CA1270364A - Continuous steel casting machine and method - Google Patents

Continuous steel casting machine and method

Info

Publication number
CA1270364A
CA1270364A CA000505594A CA505594A CA1270364A CA 1270364 A CA1270364 A CA 1270364A CA 000505594 A CA000505594 A CA 000505594A CA 505594 A CA505594 A CA 505594A CA 1270364 A CA1270364 A CA 1270364A
Authority
CA
Canada
Prior art keywords
mold
spray
metal
casting machine
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000505594A
Other languages
French (fr)
Inventor
Cass R. Kurzinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of CA1270364A publication Critical patent/CA1270364A/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds

Abstract

Abstract The object of the invention is to provide a continuous metal casting machine in which dimensional changes of the mold during the casting operation are measured and regulated to achieve a desired result in the cast metal.
The continuous casting machine includes a copper tubular or plate mold (22) into which molten metal (25) is poured for forming a strand (25b) of high melting point metal, such as steel. A plurality of spray nozzles (29) are spaced around the mold for directing sprays (30) of coolant fluid against the mold. In accordance with the invention, one or more measuring devices (32) are associated with the mold for measuring changes in dimension of the mold in a direction trans-verse to the longitudinal axis thereof, and controls (36) are connected with the coolant fluid to adjust the rate of heat extraction effected thereby to thus regulate the extent of dimensional change in the mold as molten metal is being cast therein.
The method of monitoring and adjusting the extent of dimensional change in a mold of a continuous casting machine as molten metal is being cast therein is also disclosed.

Description

7~3~4 Description Continuous Steel Casting Machine And Method Technical Field:
5This invention relates to high temperature metal continuous casting machines~ and more particularly, to systems for cooling the mold with sprayed coolant fluid and for controlling the extent of expansion and contrac-tion of the mold during use.

Background Art:
In conventiona} continuous metal casting machines, molten metal is passed through a mold for solidif.ication ~nto a desired shape. As the molten metal passes through the mold, an outer shell forms and hardens. In many machines, the mold ~s vertically oriented and as the metal strand continues to solidify, it is bent through an angle of 90 so that it moves horizontally,.and it i5 subsequently cut into individual segments. In the case of horizontal continuous casting machines, the strand is not bent through the 90 angle but exits the mold horizontally.
In both vertical and horizontal machines, the strands are then cut into segments or predetermined lengths.
The temperature of molten steel is typically 2850 F, although with certain grades the temperature may be as low as 2600 F. In general, although most of the references herein are to steel casting, the inven-tivn contemplates the casting of any metal or metal alloy : whose liquid temperature exceeds 260~ F.
, :

. ~ .

., . ~ ~, :' . :;::. . ~.
.

:: :' .. ;: ~ , ,.:

~C)36~

The mold which forms the steel strand contains the liquid steel and provides for its initial solidifi-cation, that is, hardening of the outer shell. The solidifying strand is extracted continuously from the bottom of the mold at a rate equal to that of the in-coming liquid steel at the top, the production rate being determined by the time required for the outer shell to harden sufficiently so as to contain the inner core of liquid steel by the time the strand exits the mold.
The liquid steel is cooled in almost all present day casting machines by providing a water system which cir-culates a stream of cooling water around the mold. The water enters at the bottom of a pressure-tight vessel which surrounds the mold and travels upwardly in a direction opposite to that of the moving liquid steel. The "counter current" water flow has been found to be adequate for heat transfer in continuous steel casting machines. Such cooling systems embody a baffle jacket closely surround-ing the mold, defining an annular space through which
2~ the cooling water flows.
It has been found in practice that when ~he mold heats and expands due to direct contact with the molten metal being cast, it has the effect of reducing the annular space available for cooling water circulation ~5 between the mold and the baffle jacket. This reduces the rate of heat extraction, permitting further heating and expansion of the mold, thereby further reducing the annular space and the amount of cooling water circulated for cooling. This condition: continues, and in extreme cases can ultimately result in contact between the mold wall and the inside surface of the bafle jacket. When such contact occurs, ~otal mel~own of the m~ld can result,but in any event, cooling is drastically reduced and the strand quality deteriorates.

,....... . . .
,,, ;
.

. .
' ' , ~ ~7036~

To attempt to control and maintain the relative positions of the mol~ wall and the baEfle jacket, continuous casting machine designers sometimes weld small spacer bars or pins onto the interior surface of the baffle jacket. This method is relatively unsuccess-ful, however, since the mold expands in the area between the spacers, thus further increasing the deformation of the mold, Moreover, such mold dèformation will actually cause rhomboidal bulging and other s~rand shape defor-mations~ If mold expansion exceeds 0.0755 inch, the stresses generated in the mold will exceed the yield strength of the mold copper and result in permanent deformation of the mold, further exacerbating the de-terioration of strand quality and destroying the mold.
In applicant's prior U.S. patent, number 4,494,5~4, ~ spray cooling system is disclosed which alleviates many of the problems found in the systems described above. The spray cooling system described in this patent i~ much more efficient in cooling the mold and controlling its expansion than are the prior art systems described above. As a result, higher quality cast steel strands are achieved when the spray cooling system disclosed in patent 4,494,594 is used~
: ~lowever, neither the baffle jacket design nor the prior spray cooling system disclosed by applicant in its prior U~S. patent 4,494,594 considers the differential expansion zones to be found in a continuous casting : machine (meniscus, midsection, lower section), and the prior devices lack any means for constantly monitoring mold expansion in these zones and adjusting the cooling rate to maintain a predetermined maximum expansion.
: This inability to control mold exp~nsion with conventional mold cooling systems forces continuous casting machine operators or researchers to accept the adverse effect~
; 35 of uncontrolled mold expansion on the cast structure, ,~

:

..
.. : ..
:, . .
: .

~27~33 and the associated adverse effects on s~bsequent proces-sing operations and finished product q~ality that can result.

Disclosure of the Invention:
In accordance with the present invention, a continuous metal casting machine is provided in which one or more parameters of the spray cooling system are defined and established to main~ain the desired mold configuration and in which mold distortion is detected and corrected.
Applicant has found that by utilizing certain conditions and by modifying other operating conditions as disclosed in prior V.S. patent number 4,494,S94 it can accurately control mold expansion and consequently control the quality of the continuously cast strand within the mold. More specifically, applicant has found that by carefully regulating the coolant directed against a zone in an area extendin~ from approximately 2~ inches above the meniscus level to approximately 2~
inches below the meniscus level, it can most effectively control the distortion of the moldO In most continuous casting mac~ine for billets, slabs and other shapes, this zone is at a point roughly two to 14 inches below the top of the mold assembly. It is in this meniscus zone that approximately 70~ of the heat of the molten metal must be extracted in order to initiate rapid and uniform solidification of the molten metal. Applicant has also determined that the maximum allowable mold expansion during casting with respect to surface and subsurface quality of the cast strand is about 0.0755 inch in directions transverse to the longitudinal axis of the m~ld, with 0, 0550 inch being the preferred limit at the meniscus zoneO Expansion of up to 0.0755 inch can be tolerated at the mid and lower zones without ,~
.
:, ',~ :' "` ' ' , ..

:

de~rimental effect to the cast strand. If these ma~im~ms axe exceeded, the cast strand can have: surface cracks, both transverse and longitudinal; subsurface cracks, from 0.025 inch to 1.250 inch below the surface; rhomboidal S bulging and other shape deformations; and excessive oscil-lation mark depths (from 0.007 inch to 0.100 inch~O In addition, excessive mold wear can occur.
To detect and correct these problems in accordance with the invention, applicant contacts a distortion measuring gauge or gauges to the outside (cooled) surfaces of the mold and monitors the expansion of each face during the casting operation. Expansion of the mold on any or all desired faces is then controlled within selected limits by selectively adjusting the rate of heat extraction at that face.
In achieving this accurate control of mold expan-sion during the casting operation, the following parameters are maintained in the spray nozzles:
~a) spray angles of the cooling water no7zles at the meniscus zone are selected so as not to exceed 100;
(b) spray nozzle pressure at the meniscus zone is maintained at or above 15 psig;
(c) spray pa~tern overlap at the meniscus zone is designed so that ~he coverage pattern between adjacent nozzles is uniform per unit area of sprayed surface; and ~d) water droplet size in the meniscus zone is maintained in the range of from about 475 microns to about 1450 microns.
A~ the other zones, expansion control is attained following the conditions set forth in applicant's prior U.S. patent 4,494,594.
Since so much heat must be extracted from the molten metal at the meniscus zone, the steam barrier generated , ~
~ . ~ ' `. ,:
.; , ; , .

~ ~ 7~3~

by the evaporating spray water must be penetrated by the water droplets in order to effectuate rapid and uni-form cooling. When the spray angle exceeds about 100 degrees, the force vector o the water droplets perpen-dicular to the surface of the mold to be cooled at theedges o the spray pattern is not sufficient to penetrate the steam barrier. Likewise, the water droplets will not penetrate the steam barrier when the water pressure at the nozzle is less than 15 psig. Moreover, since water droplet size influences the ability of the water spray to pene~rate the steam barrier and also the rapidity with which heat extraction occurs, best operating con-ditions are obtained when droplet sizes are confined to the range set forth above.
Most shape deformations of the cast product are initiated in the mold of the casting machine due to non-un$form expansion of the mold which results in non-uni-form contact between the metal being cast and the cooled mold wall. By ope~ating within the above listed para-meters and by monitoring the extent of distortion of the mold wall during casting, it is possible to ef~ect what-ever mold expansion conditions are desired by operators or researchers by increasinq or decreasing the amount o cooling water sprayed onto the mold. The condition and quality of the cast product is also consequently controlled~
For example, if desired, one area of the mold can be permitted to expand while another area is simultaneously drawn in, or all mold areas can be controlled to the same degree of expansion/contraction.
With the present invention, the operator o~ the casting machine can monitor expansion conditions throuqh-out the casting process and react accordinqly to conditions as they may occur within the mold, making minor or ma~or adjustments to the cooling system as required, thereby influencing the quality of the solidifyin~ strand4 It ~ -^
' '.'," ,''"' . ',;`,, .
~ . ..

7 ~

is therefore possible to effect complete control of the solidification process on all continuous casting machines, producing billets, bloom, slabs, rounds or other shapes. Moreover, since the operator can monitor mold expansion, and hence strand and mold contact, he now has the ability to control cast strand and mold contact, mold stresses and elevated surface temperatures of the copper mold and thereby directly and beneficially influence mold wear and/or deterioration. Since mold deterioration due to high temperatures of the cast metal occurs most rapidly at the meniscus zone, the ability to continuously monitor and control mold expansion and temperature will allow the operat~r to directly and beneficially influence mold wear patterns.
In slab casting, the mold consists of plates of copper held together at the corners to form a large cavity ~etween the plates. Since in most cases, a slab has a considerably larger cross-sectional area, greater quantities of heat must be removed and greater ferrostatic pressures must be contained by the copper mold. In conventional mold systems for slab casting, the above facts require further support systems on the back (cooled) surface of the copper plate. The mechanisms that make this support neces~ary are substantially the same as encountered in casting smaller ~billet and/or bloom) cross sections.
With the present invention, it is possible for the designer and operator to significantly reduce the back up support systems and in most cases eliminate secondary support systems in the ~old altogether.

Brief Description of the Drawings:
Further objects, features and advantages of the invention will become apparent upon consideration of the following detailed description in conjunction with the drawings, in which like reference characters designate ' ,.. ::, ' ''""' ' ; ', .: ." ' ~,, . ' ,...
-.

,,:, .. .

:
, .. ,:: .: .. .

--8~

like parts throughout the several views, and wherein:
Fig. 1 is a ragmentary view in longitudinal vertical section of the mold and bafle jacket of a prior ar~ system;
Fig. 2 is a t~ansverse sectional view of the apparatus of figure l;
Fig. 3 is a v;ew similar to figure 1, showing diagrammatically the effects of mold expansion relative to the coolant fluid space;
Fig. 4 is a view similar to figure 2, showing the mold expansion depicted in ~igure 3;
Fig. 5 is a view similar to figure 2 of a further form of prior art system in which spacers are used to attempt to control mold copper expansion and thus to alleviate the reduction of the coolant fluid space upon expansion of the mold;
Fig. 6 ~s a view similar to figure 4 of the system of figure 5, showing the increased distortion of the mold when spacers are used;
Fig. 7 is a longitudinal sectional view of a spray cooled mold section of a continuous casting machine incorporating the invention therein;
Fig. 8 is a transverse sectional view of the system of figure 7~
~ig. 9 is a somewhat enlarged, schematic view of a portion of a mold and a pair of adjacent spray no~zles, showing the overlap of the adjacent sprays to achieve substantially uniform spray coverage per unit area of the surface being sprayed;
Fig. 10 is a diagrammatic:view in transverse section of a mold in which the expansion of the various areas of the mold is controlled in accordance with the invention;
F~g. 11 is a transverse sectional view of a portion of a slab mold, showing the manner in which ., ,,, j, ;.., ,., . , ,;~

,, : . ,. ~.. . .~. .
:~ ~.' -'-' : ' ' ~L~70~
_g_ the copper pla~es are secured together to form the mold;
FigO 12 is a view similar to figure ll, showin~
a back-up support system for the mold of figure 11; and Fig. 13 is a Yiew similar to figure ll, schemati-cally illustrating the distortion of the slab mold platescaused by temperature and ferrostatic pressures.

Best Mode for Carrying Out the Invention:
Referrin~ first to figures l through 6 and ll through 12, prior art systems are depicted generally at lO and lO', respectively, In figures l through 6, a mold ll extends concentrically ~ithin a baffle jacket l~, definlng an annular space 13 therebetween for cir-culation of coolant water as indicated by arrows A.
As shown in figures 3 and 4, when the mold is heated by flow of molten metal therethrough, it expands and thereby decre~ses the size of the annular space 13, thereby altering the quantity and velocity of the cooling water sweeping over the mold surface and influencing heat transfer.
2Q In figures 5 and 6, an arrangement is shown at 14 which is an attempt to overcome the problem illustrated by figures 3 and 4. In this prior art arrangementl pins or spacers 15 are placed against the outer surface of the mold. However, as shown in figure 6, the ~old deformation is not prevented by this system and, in fact, the spacers act to further increase the deformation of the mold.
The slab mold lO' shown in figures ll ~hrough 13 comprises a plurality of plates 16 bolted together to form the slab mold cavity 17. A back-up suppor~
system 18 is bolted onto the copper plates on both sides of the mold, as shown in figure 12. In figure 13, the back-up-support system is eliminated and sprays of water are used to control expansion of the platesO

.
'; " "'' " ' ,' .. '. ' '','' ' '' .

.,. :; .. ,::, .. . ...... -:
; '. ` ' ~ ~ '"`

': ;'';' ~ .

)3~

For instance, a greater flow of cooling water could be appl~ed in the vicinity of the ~iddle of the mold and a lesser flow applied toward the edges.
The present invention is represented qenerally at 20 in figure 7~ and comprises a frame 21 in which a copper mo]d 22 with an open inlet encl and an open out-let end is mounted at the top in re~istry with a central opening 23 through top wall 24 of the frame. In a typical construction, the frame 21 may be made of A-36 steel, and the mold tube may be made of DHP-grade copper. A stream of molten steel 25 is poured into the mold, at a rate relative to the rate of solidifi-cation and strand withdrawal, to position the menisGus 25a in the upper region of the mold, i.e. within a range of from about two inches to about 14 inches ~elow the top of the mold. The mold is not connected at its bottom end to the bottom 26 of the frame, but instead simply hangs from its upper end - remaining free of connection with the bottom wall 26. The lower end of the mold is in alignment with an opening 27 in the bottom wall 26, through which the strand is withdrawn.
Rather than the baffle jacket and annular space for cooling fluid as depicted in figures 1 through 6, the invention utilizes a plurality of s~ray pipes 28 spaced around the mold. Each pipe 28 carries a plurality of spray nozzles 29 for forming a spray of water as depicted at 30. Water is supplied to the pipes and nozzles by a supply pipe 31. The spacing of the nozzles relative to the mold and to each other is essentially the same as set forth in applicant's earlier U.S. patent 4,494,594. Further, the selection of nozzle sizes, water flow rate and water tnozzle) pressure are all essentially as set forth in said patent. However, as noted previously herein, the spray angle is se~ so that it does not go over about 100, the spray overlap is ,. ~ .

. ~, .~. ... .
' ' ~
, .,: :.
. ..
.. . .
,. ;~ , 1~7~ 4 selected so that the spray coverage is uniform through-out the area being sprayed, the droplet size of the spray particles is maintained in the range of from about 475 microns to about 1450 micrc~ns, the mold expansion is limited to a maximum of 0.0755 inch per face t0.0550 inch being preferred at the meniscus zone), and the water pressure is not permitted ~o go below about 15 psig.
With respect to spray overlap! reference is made to figure 9, which depicts the spray overlap in accordance with the invention. Applicant has observed that approximately 80% of the total water flow produced by the spray nozzles occurs over about 50% of the cover-age area - shown here as occurring over a central area C located concentrically within the overall spray pattern O produced by the nozzle '-?9. Thus, the nozzles 29 are adjusted relative to one another and to the mold, taking into consideration the maximum spray angle and the water pressure, so that the central areas C of adjacent sprays just touch one another.
In accordance wi~h the invention, one or more distortion measuring instruments 32 are associated with the mold to measure the extent of expansion and contraction of the mold during the casting operation.
As shown in figures 7, 8 and 9, these measuring instru-ments comprise an elongate arm 33 extending into proximity with the mold surface and having a probe or finger 34 projecting from the end thereof and into contact with the outer surface of the mold. An indicator 35 is connected with the probe to indicate displacements of the probe and hence the mold surface contacted by the probe, The indicator is preferablY mounted so as to be readily visible to the operator of the casting machine or linked to a computer for automatic control and adjustment, Other types of deflection measuring instru-"

, :;. : ,
3~

ments may be used, if desired. By observin~ the indicator, the operator can ascertain the extent of distortion or expansion of the moldO As noted pre-viously, it is importan~ to maintain the distortion below abou~ 0.0755 inch, and preferably below about 0.0550 inch at the meniscus zone. In order to main~
tain the expansion of the mold within this li~it, the flow of coolant fluid directed against the mold is controlled. This may be accomplished in a number of ways, including ~ flow controller 36 which may be man-ually operated or automatically operated in response to a sensed reading by the indicator tshown at 37 in dot-and-dash lines in figure 7). Further, the spray pipes 28 may be constructed in sections 28a, 28b, etc., each supplying a number of nozzles 29 and supplied by its own supply pipe 31a, 31b, etc., controlled by a controller 36a, 36b, etc. (shown in dot-and-dash lines in figure 7).
Nozzles may be positioned to direct coolant fluid directly agains~ the face of the mold, as shown in dot-and-dash lines at 38 in figure 8.
By maintaining the operating conditions within the parameters described herein and by measuring and controlling the expansiun and c~ntraction of the mold during a casting operation, the extent of distortion of respective faces A, B, C and D can be accurately controlled as shown in dot and-dash lines in figure 10. Consequently, the quality of the cast strand can be controlled and need not be accepted with defects therein as noted earlier herein, such defects being associated with scrap losses incurred during subse-quent processing of the cast strand and with the cost of metallurgical claims arising from the shipment of sub-standard finished products to end users.

: , ,: ..

7~3 6 Although the invention has been described with reference ~o particular embodiments, it is to be under-stood that these embodiments are merely illustrative of the application of the principles of the invention.
Numerous modifica~ions may be made therein and other arrangements may be devised without departing from the spirit and scope of the invention.

.~

~, ' ~;. . ' . . .

Claims (12)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A machine for continuously casting molten metal, comprising:
a frame;
a mold carried by the frame and having an open inlet end into which molten metal is poured and an open outlet end through which a solidifying, molded metal strand is withdrawn;
means for directing a coolant fluid against the mold surface to extract heat from the mold and the metal being cast therein to initiate solidification of the metal;
control means for controlling the coolant fluid flow to obtain the most uniform rate of heat extraction from the metal being cast and to minimize the extent of mold distortion arising from direct contact with the cast metal and thus control the quality of the cast metal strand; and distortion measuring means operatively associated with the mold for detecting distortion of the mold as the heated metal moves therethrough to permit major or minor adjustments of the coolant fluid control means and thereby control the extent of distortion and further control the quality of the cast metal strand.
2. A continuous casting machine as in claim 1 wherein:
the coolant fluid is water, and water spray means are disposed around the mold for directing sprays of water against the mold.
3. A continuous casting machine as in claim 2, wherein:
the distortion measuring means include probes in contact with the outer surface of the mold to detect expansion and contraction of the mold in directions transverse to its longitudinal axis.
4, A continuous casting machine as in claim 3, wherein:
the control means is operatively connected with the coolant fluid to adjust the flow of coolant fluid to thereby control the expansion of the mold.
5. A continuous casting machine as in claim 4, wherein:
the control means is manually operated commens-urate with the observed distortion of the mold as detected by the measuring means.
6. A continuous casting machine as in claim 4, wherein:
The control means is automatically operated to adjust the flow of coolant in response to the measured distortion of the mold as detected by the measuring means.
7. A continuous casting machine as in claim 2, wherein:
the spray means comprises a plurality of spray nozzles spaced relative to one another and to the mold such that substantially uniform spray coverage of the area being sprayed is obtained.
8. A continuous casting machine as in claim 7, wherein:
the spray nozzles are constructed such that the spray angle of water sprayed therefrom does not exceed 100°, the spray droplet size is in the range of from about 475 microns to about 1450 microns, and the spray pressure at the nozzle is not less than about 15 psig.
9. A continuous casting machine for continuously casting molten metal, comprising.
a frame;
a mold carried by the frame and having an open inlet end into which molten metal is poured and an open outlet end through which a solidifying molded metal strand is withdrawn; and spray means for directing coolant water against the surface of the mold to cool the mold and extract heat from the metal being cast therein to initiate solidification of the metal, said spray means including a plurality of spray pipes spaced around the mold and a plurality of spray nozzles carried by each spray pipe, said spray nozzles being constructed and arranged such that the angle of water sprayed therefrom does not exceed 100°, the spray droplet size is in the range of from about 475 microns to about 1450 microns, the spray pressure at the nozzle is not less than about 15 psig, and the sprays from adjacent nozzles overlap sufficiently to obtain substantially uniform spray coverage per unit area of the surface being sprayed.
10. A method of controlling mold expansion in a continuous casting machine having a mold into which molten metal is poured and from which a solidifying metal strand is withdrawn, and in which a coolant fluid is directed against the mold to cool the mold and metal therein to solidify the metal, comprising the steps of:
measuring the extent of distortion of the mold during the casting operation; and controlling the coolant fluid in response to the measured mold distortion to thereby control the distortion and consequently control the quality of the cast metal strand.
11. A method as in claim 10, wherein:
the coolant fluid is sprayed against the mold;
and the flow of sprayed coolant fluid is adjusted to control the distortion of the mold caused by in-creased temperature of the mold.
12. A method as in claim 11, wherein:
the coolant fluid is sprayed through a plurality of nozzles arranged around the mold such that the angle of fluid sprayed therefrom does not exceed 100°, the spray droplet size is in the range of from about 475 microns to about 1450 microns, the spray pressure at the nozzles is not less than about 15 psig, and the sprays from adjacent nozzles overlap sufficiently to obtain substantially uniform spray coverage per unit area of the surface being sprayed.
CA000505594A 1985-04-03 1986-04-01 Continuous steel casting machine and method Expired CA1270364A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85/00562 1985-04-03
PCT/US1985/000562 WO1986005724A1 (en) 1985-04-03 1985-04-03 Continuous steel casting machine and method

Publications (1)

Publication Number Publication Date
CA1270364A true CA1270364A (en) 1990-06-19

Family

ID=22188630

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000505594A Expired CA1270364A (en) 1985-04-03 1986-04-01 Continuous steel casting machine and method

Country Status (7)

Country Link
EP (1) EP0216764A1 (en)
JP (1) JPS62502389A (en)
CN (1) CN1022174C (en)
CA (1) CA1270364A (en)
ES (1) ES8701552A1 (en)
IT (1) IT1204234B (en)
WO (1) WO1986005724A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1208277B (en) * 1987-04-15 1989-06-12 Italimpianti APPARATUS AND METHOD FOR THE COOLING CONTROL OF THE SHAPES USED FOR THE PRESSURE CONTROLLED DEIMETAL CASTING
US4955216A (en) * 1988-01-29 1990-09-11 Southwire Company Method and apparatus for automatically adjusting soluble oil flow rates to control metallurgical properties of continuously rolled rod
US5247988A (en) * 1989-12-19 1993-09-28 Kurzinski Cass R Apparatus and method for continuously casting steel slabs
EP2263816A1 (en) * 2009-06-03 2010-12-22 Concast Ag Method and apparatus for guiding and straightening a strand in a continuous acsting machine for round billets of large cross-section
US10722824B2 (en) 2016-10-18 2020-07-28 Ecolab Usa Inc. Device to separate water and solids of spray water in a continuous caster, and method to monitor and control corrosion background
DE102017214450B3 (en) 2017-08-18 2018-11-29 Lechler Gmbh Spray gun and method for cooling a metallic strand in a continuous casting machine
DE102018130698B4 (en) * 2018-12-03 2021-10-21 Casthouse Revolution Center Gmbh Rolling ingot mold for the continuous casting of aluminum and aluminum alloys
CN111761035B (en) * 2019-03-31 2022-02-22 上海梅山钢铁股份有限公司 Device for detecting lateral deformation fault of continuous casting machine guide seat and diagnosis method
CN114985688B (en) * 2022-06-10 2023-12-26 济南东方结晶器有限公司 High-precision crystallizer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2683294A (en) * 1949-05-28 1954-07-13 Aluminum Co Of America Metal transfer method and apparatus
US2698467A (en) * 1950-06-05 1955-01-04 Edward W Osann Jr Method and apparatus for the continuous casting of metal
NL79350C (en) * 1951-04-05
US2747244A (en) * 1953-07-15 1956-05-29 Norman P Goss Porous mold for the continuous casting of metals
US2837791A (en) * 1955-02-04 1958-06-10 Ind Res And Dev Corp Method and apparatus for continuous casting
US3388737A (en) * 1966-05-10 1968-06-18 Copper Range Co Apparatus for continuous casting
DE2501868C3 (en) * 1975-01-15 1978-08-03 Mannesmann Ag, 4000 Duesseldorf Process for regulating and monitoring the continuous casting of steel
JPS5433755A (en) * 1977-08-22 1979-03-12 Nippon Steel Corp Meter for inside shape of mold
JPS5689358A (en) * 1979-12-21 1981-07-20 Nippon Steel Corp Continuous casting method
US4494594A (en) * 1981-09-08 1985-01-22 Amb Technology, Inc. Spray cooling system for continuous steel casting machine
JPS6046849A (en) * 1983-08-25 1985-03-13 Mishima Kosan Co Ltd Apparatus for measuring inside diametral size of mold for continuous casting machine of round billet

Also Published As

Publication number Publication date
ES8701552A1 (en) 1986-12-01
IT8683341A0 (en) 1986-04-03
IT1204234B (en) 1989-03-01
EP0216764A1 (en) 1987-04-08
CN1022174C (en) 1993-09-22
JPS62502389A (en) 1987-09-17
WO1986005724A1 (en) 1986-10-09
CN86102328A (en) 1986-10-22
ES553710A0 (en) 1986-12-01

Similar Documents

Publication Publication Date Title
JP3274684B2 (en) Rolled sheet casting
CA1270364A (en) Continuous steel casting machine and method
AU1511699A (en) Edge dam position control method and device in twin roll strip casting process
US6880616B1 (en) Method and device for making a metal strand
WO2008134302A1 (en) Method and system for tracking and positioning continuous cast slabs
KR101610200B1 (en) Strip casting method for controlling edge quality and apparatus therefor
US4580614A (en) Cooling apparatus for horizontal continuous casting of metals and alloys, particularly steels
US5242010A (en) Method for controlling the taper of narrow faces of a liquid-cooled mold
JPS63500786A (en) Continuous casting method and equipment for thin metal slabs
CN109365819A (en) A kind of melting condensation integrated 3D printing device and method of metal material
US5247988A (en) Apparatus and method for continuously casting steel slabs
US4660619A (en) Mold cooling apparatus and method for continuous casting machines
US5205982A (en) Tundish flow control
CN1054558C (en) Process for the continuous casting of metal in particular of steel into bloom and billet cross-sections
US6363999B1 (en) Variable tip width adjustment system
US3931848A (en) Method and apparatus for cooling a strand cast in an oscillating mold during continuous casting of metals, especially steel
JP3117337B2 (en) Spray cooling mold equipment for continuous casting
US8191610B2 (en) Strip casting apparatus with improved side dam
US7938164B2 (en) Production of thin steel strip
EP0346076B1 (en) Continuous casting machines
JPH1190598A (en) Method for continuously casting stainless steel
US4043384A (en) Spray apparatus for continuous casting machine
EP0367024B2 (en) Apparatus for the continuous casting of metals and of steel in particular
KR102207706B1 (en) Scarfing apparatus and scarfing method
JPH01501455A (en) Apparatus and method for continuously casting steel slabs

Legal Events

Date Code Title Description
MKLA Lapsed