2012-03-28 | 2016-08-16 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprised of a plurality of materials |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US9241714B2 (en) | 2011-04-29 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator and method for making the same |
US9204880B2 (en) | 2012-03-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising capsules defining a low pressure environment |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
BR112013007717B1 (en) | 2010-09-30 | 2020-09-24 | Ethicon Endo-Surgery, Inc. | SURGICAL CLAMPING SYSTEM |
US9788834B2 (en) | 2010-09-30 | 2017-10-17 | Ethicon Llc | Layer comprising deployable attachment members |
USD650074S1 (en) | 2010-10-01 | 2011-12-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US9113884B2 (en) | 2011-03-14 | 2015-08-25 | Ethicon Endo-Surgery, Inc. | Modular surgical tool systems |
US8800841B2 (en) | 2011-03-15 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Surgical staple cartridges |
US8926598B2 (en) | 2011-03-15 | 2015-01-06 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulatable and rotatable end effector |
US8857693B2 (en) | 2011-03-15 | 2014-10-14 | Ethicon Endo-Surgery, Inc. | Surgical instruments with lockable articulating end effector |
US8540131B2 (en) | 2011-03-15 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same |
US9044229B2 (en) | 2011-03-15 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical fastener instruments |
CA2834649C (en) | 2011-04-29 | 2021-02-16 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising staples positioned within a compressible portion thereof |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US9198661B2 (en) | 2011-09-06 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Stapling instrument comprising a plurality of staple cartridges stored therein |
US9050084B2 (en) | 2011-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck arrangement |
CN103083051B (en) * | 2011-10-27 | 2015-05-27 | 北京中法派尔特医疗设备有限公司 | Feeding mechanism of medical linear cutter stapler |
WO2013091512A1 (en) * | 2011-12-21 | 2013-06-27 | 常州市康迪医用吻合器有限公司 | Firing mechanism for surgical linear cutting anastomat |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US9078653B2 (en) | 2012-03-26 | 2015-07-14 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge |
CN104334098B (en) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | Tissue thickness compensator comprising capsules defining a low pressure environment |
CN104379068B (en) | 2012-03-28 | 2017-09-22 | 伊西康内外科公司 | Holding device assembly including tissue thickness compensation part |
US9198662B2 (en) | 2012-03-28 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator having improved visibility |
RU2014143258A (en) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
CN104487005B (en) | 2012-06-28 | 2017-09-08 | 伊西康内外科公司 | Empty squeeze latching member |
US9072536B2 (en) | 2012-06-28 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Differential locking arrangements for rotary powered surgical instruments |
US8747238B2 (en) | 2012-06-28 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Rotary drive shaft assemblies for surgical instruments with articulatable end effectors |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US20140001234A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Coupling arrangements for attaching surgical end effectors to drive systems therefor |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US9125662B2 (en) | 2012-06-28 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Multi-axis articulating and rotating surgical tools |
US9101385B2 (en) | 2012-06-28 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Electrode connections for rotary driven surgical tools |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US9119657B2 (en) | 2012-06-28 | 2015-09-01 | Ethicon Endo-Surgery, Inc. | Rotary actuatable closure arrangement for surgical end effector |
BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US9561038B2 (en) | 2012-06-28 | 2017-02-07 | Ethicon Endo-Surgery, Llc | Interchangeable clip applier |
US9028494B2 (en) | 2012-06-28 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Interchangeable end effector coupling arrangement |
US9386985B2 (en) | 2012-10-15 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Surgical cutting instrument |
US9351724B2 (en) * | 2013-01-11 | 2016-05-31 | Covidien Lp | Circular stapling instrument |
US9386984B2 (en) | 2013-02-08 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising a releasable cover |
US10092292B2 (en) * | 2013-02-28 | 2018-10-09 | Ethicon Llc | Staple forming features for surgical stapling instrument |
US9622746B2 (en) * | 2013-02-28 | 2017-04-18 | Ethicon Endo-Surgery, Llc | Distal tip features for end effector of surgical instrument |
US9700309B2 (en) | 2013-03-01 | 2017-07-11 | Ethicon Llc | Articulatable surgical instruments with conductive pathways for signal communication |
MX368026B (en) | 2013-03-01 | 2019-09-12 | Ethicon Endo Surgery Inc | Articulatable surgical instruments with conductive pathways for signal communication. |
BR112015021082B1 (en) | 2013-03-01 | 2022-05-10 | Ethicon Endo-Surgery, Inc | surgical instrument |
US20140263552A1 (en) | 2013-03-13 | 2014-09-18 | Ethicon Endo-Surgery, Inc. | Staple cartridge tissue thickness sensor system |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9332987B2 (en) | 2013-03-14 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Control arrangements for a drive member of a surgical instrument |
US9332984B2 (en) | 2013-03-27 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Fastener cartridge assemblies |
US9795384B2 (en) | 2013-03-27 | 2017-10-24 | Ethicon Llc | Fastener cartridge comprising a tissue thickness compensator and a gap setting element |
US9572577B2 (en) | 2013-03-27 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a tissue thickness compensator including openings therein |
BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
US10405857B2 (en) | 2013-04-16 | 2019-09-10 | Ethicon Llc | Powered linear surgical stapler |
CN103405254B (en) * | 2013-04-23 | 2016-06-29 | 北京中法派尔特医疗设备有限公司 | The control method of electric surgery binding instrument and control device |
CN103222885B (en) * | 2013-04-23 | 2015-09-16 | 北京中法派尔特医疗设备有限公司 | Stapler and safety thereof under the mirror of chamber |
US9574644B2 (en) | 2013-05-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Power module for use with a surgical instrument |
CN106028966B (en) | 2013-08-23 | 2018-06-22 | 伊西康内外科有限责任公司 | For the firing member restoring device of powered surgical instrument |
US20150053737A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | End effector detection systems for surgical instruments |
WO2015095333A1 (en) | 2013-12-17 | 2015-06-25 | Standard Bariatrics, Inc. | Resection line guide for a medical procedure and method of using same |
US9839428B2 (en) | 2013-12-23 | 2017-12-12 | Ethicon Llc | Surgical cutting and stapling instruments with independent jaw control features |
US9724092B2 (en) | 2013-12-23 | 2017-08-08 | Ethicon Llc | Modular surgical instruments |
US9642620B2 (en) | 2013-12-23 | 2017-05-09 | Ethicon Endo-Surgery, Llc | Surgical cutting and stapling instruments with articulatable end effectors |
US9681870B2 (en) | 2013-12-23 | 2017-06-20 | Ethicon Llc | Articulatable surgical instruments with separate and distinct closing and firing systems |
US20150173756A1 (en) | 2013-12-23 | 2015-06-25 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling methods |
US9687232B2 (en) | 2013-12-23 | 2017-06-27 | Ethicon Llc | Surgical staples |
US20160324519A1 (en) * | 2013-12-31 | 2016-11-10 | Suzhou Touchstone International Medical Science Co ., Ltd. | Linear suturing and cutting device |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
US9693777B2 (en) | 2014-02-24 | 2017-07-04 | Ethicon Llc | Implantable layers comprising a pressed region |
JP6462004B2 (en) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | Fastening system with launcher lockout |
BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
US10013049B2 (en) | 2014-03-26 | 2018-07-03 | Ethicon Llc | Power management through sleep options of segmented circuit and wake up control |
US9913642B2 (en) | 2014-03-26 | 2018-03-13 | Ethicon Llc | Surgical instrument comprising a sensor system |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
US10028761B2 (en) | 2014-03-26 | 2018-07-24 | Ethicon Llc | Feedback algorithms for manual bailout systems for surgical instruments |
US9724096B2 (en) | 2014-03-29 | 2017-08-08 | Standard Bariatrics, Inc. | End effectors, surgical stapling devices, and methods of using same |
AU2015241267A1 (en) | 2014-03-29 | 2016-10-20 | Standard Bariatrics, Inc. | End effectors, surgical stapling devices, and methods of using same |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
US20150297223A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
US10327764B2 (en) | 2014-09-26 | 2019-06-25 | Ethicon Llc | Method for creating a flexible staple line |
CN106456158B (en) | 2014-04-16 | 2019-02-05 | 伊西康内外科有限责任公司 | Fastener cartridge including non-uniform fastener |
BR112016023698B1 (en) | 2014-04-16 | 2022-07-26 | Ethicon Endo-Surgery, Llc | FASTENER CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT |
CN106456159B (en) | 2014-04-16 | 2019-03-08 | 伊西康内外科有限责任公司 | Fastener cartridge assembly and nail retainer lid arragement construction |
US10080552B2 (en) * | 2014-04-21 | 2018-09-25 | Covidien Lp | Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US10045781B2 (en) | 2014-06-13 | 2018-08-14 | Ethicon Llc | Closure lockout systems for surgical instruments |
CN105433999B (en) * | 2014-07-23 | 2017-07-14 | 瑞奇外科器械(中国)有限公司 | The safeties and surgical operating instrument of surgical operating instrument |
BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
US9757128B2 (en) | 2014-09-05 | 2017-09-12 | Ethicon Llc | Multiple sensors with one sensor affecting a second sensor's output or interpretation |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
CN107427300B (en) | 2014-09-26 | 2020-12-04 | 伊西康有限责任公司 | Surgical suture buttress and buttress material |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
BR112017012996B1 (en) | 2014-12-18 | 2022-11-08 | Ethicon Llc | SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US9993258B2 (en) | 2015-02-27 | 2018-06-12 | Ethicon Llc | Adaptable surgical instrument handle |
US10159483B2 (en) | 2015-02-27 | 2018-12-25 | Ethicon Llc | Surgical apparatus configured to track an end-of-life parameter |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US9895148B2 (en) | 2015-03-06 | 2018-02-20 | Ethicon Endo-Surgery, Llc | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US10390825B2 (en) | 2015-03-31 | 2019-08-27 | Ethicon Llc | Surgical instrument with progressive rotary drive systems |
US10368861B2 (en) | 2015-06-18 | 2019-08-06 | Ethicon Llc | Dual articulation drive system arrangements for articulatable surgical instruments |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
MX2022009705A (en) | 2015-08-26 | 2022-11-07 | Ethicon Llc | Surgical staples comprising hardness variations for improved fastening of tissue. |
US10166026B2 (en) | 2015-08-26 | 2019-01-01 | Ethicon Llc | Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom |
RU2725081C2 (en) | 2015-08-26 | 2020-06-29 | ЭТИКОН ЭлЭлСи | Strips with surgical staples allowing the presence of staples with variable properties and providing simple loading of the cartridge |
MX2022006189A (en) | 2015-09-02 | 2022-06-16 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples. |
US10357252B2 (en) | 2015-09-02 | 2019-07-23 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
US10285837B1 (en) | 2015-09-16 | 2019-05-14 | Standard Bariatrics, Inc. | Systems and methods for measuring volume of potential sleeve in a sleeve gastrectomy |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10085751B2 (en) | 2015-09-23 | 2018-10-02 | Ethicon Llc | Surgical stapler having temperature-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10433846B2 (en) | 2015-09-30 | 2019-10-08 | Ethicon Llc | Compressible adjunct with crossing spacer fibers |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
CN105640602B (en) * | 2015-12-25 | 2018-01-12 | 山东威瑞外科医用制品有限公司 | Electronic intracavitary Endo-GIA with emergent tool retracting device |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
BR112018016098B1 (en) | 2016-02-09 | 2023-02-23 | Ethicon Llc | SURGICAL INSTRUMENT |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10245030B2 (en) | 2016-02-09 | 2019-04-02 | Ethicon Llc | Surgical instruments with tensioning arrangements for cable driven articulation systems |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10357246B2 (en) | 2016-04-01 | 2019-07-23 | Ethicon Llc | Rotary powered surgical instrument with manually actuatable bailout system |
US10456140B2 (en) | 2016-04-01 | 2019-10-29 | Ethicon Llc | Surgical stapling system comprising an unclamping lockout |
US11284890B2 (en) | 2016-04-01 | 2022-03-29 | Cilag Gmbh International | Circular stapling system comprising an incisable tissue support |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10314582B2 (en) | 2016-04-01 | 2019-06-11 | Ethicon Llc | Surgical instrument comprising a shifting mechanism |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10478181B2 (en) | 2016-04-18 | 2019-11-19 | Ethicon Llc | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
US10702270B2 (en) | 2016-06-24 | 2020-07-07 | Ethicon Llc | Stapling system for use with wire staples and stamped staples |
CN109310431B (en) | 2016-06-24 | 2022-03-04 | 伊西康有限责任公司 | Staple cartridge comprising wire staples and punch staples |
USD826405S1 (en) | 2016-06-24 | 2018-08-21 | Ethicon Llc | Surgical fastener |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
US10588632B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical end effectors and firing members thereof |
MX2019007295A (en) | 2016-12-21 | 2019-10-15 | Ethicon Llc | Surgical instrument system comprising an end effector lockout and a firing assembly lockout. |
US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
US10667811B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Surgical stapling instruments and staple-forming anvils |
BR112019011947A2 (en) | 2016-12-21 | 2019-10-29 | Ethicon Llc | surgical stapling systems |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
US11090048B2 (en) | 2016-12-21 | 2021-08-17 | Cilag Gmbh International | Method for resetting a fuse of a surgical instrument shaft |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10568624B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems |
JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
US11684367B2 (en) | 2016-12-21 | 2023-06-27 | Cilag Gmbh International | Stepped assembly having and end-of-life indicator |
US10758229B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument comprising improved jaw control |
US10537324B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Stepped staple cartridge with asymmetrical staples |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
US10682138B2 (en) | 2016-12-21 | 2020-06-16 | Ethicon Llc | Bilaterally asymmetric staple forming pocket pairs |
US10736629B2 (en) | 2016-12-21 | 2020-08-11 | Ethicon Llc | Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems |
US10758230B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument with primary and safety processors |
US20180168618A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US20180168609A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Firing assembly comprising a fuse |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US20180368844A1 (en) | 2017-06-27 | 2018-12-27 | Ethicon Llc | Staple forming pocket arrangements |
US10993716B2 (en) * | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US11678880B2 (en) | 2017-06-28 | 2023-06-20 | Cilag Gmbh International | Surgical instrument comprising a shaft including a housing arrangement |
EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US11020114B2 (en) | 2017-06-28 | 2021-06-01 | Cilag Gmbh International | Surgical instruments with articulatable end effector with axially shortened articulation joint configurations |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US10912562B2 (en) | 2017-08-14 | 2021-02-09 | Standard Bariatrics, Inc. | End effectors, surgical stapling devices, and methods of using same |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
CN107714121B (en) * | 2017-11-13 | 2023-06-13 | 江苏孜航精密五金有限公司 | Nail supporting seat assembly of disposable endoluminal cutting anastomat and manufacturing method thereof |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US20190192147A1 (en) | 2017-12-21 | 2019-06-27 | Ethicon Llc | Surgical instrument comprising an articulatable distal head |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US10874398B2 (en) | 2018-02-06 | 2020-12-29 | Ethicon Llc | Firing lever assembly for linear surgical stapler |
US10932781B2 (en) | 2018-02-06 | 2021-03-02 | Ethicon Llc | Features to align and close linear surgical stapler |
US10667818B2 (en) | 2018-02-06 | 2020-06-02 | Ethicon Llc | Lockout assembly for linear surgical stapler |
US10687819B2 (en) | 2018-02-06 | 2020-06-23 | Ethicon Llc | Clamping mechanism for linear surgical stapler |
US10898197B2 (en) | 2018-02-06 | 2021-01-26 | Ethicon Llc | Releasable coupling features for proximal portions of linear surgical stapler |
US10631866B2 (en) | 2018-02-06 | 2020-04-28 | Ethicon Llc | Release mechanism for linear surgical stapler |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11051809B2 (en) * | 2018-12-31 | 2021-07-06 | Cilag Gmbh International | Cartridge receiving jaw for surgical stapler and associated method of manufacture with MIM |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11241235B2 (en) | 2019-06-28 | 2022-02-08 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
CA3156682A1 (en) | 2019-11-04 | 2021-05-27 | Standard Bariatrics, Inc. | Systems and methods of performing surgery using laplace's law tension retraction during surgery |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
EP4171406A4 (en) | 2020-06-30 | 2024-07-10 | Standard Bariatrics Inc | Systems, devices, and methods for preventing or reducing loss of insufflation during a laparoscopic surgical procedure |
US20220031350A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
WO2022204078A1 (en) | 2021-03-23 | 2022-09-29 | Standard Bariatrics, Inc. | Systems and methods for preventing tissue migration in surgical staplers |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11998201B2 (en) | 2021-05-28 | 2024-06-04 | Cilag CmbH International | Stapling instrument comprising a firing lockout |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR325704A (en) * | 1902-10-20 | 1903-05-06 | Michel Paul | Devices for ligatures and sutures by metal stapling |
CA953998A (en) * | 1970-03-06 | 1974-09-03 | Alexei A. Strekopytov | Surgical instrument for joining osseous tissues by staples |
GB1339394A (en) * | 1972-04-06 | 1973-12-05 | Vnii Khirurgicheskoi Apparatur | Dies for surgical stapling instruments |
JPS4923165A (en) * | 1972-05-17 | 1974-03-01 | ||
US3822818A (en) * | 1973-02-20 | 1974-07-09 | A Strekopytov | Surgical instrument for joining osseous tissues by staples |
US4632290A (en) * | 1981-08-17 | 1986-12-30 | United States Surgical Corporation | Surgical stapler apparatus |
US4442964A (en) * | 1981-12-07 | 1984-04-17 | Senco Products, Inc. | Pressure sensitive and working-gap controlled surgical stapling instrument |
EP0517975B1 (en) * | 1991-06-13 | 1996-08-28 | Haruo Takase | Surgical stapler |
ES2217252T3 (en) * | 1991-10-30 | 2004-11-01 | Sherwood Services Ag | MALEABLE, BIOABSORBIBLE AND METHOD PASSIVE STAPLE AND APPARATUS TO DEFORM A CLIP OF THIS TYPE. |
US5258009A (en) * | 1992-06-30 | 1993-11-02 | American Cyanamid Company | Malleable, bioabsorbable,plastic staple having a knotted configuration; and method and apparatus for deforming such staple |
-
1995
- 1995-02-22 JP JP7058161A patent/JPH0833642A/en active Pending
- 1995-02-23 CA CA 2143247 patent/CA2143247A1/en not_active Abandoned
- 1995-02-24 EP EP95301212A patent/EP0669104A1/en not_active Withdrawn
- 1995-02-24 AU AU13474/95A patent/AU1347495A/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JPH0833642A (en) | 1996-02-06 |
EP0669104A1 (en) | 1995-08-30 |
AU1347495A (en) | 1995-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0669104A1 (en) | Anvil pockets for surgical stapler | |
US4633861A (en) | Surgical stapling instrument with jaw clamping mechanism | |
US8540129B2 (en) | Surgical stapling instrument with improved firing trigger arrangement | |
US11793512B2 (en) | Staple cartridges for forming staples having differing formed staple heights | |
US4633874A (en) | Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge | |
CA1245936A (en) | Surgical stapling instrument with dual staple height mechanism | |
JP5795373B2 (en) | Linear cutting and stapling device with selectively detachable cutting member | |
US5662260A (en) | Surgical staple cartridge | |
EP2165662B1 (en) | Tissue stop for surgical instrument | |
US5465896A (en) | Linear surgical stapling instrument | |
US5014899A (en) | Surgical stapling apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Dead |