CA2134035A1 - Compositions including cationic polymers and anionic xanthan gum - Google Patents
Compositions including cationic polymers and anionic xanthan gumInfo
- Publication number
- CA2134035A1 CA2134035A1 CA002134035A CA2134035A CA2134035A1 CA 2134035 A1 CA2134035 A1 CA 2134035A1 CA 002134035 A CA002134035 A CA 002134035A CA 2134035 A CA2134035 A CA 2134035A CA 2134035 A1 CA2134035 A1 CA 2134035A1
- Authority
- CA
- Canada
- Prior art keywords
- groups
- cationic
- xanthan gum
- anionic
- gum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
- A61K8/737—Galactomannans, e.g. guar; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G5/00—Fertilisers characterised by their form
- C05G5/20—Liquid fertilisers
- C05G5/27—Dispersions, e.g. suspensions or emulsions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0024—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
- C08B37/0033—Xanthan, i.e. D-glucose, D-mannose and D-glucuronic acid units, saubstituted with acetate and pyruvate, with a main chain of (beta-1,4)-D-glucose units; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/14—Hemicellulose; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/59—Mixtures
- A61K2800/594—Mixtures of polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S516/00—Colloid systems and wetting agents; subcombinations thereof; processes of
- Y10S516/905—Agent composition per se for colloid system making or stabilizing, e.g. foaming, emulsifying, dispersing, or gelling
- Y10S516/907—The agent contains organic compound containing phosphorus, e.g. lecithin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S516/00—Colloid systems and wetting agents; subcombinations thereof; processes of
- Y10S516/905—Agent composition per se for colloid system making or stabilizing, e.g. foaming, emulsifying, dispersing, or gelling
- Y10S516/917—The agent contains organic compound containing oxygen
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Emergency Medicine (AREA)
- Dispersion Chemistry (AREA)
- Pest Control & Pesticides (AREA)
- Dermatology (AREA)
- Cosmetics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
A novel blend composition comprising one or more cationic polygalactomannas and xanthan gum is provided. The blend is capable of producing enhanced viscosities when distributed in a solvent. The blend is suitable for use in foods, explosives, oil field chemicals, textile fibers, agricultural chemicals and cosmetics.
Description
213~035 EXPR ~S MAIL #IB594190201 R~ ~303q COMPO8I~ION8 INCL~DING CATIONIC POLYMER8 AND ANIONIC XANTHAN G~M
Backqround of the Invention l. Field of the Invention The present invention relates to a composition which includes both one or more cationic polymers and anionic xanthan gum. More specifically, the composition includes polygalacto~n~n~ which are cationically charged in combination with anionic substituted xanthan gum. The resulting compositions exhibit enhanced viscosities as compared to the viscosities obtained when using the polygalactomannans and xanthan gum separately or as compared to the viscosity of using polygalactomannans in combination with nonionic xanthan gum.
Backqround of the Invention l. Field of the Invention The present invention relates to a composition which includes both one or more cationic polymers and anionic xanthan gum. More specifically, the composition includes polygalacto~n~n~ which are cationically charged in combination with anionic substituted xanthan gum. The resulting compositions exhibit enhanced viscosities as compared to the viscosities obtained when using the polygalactomannans and xanthan gum separately or as compared to the viscosity of using polygalactomannans in combination with nonionic xanthan gum.
2. Technology DescriptiGn Natural and synthetic gums have been used as thickeners for foods, coatings, paints, explosive slurries, oil well fluids, cosmetics, and many other functional applications. One natural gum that has been widely used as a suspending and viscosity agent is xanthan gum. Aqueous sols of xanthan gum are plastic in nature and exhibit higher gel strengths than sols of most other gums. Blends of xanthan gum with other gums are known and each blend exhibits properties unique unto itself. One set of gums which has been suggested for blending with xanthan gum are the galactomannans.
For example, Schuppner et al in U.S. Patent Nos. 3,507,664;
For example, Schuppner et al in U.S. Patent Nos. 3,507,664;
3,519,434; 3,557,016~ and 3,659,026 discuss a number of uses ,or compositions which include both xanthan gum and locust bean gum.
Amongst the uses mentioned are: milk gels (U.S. Patent NQ .
213~03~ -EXPRESS MAIL #IB594190201 3,507,664), meat gels (U.S. Patent No. 3,519,434), heat reversible gels in general (U.S. Patent No. 3,557,016) and agricultural uses (U.S. Patent No. 3,659,026). A basic concept of each of these patents is that the combination of xanthan gum with locust bean gum for each of the functional applications yields a composition which, when displaced in a solvent, demonstrates excellent gelling attributes.
U.S. Patent No. 4,038,206 suggests that higher viscosities can be obtained when the locust bean gum used in combination with xanthan gum is a hydroxyalkyl locust bean gum. The hydroxyalkyl locust bean gums include the water soluble hydroxypropyl ethers of locust bean gum, hydroxyethyl ethers of locust bean gum and hydroxybutyl ethers of locust bean gum. The hydroxyalkyl locust bean gum is prepared by reacting an alkylene oxide with locust bean gum to form one or more ether linkages. The suggested molar amount of alkylene oxide per mole of locust bean gum is 0.05 to 0.5.
U.S. Patent No. 4,162,925 suggests that phosphated esters of locust bean gum having a degree of substitution ranging from about 0.03 to about 0.5 be used in combination with xanthan gum to form viscous liquids and/or firm gels. These materials are particularly suggested for use as suspending agents for oil well drilling and for use in precision planting procedures referred to as fluid drilling. The examples of the patent suggest that the phosphated esters utilized are anionic in nature.
The combination of xanthan gum with other galactomannans, such as guar gum and those derived from guar gum are also ~iscllcsed in the literature. For example, U.S. Patent No. 3,748,201 suggests thickening compositions containing xanthan gum and hydroxyalkyl ethers of guar gum. The hydroxyalkyl ether of guar gum is prepared by reacting guar oum with an alkylene oxide in the presence of an alkaline catalyst. The preferred degree of substitution of the guar gum resulting from the formation of ether linkages is v 213 4 0 3~ EXPRESS MAIL #IB5941~0201 preferably between about 0.2 to a~out 1.2. The compositions are suggested for use in dyeing yarns for carpeting and for explosives.
It is hypothesized that the interaction between xanthan gum and the above described polygalactomannans is of a molecular nature.
Polygalactor~nnAnc with less galactose side-ch~i~c and/or ~ess uniform distribution of galactose units will interact with xanthan gum more strongly than the polygalactomannans with higher gal~ctose content and/or more uniform distribution of galactose over the mannan main chain.
U.S. Patent No. 3,46?,647 disclose polysaccharides cont~ln;ng both cationic and anionic substituents. Amongst the starting polysaccharides which are then modified according to this patent include starches, locust bean gum (carob gum) and guar gum.
Cationic substituents include primary, secondary, or tertiary amino groups or quaternary ammonium, sulfonium or phosphinium groups.
Suggested anionic substituents include carboxyl, sulfonate, sulfate or phosphate groups. Example 9 of this patent discloses guar gum as the polysaccharide, trimethylammoniumhydroxypropyl as the cationic groups, and phosphates as the anionic groups. The degree of substitution for each of these groups in this example is 0.05.
Chem. Abstracts CA115(16):16250p discusses the uses of certain polymer combina.ions which provide enhanced viscosities as compared to the viscosities of the individual polymers. Combinations mentioned include poly(styrene sulfonate) and either xanthan gum or hydroxyethyl cellulose, poly(vinyl sulfonate) and xanthan gum, a quaternary-ammonium-salt modified guar and either hydroxypropyl guar or hydroxyethyl cellulose, and a sulfonated guar and either hydroxyethyl cellulose or carboxymethylhydroxyethyl cellulose.
These combinations are suggested for use in oil recovery.
Similarly, DD 281966 discloses a gel former which has both cationic and anionic polymers and provides a synergistic increase in - 213 ~ 0 3~ EXPR__S MAIL #IB594190201 viscosity as compared to solutions which contain separate amounts of the polymers. The anionic polymer is preferably a poly(dimethyl-diallylammonium chloride) containing pyrrolidinium units and the cationic polymer is preferably carboxymethylcellulose with a degree of substitution of 0.6-1.2.
U.S. Patent Nos. 4,Z64,322; 4,403,360 and 4,454,617 disclose dye compositions for textile fibers. The compositions comprise an admixture of immiscible gel phases, wherein one gel phase is lo thickened with a cationic gelling agent and wherein a second gel phase, which is dispersed in the first gel phase, is thickened with an anionic gelling agent. Suggested cationic gelling agents for the first phase include cationic polygalactomannans containing quaternary ammonium ether substituents. Suggested anionic gelling agents for the second phase include hydrocolloids which have the same type of basic polymeric structure as the cationic gelling agents, except that in place of the cationic group there is substituted an anionic group such as a carboxylic acid, sulfonic acid, or sulfate.
DE 1,518,731 discloses that galactomannans or gluco~nn~ns may be etherified with ~-halogen ethane sulfonic acid cr halogen methane sulfonic acids in the presence of base to yield compositions which can function as textile finishes, sizes and print thickeners.
U.S. Patent No. 3,912,713 and FR 2,242,401 disclose guar gum derivatives and processes for preparing the derivatives. The derivatives are prepared by adding a substituent to guar gum splits in the presence of water, and typically, base. Amongst the 3C substituents (derivatizing agents) suggested for use in these patents are haloalkylsulfonic acids, such as bromoethanesulfonic acid and chlorohydroxypropanesulfonic acid, epoxyalkyl sulfonic acids, such as epoxypropane sulfonic acid, and ~,~-alkylene sulfonic acids, such as ethylene sulfonic acid. These compounds are suggested for use as thickening agents, stressing, sizing and 213 4 0 35 EXPh~S ~IL ~IB594190201 fin;5~i~g agents, protective colloids and as agents for stabilizing dispersions and emulsions.
U.S. Patent No. 4,031,305 discloses sulfohydroxypropyl ethers of polygalactomannans having a degree of substitution between about O.Ol and 3. The ethers are prepared by contacting solid guar gum or locust bean gum with a 3-halo-2-hydroxypropanesulfonic acid or acid salt in the presence of base. The galactomannan ethers are alleged to be anionic in nature and are proposed for use in petroleum, textile, printing, paper, food and pharmaceutical industries.
U.S. Patent No. 4,057,509 discloses the formation of an acidic gel by contacting a polygalactomannan with an allyl halide, followed by exposing the formed polygalactomanr.an allyl ether material to a stream of sulfur dioxide. The gels are suggested for use in oil well drillin~ mud compositions and oil well fracturing compositions.
Despite the above, there still is a need for compositions which demonstrate enhanced viscosity behavior and which rely on forces in addition to molecular ones.
Brief Summary of the Invention In accordance with the present invention, a novel combination which demonstrates enhanced viscosity behavior than each of the starting polymers and which utilizes both ionic and molecular forces is provided. The novel combination comprises anionic substituted xanthan gum and one or more cationic polymers.
one embodiment of the present invention comprises a blend composition comprising about l to about 99 parts of one or more cationic polymers, preferably a polygalactomannan having a degree of substitution of about O.Ol to about 3.00 and about l to about 9~
- EXPR ~ MAIL1rIB594l90201 parts of anionic substituted xanthan gum.
In particularly preferred embodiments, the cationic polymer is a polygalactomannan having a degree of substitution between about 0.01 and about 1.00, and the anionic nature of the xanthan polymer is formed by substituting anionic sulfonate groups derived from ethylenically unsaturated polymers onto the xanthan backbone.
The blends are particularly effective as thickening agents. They may b- used for a number of functional applications such as in foods, explosives, oil field chemicals, agricultural applications, cosmetics and the like.
Another embodiment of the present invention comprises a process for lS producing a viscous liquid or a gel. The process comprises the step of adding to a solvent, preferably water, 0.1 parts to about 2.0 parts per 100 parts viscous liquid or gel of a blend composition having a ratio of about 1 to about 99 parts of one or more cationic polymers and about 1 to about 99 parts of anionic substituted xanthan gum.
A third embodiment of the present invention comprises a food, explosive, oil field chemical, agricultural chemical, textile fiber or cosmetic including an amount of a blend composition having a ratio of about 1 to about 99 parts of one or more cationic polymers and about 1 to about 99 parts of anionic substituted xanthan gum.
Accordingly, it is an object of the present invention to provide a novel blend composition which comprises materials which, in combination, demonstrate a superior viscosity profile as compared to the materials individually or uncharged combined materials.
It is another object of the present invention to provide a process for producing a viscous liquid or gel using a novel blend composition.
213 ~ 0 3~ EXPR~S MAIL #IB594190201 A further object of the present invention to provide a food, explosive, oil field chemical, agricultural chemical, textile fiber or cosmetic which includes the novel blend composition.
These, and other objects, will readily be apparent to those skilled in the art as reference is made to the detailed description of the preferred embodiment.
Detailed Descri~tion of the Preferred Embodiment In describing the preferred embodiment, certain terminology will be utilized for the sake of clarity. Such terminology is intended to encompass the recited embodiment, as well as all technical equivalents which operate in a similar manner for a similar purpose to achieve a similar result.
The present invention comprises an amphoteric polysaccharide blend composition comprising about l to about 99 parts of one or more cationic polymers, preferably polygalactomannans having a degree of substitution of about O.Ol to about 3.00 and about 99 to about l parts of anionic substituted xanthan gum. In practice the materials may be mixed together in a dry state or, more preferably, each distributed in a fluid, preferably water, and each fluid is then mixed together.
The first component of the blend comprises one or more cationic polymers, preferably polygalactomannans having a degree of substitution of between about O.Ol and about 3Ø Particularly preferred are cationic polygalactomannans having a degree of substitution of between about .05 and about 2.0, with a degree of substitution of between about .l and about l.0 being most preferred.
The polygalactomannans are polysaccharides composed principally of galactose and mannose units and are usually found in the endosperm 2 13 ~ 0 3 5 EXP~ MAIL #13594190201 of leguminous seeds, such as guar, locust bean, honey locust, flame tree, and the like. Guar flour, for example, is composed mostly of a galactomannan which is essentially a straight chain mannan with single membered galactose branches. The mannose units are linked in a 1-4-~-glycosidic linkage and the galactose branching takes place by means of a 1-6 linkage on alternate mannose units. The ratio of galactose to mannose in the guar polymer is, therefore, one to two. Guar gum has a molecular weight of about 1.5 million.
lo Locust bean gum is also a polygalactomannan gum of similar molecular structure in which the ratio of galactose to mannose is one to four. Guar and locust bean gum are the preferred sources of the polygalactomannans, principally because of the commercial availability thereof.
In use the polygalacto~nn~n may be either in its natural state (i.e., pure guar gum or locust bean gum) or may be derivatized.
Derivatized polygalactom~n~ns include one or more non-ionic groups. Examples of such polygalactomannans include hydroxypropyl guar, hydroxyethyl guar, and the like. Such derivatized polygalactomannans are sold by Rhône-Poulenc Inc. under the trade names Jaguar 8012, Jaguar 8060, Jaguar 8000, Jaguar HP-20 and Jaguar HP-23.
By the term "degree of substitution" as employed herein is meant the average substitution of cationic or anionic groups per anhydro sugar unit in the polygalactomannan gums. In guar gum, the basic unit of the polymer consists of two mannose units with a glycosidic linkage and a galactose unit attached to a hydroxyl group of one of the mannose units. ~n the average, each of the anhydro sugar units contains three available hydroxyl sites. A degree of substitution of three would mean that all of the available hydroxyl sites have been esterified with formate ester groups.
Alternative materials which may be selected as the starting polymer 213403~
EXPRESS MAIL #IB594190201 material before substituted with one or more cationic groups include starches, celluloses and xanthan gum. Examples of starches include both natural and modified starches, such as dextrinated, hydrolyzed, oxidized, cross-linked, alkylated, hydroxyaikylated, acetylated, or fractionated (e.g., amylose and amylopectin). The starch may be of any origin, for example, corn starch, wheat starch, potato starch, tapioca starch, sago starch, rice starch, waxy corn starch or high-amylose corn starch.
Examples of celluloses include hydroxyethyl cellulose, hydroxypropyl cellulose, and alkyl celluloses.
Illustrative cationic groups sui_able for the practice of the present invention include quaternary ammonium groups. Typical of quaternary ammonium groups are tetramethylammonium chloride and bromide, benzyltrimethylammonium chloride and bromide, tetraethylammonium chloride and bromide, tetrabutylammonium chloride and bromide, methylpyridinium chloride and bromide, benzylpyridinium chloride and bromide, trimethyl-p-chlorobenzylammonium chloride and bromide, and the like, whereineach of the said groups is derivatized in the form of a radical which is substituted in a hydrocolloid gelling agent by means of an alkylene or oxyalkylene linkage.
The polymeric structure of suitable polygalactomannans including cationic ~LoU~s include vinyl polymers and copolymers, ion exchange resins, polysaccharides, and the like. Illustrative of this class of hydrocolloids are polygalactomannan gums containing quaternary ammonium ether substituents as described in U.S. Patent No.
Amongst the uses mentioned are: milk gels (U.S. Patent NQ .
213~03~ -EXPRESS MAIL #IB594190201 3,507,664), meat gels (U.S. Patent No. 3,519,434), heat reversible gels in general (U.S. Patent No. 3,557,016) and agricultural uses (U.S. Patent No. 3,659,026). A basic concept of each of these patents is that the combination of xanthan gum with locust bean gum for each of the functional applications yields a composition which, when displaced in a solvent, demonstrates excellent gelling attributes.
U.S. Patent No. 4,038,206 suggests that higher viscosities can be obtained when the locust bean gum used in combination with xanthan gum is a hydroxyalkyl locust bean gum. The hydroxyalkyl locust bean gums include the water soluble hydroxypropyl ethers of locust bean gum, hydroxyethyl ethers of locust bean gum and hydroxybutyl ethers of locust bean gum. The hydroxyalkyl locust bean gum is prepared by reacting an alkylene oxide with locust bean gum to form one or more ether linkages. The suggested molar amount of alkylene oxide per mole of locust bean gum is 0.05 to 0.5.
U.S. Patent No. 4,162,925 suggests that phosphated esters of locust bean gum having a degree of substitution ranging from about 0.03 to about 0.5 be used in combination with xanthan gum to form viscous liquids and/or firm gels. These materials are particularly suggested for use as suspending agents for oil well drilling and for use in precision planting procedures referred to as fluid drilling. The examples of the patent suggest that the phosphated esters utilized are anionic in nature.
The combination of xanthan gum with other galactomannans, such as guar gum and those derived from guar gum are also ~iscllcsed in the literature. For example, U.S. Patent No. 3,748,201 suggests thickening compositions containing xanthan gum and hydroxyalkyl ethers of guar gum. The hydroxyalkyl ether of guar gum is prepared by reacting guar oum with an alkylene oxide in the presence of an alkaline catalyst. The preferred degree of substitution of the guar gum resulting from the formation of ether linkages is v 213 4 0 3~ EXPRESS MAIL #IB5941~0201 preferably between about 0.2 to a~out 1.2. The compositions are suggested for use in dyeing yarns for carpeting and for explosives.
It is hypothesized that the interaction between xanthan gum and the above described polygalactomannans is of a molecular nature.
Polygalactor~nnAnc with less galactose side-ch~i~c and/or ~ess uniform distribution of galactose units will interact with xanthan gum more strongly than the polygalactomannans with higher gal~ctose content and/or more uniform distribution of galactose over the mannan main chain.
U.S. Patent No. 3,46?,647 disclose polysaccharides cont~ln;ng both cationic and anionic substituents. Amongst the starting polysaccharides which are then modified according to this patent include starches, locust bean gum (carob gum) and guar gum.
Cationic substituents include primary, secondary, or tertiary amino groups or quaternary ammonium, sulfonium or phosphinium groups.
Suggested anionic substituents include carboxyl, sulfonate, sulfate or phosphate groups. Example 9 of this patent discloses guar gum as the polysaccharide, trimethylammoniumhydroxypropyl as the cationic groups, and phosphates as the anionic groups. The degree of substitution for each of these groups in this example is 0.05.
Chem. Abstracts CA115(16):16250p discusses the uses of certain polymer combina.ions which provide enhanced viscosities as compared to the viscosities of the individual polymers. Combinations mentioned include poly(styrene sulfonate) and either xanthan gum or hydroxyethyl cellulose, poly(vinyl sulfonate) and xanthan gum, a quaternary-ammonium-salt modified guar and either hydroxypropyl guar or hydroxyethyl cellulose, and a sulfonated guar and either hydroxyethyl cellulose or carboxymethylhydroxyethyl cellulose.
These combinations are suggested for use in oil recovery.
Similarly, DD 281966 discloses a gel former which has both cationic and anionic polymers and provides a synergistic increase in - 213 ~ 0 3~ EXPR__S MAIL #IB594190201 viscosity as compared to solutions which contain separate amounts of the polymers. The anionic polymer is preferably a poly(dimethyl-diallylammonium chloride) containing pyrrolidinium units and the cationic polymer is preferably carboxymethylcellulose with a degree of substitution of 0.6-1.2.
U.S. Patent Nos. 4,Z64,322; 4,403,360 and 4,454,617 disclose dye compositions for textile fibers. The compositions comprise an admixture of immiscible gel phases, wherein one gel phase is lo thickened with a cationic gelling agent and wherein a second gel phase, which is dispersed in the first gel phase, is thickened with an anionic gelling agent. Suggested cationic gelling agents for the first phase include cationic polygalactomannans containing quaternary ammonium ether substituents. Suggested anionic gelling agents for the second phase include hydrocolloids which have the same type of basic polymeric structure as the cationic gelling agents, except that in place of the cationic group there is substituted an anionic group such as a carboxylic acid, sulfonic acid, or sulfate.
DE 1,518,731 discloses that galactomannans or gluco~nn~ns may be etherified with ~-halogen ethane sulfonic acid cr halogen methane sulfonic acids in the presence of base to yield compositions which can function as textile finishes, sizes and print thickeners.
U.S. Patent No. 3,912,713 and FR 2,242,401 disclose guar gum derivatives and processes for preparing the derivatives. The derivatives are prepared by adding a substituent to guar gum splits in the presence of water, and typically, base. Amongst the 3C substituents (derivatizing agents) suggested for use in these patents are haloalkylsulfonic acids, such as bromoethanesulfonic acid and chlorohydroxypropanesulfonic acid, epoxyalkyl sulfonic acids, such as epoxypropane sulfonic acid, and ~,~-alkylene sulfonic acids, such as ethylene sulfonic acid. These compounds are suggested for use as thickening agents, stressing, sizing and 213 4 0 35 EXPh~S ~IL ~IB594190201 fin;5~i~g agents, protective colloids and as agents for stabilizing dispersions and emulsions.
U.S. Patent No. 4,031,305 discloses sulfohydroxypropyl ethers of polygalactomannans having a degree of substitution between about O.Ol and 3. The ethers are prepared by contacting solid guar gum or locust bean gum with a 3-halo-2-hydroxypropanesulfonic acid or acid salt in the presence of base. The galactomannan ethers are alleged to be anionic in nature and are proposed for use in petroleum, textile, printing, paper, food and pharmaceutical industries.
U.S. Patent No. 4,057,509 discloses the formation of an acidic gel by contacting a polygalactomannan with an allyl halide, followed by exposing the formed polygalactomanr.an allyl ether material to a stream of sulfur dioxide. The gels are suggested for use in oil well drillin~ mud compositions and oil well fracturing compositions.
Despite the above, there still is a need for compositions which demonstrate enhanced viscosity behavior and which rely on forces in addition to molecular ones.
Brief Summary of the Invention In accordance with the present invention, a novel combination which demonstrates enhanced viscosity behavior than each of the starting polymers and which utilizes both ionic and molecular forces is provided. The novel combination comprises anionic substituted xanthan gum and one or more cationic polymers.
one embodiment of the present invention comprises a blend composition comprising about l to about 99 parts of one or more cationic polymers, preferably a polygalactomannan having a degree of substitution of about O.Ol to about 3.00 and about l to about 9~
- EXPR ~ MAIL1rIB594l90201 parts of anionic substituted xanthan gum.
In particularly preferred embodiments, the cationic polymer is a polygalactomannan having a degree of substitution between about 0.01 and about 1.00, and the anionic nature of the xanthan polymer is formed by substituting anionic sulfonate groups derived from ethylenically unsaturated polymers onto the xanthan backbone.
The blends are particularly effective as thickening agents. They may b- used for a number of functional applications such as in foods, explosives, oil field chemicals, agricultural applications, cosmetics and the like.
Another embodiment of the present invention comprises a process for lS producing a viscous liquid or a gel. The process comprises the step of adding to a solvent, preferably water, 0.1 parts to about 2.0 parts per 100 parts viscous liquid or gel of a blend composition having a ratio of about 1 to about 99 parts of one or more cationic polymers and about 1 to about 99 parts of anionic substituted xanthan gum.
A third embodiment of the present invention comprises a food, explosive, oil field chemical, agricultural chemical, textile fiber or cosmetic including an amount of a blend composition having a ratio of about 1 to about 99 parts of one or more cationic polymers and about 1 to about 99 parts of anionic substituted xanthan gum.
Accordingly, it is an object of the present invention to provide a novel blend composition which comprises materials which, in combination, demonstrate a superior viscosity profile as compared to the materials individually or uncharged combined materials.
It is another object of the present invention to provide a process for producing a viscous liquid or gel using a novel blend composition.
213 ~ 0 3~ EXPR~S MAIL #IB594190201 A further object of the present invention to provide a food, explosive, oil field chemical, agricultural chemical, textile fiber or cosmetic which includes the novel blend composition.
These, and other objects, will readily be apparent to those skilled in the art as reference is made to the detailed description of the preferred embodiment.
Detailed Descri~tion of the Preferred Embodiment In describing the preferred embodiment, certain terminology will be utilized for the sake of clarity. Such terminology is intended to encompass the recited embodiment, as well as all technical equivalents which operate in a similar manner for a similar purpose to achieve a similar result.
The present invention comprises an amphoteric polysaccharide blend composition comprising about l to about 99 parts of one or more cationic polymers, preferably polygalactomannans having a degree of substitution of about O.Ol to about 3.00 and about 99 to about l parts of anionic substituted xanthan gum. In practice the materials may be mixed together in a dry state or, more preferably, each distributed in a fluid, preferably water, and each fluid is then mixed together.
The first component of the blend comprises one or more cationic polymers, preferably polygalactomannans having a degree of substitution of between about O.Ol and about 3Ø Particularly preferred are cationic polygalactomannans having a degree of substitution of between about .05 and about 2.0, with a degree of substitution of between about .l and about l.0 being most preferred.
The polygalactomannans are polysaccharides composed principally of galactose and mannose units and are usually found in the endosperm 2 13 ~ 0 3 5 EXP~ MAIL #13594190201 of leguminous seeds, such as guar, locust bean, honey locust, flame tree, and the like. Guar flour, for example, is composed mostly of a galactomannan which is essentially a straight chain mannan with single membered galactose branches. The mannose units are linked in a 1-4-~-glycosidic linkage and the galactose branching takes place by means of a 1-6 linkage on alternate mannose units. The ratio of galactose to mannose in the guar polymer is, therefore, one to two. Guar gum has a molecular weight of about 1.5 million.
lo Locust bean gum is also a polygalactomannan gum of similar molecular structure in which the ratio of galactose to mannose is one to four. Guar and locust bean gum are the preferred sources of the polygalactomannans, principally because of the commercial availability thereof.
In use the polygalacto~nn~n may be either in its natural state (i.e., pure guar gum or locust bean gum) or may be derivatized.
Derivatized polygalactom~n~ns include one or more non-ionic groups. Examples of such polygalactomannans include hydroxypropyl guar, hydroxyethyl guar, and the like. Such derivatized polygalactomannans are sold by Rhône-Poulenc Inc. under the trade names Jaguar 8012, Jaguar 8060, Jaguar 8000, Jaguar HP-20 and Jaguar HP-23.
By the term "degree of substitution" as employed herein is meant the average substitution of cationic or anionic groups per anhydro sugar unit in the polygalactomannan gums. In guar gum, the basic unit of the polymer consists of two mannose units with a glycosidic linkage and a galactose unit attached to a hydroxyl group of one of the mannose units. ~n the average, each of the anhydro sugar units contains three available hydroxyl sites. A degree of substitution of three would mean that all of the available hydroxyl sites have been esterified with formate ester groups.
Alternative materials which may be selected as the starting polymer 213403~
EXPRESS MAIL #IB594190201 material before substituted with one or more cationic groups include starches, celluloses and xanthan gum. Examples of starches include both natural and modified starches, such as dextrinated, hydrolyzed, oxidized, cross-linked, alkylated, hydroxyaikylated, acetylated, or fractionated (e.g., amylose and amylopectin). The starch may be of any origin, for example, corn starch, wheat starch, potato starch, tapioca starch, sago starch, rice starch, waxy corn starch or high-amylose corn starch.
Examples of celluloses include hydroxyethyl cellulose, hydroxypropyl cellulose, and alkyl celluloses.
Illustrative cationic groups sui_able for the practice of the present invention include quaternary ammonium groups. Typical of quaternary ammonium groups are tetramethylammonium chloride and bromide, benzyltrimethylammonium chloride and bromide, tetraethylammonium chloride and bromide, tetrabutylammonium chloride and bromide, methylpyridinium chloride and bromide, benzylpyridinium chloride and bromide, trimethyl-p-chlorobenzylammonium chloride and bromide, and the like, whereineach of the said groups is derivatized in the form of a radical which is substituted in a hydrocolloid gelling agent by means of an alkylene or oxyalkylene linkage.
The polymeric structure of suitable polygalactomannans including cationic ~LoU~s include vinyl polymers and copolymers, ion exchange resins, polysaccharides, and the like. Illustrative of this class of hydrocolloids are polygalactomannan gums containing quaternary ammonium ether substituents as described in U.S. Patent No.
4,031,307:
R +
O-R -N -R X
R n - 213 ~ 0 35 EXPR~S MAIL #IB594190201 wherein R is an alkyl group cont~;ning between one and about six carbons atoms, R is an alkylene group containing between one and about six carbon atoms, X is chlorine or bromine, and n is an integer which correlates with the degree of substitution of the quaternary ammonium ether substituents in a polygalacto~nn~n gum cationic gelling agent. The said alkyl and alkylene group can contain other atoms such as oxygen, sulfur and halogen.
The cationic derivatives of guar gum or locust bean gum are prepared by contacting solid guar gum or locust bean gum with a haloalkyl-substituted quaternary ammonium compound and a stoichiometric excess of alkali metal hydroxide or ammonium hydroxide in a reaction medium comprising an aqueous solution of water-miscible solvent, at a temperature between about 10C and about 100C for a reaction period sufficient to achieve a degree of substitution by quaternary ammonium ether groups between about O.Ol and about 0.40.
The solid guar gum or other polygalactomannan which is etherified can be in the form of endosperm splits or in the form of finely divided powder which is derived from the endosperm splits. It is important that the polygalactomannan gum being etherified with quaternary ammonium groups remains as a solid phase in the reaction medium during the reaction period.
Further details on the synthesis of these polymers are provided in U.S. Patent No. 4,031,307. To the extent necessary, this patent is incorporated by reference.
Examples of commercially available polygalactomannans having one or more substituted cationic quaternary ammonium groups include Jaguar C-13, Jaguar C-13S, Jaguar C-14, Jaguar C-17 and Jaguar C-14S, all sold by Rhône-Poulenc Inc.
- 2 13 ~ ~ 3 5 EXPk&SS MAIL #IB594190201 Other cationic polymers include those which contain other cationic groups such as acid salts of primary, secondary, and tertiary amines, sulfonium groups or phosphonium groups.
The other component of the inventive blend composition comprises xanthan gum which contains anionic charges, preferably by the substitution of anionic groups onto the xanthan molecular backbone.
Xanthan gum is typically obtained from the fermentation product produced by the action of the bacteria Xanthomonas cam~estris upon carbohydrates. Other species of Xanthomonas are considered to be within the scope of the present invention. A discussion on the production of xanthan gum from a fermentation broth is provided in U.S. Patent Nos. 4,041,234 and 4,299,825. To the extent necessary, these references are hereby incorporated by reference. Once the lS xanthan gum has been produced from the fermentation broth, it is typically separated from the broth, washed and dried. The xanthan gum particles are typically anionic in nature. Non-limiting examples of suitable xanthan gum particles useful in the present invention are sold under the trade names Rhodigel, Rhodopol 23P and Rhodopol 23 by Rhône-Poulenc Inc.
The anionic nature of the xanthan polymer is preferably obtained by the substitution of one or more sulfonate groups onto the xanthan backbone. Particularly preferred as anionic substituents are those derived from e~hlyenically unsaturated monomers containing one or more sulfonate groups. Examples of such monomers include the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid and the sodium salt of l-allyloxy-2-hydroxypropylsulfonic acid. The former monomer is derived from 2-acrylamido-2-methylpropane sulfonic acid, which is co~orcially available from Lubrizol and sold under the trade name LZ 2401 and the later monomer is commercially available from Rhône-Poulenc Inc. and sold under the trade name Sipomer Cops I.
Other anionic groups which may be substituted onto the xanthan . .
213~03~
_ _XPR~JS ~AIL IB594190201 backbone include sulfate, carboxyl or phosphate groups.
The formation of ether linkages between the sulfonated substituent and the xanthan polymer occurs by directly adding the substituent to the xanthan gum, preferably in the presence of a solvent such as toluene. The reaction temperature generally is between about lOC
and about 100C. Reactivity of the polymer with the substituent may be aided by utilizing a small amount of an initiator. Examples of suitable initlators include ammonium persulfate. Ph buffers, such as disodium phosphate, may also be optimally added.
When blended or otherwise mixed together, the ratio of cationic polymer to anionic xanthan gum in this invention can be varied over a wide range, for example between about l to about 99 weight percent of the cationic polymer to between about 99 to l weight percent anionic xanthan gum, the total being lO0 parts by weight.
The preferred range is about 5 to about 95 parts by weight of cationic polymer to about 95 to about 5 parts by weight of anionic polymer, the total being lO0 parts by weight.
In use, the inventive compositions can effectively function as thickeners when added to a solvent, typically water. This typically comprises adding between about O.l and about 2.0 parts of the anionic xanthan polymer and the cationic polymer per lO0 parts of viscous liquid or gel.
The amphoteric polysaccharide blend compositions are typically produced by combining solutions of both cationic and anionic polymers in respective amounts so that the positive and negative charges are equally balanced. The respective amounts of anionic and cationic solutions are added together based primarily upon the degree of substitution of each. For example, larger amounts of a low degree of substitution cationic polymer solution may be added to smaller amounts of a high degree of substitution anionic solution.
2 1 3 ~ 0 3 5 EXPX~SS MAIL ir-IB594190201 While in the preferred embodiment, the amounts of anionic and cationic solutions are added in relative amounts to produce a charge neutral solution, the amounts of each may be varied to yield solutions which have an overall positive or negative charge.
Although not as enhanced as when producing a charge neutral solution, some synergistic viscosity increasing effect is achieved by unbalanced charged additions.
As an alternative to mixing separate aqueous solutions of the cationic and anionic polymers to obtain the inventive amphoteric blend, the cationic polymer and the anionic xanthan gum may be mixed together in a dry state in the desired ratio and then added to the water as stated above. For easy handling and ready dispersibility, the gums should have a particle size of less then about 100 mesh. Other components, e.g., fillers, wetting agents, dispersants, bactericides, fungicides and the like can be mixed with the powdered blends of the invention if so desired.
The fact that interaction between different polygalactomannans can provide enhanced viscosities is known. What is surprising about this invention is that by utilizing cationic polymers in combination with anionic xanthan gum a dual advantage is achieved.
The first advantage is the enhanced viscosity brought about by the molecular interaction of the cationic polymer with the anionic xanthan. The second advantage is the ionic interaction involved by using a cationic-polymer with the anionic xanthan gum. By utilizing both the molecular and ionic forces, truly improved results are obtained as compared to blends which utilize nonionic polysaccharides.
The novel compositions, due to their thickening properties, have a wide number of possible uses. Amongst them are as suspending agents for various solids, such as in oil field chemicals, for use in dyeing textile fibers, for use in foods, for use in cosmetics and personal care products, for use with agricultural products, for 213403~
_ EXPRESS ~AIL; IB594190201 use is explosives, for use in paper production and the like. Other uses will readily be appreciated by those skilled in the art.
The invention is described in greater detail by the following non-limiting examples.
A solution of 2.4 parts ammonium persulfate and 3 parts disodium phosphate in 50 parts water is added to 322 parts of Rhodigel, xanthan gum manufactured by Rhône-Poulenc Inc. in 1300 parts toluene and the solution is heated to 70C. 50 parts of a sodium 2-acrylamido-2-methylpropane sulfonate monomer solution are added and the reaction temperature is maintained at 65-70C for two hours. The mixture is cooled, filtered and dehydrated with ~5 methanol. The yield is 370.8 parts, with a moisture content of 12%.
EXPERIMENTAL TEST DATA
The following samples are used to compare the viscosities of 1%
aqueous solutions at 25C two hours after hydration under different shear conditions:
Sample A - Rhodigel (100%) (xanthan gum) Sample B - Example 1 Composition (100%) Sample C - Jaguar C-14 (100 %) (cationic guar) Sample D - Jaguar C-17 (100%) (cationic guar) Sample E - 50:50 weight mixture of Sample A and Sample C
Sample F - 50:50 weight mixture of Sample B and Sample C
Sample G - 50:50 weight mixture of Sample A and Sample D
Sample H - 50:50 weight mixture or Samp e B and Sample D
The shear rates, in rpms, and the viscosities, in centipoises, are shown in Table 1.
2 1 3 ~ 0 3~ EXPRESS MAILi,lB594190201 RPM 0.5 1 2.5 5 10 20 so Sample A 500002850013200 7600 4200 2400 1100 Sample B 680003400017200 9200 5100 2800 1280 Sample C 320002600018400 12800 8600 5500 2820 Sample D 100009000 6800 5200 3800 2650 1500 Sample E 570003150014000 7800 4400 2500 1400 Sample F 680003600016000 9200 5000 3300 2000 Sample G 148000 84000 36800 20000 10800 6200 2600 Sample H 152000 80000 39600 2080C 12000 8000 3950 A review of the data in Table 1 demonstrates that Sample F, which is a mixture of cationic guar with anionic xanthan gum yields a higher viscosity at all shear rates as compared to Sample E, which is a mixture of cationic guar with unsubstituted xanthan gum.
Although not as pronounced, Sample H, which is a mixture of a different cationic guar with anionic xanthan gum yields a higher viscositv, particularly at higher shear rates as compared to Sample G, which is a mixture of cationic guar with unsubstituted xanthan gum. Further, Sample B, which comprises anionic substituted xanthan gum, demonstrates higher viscosities than Sample A, which contains no such anionic substitution.
Having described the invention in detail and by reference to the preferred embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the appended claims.
R +
O-R -N -R X
R n - 213 ~ 0 35 EXPR~S MAIL #IB594190201 wherein R is an alkyl group cont~;ning between one and about six carbons atoms, R is an alkylene group containing between one and about six carbon atoms, X is chlorine or bromine, and n is an integer which correlates with the degree of substitution of the quaternary ammonium ether substituents in a polygalacto~nn~n gum cationic gelling agent. The said alkyl and alkylene group can contain other atoms such as oxygen, sulfur and halogen.
The cationic derivatives of guar gum or locust bean gum are prepared by contacting solid guar gum or locust bean gum with a haloalkyl-substituted quaternary ammonium compound and a stoichiometric excess of alkali metal hydroxide or ammonium hydroxide in a reaction medium comprising an aqueous solution of water-miscible solvent, at a temperature between about 10C and about 100C for a reaction period sufficient to achieve a degree of substitution by quaternary ammonium ether groups between about O.Ol and about 0.40.
The solid guar gum or other polygalactomannan which is etherified can be in the form of endosperm splits or in the form of finely divided powder which is derived from the endosperm splits. It is important that the polygalactomannan gum being etherified with quaternary ammonium groups remains as a solid phase in the reaction medium during the reaction period.
Further details on the synthesis of these polymers are provided in U.S. Patent No. 4,031,307. To the extent necessary, this patent is incorporated by reference.
Examples of commercially available polygalactomannans having one or more substituted cationic quaternary ammonium groups include Jaguar C-13, Jaguar C-13S, Jaguar C-14, Jaguar C-17 and Jaguar C-14S, all sold by Rhône-Poulenc Inc.
- 2 13 ~ ~ 3 5 EXPk&SS MAIL #IB594190201 Other cationic polymers include those which contain other cationic groups such as acid salts of primary, secondary, and tertiary amines, sulfonium groups or phosphonium groups.
The other component of the inventive blend composition comprises xanthan gum which contains anionic charges, preferably by the substitution of anionic groups onto the xanthan molecular backbone.
Xanthan gum is typically obtained from the fermentation product produced by the action of the bacteria Xanthomonas cam~estris upon carbohydrates. Other species of Xanthomonas are considered to be within the scope of the present invention. A discussion on the production of xanthan gum from a fermentation broth is provided in U.S. Patent Nos. 4,041,234 and 4,299,825. To the extent necessary, these references are hereby incorporated by reference. Once the lS xanthan gum has been produced from the fermentation broth, it is typically separated from the broth, washed and dried. The xanthan gum particles are typically anionic in nature. Non-limiting examples of suitable xanthan gum particles useful in the present invention are sold under the trade names Rhodigel, Rhodopol 23P and Rhodopol 23 by Rhône-Poulenc Inc.
The anionic nature of the xanthan polymer is preferably obtained by the substitution of one or more sulfonate groups onto the xanthan backbone. Particularly preferred as anionic substituents are those derived from e~hlyenically unsaturated monomers containing one or more sulfonate groups. Examples of such monomers include the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid and the sodium salt of l-allyloxy-2-hydroxypropylsulfonic acid. The former monomer is derived from 2-acrylamido-2-methylpropane sulfonic acid, which is co~orcially available from Lubrizol and sold under the trade name LZ 2401 and the later monomer is commercially available from Rhône-Poulenc Inc. and sold under the trade name Sipomer Cops I.
Other anionic groups which may be substituted onto the xanthan . .
213~03~
_ _XPR~JS ~AIL IB594190201 backbone include sulfate, carboxyl or phosphate groups.
The formation of ether linkages between the sulfonated substituent and the xanthan polymer occurs by directly adding the substituent to the xanthan gum, preferably in the presence of a solvent such as toluene. The reaction temperature generally is between about lOC
and about 100C. Reactivity of the polymer with the substituent may be aided by utilizing a small amount of an initiator. Examples of suitable initlators include ammonium persulfate. Ph buffers, such as disodium phosphate, may also be optimally added.
When blended or otherwise mixed together, the ratio of cationic polymer to anionic xanthan gum in this invention can be varied over a wide range, for example between about l to about 99 weight percent of the cationic polymer to between about 99 to l weight percent anionic xanthan gum, the total being lO0 parts by weight.
The preferred range is about 5 to about 95 parts by weight of cationic polymer to about 95 to about 5 parts by weight of anionic polymer, the total being lO0 parts by weight.
In use, the inventive compositions can effectively function as thickeners when added to a solvent, typically water. This typically comprises adding between about O.l and about 2.0 parts of the anionic xanthan polymer and the cationic polymer per lO0 parts of viscous liquid or gel.
The amphoteric polysaccharide blend compositions are typically produced by combining solutions of both cationic and anionic polymers in respective amounts so that the positive and negative charges are equally balanced. The respective amounts of anionic and cationic solutions are added together based primarily upon the degree of substitution of each. For example, larger amounts of a low degree of substitution cationic polymer solution may be added to smaller amounts of a high degree of substitution anionic solution.
2 1 3 ~ 0 3 5 EXPX~SS MAIL ir-IB594190201 While in the preferred embodiment, the amounts of anionic and cationic solutions are added in relative amounts to produce a charge neutral solution, the amounts of each may be varied to yield solutions which have an overall positive or negative charge.
Although not as enhanced as when producing a charge neutral solution, some synergistic viscosity increasing effect is achieved by unbalanced charged additions.
As an alternative to mixing separate aqueous solutions of the cationic and anionic polymers to obtain the inventive amphoteric blend, the cationic polymer and the anionic xanthan gum may be mixed together in a dry state in the desired ratio and then added to the water as stated above. For easy handling and ready dispersibility, the gums should have a particle size of less then about 100 mesh. Other components, e.g., fillers, wetting agents, dispersants, bactericides, fungicides and the like can be mixed with the powdered blends of the invention if so desired.
The fact that interaction between different polygalactomannans can provide enhanced viscosities is known. What is surprising about this invention is that by utilizing cationic polymers in combination with anionic xanthan gum a dual advantage is achieved.
The first advantage is the enhanced viscosity brought about by the molecular interaction of the cationic polymer with the anionic xanthan. The second advantage is the ionic interaction involved by using a cationic-polymer with the anionic xanthan gum. By utilizing both the molecular and ionic forces, truly improved results are obtained as compared to blends which utilize nonionic polysaccharides.
The novel compositions, due to their thickening properties, have a wide number of possible uses. Amongst them are as suspending agents for various solids, such as in oil field chemicals, for use in dyeing textile fibers, for use in foods, for use in cosmetics and personal care products, for use with agricultural products, for 213403~
_ EXPRESS ~AIL; IB594190201 use is explosives, for use in paper production and the like. Other uses will readily be appreciated by those skilled in the art.
The invention is described in greater detail by the following non-limiting examples.
A solution of 2.4 parts ammonium persulfate and 3 parts disodium phosphate in 50 parts water is added to 322 parts of Rhodigel, xanthan gum manufactured by Rhône-Poulenc Inc. in 1300 parts toluene and the solution is heated to 70C. 50 parts of a sodium 2-acrylamido-2-methylpropane sulfonate monomer solution are added and the reaction temperature is maintained at 65-70C for two hours. The mixture is cooled, filtered and dehydrated with ~5 methanol. The yield is 370.8 parts, with a moisture content of 12%.
EXPERIMENTAL TEST DATA
The following samples are used to compare the viscosities of 1%
aqueous solutions at 25C two hours after hydration under different shear conditions:
Sample A - Rhodigel (100%) (xanthan gum) Sample B - Example 1 Composition (100%) Sample C - Jaguar C-14 (100 %) (cationic guar) Sample D - Jaguar C-17 (100%) (cationic guar) Sample E - 50:50 weight mixture of Sample A and Sample C
Sample F - 50:50 weight mixture of Sample B and Sample C
Sample G - 50:50 weight mixture of Sample A and Sample D
Sample H - 50:50 weight mixture or Samp e B and Sample D
The shear rates, in rpms, and the viscosities, in centipoises, are shown in Table 1.
2 1 3 ~ 0 3~ EXPRESS MAILi,lB594190201 RPM 0.5 1 2.5 5 10 20 so Sample A 500002850013200 7600 4200 2400 1100 Sample B 680003400017200 9200 5100 2800 1280 Sample C 320002600018400 12800 8600 5500 2820 Sample D 100009000 6800 5200 3800 2650 1500 Sample E 570003150014000 7800 4400 2500 1400 Sample F 680003600016000 9200 5000 3300 2000 Sample G 148000 84000 36800 20000 10800 6200 2600 Sample H 152000 80000 39600 2080C 12000 8000 3950 A review of the data in Table 1 demonstrates that Sample F, which is a mixture of cationic guar with anionic xanthan gum yields a higher viscosity at all shear rates as compared to Sample E, which is a mixture of cationic guar with unsubstituted xanthan gum.
Although not as pronounced, Sample H, which is a mixture of a different cationic guar with anionic xanthan gum yields a higher viscositv, particularly at higher shear rates as compared to Sample G, which is a mixture of cationic guar with unsubstituted xanthan gum. Further, Sample B, which comprises anionic substituted xanthan gum, demonstrates higher viscosities than Sample A, which contains no such anionic substitution.
Having described the invention in detail and by reference to the preferred embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the appended claims.
Claims (24)
1. A blend composition comprising about 1 to about 99 parts of one or more cationic polymers and about 99 to about 1 parts of anionic substituted xanthan gum.
2. The composition according to claim 1 wherein each of said one or more cationic polysaccharides comprises a polygalactomannan having a degree of substitution of between about 0.01 and about
3.00.
3. The composition according to claim 2 wherein each of said one or more cationic polygalactomannans is derived from guar gum or locust bean gum.
3. The composition according to claim 2 wherein each of said one or more cationic polygalactomannans is derived from guar gum or locust bean gum.
4. The composition according to claim 3 wherein each of said one or more cationic polygalactomannans is derived from guar gum.
5. The composition according to claim 1 wherein the said one or more cationic polymers and said one or more anionic substituted xanthan gum are each separately distributed in a solvent to form solutions which are then mixed together.
6. The composition according to claim 1 wherein said cationic groups of said cationic polymer are selected from the group consisting of quaternary ammonium groups, acid salts of primary, secondary, and tertiary amines, sulfonium groups and phosphonium groups and mixtures thereof.
7. The composition according to claim 6 wherein said anionic substituted group of said anionic substituted xanthan gum is selected from the group consisting of sulfonate groups, sulfate groups, carboxyl groups and phosphate groups.
8. The composition according to claim 7 wherein said anionic substituted group of said anionic substituted xanthan gum is derived from ethylenically unsaturated monomers including one or more sulfonate groups.
9. The composition according to claim 8 wherein said ethylenically unsaturated monomers are selected from the group consisting of 2-acrylamido-2-methylpropane sulfonic acid and 1-allyloxy-2-hydroxypropyl sulfonic acid and salts thereof.
10. The composition according to claim 1 wherein the amount and the degree of substitution of each of said anionic and cationic polymers is matched such that a charge neutral blend composition is produced.
11. The composition according to claim 1 used in foods, explosives, oil field chemicals, personal care products, paper production, textile fibers, agricultural applications and cosmetics.
12. A process for producing a viscous liquid or gel comprising the step of adding to a solvent about 0.1 parts to about 2.0 parts per 100 parts viscous liquid or gel of a blend composition having a ratio of about 1 to about 99 parts of one or more cationic polymers and about 1 to about 99 parts of an anionic substituted xanthan gum.
13. The process according to claim 12 wherein said solvent is water.
14. The process according to claim 13 wherein said one or more cationic polymers is a polygalactomannan having a degree of substitution of between about 0.01 and about 3.00.
15. The process according to claim 14 wherein said cationic polygalactomannan is derived from guar gum or locust bean gum.
16. The process according to claim 15 wherein said cationic polygalactomannan is derived from guar gum.
17. The process according to claim 13 wherein the said one or more cationic polymers and said one or more anionic substituted xanthan gum are each separately distributed in a solvent to form solutions which are then mixed together.
18. The process according to claim 13 wherein said cationic groups of said cationic polygalactomannan are selected from the group consisting of quaternary ammonium groups, acid salts of primary, secondary, and tertiary amines, sulfonium groups and phosphonium groups and mixtures thereof.
19. The process according to claim 13 wherein said anionic substituted group of said anionic substituted xanthan gum is selected from the group consisting of sulfonate groups, sulfate groups, carboxyl groups and phosphate groups.
20. The process according to claim 19 wherein said anionic substituted group of said anionic substituted xanthan gum is derived from ethylenically unsaturated monomers including one or more sulfonate groups.
21. The process according to claim 20 wherein said ethylenically unsaturated monomers are selected from the group consisting of 2-acrylamido-2-methylpropane sulfonic acid and 1-allyloxy-2-hydroxypropyl sulfonic acid and salts thereof.
22. The process according to claim 13 wherein the amount and the degree of substitution of each of said anionic substituted xanthan gum and cationic polymers is matched such that a charge neutral blend composition is produced.
23. A food, explosive, personal care product, paper production chemical, oil field chemical, textile fiber, agricultural chemical or cosmetic including an amount of a blend composition having a ratio of about 1 to about 99 parts of one or more cationic polymers and about 99 to about 1 parts of anionic substituted xanthan gum.
24. Anionic substituted xanthan gum.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/156,189 US5552462A (en) | 1993-11-22 | 1993-11-22 | Compositions including cationic polymers and anionic xanthan gum |
US08/156,189 | 1993-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2134035A1 true CA2134035A1 (en) | 1995-05-23 |
Family
ID=22558500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002134035A Abandoned CA2134035A1 (en) | 1993-11-22 | 1994-10-21 | Compositions including cationic polymers and anionic xanthan gum |
Country Status (11)
Country | Link |
---|---|
US (1) | US5552462A (en) |
EP (1) | EP0654482B1 (en) |
JP (1) | JPH07238186A (en) |
AT (1) | ATE178910T1 (en) |
AU (1) | AU688391B2 (en) |
BR (1) | BR9404666A (en) |
CA (1) | CA2134035A1 (en) |
DE (1) | DE69417848T2 (en) |
DK (1) | DK0654482T3 (en) |
ES (1) | ES2129605T3 (en) |
ZA (1) | ZA948286B (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5955401A (en) * | 1996-05-17 | 1999-09-21 | Baroid Technology, Inc. | Clay-free biodegradable wellbore fluid and method for using same fluid |
US5863861A (en) * | 1996-11-12 | 1999-01-26 | Rhodia Inc. | Stable aqueous fertilizer composition concentrate comprising potassium |
FR2768357B1 (en) | 1997-09-18 | 1999-11-05 | Snecma | METHOD OF ASSEMBLING OR RECHARGING BY BRAZING-DIFFUSING PARTS IN TITANIUM ALUMINIURE |
US6210689B1 (en) * | 1998-03-18 | 2001-04-03 | National Starch & Chemical Co. Investment Holding Corporation | Keratin treating cosmetic compositions containing amphoteric polysaccharide derivatives |
US7456135B2 (en) | 2000-12-29 | 2008-11-25 | Halliburton Energy Services, Inc. | Methods of drilling using flat rheology drilling fluids |
US20030036484A1 (en) * | 2001-08-14 | 2003-02-20 | Jeff Kirsner | Blends of esters with isomerized olefins and other hydrocarbons as base oils for invert emulsion oil muds |
US7435706B2 (en) | 2000-12-29 | 2008-10-14 | Halliburton Energy Services, Inc. | Thinners for invert emulsions |
US7572755B2 (en) * | 2000-12-29 | 2009-08-11 | Halliburton Energy Services, Inc. | Drilling fluid comprising a vinyl neodecanoate polymer and method for enhanced suspension |
DK1346006T3 (en) | 2000-12-29 | 2015-02-23 | Halliburton Energy Serv Inc | Thinners for drilling fluids with the inverse emulsion |
US6887832B2 (en) | 2000-12-29 | 2005-05-03 | Halliburton Energy Service,S Inc. | Method of formulating and using a drilling mud with fragile gels |
FR2820747B1 (en) * | 2001-02-15 | 2005-10-07 | Rhodia Chimie Sa | NON-IONIC POLYSACCHARIDE COMPOSITION FOR CARE OF TEXTILE FIBER ARTICLES |
CA2451334C (en) * | 2001-06-22 | 2008-09-09 | Jeffrey C. Dawson | Fracturing fluids and methods of making and using same |
US20060142165A1 (en) * | 2003-09-24 | 2006-06-29 | Halliburton Energy Services, Inc. | Methods and compositions for treating subterranean formations using sulfonated gelling agent polymers |
US20050065040A1 (en) * | 2003-09-24 | 2005-03-24 | Weaver Jimmie D. | Methods and compositions for treating subterranean formations using high ionic strength gelling agent polymers |
WO2005073255A1 (en) * | 2004-01-30 | 2005-08-11 | Toho Chemical Industry Co., Ltd. | Cation-modified purified galactomannan polysaccharide and cosmetic composition containing the substance |
WO2005120458A1 (en) * | 2004-06-07 | 2005-12-22 | Kureha Corporation | Dry-form composition for oral ingestion and gel-form composition for oral ingestion of type prepared at time of use |
JP2006097010A (en) * | 2004-08-31 | 2006-04-13 | Toho Chem Ind Co Ltd | Cation-modified soy polysaccharide and cosmetic composition containing the same |
JP4970762B2 (en) * | 2004-09-27 | 2012-07-11 | 東邦化学工業株式会社 | Cation-modified psyllium seed gum and cosmetic composition containing the substance |
JP5000879B2 (en) * | 2004-11-01 | 2012-08-15 | 東邦化学工業株式会社 | Cation-modified glucomannan polysaccharide and cosmetic composition containing the substance |
US9198847B2 (en) * | 2004-11-05 | 2015-12-01 | The Procter & Gamble Company | Personal care composition containing a non-guar galactomannan polymer derivative and an anionic surfactant system |
JP2007009092A (en) * | 2005-06-30 | 2007-01-18 | Toho Chem Ind Co Ltd | Cationically modified gellan gum and cosmetic composition containing the same |
JP5064664B2 (en) * | 2005-07-29 | 2012-10-31 | 東邦化学工業株式会社 | Cation-modified Karaya gum and cosmetic composition containing the substance |
JP2007063446A (en) * | 2005-08-31 | 2007-03-15 | Toho Chem Ind Co Ltd | Cation-modified xanthan gum and cosmetic composition comprising the same |
JP5064667B2 (en) * | 2005-09-01 | 2012-10-31 | 東邦化学工業株式会社 | Cation-modified gum arabic and cosmetic composition containing the substance |
JP4975996B2 (en) * | 2005-09-30 | 2012-07-11 | 東邦化学工業株式会社 | Cation-modified pectin and cosmetic composition containing the substance |
JP5085976B2 (en) * | 2007-05-09 | 2012-11-28 | 株式会社 資生堂 | Method for producing spherical composite gel particles |
US8815773B2 (en) * | 2009-07-29 | 2014-08-26 | Upl Limited | Herbicidal combination |
TWI601482B (en) * | 2012-01-19 | 2017-10-11 | Somar Corp | Tackifying paste composition and method of manufacturing the same and viscosity control method using the same |
US9452135B2 (en) | 2012-03-20 | 2016-09-27 | Particle Dynamics International, Llc | Gelling agent-based dosage form |
FR2997947B1 (en) * | 2012-11-15 | 2015-01-02 | Agrauxine | COMPOSITION FOR PREPARING PLANT ROOTS |
NO342194B1 (en) | 2014-07-14 | 2018-04-16 | Yara Int Asa | Fertilizer composition comprising ammonium nitrate and a gelling agent |
US11905462B2 (en) * | 2020-04-16 | 2024-02-20 | PfP INDUSTRIES, LLC | Polymer compositions and fracturing fluids made therefrom including a mixture of cationic and anionic hydratable polymers and methods for making and using same |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3236831A (en) * | 1963-04-29 | 1966-02-22 | Richard G Schweiger | Xanthomonas hydrophilic colloid ethers |
US3557016A (en) * | 1965-10-22 | 1971-01-19 | Kelco Co | Heat reversible gel and method for preparing same |
DE1518731A1 (en) * | 1965-12-01 | 1969-06-12 | Diamalt Ag | Process for the production of cold water soluble etherification products of galactomannans and glucomannans |
GB1135693A (en) * | 1966-03-10 | 1968-12-04 | Scholten Chemische Fab | Polysaccharide derivatives |
US3507664A (en) * | 1969-02-20 | 1970-04-21 | Kelco Co | Milk gel composition |
US3659026A (en) * | 1969-12-08 | 1972-04-25 | Kelso Co | Mixture of xanthomonas hydrophylic colloid and locust bean gum as agricultural carrier |
US3748201A (en) * | 1971-10-08 | 1973-07-24 | Gen Mills Chem Inc | Thickening compositions containing xanthomonas gum and hydroxyalkyl ether of guar gum |
US3912713A (en) * | 1973-08-29 | 1975-10-14 | Scholten Honig Research Nv | Guar gum derivatives and process for preparation |
US4038206A (en) * | 1976-01-15 | 1977-07-26 | General Mills Chemicals, Inc. | Hydroxyalkyl locust bean/xanthomonas hydrophilic colloid blends |
DE2819665C3 (en) * | 1978-05-05 | 1980-10-16 | Greimbau-Lizenz-Gmbh, 3200 Hildesheim | Holding device for connecting plates |
US4162925A (en) * | 1978-05-10 | 1979-07-31 | Meyhall Chemical Ag | Phosphated locust bean gums |
US4264322A (en) * | 1979-09-07 | 1981-04-28 | Celanese Corporation | Multicolor coating system |
US4318815A (en) * | 1979-11-26 | 1982-03-09 | Texaco Inc. | Sulfated biopolymers for use in recovering petroleum from a subterranean formation |
US4454617A (en) * | 1982-12-06 | 1984-06-19 | Celanese Corporation | Immiscible segmented distributor for random dyeing of textiles |
US4487866A (en) * | 1983-06-22 | 1984-12-11 | Halliburton Company | Method of improving the dispersibility of water soluble anionic polymers |
US5104487A (en) * | 1988-09-02 | 1992-04-14 | Betz Paper Chem., Inc. | Papermaking using cationic starch and naturally anionic polysacchride gums |
DD281966A5 (en) * | 1988-12-30 | 1990-08-29 | Berlin Kosmetik Veb | GELBILDNER BASED ON ANIONIC AND CATIONIC POLYMERS |
US5378830A (en) * | 1993-09-01 | 1995-01-03 | Rhone-Poulenc Specialty Chemicals Co. | Amphoteric polysaccharide compositions |
-
1993
- 1993-11-22 US US08/156,189 patent/US5552462A/en not_active Expired - Fee Related
-
1994
- 1994-10-21 CA CA002134035A patent/CA2134035A1/en not_active Abandoned
- 1994-10-21 ZA ZA948286A patent/ZA948286B/en unknown
- 1994-11-10 ES ES94402543T patent/ES2129605T3/en not_active Expired - Lifetime
- 1994-11-10 DE DE69417848T patent/DE69417848T2/en not_active Expired - Fee Related
- 1994-11-10 EP EP94402543A patent/EP0654482B1/en not_active Expired - Lifetime
- 1994-11-10 AT AT94402543T patent/ATE178910T1/en not_active IP Right Cessation
- 1994-11-10 DK DK94402543T patent/DK0654482T3/en active
- 1994-11-21 BR BR9404666A patent/BR9404666A/en not_active Application Discontinuation
- 1994-11-21 AU AU78945/94A patent/AU688391B2/en not_active Ceased
- 1994-11-21 JP JP6286414A patent/JPH07238186A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
ATE178910T1 (en) | 1999-04-15 |
DE69417848D1 (en) | 1999-05-20 |
JPH07238186A (en) | 1995-09-12 |
EP0654482B1 (en) | 1999-04-14 |
AU7894594A (en) | 1995-06-01 |
US5552462A (en) | 1996-09-03 |
DK0654482T3 (en) | 1999-10-25 |
ZA948286B (en) | 1995-06-19 |
DE69417848T2 (en) | 1999-10-07 |
BR9404666A (en) | 1995-07-11 |
EP0654482A1 (en) | 1995-05-24 |
ES2129605T3 (en) | 1999-06-16 |
AU688391B2 (en) | 1998-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5552462A (en) | Compositions including cationic polymers and anionic xanthan gum | |
US5378830A (en) | Amphoteric polysaccharide compositions | |
US5473059A (en) | Modified hydrophobic cationic thickening compositions | |
AU612448B2 (en) | Aqueous dispersion of particulate water soluble polymers in polyethylene glycol | |
CA2350614C (en) | Dispersible water soluble polymers | |
JP5063836B2 (en) | Hydrophobic starch derivative | |
US3467647A (en) | Cationic and anionic substituted polysaccharides and process for preparing same | |
EP0541511B1 (en) | Siloxan-containing derivatives of polysaccharides and their use in making paper | |
US4105461A (en) | Thickening compositions containing xanthan gum, guar gum and starch | |
US5432215A (en) | Building material products containing organic polymers as thickeners | |
US4594108A (en) | Highly pseudoplastic polymer solutions | |
AU604352B2 (en) | Carboxymethyl hydrophobically modified hydroxyethyl cellulose and its use in protective coating compositions | |
US4753659A (en) | Derivatives of cassia tora polysaccarides and their use | |
US2845417A (en) | Hydroxyalkylation of ungelatinized starches and dextrins in aqueous, water-miscible alcohols | |
JPH01215801A (en) | Modified galactomannan and production thereof | |
EP1858970A1 (en) | Blocky hydroxyethylcellulose, derivatives thereof, process of making, and uses thereof | |
US4758282A (en) | Process for dry cationization of galactomannans | |
US4707189A (en) | Biostable compositions and the aqueous solutions thereof as thickeners for aqueous-based systems | |
US4031305A (en) | Polygalactomannan ether compositions | |
CA1070682A (en) | Polygalactomannan allyl ether compositions | |
AU611433B2 (en) | Compositions of starch and methylcellulose ethers as high temperature thickeners | |
EP0632057A1 (en) | Anionic sulfonated thickening compositions | |
CN113667026B (en) | High-viscosity instant carboxymethyl octenyl composite modified starch emulsion thickener and preparation method and application thereof | |
AU2122999A (en) | Method for preparation of amphoteric guar gum derivatives | |
US4992536A (en) | Preparation of polycationic polysaccharides by site selective reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued |