CA1239326A - Method for cleaning textiles with cyclic siloxanes - Google Patents

Method for cleaning textiles with cyclic siloxanes

Info

Publication number
CA1239326A
CA1239326A CA000493616A CA493616A CA1239326A CA 1239326 A CA1239326 A CA 1239326A CA 000493616 A CA000493616 A CA 000493616A CA 493616 A CA493616 A CA 493616A CA 1239326 A CA1239326 A CA 1239326A
Authority
CA
Canada
Prior art keywords
cyclic
cleaning
method
stain
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000493616A
Other languages
French (fr)
Inventor
Kenneth A. Kasprzak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Silicones Corp
Original Assignee
Dow Silicones Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US67019584A priority Critical
Priority to US670,195 priority
Application filed by Dow Silicones Corp filed Critical Dow Silicones Corp
Application granted granted Critical
Publication of CA1239326A publication Critical patent/CA1239326A/en
Application status is Expired legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/162Organic compounds containing Si

Abstract

METHOD FOR CLEANING TEXTILES WITH CYCLIC SILOXANES

ABSTRACT

A method is disclosed for cleaning textiles using cyclic dimethylsiloxanes as a cleaning fluid for removing soil spots. The useful siloxanes include octamethylcyclo-tetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane.

Description

~;~ '9~6 METHOD FOR CLEANING TEXTILES WHITE CYCLIC SELECTIONS

The present invention relates to a method for removing soil from textiles using cyclic dimethylpoly-selections. In particular, this invention relates to the use of cyclic dimethylpolysiloxanes for removal of oily/greasy stains from textiles.
Textile products such as fabrics, carpets and upholstery often develop prominent stain spots from inadvertent contact with foodstuff and other materials containing grease and oils. Various organic solvents such as alcohols, petroleum hydrocarbons, and chlorinated hydra-carbons have been used in cleaning compositions adapted for direct application to fabric as spot removers.
Several approaches to formulating spot cleaning compositions are known. For instance, non residue cleaners are formulated with volatile components only. After dissolving, mobilizing, and removing the stained material, such formulations are intended to completely evaporate leaving no residue components on the textile. Other cleaning compositions employ a combination of solvent and solid, absorbent particles. The solvent mobilizes the soil and the absorbent solid attracts the soil and solvent to itself. The residue of absorbent solid is intended to be easily removed from the textile by brushing or vacuuming. Yet another approach involves liquid detergent compositions which have been adapted as prewash spot removers. These compositions usually contain concentrated synthetic surfactants with alcohol or other solvents. When used as a prewash spot remover, the nonvolatile surfactant components remain on the textile as a residue which is removed by a conventional home laundry operation. In the aqueous wash, the prewash spot Jo 3Z~

remover composition additionally functions in the manner of a heavy-duty laundry detergent.
While known spot cleaning compositions effectively remove some stains, other types of stains may be unaffected or only incompletely removed by the compositions. In other cases, the cleaning composition itself may damage or leave a residue on the textile in such a way that a visible ring occurs around the treated area. It is an object of the present invention to reduce the problems associated with the prior art cleaning compositions by providing a new method of cleaning stains using volatile silicone fluids that effectively mobilize oil and grease stains, are non damaging to a wide range of textiles both synthetic and natural, and leave no residue or visible ring on treated textiles.
It is known from US. Patent No. 4,324,595, to remove tacky adhesives from substrates by using octamethyl-cyclotetrasiloxane fluid to detackify the adhered adhesive.
The process is taught to be particularly useful for removing tacky adhesives from human skin, but it is also indicated that the process is applicable to removing tacky adhesives from a wide range of substrates including textiles. However, this patent teaches the removal of only tacky adhesives, it does not suggest removing oil and grease stains with cyclic dimethylsiloxanes.
Stain removing compositions are disclosed in Japanese Patent Publication Cook No. (1974)-35681, which contain small amounts (0.5 to 10 weight percent) of silicone oil combined with cleaning solvents such as trichlorethane and petroleum hydrocarbons. Although the type of silicone oil employed is not further identified, it is taught that the silicone remains on the fabric after cleaning to provide continuing water repellency and soil resistance for the fabric. Consequently, it is apparent that this publication 3~33~6 does not contemplate the use of completely volatile cyclic dimethylpolysiloxanes.
An aerosol type aqueous cleaning composition is disclosed in Japanese Patent Publication Cook No. (1978)-56203, which contains non ionic surfactant, alkanolamine, glycol ether, alcohol, propellant, and 0.02 to 0.1 weight percent of linear dimethylpolysiloxane with 2 to 7 silicon atoms per molecule. This publication discloses only the use of very low amounts of linear dimethylpolysiloxanes and does not contemplate the use of larger, solvent-effective amounts of the cyclic dimethylpolysiloxanes.
The use of tetraethoxysilane as a solvent for removing grease from textiles is disclosed in Russian Patent Publication AYE. However, tetraethoxysilane is not stable in contact with water and may hydrolyze forming alcohol and silica solids.
A process for dry cleaning and waterproofing of fabrics is disclosed in US. Patent No. 3,123,494 which process employs a silicone composition diluted in typical dry cleaning solvents. The silicone compositions recommended are mixtures of linear dimethylpolysiloxane fluids and cross-linked methylsiloxane resins. Excess liquid cleaning mixture is removed from the textiles by centrifuging but retained silicone provides a continuing waterproofing effect on the textile. Again, it is apparent that this publication does not contemplate the use of completely volatile cyclic dimethylpolysiloxanes as a cleaning solvent.
Liquid cleaning compositions for removing dirt and grit from solid surfaces are disclosed in US. Patent No. 2,955,047. The compositions contain surfactants, water, water-miscible organic solvent, and an oil-in-water emulsion of dimethylpolysiloxane oil. The specified selections are linear polymers with viscosities in the range of 200 to 350 1;Z ;3932~i -centistokes. The selection polymer is said to impart a high glossy polish to the treated surfaces by depositing a monomolecular film on the surface. Somewhat similarly, us.
Patent No. 2,993,866 teaches an aerosol glass cleaner composition containing isopropanol, fluorochlorohydrocarbon propellants, and linear dimethylpolysiloxane having a viscosity of about 200 centistokes.
An all purpose cleaner composition containing a mixture of surfactants, isopropyl alcohol, and a silicone deforming agent is disclosed in US. Patent No. 4,311,608.
The silicone deforming agent is an oil-in-water emulsion of dimethylsiloxane polymer.
A cleaner (apparently a wiper type) impregnated with a composition containing mineral oils or alcohols with organopolysiloxanes is disclosed in Japanese Patent Publication Cook No. (1975)-161059. The organopolysiloxanes are characterized by having a viscosity of not more than 30 centipoise at 20C.
This invention concerns a method for cleaning textiles which comprises applying to a soiled textile a liquid composition containing an effective amount to aid soil removal of a cyclic selection selected from the group consisting of octamethylcyclotetrasiloxane, decamethylcyclo-pentasiloxane, and dodecamethylcyclohexasiloxane and removing from the textile a combination of soil and cyclic selection.
In use, the novel textile cleaning compositions are applied to a soiled area of clothing, carpet, or other textile by spraying, pouring, or from a cloth or sponge applicator. The composition may be rubbed or brushed into the textile to facilitate loosening and dissolving the soil components. The soil-solvent combination is then removed from the textile by any of the well known methods such as blotting with absorbent material, absorption unto particulate ~3~3;~6 material followed by vacuuming, or a conventional home laundry operation.
The cyclic selections employed in the liquid cleaning and spot removing compositions of this invention are available commercially and are made by well known methods such as, for example, the hydrolysis and condensation of dimethyldichlorosilane.
Compared with the linear polydimethylsiloxanes the cyclic selections employed according to this invention are relatively volatile materials having boiling points below about 250C at 760 mm Hug. A single cyclic selection may be used in the liquid cleaning composition or any mixture of two or more of the cyclic selections may be used. Specifically preferred cyclic selections for use in this invention are octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane. It should be understood that useful cyclic selection mixtures may contain, in addition to the preferred cyclic selections, minor amounts of other cyclic selections including hexamethylcyclotrisiloxane or higher cyclic such as tetradecamethylcycloheptasiloxane.
Generally the amount of these other cyclic selections in useful cyclic selection mixtures will be less than about 10 percent based on the total weight of the mixture.
The amount of cyclic selection used in the liquid cleaning compositions of this invention is not critical so long as the amount used is effective to aid soil removal from textiles. In general, the cleaning composition may contain, for example, from 1 to 100 percent by weight of the cyclic selections. It is preferred that the cleaning composition contain from 5 to 100, or more preferably 10 to 100, percent by weight of the cyclic selections.
Other adjutants may be included in the liquid cleaning compositions of this invention such as conventional 123932~

cleaning solvents, absorbent solid particulate materials, synthetic builders, water soluble organic detergent compounds, and cat ionic antistatic substances.
For example, non residue spot cleaning compositions may contain conventional cleaning solvents mixed with cyclic selections according to the present invention. Any conventional cleaning solvent having a boiling point below about 250C can be mixed with the cyclic selections to prepare a liquid composition useful in the present invention. Useful additional cleaning solvents include alcohols such as isopropanol and buttonhole, petroleum hydrocarbons such as mineral spirits, and chlorinated hydrocarbons such as ethylene dichlorides tetrachloroethylene, and trichloro-ethylene. Surprisingly, it has been found that a mixture of cyclic selection and conventional cleaning solvent is more effective at mobilizing stains than is either the cyclic selection or the conventional solvent alone. Mixtures of cyclic selections and conventional solvents selected from the group consisting of petroleum hydrocarbons and chlorinated hydrocarbons are especially effective. Mixtures containing about 30 to 70 percent by weight of conventional cleaning solvent and 30 to 70 percent by weight of the cyclic selection are preferred because of their superior ability to mobilize stains.
Cleaning compositions of the solvent/absorbent class are also useful in the method of this invention. Such cleaning compositions may contain in addition to the cyclic selection any of the absorbent materials known for such applications. Useful absorbent materials include mineral particulate such as silica, talc, diatomaceous earth, coolant; organic particulate such as starch and modified starch, nut shell flour, and ground rice hulls; and synthetic porous polymers such as the urea-formaldehyde polymer lZ393~G

particles described in US. Patent No. 3,910,848, which more fully describes the polymer particles. The absorbent material is generally used in amounts of about 5 to 40 percent based on the weight of cleaning solvent in the composition.
Cleaning compositions of the solvent/absorbent class may also include a cat ionic antistatic agent to facilitate the removal of the particulate material during brushing or vacuuming of the textile material. Useful cat ionic anti stats include qua ternary nitrogen salts that contain at least one C10 to C24 aliphatic hydrocarbon substituent on the nitrogen such as stearyltrimethylammonium chloride. Antistatic agents are typically employed in amounts of about 0.1 to 3 percent by weight based on the total weight of the cleaning composition.
The method for cleaning textiles of this invention also includes the use of prewash spot remover compositions containing nonvolatile surfactant components in addition to cyclic selection solvent. Such prewash spot remover compositions will generally include a water soluble organic detergent material and synthetic builders in combination with the cyclic selection solvent. Detergent compounds useful in prewash spot removers are the anionic, non ionic, zwitterionic and ampholytic surfactant compounds. Such detergent compounds are well known to those skilled in the detergent art. Exemplary detergents are described in the well-known books entitled "Surface Active Agents" by Schwartz and Perry and "Surface Active Agents and Detergents" by Schwartz, Perry and Bench, both by Intrusions Publishers, New York, NAY.
Especially preferred detergents are the non ionic surfactants which are condensation products of polyethylene oxide with an organic hydrophobic compound which is usually aliphatic or alkylaromatic in nature. Exemplary non ionic ~2~93Z6 surfactants are polyethylene oxide condensates of nonyl phenol and polyethylene oxide condensates of myristyl alcohol.
Generally, from about 10 to 80 percent by weight of surfactants may be used in the prewash spot removing compost-lions of this invention. More preferred prewash spot removing compositions contain 30 to 70 percent by weight of non ionic surfactants.
Prewash spot removers of this invention may also contain a variety of builder compounds such as sodium tripolyphosphate, sodium carbonate, sodium silicate, the alkali metal, ammonium and substituted ammonium salts of oxydisuccinic acid, oxydiacetic acid, carboxymethyloxymalonic acid, carboxymethyloxysuccinic acid, lactoxysuccinic acid, citric acid, mellitic acid, tetrahydrofurantetracarboxylic acid, polyacrylic acid, nitrilotriacetic acid, oxidized starches and mixtures thereof. Builders are generally added `
to prewash spot removing compositions in amounts ranging from 0 to about 50 percent by weight based on the weight of the total composition.
The liquid compositions of the present invention are especially adapted for direct application to stains and soils on fabrics and other textiles. The compositions can be applied to soiled textiles by any of the commonly used methods. The liquid compositions may be poured or sprayed onto the stains. Alternatively the composition may be brushed or rubbed onto the stained or soiled area using absorbent items such as brushes, paper towels, cloth or sponges that contain the cleaning composition.
Once the cleaning composition has been applied to the soiled textile, the cyclic selection acts to dissolve and/or loosen the soil which it contacts. The mobilized soil is then more easily removed from the textile in combination -123~332~

with the cyclic selection. The cyclic siloxane/soil combination can be removed from the textile by any convenient method such as blotting the textile with a dry absorbent material. The textile may be blotted, for example, with sponges, paper towels, or cloth towels. Alternatively, the soil/cyclic selection combination may be removed by processes such as brushing, vacuuming, or conventional home laundry operations. Brushing and vacuuming are especially useful if solid, absorbent particles are employed in the liquid cleaning composition. Conventional home laundry is the preferred method of removal when nonvolatile surfactants are used in combination with cyclic selection in the cleaning composition.
The cyclic selections are sufficiently volatile that any residual cyclic selection on the textile, after removal of the soil, readily volatilizes to leave the treated area dry as well as clean The method of the present invention can be used to remove a wide variety of soils and stains. The cyclic selection is especially effective at removing oil and grease spots or stains. One special advantage of the cyclic selections as cleaning solvents is that the formation of a secondary stain ring is either eliminated or greatly reduced in definition. Another advantage is that the cyclic selections are essentially nontoxic and non harmful in the environment.
Furthermore, the cyclic selections can be used with a wide variety of fabrics without harming or in any way changing the appearance-of the fabric. The method of cleaning of this invention can be used on all types of textiles including carpets and fabrics used for clothing or upholstery.

Jo ~23~6 The following examples are presented to illustrate the invention, but the examples in no way limit the scope of the invention as more fully set out in the claims.
Artificial serum employed in the following examples was prepared from a base mixture of palmitic acid (5 g), Starkey acid (2.5 g), coconut oil (7.5 g), paraffin (5 g), spermaceti (7.5 g), olive oil (10 g), skyline (2.5 g), cholesterol (2.5 g), oleic acid (5 g), and linoleic acid (2.5 g). A melted (120F) 5 g portion of the base mixture was combined with oleic acid (4 g) and triethanolamine (8 g) and agitated at 120F until homogeneous. Then air filter dirt (12 g, +200 mesh) and deionized water (100 ml) were added and the mixture agitated for ten minutes. Additional deionized water (900 ml) was added and the mixture was agitated in a homogenizer for ten minutes. The mixture was stored in a 100F oven and shaken well before using for staining.
Example 1 The following experiments demonstrate the stain removal ability of cyclic dimethylpolysiloxanes on 100 percent cotton fabric.
Cotton fabric test pieces were prepared with approximately 1 inch diameter stains of used motor oil, cooking oil and artificial serum. The stains were aged at room temperature for 24 hours. Stains were cleaned by placing the fabric pieces on several absorbent paper towels and rubbing the stained area for 20 seconds with a paper towel saturated with the cleaning fluid.
The cyclic selection fluids tested were (A) octal methylcyclotetrasiloxane, (B) decamethylcyclopentasiloxane, (C) a cyclic selection mixture of about 91 percent by weight octamethylcyclotetrasiloxane and about 8 percent by weight decamethylcyclopentasiloxane, and (D) a cyclic selection mixture of about 1.3 percent by weight ~;~3~3Z6 octamethylcyclotetrasiloxane, about 69.3 percent by weight decamethylcyclopentasiloxane and about 29.1 percent by weight dodecamethylcyclohexasiloxane. For comparison, hex-methyldisiloxane, mineral spirits, tetrachloroethylene, isopropyl alcohol, and zillion were also used to clean the stains.
After drying, the cleaned fabric pieces were rated visually for the degree of stain removal according to the following scale:
5 = Complete removal 4 = Slight remaining stain 3 = Moderate stain remaining

2 = Slight removal of stain 1 = No change in stain The ratings were made by comparison of the test pieces with a standard series of exemplary stains in a black box using a fluorescent light source. Deviations between the test pieces and the standard stains are indicated by fractional ratings.
The used motor oil tended to form a dual stain containing a smaller sludge portion nearer the center and a larger oil portion which spread out more from the point of application. Some differences in the cleaning of the two portions of these stains were observed and consequently the cleaning of each portion was separately rated. The results of the visual rating are presented in Table 1.

Jo ~2;;~3i~6 TABLE 1: STAIN REMOVAL ON COTTON FABRIC
Cleaning Fluid Stain Motor Motor Cooking Artificial Oil Oil Oil Serum (Sludge) A 2.5 2.0 5.0 3.0 B 2.5 2.0 5.0 3.0 C 2.9 2.0 4.8 2.8 D 2.8 2.5 5.0 3.0 [(Chihuahuas 2.7 2.9 4.3 3.0 Mineral Spirits 2.9 2.5 4.9 3.0 Tetrachloroethylene 2.5 2.5 5.0 2.8 Isopropyl Alcohol 1.0 1.0 4.5 1.0 Zillion 2.8 3.5 5.0 1.0 Example 2 The stain removal testing procedure of Example 1 was repeated using a 65/35 polyester/cotton fabric. The results of the black box visual ratings of the cleaned fabric are presented in Table 2.
TABLE 2: STAIN REMOVAL ON 65/35 POLYESTER/COTTON FABRIC
Cleaning Fluid Stain Motor Motor Cooking Artificial Oil Oil Oil Serum (Sludge) A 2.5 3.0 5.0 3.0 B 3.0 3.0 5.0 3.0 C 2.9 3.0 5.0 3.0 D 3.5 3.5 5.0 3.0 [(Chihuahuas 2.9 - - 3.0 Isopropyl Alcohol 1.0 1.0 3.0 3.0 Zillion 3.0 4.0 5.0 3.0 . ., 12393~6 Example 3 The stain removal testing procedure of Example 1 was repeated using a 100 percent polyester fabric. The results of the black box visual ratings of the cleaned fabric are presented in Table 3.
TABLE 3: STAIN REMOVAL ON 100% POLYESTER FABRIC
Cleaning Fluid Stain Motor Motor Cooking Artificial Oil Oil Oil Serum (Sludge) A 2.0 5.0 5.0 1.0 B 2.0 5.0 5.0 1.0 C ` 2.0 5.0 5.0 1.0 D 2.0 5.0 5.0 1.0 [(Chihuahuas 1.5 5.0 4.2 1.0 Mineral Spirits 3.0 5.0 4.1 1.0 Tetrachloroethylene3.5 5.0 4.9 1.0 example 4 The stain removal testing procedure of Example 1 was modified by heat setting the stain before cleaning.
Stains were set by placing the fabric in an automatic clothes dryer at the high temperature setting for two cycles of 60 minutes each. Polyester (100~) fabric was used in these tests. Results of the black box visual ratings of cleaned fabric are presented in Table 4.

1'Z393Z6 TABLE 4: STAIN REMOVAL OF HEAT SET STAINS
Cleaning Fluid Stain Motor Motor Cooking Artificial Oil Oil Oil Serum (Sludge A 2.0 5.0 5.0 1.3 B 2.0 5.0 4.9 1.6 C 2.0 5.0 5.0 1.0 D 2.0 5.0 4.7 1.2 [(Chihuahuas 2.0 5.0 4.8 1.2 Mineral Spirits 3.0 5.0 4.8 1.2 Tetrachloroethylene3.5 4.9 5.0 1.0 Example 5 The following experiments demonstrate the relative efficiency of cyclic dimethylpolysiloxanes in spreading oil stains on fabric. The degree of spreading of the stain relates to the extent of mobilization of the stain by the solvent being tested. Generally, the more effectively a stain can be mobilized, the more easily and completely it can be removed from the fabric.
Cotton fabric test pieces (8 inch x 8 inch) were placed in an embroidery hoop and approximately 1 ml of cooking oil was applied to the center of the fabric. Stains were aged at room temperature for 24 hours. The fabric was then positioned under a burette filled with the cleaning fluid. With the burette tip just above the center of the stain, a 0.5 ml portion of the cleaning fluid was dropped on the stain. The fabric was allowed to dry at room temperature and the size of the resulting stain was measured. Generally the stains were circular or slightly oval in shape. The approximate areas of the stains after the spreading process with various cleaning fluids are shown in Table 5. In the case of oval shaped stains, approximate areas were calculated sty as if the stain were circular using a diameter equal to the average of the length and width of the oval. The cyclic selection fluids tested are described in Example l.
TABLE 5: SPREADING OF COOKING OIL STAINS ON COTTON
Cleaning Fluid Stain Area (so. in.) None 0.8 A >50 B >50 C >50 Chihuahuas 5 9 Mineral Spirits ~50 Tetrachloroethylene 4.9 Example 6 The stain spreading procedure of Example 5 was repeated using 100~ polyester fabric test pieces. The approximate stain areas after spreading are shown in Table 6.
TABLE 6: SPREADING OF COOKING OIL STAINS ON POLYESTER
Cleaning Fluid Stain Area (so. in.) None 0.8 Chihuahuas 13 Mineral Spirits 25 Tetrachloroethylene 16 Example 7 The stain spreading procedure of Example 5 was repeated using a 65/35 polyester/cotton fabric. Approximate stain areas after spreading are presented in Table 7.

~23932~ -TABLE 7: SPREADING OF COOKING OIL STAINS ON 65/35 POLYESTER/COTTON

Cleaning Fluid Stain Area (so. in.) None 0.8 [(Chihuahuas 27 Mineral Spirits 38 Tetrachloroethylene 5.9 Example 8 The following experiments demonstrate the stain spreading efficiency of blends of cyclic dimethylpoly-selections and conventional cleaning fluids such as mineral spirits and tetrachloroethylene.
Cooking oil stains were prepared on 65/35 polyester/cotton fabric and the spreading procedure of Example 5 was repeated except that a 1 ml portion of a blend of cleaning materials was dropped on the stain. Octamethyl-cyclotetrasiloxane was blended in various proportions by weight with either mineral spirits or tetrachloroethylene to prepare the cleaning materials. The approximate stain areas after spreading are shown in Table 8.

.
.

lZ393Z~

TABLE 8: SPREADING OF STAINS WITH BLENDS OF CYCLIC
SELECTIONS AND CONVENTIONAL CLEANING FLUIDS

Conventional Cleaning Ratio of Cyclic Selection Stain Area Fluid in Blend _ to Conventional Fluid (so. in.) Mineral Spirits 5/95 40 Mineral Spirits 10/90 39 Mineral Spirits 20/80 40 Mineral Spirits 30/70 47 Mineral Spirits 40/60 ~50 Mineral Spirits 5Q/50 >50 Mineral Spirits 60/40 ~50 Mineral Spirits 70/30 >50 Mineral Spirits 80/20 34 Mineral Spirits 90/10 27 Tetrachloroethylene 5/95 13 Tetrachloroethylene10/90 17 Tetrachloroethylene20/80 10 Tetrachloroethylene30/70 25 Tetrachloroethylene40/60 >50 Tetrachloroethylene50/50 >50 Tetrachloroethylene60/40 22 Tetrachloroethylene70/30 >50 Tetrachloroethylene80/20 22 Tetrachloroethylene90/10 31 Example 9 The stain spreading procedure of Example 8 was repeated using decamethylcyclopentasiloxane blended in various proportions by weight with either mineral spirits or tetrachloroethylene. The approximate stain areas after spreading are presented in Table 9.

~23~3~26 TABLE 9: SPREADING OF STAINS WITH BLENDS OF CYCLIC
SELECTION AND CONVENTIONAL CLEANING FLUIDS

Conventional Cleaning Ratio of Cyclic Selection Stain Area Fluid in Blend to Conventional Fluid (so. in.) Mineral Spirits 5/95 28 Mineral Spirits 10/90 >50 Mineral Spirits 20/80 ~50 Mineral Spirits 30/70 34 Mineral Spirits 40/60 ~50 Mineral Spirits 50/50 31 Mineral Spirits 60/40 >50 Mineral Spirits 70/30 35 Mineral Spirits 80/20 38 Mineral Spirits 90/10 37 Tetrachloroethylene 5/95 18 Tetrachloroethylene 10/90 19 Tetrachloroethylene 20/80 25 Tetrachloroethylene 30/70 33 Tetrachloroethylene 40/60 25 Tetrachloroethylene 50/50 33 Tetrachloroethylene 60/40 31 Tetrachloroethylene 70/30 21 Tetrachloroethylene 80/20 26 Tetrachloroethylene 90/10 33 Example 10 The following tests demonstrate the use of cyclic dimethylpolysiloxanes as a solvent component in prewash spotting formulations used in home laundering.
Polyester fabric test pieces were prepared with approximately 1 inch diameter stains of used motor oil, cooking oil, and artificial serum. Stains were heat set by placing the fabric in an automatic clothes dryer at the high temperature setting for two cycles of 60 minutes each. Each lZ~9326 stain was treated with 2 ml of the test fluid as described in Example 1. Each fluid was left on the stain for one to two minutes. The test fabric pieces were then washed in a household automatic washer on the normal setting using the recommended level of a powdered non phosphate detergent. The fabric pieces were dried in an automatic clothes dryer on the permanent press setting.
The cleaned fabric pieces were rated visually for the degree of stain removal according to the following scale:
S = Complete removal 4 - Slight remaining stain

3 = Moderate stain remaining 2 = Slight removal of stain 1 = No change in stain The ratings were made by comparison of the test pieces with a standard series of exemplary stains in a black box using a fluorescent light source.
The used motor oil tended to form a dual stain containing a smaller sludge portion nearer the center and a larger oil portion which spread out more from the point of application. Some differences in the cleaning of the two portions of these stains were observed and consequently the cleaning of each portion was separately rated. The results of the visual rating are presented in Table 10.

z~3326 TABLE 10: STAIN REMOVAL BY PREWASH SPOTTING
Solvent stain Motor Motor Cooking Artificial Oil Oil OilSebum (Sludge) A 3.0 5.0 4.55.0 B 3.5 5.0 5.05.0 C 3.0 5.0 5.05.0 D 3.0 5.0 5.05.0 [(Chihuahuas 4.0 5.0 4.95.0 Mineral Spirits 4.0 5.0 5.05.0 Tetrachloroethylene 4.2 5.0 4.95.0 Isopropyl Alcohol 1.0 5.0 3.54.0 Zillion 3.0 5.0 5.03.3 Polydimethylsiloxane 2 as* 1.2 5.0 5.0 3.7 Polydimethylsiloxane 5 as* 1.0 5.0 5.0 3.5 Polydimethylsiloxane 10 as* 1.0 5.0 5.0 4.0 *Trimethylsilyl end blocked linear dimethylsiloxane polymers

Claims (8)

Claims:
1. A method for cleaning textiles which comprises applying to a soiled textile a liquid composition containing an effective amount to aid soil removal of a cyclic siloxane selected from the group consisting of octamethylcyclotetra-siloxane, decamethylcyclopentasiloxane, and dodecamethyl-cyclohexasiloxane and removing from the textile a combination comprising soil and cyclic siloxane.
2. A method as recited in claim 1 wherein the liquid composition contains 1 to 100 percent by weight of the cyclic siloxanes.
3. A method as recited in claim 2 wherein the liquid composition contains 5 to 100 percent by weight of the cyclic siloxanes.
4. A method as recited in claim 3 wherein the liquid composition contains 10 to 100 percent by weight of the cyclic siloxanes.
5. A method as recited in claim 4 wherein the liquid composition contains 30 to 70 percent by weight cyclic siloxane and 30 to 70 percent by weight of cleaning solvent selected from the group consisting of petroleum hydrocarbons and chlorinated hydrocarbons.
6. A method as recited in claim 5 wherein the liquid composition contains cyclic siloxane and mineral spirits.
7. A method as recited in claim 5 wherein the liquid composition contains cyclic siloxanes and a chlorinated hydrocarbon cleaning solvent.
8. A method as recited in claim 7 wherein the liquid composition contains cyclic siloxane and tetrachloro-ethylene.
CA000493616A 1984-11-13 1985-10-23 Method for cleaning textiles with cyclic siloxanes Expired CA1239326A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US67019584A true 1984-11-13 1984-11-13
US670,195 1984-11-13

Publications (1)

Publication Number Publication Date
CA1239326A true CA1239326A (en) 1988-07-19

Family

ID=24689398

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000493616A Expired CA1239326A (en) 1984-11-13 1985-10-23 Method for cleaning textiles with cyclic siloxanes

Country Status (5)

Country Link
EP (1) EP0182583B1 (en)
JP (1) JPS6350463B2 (en)
AU (1) AU585906B2 (en)
CA (1) CA1239326A (en)
DE (1) DE3583377D1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564591B2 (en) 2000-07-21 2003-05-20 Procter & Gamble Company Methods and apparatus for particulate removal from fabrics
US6670317B2 (en) 2000-06-05 2003-12-30 Procter & Gamble Company Fabric care compositions and systems for delivering clean, fresh scent in a lipophilic fluid treatment process
US6673764B2 (en) 2000-06-05 2004-01-06 The Procter & Gamble Company Visual properties for a wash process using a lipophilic fluid based composition containing a colorant
US6691536B2 (en) 2000-06-05 2004-02-17 The Procter & Gamble Company Washing apparatus
US6706677B2 (en) 2000-06-05 2004-03-16 Procter & Gamble Company Bleaching in conjunction with a lipophilic fluid cleaning regimen
US6706076B2 (en) 2000-06-05 2004-03-16 Procter & Gamble Company Process for separating lipophilic fluid containing emulsions with electric coalescence
US6818021B2 (en) 2000-06-05 2004-11-16 Procter & Gamble Company Domestic fabric article refreshment in integrated cleaning and treatment processes
US6840069B2 (en) 2000-06-05 2005-01-11 Procter & Gamble Company Systems for controlling a drying cycle in a drying apparatus
US6840963B2 (en) 2000-06-05 2005-01-11 Procter & Gamble Home laundry method
US6855173B2 (en) 2000-06-05 2005-02-15 Procter & Gamble Company Use of absorbent materials to separate water from lipophilic fluid
US6930079B2 (en) 2000-06-05 2005-08-16 Procter & Gamble Company Process for treating a lipophilic fluid
US6939837B2 (en) 2000-06-05 2005-09-06 Procter & Gamble Company Non-immersive method for treating or cleaning fabrics using a siloxane lipophilic fluid
US7345016B2 (en) 2003-06-27 2008-03-18 The Procter & Gamble Company Photo bleach lipophilic fluid cleaning compositions
US7365043B2 (en) 2003-06-27 2008-04-29 The Procter & Gamble Co. Lipophilic fluid cleaning compositions capable of delivering scent

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY118065A (en) 1989-10-26 2004-08-30 Toshiba Silicone Cleaning compositions
DE3940804A1 (en) * 1989-12-09 1991-06-13 Kreussler Chem Fab Use of cyclosiloxanes, isoparaffins and / or mineral spirits
GB9002716D0 (en) * 1990-02-07 1990-04-04 Dow Corning Sa Method of bonding silicone elastomer to a substrate
US5503681A (en) * 1990-03-16 1996-04-02 Kabushiki Kaisha Toshiba Method of cleaning an object
US5593507A (en) * 1990-08-22 1997-01-14 Kabushiki Kaisha Toshiba Cleaning method and cleaning apparatus
EP0576687B1 (en) * 1992-01-21 2001-08-29 Olympus Optical Co., Ltd. Cleaning and drying solvent
US5403402A (en) * 1994-01-07 1995-04-04 Dow Corning Corporation Method of removing coating from surfaces
US6045588A (en) 1997-04-29 2000-04-04 Whirlpool Corporation Non-aqueous washing apparatus and method
US7534304B2 (en) * 1997-04-29 2009-05-19 Whirlpool Corporation Non-aqueous washing machine and methods
US6059845A (en) * 1997-08-22 2000-05-09 Greenearth Cleaning, Llc Dry cleaning apparatus and method capable of utilizing a siloxane composition as a solvent
US6310029B1 (en) * 1999-04-09 2001-10-30 General Electric Company Cleaning processes and compositions
DE60039069D1 (en) * 1999-12-17 2008-07-10 Gen Electric A process for dry cleaning
AU2005200835B2 (en) * 2000-06-05 2006-03-30 The Procter & Gamble Company Domestic fabric article refreshment in integrated cleaning and treatment processes
AT499481T (en) * 2000-06-05 2011-03-15 Procter & Gamble A method of bleaching using a lipophilic fluid-
US7018423B2 (en) 2000-06-05 2006-03-28 Procter & Gamble Company Method for the use of aqueous vapor and lipophilic fluid during fabric cleaning
KR20040052506A (en) 2001-05-30 2004-06-23 노프 코포레이션 Detergent composition for dry cleaning
DE60207255T2 (en) 2001-07-10 2006-08-10 The Procter & Gamble Company, Cincinnati Compositions and methods for removing soils from fabric articles
WO2003023125A1 (en) 2001-09-10 2003-03-20 The Procter & Gamble Company Silicone polymers for lipophilic fluid systems
CA2455958A1 (en) 2001-09-10 2003-03-20 The Procter & Gamble Company Down the drain cleaning system
JP2004331849A (en) * 2003-05-08 2004-11-25 Mihama Kk Detergent composition and washing method for article
US8148315B2 (en) 2003-06-27 2012-04-03 The Procter & Gamble Company Method for uniform deposition of fabric care actives in a non-aqueous fabric treatment system
US7318843B2 (en) 2003-06-27 2008-01-15 The Procter & Gamble Company Fabric care composition and method for using same
US7202202B2 (en) 2003-06-27 2007-04-10 The Procter & Gamble Company Consumable detergent composition for use in a lipophilic fluid
US7695524B2 (en) 2003-10-31 2010-04-13 Whirlpool Corporation Non-aqueous washing machine and methods
US7739891B2 (en) 2003-10-31 2010-06-22 Whirlpool Corporation Fabric laundering apparatus adapted for using a select rinse fluid
EP1740757A1 (en) 2004-04-29 2007-01-10 Unilever N.V. Dry cleaning method
US7966684B2 (en) 2005-05-23 2011-06-28 Whirlpool Corporation Methods and apparatus to accelerate the drying of aqueous working fluids

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4324595A (en) * 1979-08-31 1982-04-13 Dow Corning Corporation Method for removing tacky adhesives and articles adhered therewith
DE3114969C2 (en) * 1980-04-19 1986-04-03 Dow Corning Ltd., London, Gb
GB2074184B (en) * 1980-04-19 1983-06-02 Dow Corning Ltd Compositions for treating hair and other fibrous materials

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7704937B2 (en) 2000-06-05 2010-04-27 The Procter & Gamble Company Composition comprising an organosilicone/diol lipophilic fluid for treating or cleaning fabrics
US6670317B2 (en) 2000-06-05 2003-12-30 Procter & Gamble Company Fabric care compositions and systems for delivering clean, fresh scent in a lipophilic fluid treatment process
US6673764B2 (en) 2000-06-05 2004-01-06 The Procter & Gamble Company Visual properties for a wash process using a lipophilic fluid based composition containing a colorant
US6691536B2 (en) 2000-06-05 2004-02-17 The Procter & Gamble Company Washing apparatus
US6706677B2 (en) 2000-06-05 2004-03-16 Procter & Gamble Company Bleaching in conjunction with a lipophilic fluid cleaning regimen
US6706076B2 (en) 2000-06-05 2004-03-16 Procter & Gamble Company Process for separating lipophilic fluid containing emulsions with electric coalescence
US6818021B2 (en) 2000-06-05 2004-11-16 Procter & Gamble Company Domestic fabric article refreshment in integrated cleaning and treatment processes
US6828292B2 (en) 2000-06-05 2004-12-07 Procter & Gamble Company Domestic fabric article refreshment in integrated cleaning and treatment processes
US6840069B2 (en) 2000-06-05 2005-01-11 Procter & Gamble Company Systems for controlling a drying cycle in a drying apparatus
US6840963B2 (en) 2000-06-05 2005-01-11 Procter & Gamble Home laundry method
US6855173B2 (en) 2000-06-05 2005-02-15 Procter & Gamble Company Use of absorbent materials to separate water from lipophilic fluid
US6930079B2 (en) 2000-06-05 2005-08-16 Procter & Gamble Company Process for treating a lipophilic fluid
US6939837B2 (en) 2000-06-05 2005-09-06 Procter & Gamble Company Non-immersive method for treating or cleaning fabrics using a siloxane lipophilic fluid
US6998377B2 (en) 2000-06-05 2006-02-14 Procter & Gamble Company Process for treating a lipophilic fluid
US7439216B2 (en) 2000-06-05 2008-10-21 The Procter & Gamble Company Composition comprising a silicone/perfluoro surfactant mixture for treating or cleaning fabrics
US6564591B2 (en) 2000-07-21 2003-05-20 Procter & Gamble Company Methods and apparatus for particulate removal from fabrics
US7365043B2 (en) 2003-06-27 2008-04-29 The Procter & Gamble Co. Lipophilic fluid cleaning compositions capable of delivering scent
US7345016B2 (en) 2003-06-27 2008-03-18 The Procter & Gamble Company Photo bleach lipophilic fluid cleaning compositions

Also Published As

Publication number Publication date
CA1239326A1 (en)
JPS6350463B2 (en) 1988-10-07
EP0182583A3 (en) 1988-04-06
AU4981785A (en) 1986-05-22
DE3583377D1 (en) 1991-08-08
EP0182583B1 (en) 1991-07-03
AU585906B2 (en) 1989-06-29
JPS61119765A (en) 1986-06-06
EP0182583A2 (en) 1986-05-28

Similar Documents

Publication Publication Date Title
US4613446A (en) Gelled detergent composition and cleaning pads containing same
US6350287B1 (en) Biodegradable ether dry cleaning solvent
US4457857A (en) Pretreatment composition for stain removal
CA1175316A (en) Powdered cleansing composition
EP0882122B1 (en) Improved compositions containing organic compounds
EP0023361B1 (en) Laundry detergent containing anti-redeposition agent
AU2007246995C1 (en) Novel cleaning method
US6171346B1 (en) Dual-step stain removal process
CN1042353C (en) Washing method using washing agent
KR960012278B1 (en) Improved liquid cleaners
EP0770123B1 (en) Soft surface cleaning composition with hydrogen peroxide
EP1043443B1 (en) Cleaning processes and compositions
CA1279156C (en) Articles for conditioning fabrics in a laundry dryer
US5759980A (en) Car wash
US4708807A (en) Cleaning and waterproofing composition
US5968204A (en) Article for cleaning surfaces
US3910848A (en) Liquid cleaning composition
EP1290268B1 (en) Improved visual properties for a wash process
AU716076B2 (en) Aqueous cleaning compositions providing water and oil repellency to fiber substrates
CN1289566C (en) Free-flowing, amphiphilic non-ionic oligoesters
US6150318A (en) Aerosol cleaning compositions
JP4257201B2 (en) Hard surface cleaning composition comprising a solvent system
JP3931254B2 (en) Multi surface cleaning compositions and methods of use thereof
US6759377B2 (en) Detergent for vitroceramic surfaces
JP3001980B2 (en) How to hold shower facilities rinse aqueous composition and the shower facilities clean

Legal Events

Date Code Title Description
MKEX Expiry