CA2008342A1 - Process for the production of dinitrotoluene or mononitrobenzene - Google Patents

Process for the production of dinitrotoluene or mononitrobenzene

Info

Publication number
CA2008342A1
CA2008342A1 CA002008342A CA2008342A CA2008342A1 CA 2008342 A1 CA2008342 A1 CA 2008342A1 CA 002008342 A CA002008342 A CA 002008342A CA 2008342 A CA2008342 A CA 2008342A CA 2008342 A1 CA2008342 A1 CA 2008342A1
Authority
CA
Canada
Prior art keywords
acid
nitric acid
reaction
toluene
dinitrotoluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002008342A
Other languages
French (fr)
Inventor
Robert W. Mason
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PCT/US1989/002635 priority Critical patent/WO1989012620A1/en
Priority to AU38630/89A priority patent/AU3863089A/en
Priority to CA000603642A priority patent/CA1340073C/en
Application filed by Individual filed Critical Individual
Priority to CA002008342A priority patent/CA2008342A1/en
Priority to CN90100885A priority patent/CN1026583C/en
Publication of CA2008342A1 publication Critical patent/CA2008342A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/16Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/08Preparation of nitro compounds by substitution of hydrogen atoms by nitro groups

Abstract

PROCESS FOR THE PRODUCTION OF DINITROTOLUENE
OR MONONITROBENZENE

Abstract of the Disclosure Aromatic nitration reactions and, more specifically, a process for nitrating toluene to dinitrotoluene or benzene to mononitrobenzene.
Since mononitrobenzene is useful in producing MDI and since dinitrotoluene is useful as an intermediate in producing TDI, new processes for the selective manufacture of these intermediates would be highly desirable to the polyisocyanate manufacturing community.

Description

2 8`~ 8 3 4 ~

. ~ . ` `.`., :.`.. i,..`:

PROCESS FOR THE PRODUCTION OF DINITROTOLUENE :
OR MONONITROBENZENE `-`~
~, .

This invention relates generally to aromatic ~-s nitration reactions and, more specifically, to a process for nitrating toluene to dinitrotoluene or benzene to ,,"'.'`,'~"~!,~,`,'~
mononitrobenzene. `
Nitration reactions of aromatic hydrocarbons are generally conducted in mi~ed acid systems, such as ``` `~
10 mixed nitric and sulfuric acids. However, these mixed `~`
acid systems usually involve reconcentration of the spent ~ ~ ^
sulfuric acid after the nitration reaction. This `~
reconcentration step is time consuming, energy intensive `~
and requires the use of expensive materials of ~
15 construction. In addition, the use of sulfuric acid~`` ``
tends to result in significant nitrocreosol and cyanide by-product formation which re~uires e~pensive waste-water `
treatment to remove.
In view of these disadvantages associated with mixed nitric/sulfuric acid systems, there have been recent attempts to perform gas phase or liquid phase nitrations in concentrated nitric acid in the absence of ' ' ''`,`;~`', -:

., .
`:~' -, . ~ , ,`,~,.: ~:

2~3~

.~, .. .. .
sulfuric acid. By way of illustration, U.S. Patent No.
4,064,147 discloses the preparation of aromatic mononitro compounds (such as mononitrobenzene) by a liquid phase reaction with nitric acid havin~ an acid concentration of between 70 percent and 100 percent by weight using a reaction temperature of between 0C and 80C. When employing a relatively reactive compound such as benzene ~ ~-or toluene as a starting material, this patent teaches -that a nitric acid concentration of between 70 and 90 - -percent by weight is preferred. The disclosure of this patent requires a ratio of nitric acid plus water to organic components of not below 3 when using 70 percent nitric acid, and not below 8 when using 100 percent nitric acid. However, it has now been found that such a high acid ratio using 100 percent nitric acid tends to favor dinitro-compound production, not desired by the patentee in the '147 patent.
Since mononitrobenzene is useful in producing MDI and since dinitrotoluene is useful as an intermediate in producing TDI, new processes for the selective manufacture o these intermediates would be highly desirable to the polyisocyanate manufacturing community. `~
The present invention relates to a process for -nitrating benzene or toluene by a liquid phase nitration 25 reaction of anhydrous nitric acid with benzene or toluene -~
in a reactor at a reaction temperature not exceeding 80C in the absence of sulfuric acid to produce mononitrobenzene or dinitrotoluene in a product mixture, followed by vacuum distillation of the product mixture to 30 remove unreacted nitric acid. ~;

~:' .;'"' ~

" ''~'' '~

~ 2 ~ ~ 8 3 ~
This and other aspects of the present ~ ;
invention will become apparent upon reading the following detailed description of the invention.
.... .. . ...
In accordance with the process of the present ~a 5 invention, the nitration reaction is conducted using ~-~
anhydrous nitric acid in the absence of sulfuric acid. -As used herein, the term "anhydrous nitric acid~ is intended to designate nitric acid having an acid `~
concentration of between 95 and 100 weight percent, ` -`
10 preferably at least 98 weight percent, the remainder ~`
being water. It is desirable to minimize the amount of water in the reaction mixture since water (a) causes the nitration reaction to stop at the mononitration stage in toluene reaction and (b) prevents the nitration of benzene to mononitrobenzene.
' The process of the present invention utilizes a one-step reaction in a single phase liquid medium and does not involve the formation of the two phase emulsions observed in conventional, mi~ed sulfuric/nitric acid ~`~
20 nitration processes. Another surprising aspect of this ~
invention is that the reaction can be conducted under ;
moderate reaction conditions to provide an excellent yield of the desired mononitrobenzene or dinitrotoluene product. Thus, the reaction is suitably conducted at a :- -reaction temperature not e~ceeding 80C, preferably between 0C and 60C, more preferably between 10C
and 60C, most preferably between 20C and 30C.
The reaction is suitably conducted at atmospheric -pressure, although superatmospheric pressure can be employed if desired. The reaction time is typically less than one-half hour, preferably less than lS minutes, and more preferably less than 5 minutes.

: .

~ 2 ~ 0 g 3 ~
- 4 ~
For the reaction of toluene to dinitrotoluene, ~ ;
the molar ratio of nitric acid plus water to toluene employed is generally between 10:1 and 15:1, preerably -between 11:1 and 12:1. :`~
For the reaction of benzene to mononitro~
benzene, the molar ratio of nitric acid plus water to ~ -benzene employed is generally between 2:1 and about 4:1, preferably between 2.5:1 and 3.
Operating within the above-recited broad ranges of molar ratios (and particularly within the preferred ranges) maximizes the production of the desired ``
product and minimizes by-product formation. ~
After reaction and product formation, it is ~-`
desired that excess ~unreacted) nitric acid be removed from the reactor, preferably by vacuum distillation, thus providing a low temperature, low pressure distillation.
Suitable distillation temperatures range from 30C to 60C. Suitable distillation pressures range from 50 mm of Hg to 300 mm of Hg. `~
Following removal of the excess anhydrous nitric acid, DNT separation rom the distillation still `~
bottoms can be effected by phase separation, brought about by the addition of a small quantity of water or ~: ~
dilute nitric acid. Washing with water and a basic ` .
solution produces a purified DNT product. These wash waters are free of the nitrocresol impurities observed in ,~
the wastewater produced in a conventional, mixed sulfuric/nitric acid DNT process. The aqueous nitric acid from the phase separation step can be purified by toluene extraction, the toluene phase being recycled to the reaction step and the 60-70~ aqueous nitric acid phase reconcentrated, sold or used in other product -~.-manufacture. Analogous phase separation procedures can be employed for nitrobenzene separation and recovery.

' ': ' ,' ~ ~

~ 2aa83~2 ",~ "
The following examples are intended to illustrate, but in no way limit the scope of, the present invention. i;~, ','"' '''`:', , '. ~.'.''..', ~," ~

' ' 2~083~
.,. : ; ~, .
- 6 ~

Synthesis ~f Dinit~Q~olu~Q

A four milliliter glass vial, equipped with a magnetic stir bar and a silicone septum, was immersed in a water bath. The reaction vial was flushed with nitrogen at a rate of 20 cc/min, purging to a 100 ml glass receiving flask immersed in an ice water bath. To the reaction vial was fed 50 ml of 98 percent HNO3, -75.0 g, 1.13 mole of HNO3 and 10 ml, 8.67 g, 0.094 mole of toluene. Feed rates were 0.60 ml HNO3/min and 0.12 ml toluene~min, controlled by Sage Instrument Syringe pumps, Models 351 and 355. Reactor content was adjusted to 2 ml, by height adjustment of the reactor exit line in the reaction vial, for a mean reaction residence time of .
2.8 minutes. The reactor water bath was maintained at 15 5C by the periodic addition of ice during reactant .
addition. Upon completion of the reactant addition, the reactor contents were stirred for 3 minutes, then purged ~-to the receiYer. A total of 83.31 9 of pale yellow -product solution was obtained. Distillation of this solution ~53C, 75-160 mm Hg) gave 38.75 g of pale ~ -~
yellow acid which analyzed, by titration with ` ~ `~
standardized NaOH, as 100 percent HNO3. The pot `
contained 44.21 g of pale yellow solution; 0.42 9 of HNO3 was lost to the walls of the glassware, leaving an estimated 0.43 g of product lost to NO2 vapors during the distillation. The pot solution was diluted with `~
21.72 g of water and extracted with 33.30 g of toluene. `
Separation of the layers furnished 48.74 g of weak, `-~
aqueous acid and 48.11 g of toluene/DNT solution. The organic layer was washed once with 20 ml of water, then dried over MgSO4 and filtered. DNT recovery was calculated at 86 percent, with a normalized GC analysis ~
.,':, . ' '' ~' ' `'''~ ' '. ' :'.
... . .............. . . . . .

2 0 0 8 3 ~ 2 i ~

- 7 - ~ -of 0.02 weight percent 4-nitrotoluene, 17.36 percent 2,6-DNT, 0.48 percent 2,5-DNT, 78.97 percent 2,4-DNT, 1.65 percent 2,3-DNT, 1.92 percent 3,4-DNT and 0.09 percent TNT. HNO3 accountability, as recovered weak S acid and DNT equivalent, was 99 percent.
, -. ,~
XAMPLE 2 ;
, .
Additional ~yntheses of Dinitrotoluene ;

In the manner described in EXAMPLE 1, 100 ml o~ 98 percent HNO3, 150.0 g, 2.38 mole HNO3 and 21 10ml, 18.2 9, 0.20 mole of toluene were fed at 0.80 ml/min and 0.17 ml/min, respectively, to the reaction vial. A
total of 166.26 g of pale yellow product solution was obtained. The product was heated for two hours at 55 to 60C, then cooled and diluted with 46.5 g of ice 15 water. The resulting suspension was extracted once with ~ -~
41.5 9 of toluene and then a second time with 46.3 g of toluene. The combined toluene extract was extracted with ;~
3 x 15 ml of 5 percent sodium hydr~ide solution. The ~-combined, yellow caustic extract was cooled, acidified ~ ;
with dilute sulfuric acid, and extracted with 3 x 10 ml of methylene chloride. After evaporation of the bulk of the methylene chloride, the methylene chloride extract, containing the acidic organic species from the original DNT product, was characterized by gas chromatography/mass spectrometry analysis. No mononitro- or dinitro-cresol species were detected (minimum detectability calculated `
at 2 ppm, based on original weight of DNT produced).
Additional experiments were performed to define the reactant ratio suitable for selective DNT -synthesis. These products are characterized in TABLE I
below for various molar rat~os of HNO3 to toluene.

,~

00~3~ :

TABLE I

Toluene Nitration ~
: ,~ ",,, HNO3/Toluene Product i~ Wt. %
Mole Wt.
5 Sample Ratio Ratio o-NT m-NT -NT D~
1 3.4 2.3 53.17 4.0439.29 3.49 1~
2 5.6 3.8 28.~0 2.7029.57 38.93 ~;
3 7.8 5.3 8.21 1.7214.66 75.40 4 11.6 7.9 0.94 ---- 0.22 98.84 10 Reaction at 54 to 57C `
NT - mononitrotoluene, ortho, meta and para isomers EXAMPLE 3 ~

Synthesis of Nitrobenzene , i In the manner described in EXAMPLE 1, 7.0 ml of 98 percent HNO3, 10.5 9, 0.163 mole of HNO3 and 5.0 j~
ml, 4.39 9, 0.056 mole of benzene were fed at 0.22 ml/min l`
and 0.135 ml/min, respectively, to the reaction vial. i~
The 14.65 g of pale yellow product solution was diluted with 42.49 g of ice water and e~tracted with 2 x 15 ml of `
methylene chloride. Dilute acid recovery was 51.39 9, for an organic recovery of 5.75 9, by difference. Gas ` -~
chromatographic analysis of the organic product showed i only nitrobenzene, exclusive of the methylene chloride solvent peak, for a recovery of 0.047 mole (83 percent) -~
of nitrobenzene. HNO3 accountability, as recovered weak acid and nitrobenzene equivalent, was 96 percent.
'''' ~`'`' '`' 1287B ,` ~

, ......
.~ "~.
. " ~
'~ ''`"'~ `' .

:'.~ .. ~'`"'

Claims (14)

1. A process for nitrating toluene to produce dinitrotoluene by a liquid phase nitration reaction of anhydrous nitric acid with toluene in a reactor at a reaction temperature of between 0°C and 60°C
for a reaction time of less than 15 minutes, said reaction employing a molar ratio of nitric acid plus any water to toluene of between 10:1 and 15:1, said reaction being conducted in the absence of sulfuric acid, to produce said dinitrotoluene in a product mixture, followed by vacuum distillation of the product mixture to remove unreacted nitric acid from said product mixture, thereby providing said dinitrotoluene.
2. The process of claim 1 characterized in that said molar ratio is between 11:1 and 12:1.
3. The process of claim 1 characterized in that said anhydrous nitric acid has an acid content of between 95 percent and 100 percent by weight based upon the acid plus water therein.
4. The process of claim 1 characterized in that said vacuum distillation is effected at a temperature of between about 30°C and about 60°C.
5. The process of claim 1 characterized in that said vacuum distillation is effected at a pressure of between about 50 mm of Hg and about 300 mm of Hg.
6. The process of claim 1 which additionally comprises, after said vacuum distillation, phase separation of dinitrotoluene from said product mixture.
7. The process of claim 9 characterized in that said phase separation is caused by the addition of water or dilute nitric acid to said product mixture.
8. The process of claim 1 characterized in that said reaction temperature is between 10°C and 60°C.
9. The process of claim 1 characterized in that said reaction temperature is between 20°C and 30°C.
10. The process of claim 1 characterized in that said nitration reaction is effected in less than 5 minutes.
11. The process of claim 1 characterized in that said anhydrous nitric acid has an acid concentration of between 95 and 100 weight percent.
12. The process of claim 1 characterized in that said anhydrous nitric acid has an acid concentration of at least 98 weight percent.
13. A process for nitrating toluene to produce dinitrotoluene by a liquid phase nitration reaction characterized in that it is effected in less than 5 minutes by reacting anhydrous nitric acid with toluene in the absence of sulfuric acid in a reactor at a reaction temperature of between 10°C and 60°C, said anhydrous nitric acid having an acid content of between 95 and 100 percent by weight based upon the weight of acid plus water therein, the molar ratio of nitic acid plus water to toluene being between 11:1 and 12:1.
14. The product mixture produced by the process of claim 1 which is free of mononitro- and dinitrocresol species.
CA002008342A 1988-06-22 1990-01-23 Process for the production of dinitrotoluene or mononitrobenzene Abandoned CA2008342A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/US1989/002635 WO1989012620A1 (en) 1988-06-22 1989-06-14 Process for the production of dinitrotoluene or mononitrobenzene
AU38630/89A AU3863089A (en) 1988-06-22 1989-06-14 Process for the production of dinitrotoluene or mononitrobenzene
CA000603642A CA1340073C (en) 1988-06-22 1989-06-22 Process for the production of dinitrotoleune or mononitrobenzene
CA002008342A CA2008342A1 (en) 1988-06-22 1990-01-23 Process for the production of dinitrotoluene or mononitrobenzene
CN90100885A CN1026583C (en) 1988-06-22 1990-02-22 Process for the production of dinitrotoluene or mononitrobenzene

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21054988A 1988-06-22 1988-06-22
CA002008342A CA2008342A1 (en) 1988-06-22 1990-01-23 Process for the production of dinitrotoluene or mononitrobenzene
CN90100885A CN1026583C (en) 1988-06-22 1990-02-22 Process for the production of dinitrotoluene or mononitrobenzene

Publications (1)

Publication Number Publication Date
CA2008342A1 true CA2008342A1 (en) 1991-07-23

Family

ID=36754844

Family Applications (2)

Application Number Title Priority Date Filing Date
CA000603642A Expired - Fee Related CA1340073C (en) 1988-06-22 1989-06-22 Process for the production of dinitrotoleune or mononitrobenzene
CA002008342A Abandoned CA2008342A1 (en) 1988-06-22 1990-01-23 Process for the production of dinitrotoluene or mononitrobenzene

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA000603642A Expired - Fee Related CA1340073C (en) 1988-06-22 1989-06-22 Process for the production of dinitrotoleune or mononitrobenzene

Country Status (4)

Country Link
CN (1) CN1026583C (en)
AU (1) AU3863089A (en)
CA (2) CA1340073C (en)
WO (1) WO1989012620A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4216416C1 (en) * 1992-05-18 1993-05-13 Bayer Ag, 5090 Leverkusen, De
RU2106338C1 (en) * 1992-06-17 1998-03-10 Олин Корпорейшн Method of preparing dinitrotoluene
HUE035115T2 (en) 2008-11-10 2018-05-02 Noram International Ltd Adiabatic process for making mononitrobenzene
CN102020567B (en) * 2009-09-11 2013-11-06 上海安赐机械设备有限公司 Method and device for refining coarse nitrobenzene

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2362743A (en) * 1943-02-10 1944-11-14 Hercules Powder Co Ltd Manufacture of dinitrotoluene
US3928395A (en) * 1972-10-05 1975-12-23 Ciba Geigy Ag Process for the nitration of aromatic compounds

Also Published As

Publication number Publication date
WO1989012620A1 (en) 1989-12-28
AU3863089A (en) 1990-01-12
CN1054247A (en) 1991-09-04
CA1340073C (en) 1998-10-06
CN1026583C (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US4935557A (en) Conitration of mixed aromatic hydrocarbons
US4918250A (en) Process for the production of dinitrotoluene using an inorganic salt as a phase separation agent
US5057632A (en) Process for preparing dinitrotoluene
US5354924A (en) Process for the production of dinitrotoluene
US5001272A (en) Process for the production of dinitrotoluene
US5099078A (en) Process for preparing dinitrotoluene
CA1340073C (en) Process for the production of dinitrotoleune or mononitrobenzene
US5488187A (en) Process for the production of dinitrobenzene and mononitrobenzene
CA2155562C (en) Process for the production of dinitrotoluene
US5245092A (en) Process for preparing dinitrotoluene with low by-product content
US5663462A (en) Process for the production of dinitrotoluene and isomeric mixtures of dinitrotoluene
CA2138391A1 (en) Process for the production of dinitrotoluene
KR970010465B1 (en) Process for the production of dinitrotoluene or mononitrobenzene
US5185467A (en) Process for the preparation of 2,2-bis-(aminophenyl)-propane
EP0169441B1 (en) Production of dinitrotoluene
KR20020079480A (en) Continuous isothermal process for preparing mononitrotoluenes in the presence of phosphoric acid
PT93038B (en) PROCESS FOR THE PRODUCTION OF DINITROTOLUENO
JPS6322543A (en) Manufacture of dinitroalkylbenzene

Legal Events

Date Code Title Description
FZDE Dead