CA2098175C - Process and apparatus for the biological conversion of organic material in biomass - Google Patents

Process and apparatus for the biological conversion of organic material in biomass

Info

Publication number
CA2098175C
CA2098175C CA002098175A CA2098175A CA2098175C CA 2098175 C CA2098175 C CA 2098175C CA 002098175 A CA002098175 A CA 002098175A CA 2098175 A CA2098175 A CA 2098175A CA 2098175 C CA2098175 C CA 2098175C
Authority
CA
Canada
Prior art keywords
closed
chamber
organic material
housing
closed chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002098175A
Other languages
French (fr)
Other versions
CA2098175A1 (en
Inventor
Franz Bohnensieker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP19910119832 external-priority patent/EP0543041A1/en
Application filed by Individual filed Critical Individual
Publication of CA2098175A1 publication Critical patent/CA2098175A1/en
Application granted granted Critical
Publication of CA2098175C publication Critical patent/CA2098175C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/70Controlling the treatment in response to process parameters
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/50Treatments combining two or more different biological or biochemical treatments, e.g. anaerobic and aerobic treatment or vermicomposting and aerobic treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/90Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/90Apparatus therefor
    • C05F17/907Small-scale devices without mechanical means for feeding or discharging material, e.g. garden compost bins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A process and an apparatus for biological conversion (composting) of organic waste material, particularly from kitchen and restaurant operations, involving the treatment in at least two separate chambers (7, 8). In the first chamber (7), introduced organic material is treated only until its conversion into biomass to a particular intermediate stage. A portion of this partially converted material is then moved for a final stage of composting into the second chamber (8). New waste organic materials introduced into the first chamber (7) are treated together with the remaining portion of the partially converted material. Due to a constant high volume of active microorganisms in the first chamber (7), the process of conversion of the newly introduced waste material is started immediately. It is preferred that the heat insulated housing (1) containing the chambers (7, 8) be controlled to rotate about a horizontal axis (3) for mixing the material and that grinders (12, 12') be designed for fine comminuting the material. If desired, drying and/or sterilization of the composted material can be done in a third chamber. An engageable container unit (40) receives the material composted in the second chamber (8). The container unit (40) after disengagement from the treatment apparatus can be linked with other similar units into a transportation set for transportation by means of truck. This apparatus allows conversion of waste material of the type mentioned to biomass in a quasi-continuous process in a shortened period of time, for example one to two days.

Description

209817~

PROCESS AND APPARATUS FOR THE BIOLOGICAL CONVERSION
OF ORGANIC MATERIAL IN BIOMASS

This invention relates generally to a process and an apparatus for the biological conversion (composting) of organic materials in biomass wherein the organic materials are treated by finely comminuting and mixing them for a time in a substantially enclosed environment.

It is known to one skilled in the art that organic materials, in particular wastes form private households, restaurants etc., may be converted (composted) into reusable, valuable biomass.
It is known from DE-C-38 37 865 to compost in a drum-shaped reaction container used together with a separate conditioning apparatus wherein material, prior to being put into the reaction container, is ground to a suitable particle size, thereby allowing composting in the reaction container with a shortened starter phase, that is, the composting is accelerated more quickly. The advantage of having a fast acting conversion reaction must be weighed against relatively cost-intensive apparatus therefor, usually not suitable for stationary use in restaurant operations and the like. It is further known from prior art to compost in a one-step procedure with relatively compact apparatus (DE-C-38 44 700) wherein the grinding and mixing of the material to be treated takes place in one and the same reactor until substantial composting is achieved. In this regard, it is also known (DE-A-38 19 979) to accomplish one-step composting in a rotary drum. The rotary drum may, for example, be separated into two chambers (US patent 38 37 810;
DE-A-40 00 916) thereby allowing alternating operation so that smaller batches may be processed. One-step batch composting entails a comparatively long treatment period due to a 3S necessarily long starter period for each batch even when, as already suggested
- 2 ~ 2098~7 5 (GB-C-l 022 127), the material to be treated is provided with a suitable quantity of microorganisms for speeding up the conversion process. Thus, a product is often thereby produced which is unsuitable for immediate use, for example in garden plants and the like, without further treatment. On the other hand, apparatus of the latter kind have the advantage, due to their compactness, that they are basically suitable for an economical, stationary use at a place of waste creation.

It is an object of this invention to provide a process and an apparatus as described above suitable to allow a conversion of wastes into a reusable biomass in a shortened treatment time period at a place of waste generation in a quasi-continuous process. This invention is geared in particular to an improvement of the biological conversion procedure of the invention of German patent DE-C-38 44 700.

For a solution of this object reference is made to claims 1 and 9.

According to the invention, treatment of materials to be composted takes place in a first chamber only until the composting has reached a particular intermediate stage. A
portion of the material composted to this intermediate stage is then moved into a second chamber where composting is continued to a final stage involving the dying of microorganisms. The portion of material composted only to the particular intermediate stage remaining in the first chamber ensures a high quantity of active microorganisms in this chamber availabel for attacking further materials introduced into the first chamber to immediately begin the process of conversion. Thus, this invention allows, without occasional adding of microorganisms, a continuously or quasi-continuously composting process wherein after a certain ~ 3 ~ 20 98 17 5 starter phase continuously new material is filled into the first chamber and partially composted material is moved from the first into the second chamber for final composting. The material is coninuously, or in intervals, turned over and mixed in both chambers wherein this treatment may be combined with a process of grinding, or comminuting the material.
Thereby, contact of waste material with surrounding air is assured thus continuously providing the microorganisms with sufficient oxygen for their work. The conversion, as an exothermic process, involves development of heat which may be used for warming air introduced into the chambers thereby making it quite unnecessary to provide primary energy for warming air. Also, the chambers, that is the housing, are heat-insulated against the outer environment, thereby allowing, in combination with the fact that the turning, mixing and grinding of the material takes place in an enclosed environment, the maintaining of process heat created during conversion until the end of the reaction, i.e. for the creation of optimal conditions of conversion in the individual chambers. If desired, excess process heat may be used for drying biomass from the second chamber in a third chamber. The process of this invention allows a particularly compact embodiment of the apparatus for its execution. A
preferred embodiment of such an apparatus comprises the two chambers being pivotally arranged about a substantially horizontal axis as it is known per se form the prior art. The mixing and turning of material in the chambers can, therefore, be performed in a particularly uncomplicated way by means of controlled alternate (unison) turning of the chambers. In addition, moving the material from the first into the second chamber can be done by uncomplicated means.

According to another aspect of this invention, an apparatus of the type in question comprising a substantially closed - 4 ~ ~ ~9817 5 housing with an inlet and an outlet, a means for fine-comminuting, and a means for mixing the organic materials located in the housing, is characterized in that the housing has at least two substantially closed housing portions separated from each another, a first of which has the inlet and a second of which has the outlet, that the housing is rotatable about a substantially horizontal rotary axis, that a connecting passage between the first and second housing portions is provided and having a means for opening and closing it, that the comminuting means comprises at least one grinding device in at least the first housing portion, and that a disengageable container unit is provided for receiving the treated material said container unit having an inlet opening and means for allowing detachable coupling it to the housing, wherein the inlet opening in the coupled position of the container unit is aligned with an outlet of the housing in order to move treated material into the container unit during rotation of the housing. After it is filled, the container unit can be detached from the housing and replaced by an empty unit, thereby allowing particularly economical and hygienic handling of produced biomass. In this regard, a device may be provided on the container unit, according to a further embodiment of the invention, which allows the coupling of several filled container units together into transportation set which may be transported to a collection point, in a particularly efficient manner, for example by means of a truck.

The compactness of the apparatus makes it suitable for immediate use at places of waste generation, for example at restaurants and the like, for the conversion of relatively large waste quantities into biomass without needing any further final conditioning.

~ 5 ~ 20~817 5 The invention will be explained in more detail below by means of embodiments and the drawings.

In the drawings:

Fig. 1 is a perspective, partially-schematic, view of a biological conversion apparatus of the invention in a first embodiment;

Fig. 2 shows the conversion apparatus as in Fig. 1 in a longitudinal, axial, cross-sectional view together with a schematic depiction of a control means for controlling the functions of the conversion apparatus;

Fig. 3 depicts a modified conversion apparatus in a view similar to that of Fig. 2, without the control means for simplification;

Fig. 4 in a diagrammatical form showes the curves of temperature and humidity of the conversion apparatus as in Fig. 3;

Fig. 5 is a cross-sectional, partial view of a conversion apparatus similar to that in Fig. 3 according to a further embodiment of the invention, and Fig. 6 is a perspective, partially-schematic, view of a biological conversion apparatus according to a third embodiment of the invention.

In Figs. 1 and 2, which depict a first embodiment of the invention, reference numeral 1 indicates a housing and numeral 2 indicates a pair of side frame- parts defining a - 2~981~

horizontal axis 3 around which the housing is pivotally positioned by means of the frame parts 2.

At a suitable place about the periphery of the housing 1 a pair of openings 33, 34 is located with the openings being axially adjacent to one another and closed by the shown flaps.

The housing 1 preferably, as depicted, does not have a substantially round shape, comprising, for example four substanially smooth wall sections la-ld with adjoning pairs of these wall sections forming funnel-shaped sump areas in the interior of the housing 1 into which material to be converted can accumulate when the said adjoining walls point downwardly after rotating. However, the invention is not limited to the embodiment of the housing 1. Rather, it can also have a round or non-rectangular-polygonal-contour configuration.

As Fig. 2 shows further, the housing 1 is heat-insulated against outer environment by means of suitable insulation material. The interior of the housing 1 is divided into two, axially and adjoiningly positioned, housing areas or chambers 7 and 8 by a partition wall 6 extending in a radial plane relative to the axis 3. Alternatively, two independent housing units, heat-insulated against the outer environment, may be arranged adjacently on the axis 3. Further, the invention is not limited to a pair of housing portions or housing units. Rather, further such units may be provided as is shown, for example, in Fig. 3.

A passage or opening 9 in the partition wall 6 connects the otherwise substantially enclosed housing areas 7,8. The connecting passage 9 can be selectively opened or closed by ~ 7 ~ 2 098 175 means of a closure device 10. Even though other devices may be provided, the depicted closure device is arranged in the connecting passage 9 in the shape of a pivotal flap 10 which may be pivoted by means of a suitable activating part 11, for example a pneumatic piston-cylinder device, between a position in which the connecting passage 9 is closed and a position in which the connection between the housing areas 7 and 8 is open.

The connecting passage 9 is designed, as depicted, to be positioned at a radially outwardly located point of the partition wall 6, preferably near an apex of two adjoining flat perimeter wall sections la-ld of the housing 1 whereby material to be treated preferably accumulates in the area of the connecting passage 9 when the connecting passage 9 reaches a downwardly-facing position after rotation of the housing 1.

At a radially outwardly positioned place, for example diametrically across from the connecting passage 9, a comminuting device or grinder (as used herein, a "grinder" is a device for reducing to smaller pieces) 12, for finely-grinding the material to be treated, is positioned in the interior of the first housing area 7. The grinder 12 may have any suitable structure. In this embodiment of this invention, the grinder 12 comprises a plurality of cutting elements arranged on a shaft in the interior of the housing area 7 arranged substantially parallel to the rotary axis 3 by means of a bracket 14. Such a grinder is described in DE-U-87 14 138 herein referred to for further details. A shaft end reaching outwardly from the housing 1 is coupled to a motor 13 by means of which the shaft and thereby the cutting elements of the grinder may be set into rotary motion.

- 8 ~ ~09817~

Although the diametrical arrangement of the grinder 12 in relationship to the connecting passage 9 is preferred, it is understood that the grinder 12 may also be in a non-diametrical postition to the conneting passage 9 and that furthermore more than one such grinder 12, if desired, can be provided in the interior of the first housing area 7.

As shown also in Fig. 2, a further grinder 16 with a motor 17 can be centrically arranged on the rotary axis 3 in the interior of the first housing area 7. The grinder 16 is preferably designed such that a rough comminuting of material introduced into the housing area 7 can be performed.

Also, a grinding device can be arranged in the interior of the second housing area 8. Such a grinder 12' with a motor 13'can have a similar structure as that of the first grinder 12 of the first housing area 7. Although the driving means of the grinder 12' is preferably independent from that of the first housing area 7, a common driving means for both grinders 12 and 12' could be designed in that cutting elements of both grinders 12 and 12' are arranged on one mutual shaft, extending through both housing areas 7 and 8.

The housing 1 comprises trunnions 18, 18' at its sidewalls held in bearings in the frame parts 2 for pivotal mounting it at the axis 3. On one of the trunnions 18, 18', a driving means is mounted comprising a driving motor 4 and a reduction gear 5, for example in the form of a chain and sprocket, in order to set the housing 1 into rotary motion.

Numeral 21 relates to a means for controlling one or several functions such as the rotary movement of the housing 1, the position of the closure element 10 of the connecting passage 9, operation of the grinders 12, 12' and 16 etc. Temperature measuring sensors 19 and 20 respectively for recording temperatures in housing areas 7 and 8 suppley corresponding signals to the control means 21 for controlling the above-mentioned functions dependent upon the measured temperatures.
The control means 21 can further be designed such that rotating housing 1 or operating the grinders as well as the closure element 10 of the connecting passage 9 are controlled dependent upon time and the temperatures measured in the housing areas 7 and 8.

Finally, it should be noted that a device is provided, although not depicted, for intake of warmed fresh air into the interior of one or both housing areas 7, 8 and/or for the output of air therefrom. The warming of the fresh air is preferably achieved by using process heat created by conversion of material thereby making entirely or almost entirely unnecessary any induction of energy from outside. A
fresh air intake or outlet as well as a warming device can be designed according to DE-C-38 37 865 herein referring to that publication for details.

The conversion apparatus, arranged as described above, functions as follows:

Material to be treated, which can be biologically degradable wastes of all kinds, paricularly wastes from kitchen and restaurant operations, is introduced into the first housing area 7 through the inlet opening 33 in a precomminuted form.
As soon as a suitable degree of filling, for example 60-70%, is reached, the inlet opening 33 is closed and a signal is given to the driving motor 4 for rotating the housing 1.
During the rotation, the material in the first housing area 7 is continuously turned over. Further rough comminuting the material can, if desired, be linked to this process by means of the central grinder 16 to make the material a particle size suitable for further conditioning by the fine-grinder 12.

The inserted material is turned and mixed for a period of time with continual or stepped alternating rotation of the housing 1. Since the radially-outwardly positioned fine-grinder 12 is moved repeatedly through the introduced material during the rotation of the housing 1, the material is further chewed-up to a particle size suitable for conversion. The rough grinder 16 can be disengaged after an appropriate period of time.

Conversion of the material in the first housing area 7 is coupled with a rise of temperature. Due to the insulation of the housing 1 the conversion can take place without substantial heat loss to the surroundings. For maintaining favorable conversion conditions for activity of microorganisms, warmed fresh air can be allowed into the interior of the housing area 7 continuously or from time to time.

Conversion of the material in the first housing area 7 is continued according to this invention only until it is noted that the temperature has stopped rising (end of conversion-starting phase). Immediately afterwars, or after a suitable period of time, for example several hours, the control means 21 gives a command to the actuating member 11 of the closure element 10 to position the closure element such that communication between the interiors of the first and second housing areas 7 and 8 is achieved. Herein, the closure element 10 can work as a guide baffle wherein it may guide material in the first housing area 7 through the connecting - 11- 209g175 passage 9 into the second housing area 8 in the manner of a plow.

According to this invention, not the entire quantity of material in the first housing area 7 is moved into the second housing area 8, but only a suitable, partial quantity, approximately between 30% and 70% of the load of the first housing area 7. The proportion of material moved to that remaining may vary depending on the kind of material to be treated. Regarding biologically degradable wastes from kitchen and restaurant operations, it has been found that good results are achieved by moving approximately 50% of the material in the first housing area 7 which has been converted to an intermediate stage.

After moving the material into the second housing area 8, the connecting passage 9 is closed again and new, untreated material can be filled into the interior of the first housing area 7 through the intake opening 33 up to a desired filling level thereby having untreated as well as partially converted material in the housing area 7.

The composting process of the material in the housing areas 7 and 8 is continued with further mixing and rotating as well as grinding. In particular, in the second housing area 8 the final composting process of the introduced, partially-composted material into biomass is performed. A measurement for determining an end of the conversion process in the second housing area 8 is a decrease of temperature therein from a measured maximum. The decrease of temperature indicates that the activity of microorganisms is slowly ending. It has been found that the conversion can be considered to be substantially finished and that the material from the second housing area 8 may be removed through the output opening 7, when the temperature in the second housing area 8 has decreased by about 20% from a measured maximum.
The measured maximum temperatures in the housing areas 7 and 8 depend upon the condition of and the kinds of materials to be treated and can be, for example, between 60 and 75C.

Allowing conversion in the first housing area 7 only up to an intermediate stage provides for continuously sufficient quantities of active microorganisms in that housing area which ensure that the process of conversion of new input-material (starting phase) is begun immediately. Therefore, a characteristic feature of the invention is seperation of the conversion process into a starter and a final phase which take place substantially separated from one another, that is without mutual influence.

In some cases, it may be necessary or desirable to subject the biomass to a follow-up drying process. This can be achieved according to this invention by combining with the first and second housing areas 7 and 8 a further, third housing area as depicted in Fig. 3. The third housing area 22 can be substantially structured like the first two housing areas 7 and 8. However, it does not need to include a grinder. Devices (not shown) are provided for allowing warmed air into the third housing area 22 and for releasing air therefrom with its absorbed humidity, thereby drying the material in the third housing area 22 as well as decreasing its temperature at the same time.

A connecting passage 23 and a partition wall 26 with a closure means 29, similar to that between the first and the second housing areas 7 and 8, allow a guided moving of composted material from the second into the third housing area 22. Further, an output means 24 may be provided for moving composted, dried, material out of the third housing area 22. The output means 24 can, as depicted, comprise a screw conveyor 28 arranged in a cylinder housing 27 concentrically to the rotary axis 3, the conveyor being driven by a driving motor for moving the material out of the interior of the housing area 22 to an output opening 30.

Fig. 3 shows further a modified embodiment of apparatus for rotating the housing 1 about the rotary axis 3 by means of driven rolls 31 situated laterally of the housing on which roll rims 32 connected with the housing sidewalls are supported so that a rotation of the rolls 31 effects a corresponding rotation of the housing 1.
Numbers 12 and 12'indicate grinders extending into the interior of the housing areas 7 and 8 form a circumferential side of the housing l, in a different manner than in the previously described embodiment. Further details for the embodiment of the invention as in Fig. 3 can be obtained by reference to the first embodiment described above.

Fig. 4 shows curves of temperature and humidity of material being treated in the individual housing areas 7, 8 and 22. As can be recorgnized, conversion takes place in the first and second housing areas 7 and 8, that is during the starter and final phases, substantially without heat loss to the environment and with substantially even level of humidity of material being treated. Instead of or in addition to a drying process a sterilization of the material can be provided in the third chamber 22.

Fig. 5 shows a further embodiment of this invention.
This embodiment is substantially distinguished from Fig. 3 in that the third chamber is omitted; instead a disengageable container unit 40 is provided which can be selectively - 14 ~ 2098175 coupled to, or engaged with, the conversion apparatus. For further details, Fig. 3 and its description are herein referred to. In Fig. 5 the same or similar components as those of the embodiment of Fig. 3 have the same reference numerals, though are provided with the prime ' designations.

The disengagegable container unit 40 comprises a basically closed container with a circumferential configuration adapted to, or corresponding to, that of the housing 1' of the conversion apparatus and has an inlet opening at its front side. The inlet opening is arranged according to the outlet passage 23' of the second housing portion 8' and can be aligned therewith such that upon activation of the closing means 29' the composted material located in the second housing portion 8' may be moved into the disengageable container unit 40.

Although other functional devices may be provided for temporarily connecting the engageabel unit 40 with the housing 1', the present embodiment provides therefor two or more socket-shaped elements 41 arranged in a suitable manner circumferentially to the unit 40, in each of which is held a guide pin, or peg, 42 at one end while an opposite end thereof is open. The guide pins 42 protrude from the socket-shaped elements 41 substantially parallel to the rotary axis
3' of the apparatus and are capable of engaging receiving elements 43, which are designed for this purpose and are fixed to the housing 1'. Further, suitable means (not depicted) are provided for locking the guide pins 42 in engagement with the receiving elements 43 in a disengageable manner.

When the unit 40 is attached to the housing 1' and positioned such that the inlet openting of the unit 40 is aligned with - 15 ~ 2 098 17 5 the outlet passage 23' of the second housing portion 8', the housing 1' and the unit 40 coupled to it are rotated and the closing means 29' is activated at an appropriate time for opening the outlet passage 23' and for moving composted material, located in the second housing portion 8', into the unit 40. When unit 40 is filled with composted material, operation of the conversion apparatus is temporarily interrupted for removel of the filled unit 40 from the housing 1' and replacement thereof with an empty one. Since the composted material has a substantially smaller volume than that of this material to be treated an introduced into the first housing portion 7', operation stops for exchanging unit 40 are required only after treatment of substantial amounts of introduced material.

For rotation of the housing 1', in addition to its being driven by the driven rotation means 31', 32' of the embodiment according to Fig. 3, it is supported by an arrangement of rolls indicated at 44, which is provided circumferentially of housing 1', so that engagement and disengagement of unit 40 is not hindered by the arrangement of these rolls.

As further indicated in Fig. 5 by dot-dash lines, a handling device 60 may be provided with pins arranged such that they can engage free ends of the socket-shaped elements 41 of the engageable unit 40. The unit 40 can therefore be moved, after disengagement from the housing 1', by an operator using the handling device 60, to a collecting point from which several filled units 40 may be transported together, for example by means of a truck, for further use of the composted material.
For transport, the pins 42 of a disengaged unit 40 can be engaged with the free ends of socket-shaped elements 41 of a neighboring unit 40 so that two or several units 40 may be - 16 ~ 2098175 connected into a particularly easy-to-handle attached set for transport.

Further, it should be noted that, if desired, the engageable unit 40 may also be used in connection with a treatment apparatus wherein composted material is first dried or sterilized in a third chamber according to an embodiment as in Fig. 3, before it is moved into the engageable unit 40.

The further embodiment of the invention shown in Fig. 6 has a substantially vertical orientation in contrast to the previously described embodiment. It comprises a heat-insulated housing 100 with a closable inlet opening 116 on its frontside providing access to a first housing area 107. A
grinder 112 for fine-grinding input material is provides in the first housing area 107. The first housing area 107 is definded by a partition wall 106 separating the interior of the housing 100 into two separated, substantially vertically-elongated, housing areas 107 and 108.

In a lower portion of each housing area 107 and 108 sumps 120 and 122 are formed in which material to be treated can accumulate. In each housing area 107 and 108, a conveyor device is arranged in the shape of, for example, screw conveyors 121 and 123 for moving material from the respective sumps 120 or 122 upwards thereby moving the material from a lower level, substantially definded by the sumps 120 or 122, to a higher level from where it may fall back to the lower level in free fall.

The higher level of the first housing area 107 is in particular located next to a delivery or connecting passage 109, interconnecting the first and second housing areas 107 and 108, and the higher level of the second housing area 108 is next to an output opening 117. The connecting passage 109 as well as the output opening 117 can be opened and closed, controlled by suitable, not shown, closure means.

Also not shown are devices for supplying warmed fresh air into the housing areas 107 and 108 and for controlling operation of the grinder 112 and the spiral conveyors 121, 123 as well as for opening and closing the connecting passage 109 and the output opening 117. These devices and other details can be constructed analogously using the described embodiments of Fig. 1 and 2 referred to herein.

Operation of the further embodiment of the invention of Fig.
6 corresponds to that of the embodiment described above. In particular, conversion of material to be treated is achieved in two steps, that is by allowing conversion in the first housing area only up to a determinate intermediate stage and finishing it only in the second housing area 108 while leaving a portion of partially converted material in the first housing area 107. Thereby it is assured that there will always be a sufficient quantity of active microorganisms in the first housing area 107 for starting conversion of newly introduced material with an accordingly shortening of the treatment period. In contrast to the above described embodiment, rotating and mixing of the material to be treated is here effected by moving the material between places of higher and lower levels with an interim movement phase defined by free fall.

It is understood that the invention is not limited to the described and shown embodiments, but includes such alternatives and modifications available to an ordinary person skilled in the art using the teachings herein.

Claims (22)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A process for biological conversion (composting) of organic material into biomass wherein the organic material is treated by mixing it for a time in at least two separate, substantially-closed chambers, said process comprising the steps of:
introducing first organic material into the first substantially-closed chamber and treating it therein by mixing it and comminuting it until its conversion into biomass has progressed to an intermediate stage only;
monitoring a temperature in the first substantially-closed chamber and in response to the temperature reaching a predetermined temperature level, thereby indicating that the conversion of said first organic material has progressed to said intermediate stage, transferring only a portion of the first organic material converted to the intermediate stage from the first to the second substantially-closed chamber for final composting into biomass;
introducing second organic material into the first substantially closed chamber to be treated with a remaining portion of the first organic material converted to the intermediate stage left in the first substantially-closed chamber, whereby treatment by mixing and comminuting of the second organic material is effected in the first substantially-closed chamber in the presence of said remaining portion of first organic material already converted to the intermediate stage.
2. A process as in claim 1 wherein is further included the step of monitoring a temperature in the second substantially-closed chamber and, in response to a predetermined temperature measurement, thereby indicating that the conversion of the first organic material in the second substantially-closed chamber has progressed to create the biomass, removing the biomass from the second substantially-closed chamber.
3. A process as in claim 2 wherein the step of removing the biomass from the second substantially-closed chamber is effected, at the earliest, when the temperature monitored in the second chamber has decreased from a maximum by a certain amount.
4. A process as in claim 1 wherein the step of transferring the first organic material from the first to the second substantially-closed chamber is effected a predetermined time after the temperature monitored in the first chamber has reached a maximum.
5. A process as in claim 1 wherein a percentage of between 30 and 70 % of the first organic material converted to the intermediate stage in the first substantially-closed chamber is transferred from the first into the second substantially-closed chamber.
6. A process as in claim 5 wherein the percentage is approximately 50 %.
7. A process as in claim 1 wherein the steps are carried out in the presence of heated air introduced into the at least two separate substantially-closed chambers.
8. A process as in claim 1 wherein the steps are carried out in the presence of, or by substantial use of, process heat developed during biological conversion.
9. A process as in claim 1 and further including the steps of transferring the composted biomass from the second substantially-closed chamber into a third chamber and drying and/or sterilizing the biomass in the third chamber.
10. An apparatus for biological conversion (composting) of organic material into biomass comprising:
a substantially-closed housing having an inlet and an outlet and including at least two separate, substantially-closed chambers, said inlet being disposed to communicate with said first substantially-closed chamber and said outlet being disposed to communicate with said second substantially-closed chamber;
a connecting passage allowing communication between the first and the second substantially-closed chambers and having means for opening and closing said connecting passage;
mixing means for mixing the material in the first and second substantially-closed chambers;
comminuting means comprising at least one grinding device disposed in at least the first substantially-closed chamber for comminuting the material in at least the first substantially-closed chamber; and control means including temperature measuring means disposed in the first substantially-closed chamber for activating the means for opening and closing said connecting passage to thereby control the transfer of a portion of partially converted material in the first substantially-closed chamber from the first to the second substantially-closed chamber responsive to a predetermined temperature measurement in the first substantially-closed chamber.
11. An apparatus as in claim 10 and further comprising control means for controlling the comminuting means and the mixing means.
12. An apparatus as in claim 11 wherein said comminuting means includes a further grinding device in the second substantially-closed chamber.
13. An apparatus as in claim 11 wherein said control means is a single common control means which also controls said means for opening and closing the connecting passage.
14. An apparatus as in claim 10 wherein said substan-tially-closed housing is mounted for rotation about a substantially-horizontal rotary axis.
15. An apparatus as in claim 14 wherein said at least one grinding device is spaced a radial distance from the substantially-horizontal rotary axis in the first substan-tially-closed chamber.
16. An apparatus as in claim 14 wherein the connecting passage between the first and second substantially-closed chambers is radially spaced from the substantially-horizontal rotary axis.
17. An apparatus as in claim 10 wherein the connecting passage and the outlet are at a higher level than a sump, which is at a lower level of each substantially-closed chamber for accumulating the organic material, and wherein said apparatus includes a transport means for moving the organic material from the sump to the higher level of each substantially-closed chamber.
18. An apparatus as in claim 10 wherein said substan-tially-closed housing further includes a third, substan-tially-closed, chamber for receiving organic material from the second substantially-closed chamber for drying.
19. An apparatus as in claim 10 including means for heating fresh air using the process heat generated by composting of the organic material and for introducing the heated air into one or more of the substantially- closed chambers.
20. An apparatus as in claim 10 wherein each of the substantially-closed chambers is heat-insulated.
21. An apparatus for biological conversion of organic material into biomass comprising:
a substantially closed housing having an inlet and an outlet, a comminuting means for fine-comminuting and a means for mixing the organic material located in the housing, wherein the substantially-closed housing includes at least two, separate, substantially-closed chambers, said inlet being disposed to communicate with said first substantially-closed chamber and said outlet being disposed to communicate with said second substantially-closed chamber, wherein the means for mixing the organic material includes a means for rotating the substantially closed housing about a substantially horizontal rotary axis, wherein said substantially-closed housing defines a connecting passage between the first and second substantially-closed chambers and wherein the substantially-closed housing further includes a means for opening and closing the passage, wherein the comminuting means includes at least one device for grinding organic material in at least the first substantially-closed chamber, and wherein the apparatus further includes a container unit for receiving the material treated by the apparatus, the container unit having an intake opening and including a means for disengageably coupling it to the substantially-closed housing, with the intake opening being aligned with the outlet of the substantially-closed housing when the container unit is coupled to the substantially-closed housing so that converted organic material is movable into the container unit during rotation of the substantially-closed housing and so that the container unit can be disengaged from the substantially-closed housing with converted organic material transferred therein for processing the enclosed converted organic material at a location removed from said substantially-closed housing.
22. An apparatus as in claim 21 wherein said container unit further includes a device for linking several similar container units into a coupled set for transportation thereof.
CA002098175A 1991-11-21 1992-11-20 Process and apparatus for the biological conversion of organic material in biomass Expired - Fee Related CA2098175C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP91119832.3 1991-11-21
EP19910119832 EP0543041A1 (en) 1991-11-21 1991-11-21 Process and apparatus for biological conversion of organic material into biomass
EP92115025.6 1992-09-03
EP19920115025 EP0543097B1 (en) 1991-11-21 1992-09-03 Process and device for the biological conversion of organic products in biomass

Publications (2)

Publication Number Publication Date
CA2098175A1 CA2098175A1 (en) 1993-05-22
CA2098175C true CA2098175C (en) 1997-05-13

Family

ID=26129090

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002098175A Expired - Fee Related CA2098175C (en) 1991-11-21 1992-11-20 Process and apparatus for the biological conversion of organic material in biomass

Country Status (6)

Country Link
JP (1) JPH06504518A (en)
CA (1) CA2098175C (en)
MY (1) MY108139A (en)
NZ (1) NZ245187A (en)
PH (1) PH30409A (en)
WO (1) WO1993010059A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150288A1 (en) * 2009-06-24 2010-12-29 Comar S.R.L. Apparatus for the production of compost
US20130260446A1 (en) * 2012-04-03 2013-10-03 Whirlpool Corporation Composting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3138447A (en) * 1960-05-17 1964-06-23 Eric W Eweson Multistage process of producing organic fertilizer
US3930799A (en) * 1972-10-05 1976-01-06 Eweson Eric W Apparatus for making organic fertilizer
DE3837865A1 (en) * 1988-11-08 1990-05-10 Franz Boehnensieker METHOD AND DEVICE FOR THE BIOLOGICAL CONVERSION OF ORGANIC SUBSTANCES INTO BIOMASS

Also Published As

Publication number Publication date
MY108139A (en) 1996-08-15
PH30409A (en) 1997-05-09
CA2098175A1 (en) 1993-05-22
WO1993010059A1 (en) 1993-05-27
JPH06504518A (en) 1994-05-26
NZ245187A (en) 1994-08-26

Similar Documents

Publication Publication Date Title
US5292637A (en) Process and apparatus for the biological conversion of organic material in biomass
AU2014335845A1 (en) Automatically rotating, high-pressure sterilizer and processing method having continuous operation stages
JPH04500765A (en) Apparatus and method for processing hazardous medical waste
US20070209417A1 (en) Composting apparatus with internal transport system
CA2344984A1 (en) Portable medical waste plant
AU2001282725A1 (en) A composting apparatus with internal transport system
CA2098175C (en) Process and apparatus for the biological conversion of organic material in biomass
EP0641753A2 (en) Apparatus for fast fermentation treatment
KR200207723Y1 (en) The apparatus for food garbage
US20040147013A1 (en) Continuous composter
US4325515A (en) Mixing apparatus and method for condensing, mixing and granulating thermoplastic materials
JPH03199183A (en) Method and apparatus for producing organic fertilizer or feed
JPH0783865B2 (en) Garbage processing equipment
EP0543097B1 (en) Process and device for the biological conversion of organic products in biomass
KR101124743B1 (en) A apparatus for food garbage using
JP2003274916A (en) Facilities and method for changing kitchen waste into feed, and dryer to be used for the method
JPH05138144A (en) Waste treating device
CA2435017C (en) Continuous composter
JPH086224Y2 (en) Crushing type heating dryer
KR20170079907A (en) Food waste disposal system of continuous processing type
JPH05310490A (en) Fermentation dryer
JP3560923B2 (en) Garbage disposal method and apparatus
KR102318933B1 (en) Food waste drying and grinding system
JP2819375B2 (en) Fermentation drying treatment method
JPH09250873A (en) Method for drying foods and apparatus therefor

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed