CA2012981C - Removal of arsenic, tin and antimony from crude lead containing silver - Google Patents

Removal of arsenic, tin and antimony from crude lead containing silver

Info

Publication number
CA2012981C
CA2012981C CA002012981A CA2012981A CA2012981C CA 2012981 C CA2012981 C CA 2012981C CA 002012981 A CA002012981 A CA 002012981A CA 2012981 A CA2012981 A CA 2012981A CA 2012981 C CA2012981 C CA 2012981C
Authority
CA
Canada
Prior art keywords
lead
oxygen
cylinder
crucible
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002012981A
Other languages
French (fr)
Other versions
CA2012981A1 (en
Inventor
Peter Burany
Juan Jorge Von Lucken
Bernhard Hendriks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metaleurop Weser Blei GmbH
Original Assignee
Metaleurop Weser Blei GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE3831898A priority Critical patent/DE3831898A1/en
Priority to EP90101459A priority patent/EP0438622B1/en
Priority to ES90101459T priority patent/ES2023624T3/en
Application filed by Metaleurop Weser Blei GmbH filed Critical Metaleurop Weser Blei GmbH
Priority to CA002012981A priority patent/CA2012981C/en
Publication of CA2012981A1 publication Critical patent/CA2012981A1/en
Application granted granted Critical
Publication of CA2012981C publication Critical patent/CA2012981C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/06Refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ

Abstract

A process and device for the removal of arsenic, tin and antimony from crude lead by industrial oxygen is disclosed in which the oxygen is introduced into a turbulent fluid stream of lead restricted in a limited volume. The oxygen containing fluid stream passes into a larger volume in which the compounds which are to be separated float on the surface in the form of oxides and run off from the surface. The device includes two cylinders of different volume and one within the other. The cylinders are immersed at different depths in molten lead in the smelting crucible, a stream of fluid lead is introduced in the smaller cylinder by a lead pump and oxygen is introduced into this fluid lead stream.

Description

-REMOVAL OF ARSENIC, TIN ~ ANTIMONY
FROM CRUDF. T.F.~ CONT~TNING SITVF.R

R~cKGRouNn ~ND DFSCRIPTION OF T~F INVFNTION

This invention relates to a process for the removal of arsenic, tin and antimony from crude lead containing silver by means of industrial oxygen in a lead smelting crucible, and a device for the execution of the process.
The removal of tin, arsenic and antimony from crude lead containing silver is presently carried out in lead matallurgy in accordance with either the Harris process or the reverberatory process.
The Harris process (Ullmann, 3rd edition, volume 4, pages 498-501) is used, along with the separation of tin, arsenic and antimony, for the processing of tin-rich and/or tellurium-rich lead, whereby valuable final products accumulate which are in part highly concentrated. The separation of the above-stated impurities from the crude lead takes place with sodium hydroxide and a strong oxidizing agent, preferably saltpeter, forming Na3SbO4, Na3AsO4 and Na2SnO3 which accumulate in the form of a fluid salt slag. The impurities removed from the crude lead subsequently must be separated from the salt slag into concentrated and lead-free products by means of hydrometallurgic processes. The processing of the salt slags, which is the actual nucleus of , ., `- 20 1 298 1 the Harris process, requires extensive equipment and thus correspondingly high installation costs. The process is also expensive and requires careful monitoring. For these reasons the Harris process has not yet become widely prevalent in most lead smelting plants.
In the more widely used reverberatory furnace process (Ullmann, 3rd edition, volume 4, pages 498-501), the antimony along with the arsenic and tin, is oxidized at 700 - 750C by means of atmospheric oxygen. For this purpose, rectangular reverberatory or refining furnaces are used and the exhaust gasses, after the temperature has dropped, are conveyed in a cooling unit to a filter for removing dust.
The air, which is blown in through lance units into the lead bath, oxidizes the tin, arsenic and antimony in that sequence forming double oxides which are removed from the furnace as fluid dross. Depending on whether a continuous or discontinuous operation is used, drosses of 8-25% Sb, 1-5% As and 30-50 ppm Ag are produced. In a continuous reverberatory furnace process which is characterized by its high conversion rate, drosses with only 8-13% Sb result. The low antimony content leads to correspondingly high dross quantities resulting in increased processing costs. The drosses are additionally processed by means of reduction melting into an alloy containing antimony and lead which is termed "crude hard lead", and from which hard lead qualities of commercially conventional quality are produced by means of subsequent refining.
The above-stated processes are characterized by high equipment expenses, such as for example, the processing . ~
. ~

_ 3 _ 2 Ol 2 9 8l of salt slags in the Harris process, and the cooling unit, dust removal filter, reserve furnaces and so on like in the reverberatory furnace process. They are also characterized by a high energy consumption for the processing of large S quantities of intermediate products, such as salt slags and drosses, as well as by high operating costs.
Modern processes in both primary as well as secondary lead smelting works for the separation of tin, arsenic and antimony from crude lead use oxygen/air mixtures in a conventional lead smelting crucible. In secondary lead smelting plants the drosses can be processed without problem because the crude lead of the secondary lead smelting plants has only a very low silver content (<30 g Ag/t). In a primary lead smelting plant in which a crude lead containing a silver content of up to several thousand g Ag/t is similarly processed, a dross is produced with 3.85% arsenic, 3.25% antimony and 1098 g/t of silver. See Proceedings of the CIM Symposium on "Quality in Non-Ferrous Pyrometalllurgical Processes", Vancouver [1985], pages 137-140. During the subsequent reduction of the dross, thesilver contained therein moves into the hard lead from which it can not be removed, resulting in a corresponding loss of valuable metal. Furthermore, the hard lead which contains silver can not be marketed as commercial hard lead because the silver exceeds the permitted limits. Thus, this method can only be carried out in primary lead smelters which process crude lead containing silver if, before the reduction to crude hard lead, the dross is separated in a separate process step by liquation into an Ag-poor dross and Ag-rich . ...

201 ~981 crude lead. The liquation process is carried out for example in a short-drum rotary furnace or in a liquation hearth furnace. Because of the additional expense of liquation, the advantage of the crucible refining is considerably reduced.
Thus, it is clear that crucible refining by means of air enriched with oxygen can only be carried out economically, if the silver contents in the crude le~d are very low, such as for example during the refining of scrap lead in accordance with DE- PS 3 332 796 which must be operated at temperatures of at least 630C.
The task of the present invention is to describe a device and a process which avoid the above-stated disadvantages, such as for example drosses containing silver, additional consumption of reagents, higher operating temperature, etc., during refining in the lead smelting crucible, and in which the removal of tin, arsenic and antimony is carried out through the use of industrial oxygen in a conventional lead smelting crucible.
This task is solved in the process of the type described above, by introducing oxygen into a turbulent stream of fluid lead which is constricted to a proportionate volume relative to the smelting crucible. With such.
introduction the lead, thoroughly mixed with oxygen, enters into a larger volume for the purpose of calming, and the elements which are to be separated off float on the surface in the form of oxides and are skimmed off.
The process is carried out in a device which comprises two cylinders of different volumes. The cylinders . i; ., - 2012~

are positioned perpendicularly to one another, can be adjusted relative to one another, and they project out above the surface of the molten mass. The cylinders are suspended on a traverse unit and the entire smelting crucible is covered by a protective hood. The turbulent stream of the lead is produced by means of lead pump, the discharge opening of the pressure side of which lies above the level of the lead. The turbulence in the small cylinder can also be produced below the level of the lead by means of a nozzle shaped discharge from the pump.
A device constructed in accordance with the invention and for performing the process of the invention is shown in schematic cross-section in the drawing.
The device employed for execution of the process in accordance with the invention is of cylindrical shape and connected with a lead pump 2. It essentially comprises a sheet steel cylinder 1 the lower portion of which is immersed in a lead bath 12 of the lead smelting crucible.
The cylinder 1 and the lead pump 2 form a portable unit which, together with a traverse unit, is placed on the edge of the crucible. In use the lead moves out of the crucible through an opening 3 in the lower portion of the cylinder 1 and fills the crucible. By means of the lead pump 2, the lead is pumped out of the crucible into a reaction tube 4 in the form of a small cylinder which is located within the cylinder 1. The reaction tube is attached vertically and adjustably to the wall of the cylinder 1 and is immersed for approximately two thirds of its overall length into the lead bath located in the cylinder 1. The lead moving into the reaction tube vertically from the top subsequently flows at reduced speed through the cylinder 1 and flows back through the opening 3 located at the base of the cylinder into the lead smelting crucible.
Industrial oxygen is blown into the reaction tube through a lance unit 5. The oxygen and the lead are thoroughly mixed by means of the strongly turbulent current.
The oxygen is entrained in the lead bath of the cylinder 1 and due to the good dispersion a rapid oxidation primarily of secondary metals takes place. In the cylinder 1, the current is slowed down enough so that the fluid dross 15 separates from the lead on the basis of the differences in density, collects on the surface 16 of the bath of the cylinder, and is able to flow off through the tap hole 6 in the cylinder wall, through a channel 7, and into the crucible bowl 8. The crucible remains continuously covered by means of a protective hood 9 which is connected by means of suction piping 10 with a dust-removal device. The process can be carried out discontinuously, semi-continuously or continuously.
The invention will now be illustrated in greater detail to follow by means of two examples of execution.

F.XZ~MPT.F.
150,000 kg of decoppered crude lead containing 0.8% Sb, 0.05% As and 1,500 g/t Ag were refined by means of industrial oxygen in a crucible at an initial temperature of 580C, in accordance with the invention described. After one hour, the dross began to run off into a crucible bowl.
After _ 7 _ 20 1 29 8 1 300 minutes, a sample showed that the antimony and arsenic had been removed. The final temperature was 610C and the oxygen consumption was 210 Nm3. 3,400 kg of dross, with 30.2% Sb, 2.0% As and 9 g/t Ag, were produced.

F~XZ~MPT.F. 2 In a smelting works, the Sn-As-Sb removal is controlled in accordance with the reverberatory furnace process and replaced by means of the proposed process and apparatus, by means of which the entirety of the first runnings of the crude lead is now refined in a problem-free manner. The smelting crucibles provided for furnace refining were sufficient for the purpose of crucible refining so that, apart from the simple refining apparatus in accordance with the invention, no additional equipment expense was necessary.
The following characteristic process data were determined by the process in accordance with the invention:
1. The heating energy consumption, with refining output remaining the same, dropped by 58 kWh/t.
2. Because of the qualities of cooling water and compressed air not required in contrast with the reverberatory furnace process, as well as the elimination of the cooling of the exhaust gas, and the reduction of the exhaust gas volume, it was possible to reduce the consumption of power (including that for the oxygen production) by 2.3 kWh/t of crude lead. Starting from a crude lead with an average of 0.8~ antimony and 0.05%
arsenic, the dross accumulation is reduced relative to the reverberatory furnace - 8 - 201298~

process, from 45 kg dross per ton of crude lead to 26 kg dross/t of crude lead, so that during the further processing of the dross with hard lead, 15 kWh/t of crude lead in reduction energy, 6 kWh/t of crude lead in reduction energy and 6 kWh/t of crude lead in heating energy were saved.
3. With first runnings of crude lead, for example of 120,000 t/year, an energy savings of approximately 9,760,000 kWh/year resulted. By means of this method the disadvantages of refining furnaces, including the removal of exhaust gas dust, is eliminated resulting in operating costs which are markedly reduced together with a considerable reduction of harmful effects on the atmasphere.
4. Since the dross arising in this method has a low melting point because of the absence of portions of additives, such as for example lime or sodium hydroxide, and because smaller quantities of slag accumulate, the further processing is more cost-effective.

,

Claims (14)

1. A process for the removal of As, Sn and Sb from crude lead from molten lead in a smelting crucible comprising:
introducing fluid lead into a volume which is constricted in size relative to the volume of molten lead in the crucible to produce a turbulent flow of the fluid. lead in the constricted volume;
introducing oxygen into the turbulent flow of fluid lead in the constricted volume to thoroughly mix the oxygen with the fluid lead;
calming the fluid lead by passing it to a larger volume;
floating the oxides so formed to the surface of the fluid lead in the larger volume; and removing the flowing oxides from said surface.
2. The process of claim 1, wherein the oxygen is introduced near the location of introduction of the fluid lead.
3. The process of claim 2, wherein the oxygen is industrial oxygen.
4. The process of claim 1, wherein the oxygen is industrial oxygen.
5. A device for the removal of As, Sn, and Sb from molten crude lead in a smelting crucible, comprising:

a first cylinder of a given volume in the crucible;
a second cylinder of a lesser volume positioned within said first cylinder, both of said cylinders extending above the surface of the molten crude lead in the crucible;
means for introducing molten crude lead from said crucible into said second cylinder to produce a turbulent flow of fluid lead in said second cylinder;
means for introducing oxygen into the turbulent flow of fluid lead in said second cylinder;
means for communicating the oxygen containing fluid lead from said second cylinder to said first cylinder to calm the fluid lead; and means for removing the oxides formed by the oxygen from the surface of the fluid lead in the first cylinder.
6. The device of claim 5, wherein said means for introducing molten crude lead and said means for introducing oxygen are adjacent each other.
7. The device of claim 5, wherein said cylinders are adjustable relative to each other.
8. The device of claim 5 including said crucible; a protective hood on said crucible; said first and second cylinders are suspended in said crucible; and said first cylinder includes a discharge opening communicating the lead in said first cylinder with the molten lead in said crucible.
9. The device of claim 8, wherein said means for introducing molten crude lead and said means for introducing oxygen are adjacent each other.
10. The device of claim 8, wherein said cylinders are adjustable relative to each other.
11. The device of claim 5, wherein said means for introducing the molten crude lead comprises a lead pump, said lead pump having a discharge above the surface of the fluid lead in said second cylinder.
12. The device of claim 8, wherein said means for introducing the molten crude lead comprises a lead pump, said lead pump having a discharge above the surface of the fluid lead in said second cylinder.
13. The device of claim 12, wherein said means for introducing molten crude lead and said means for introducing oxygen are adjacent each other.
14. The device of claim 12, wherein said cylinders are adjustable relative to each other.
CA002012981A 1988-09-20 1990-03-23 Removal of arsenic, tin and antimony from crude lead containing silver Expired - Fee Related CA2012981C (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE3831898A DE3831898A1 (en) 1988-09-20 1988-09-20 METHOD AND DEVICE FOR REMOVING ARSEN, TIN AND ANTIMONE FROM WORK LEAD WITH OXYGEN
EP90101459A EP0438622B1 (en) 1988-09-20 1990-01-25 Method and apparatus for removing arsenic, tin and antimony from crude lead.
ES90101459T ES2023624T3 (en) 1988-09-20 1990-01-25 PROCEDURE AND DISPOSITION FOR THE ELIMINATION OF ARSENIC, TIN AND ANTIMONY OF THE WORK LEAD WITH OXYGEN.
CA002012981A CA2012981C (en) 1988-09-20 1990-03-23 Removal of arsenic, tin and antimony from crude lead containing silver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3831898A DE3831898A1 (en) 1988-09-20 1988-09-20 METHOD AND DEVICE FOR REMOVING ARSEN, TIN AND ANTIMONE FROM WORK LEAD WITH OXYGEN
CA002012981A CA2012981C (en) 1988-09-20 1990-03-23 Removal of arsenic, tin and antimony from crude lead containing silver

Publications (2)

Publication Number Publication Date
CA2012981A1 CA2012981A1 (en) 1991-09-23
CA2012981C true CA2012981C (en) 1996-01-16

Family

ID=25674028

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002012981A Expired - Fee Related CA2012981C (en) 1988-09-20 1990-03-23 Removal of arsenic, tin and antimony from crude lead containing silver

Country Status (4)

Country Link
EP (1) EP0438622B1 (en)
CA (1) CA2012981C (en)
DE (1) DE3831898A1 (en)
ES (1) ES2023624T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4322782A1 (en) * 1993-07-08 1995-01-12 Messer Griesheim Gmbh Process for removing tin, arsenic and antimony from molten lead
DE19500266C1 (en) * 1995-01-07 1996-02-22 Metallgesellschaft Ag Method of separating a heavy liquid phase from a light liquid phase

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE522976C (en) * 1930-03-19 1931-04-17 Blei Und Silberhuette Braubach Method and device for mixing gases or vapors with melts, in particular with metal or alloy melts
DE654528C (en) * 1932-11-25 1937-12-27 George Kenneth Williams Process for removing arsenic, antimony and / or tin from lead
DE3332796C1 (en) * 1983-07-25 1984-06-28 Josef Dr.-Ing. 8000 München Blanderer Process for refining antimony-containing lead melts with supply of oxygen-enriched air

Also Published As

Publication number Publication date
DE3831898A1 (en) 1990-03-29
DE3831898C2 (en) 1991-07-18
ES2023624T3 (en) 1994-10-16
CA2012981A1 (en) 1991-09-23
ES2023624A4 (en) 1992-02-01
EP0438622B1 (en) 1994-08-10
EP0438622A1 (en) 1991-07-31

Similar Documents

Publication Publication Date Title
CN103924094B (en) A kind of method processing copper scum silica frost
FI75602B (en) FOERFARANDE OCH ANORDNING FOER KONTINUERLIG KONVERTERING AV KOPPAR- OCH ICKE-JAERNMETALLSTENAR.
CN102978416B (en) Device and method for continuously removing copper from liquid crude lead
US4470845A (en) Continuous process for copper smelting and converting in a single furnace by oxygen injection
CN202193823U (en) Oxygen-enriched side-blown bath smelting furnace
JP2001247922A (en) Method for operating copper smelting furnace
US5053076A (en) Process and device for removal of arsenic, tin &amp; artimony from crude lead containing silver
PL110045B1 (en) Process for manufacturing converter copper
AU594913B2 (en) Pyrometallurgical copper refining
CA1176471A (en) Continuous melting and refining of secondary and/or blister copper
CN107164638B (en) A kind of method of smelting and equipment of arsenic-containing material
MX2009001285A (en) Lead slag reduction.
CA2012981C (en) Removal of arsenic, tin and antimony from crude lead containing silver
WO2023151602A1 (en) Continuous copper smelting process and continuous copper smelting equipment for treating complex gold concentrate
US6210463B1 (en) Process and apparatus for the continuous refining of blister copper
US3317311A (en) Copper drossing
US4210441A (en) Method for the continuous or discontinuous treatment of molten slag, particularly with contents of heavy metal oxides, for the recovery of portions contained therein of valuable metals or their combinations, respectively
CA2304651A1 (en) Method of moderating temperature peaks in and/or increasing throughput of a continuous, top-blown copper converting furnace
CN112593087A (en) Device and method for reducing pollutant emission in electroslag remelting process and reducing gas content of electroslag ingot
CN204982010U (en) One step of stove of making thick copper in high magnetism copper oxidizing slag of follow
CN213037823U (en) Fuming furnace device for tin ingot production
Rajcevic et al. Development of electric furnace slag cleaning at a secondary copper smelter
GB2181746A (en) Recovery of metal values from slag
CA1208444A (en) High intensity lead smelting process
WO1999041420A1 (en) Process and apparatus for the continuous refining of blister copper

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed