CA1189631A - Circuit boards with die stamped contact pads and conductive ink circuit patterns - Google Patents

Circuit boards with die stamped contact pads and conductive ink circuit patterns

Info

Publication number
CA1189631A
CA1189631A CA000441235A CA441235A CA1189631A CA 1189631 A CA1189631 A CA 1189631A CA 000441235 A CA000441235 A CA 000441235A CA 441235 A CA441235 A CA 441235A CA 1189631 A CA1189631 A CA 1189631A
Authority
CA
Canada
Prior art keywords
strip
dielectric material
contact pads
die
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000441235A
Other languages
French (fr)
Inventor
George V. Lenaerts
Eugene W. Charchanko
Andrejs Dambenieks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks Ltd
Original Assignee
Northern Telecom Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Telecom Ltd filed Critical Northern Telecom Ltd
Priority to CA000441235A priority Critical patent/CA1189631A/en
Application granted granted Critical
Publication of CA1189631A publication Critical patent/CA1189631A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/04Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching
    • H05K3/041Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching by using a die for cutting the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • H05K3/4015Surface contacts, e.g. bumps using auxiliary conductive elements, e.g. pieces of metal foil, metallic spheres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0108Male die used for patterning, punching or transferring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/04Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

CIRCUIT BOARDS WITH DIE STAMPED
CONTACT PADS AND CONDUCTIVE INK CIRCUIT PATTERNS
Abstract of the Disclosure Printed circuit boards have copper contact pads cut from copper foil and bonded to the circuit board, followed by printing circuit patterns of conductive ink on the board, the pattern connecting with the contact pads. The contact pads are cut from a copper foil strip fed with the circuit board beneath a die. Bonding of the contact pads follows, then printing of the circuit patterns.
Boards can be formed from strip material in which case the individual boards are cut from the strip material.

- i -

Description

~8~

This invention relates to circuit boards with die stamped contact pads and conductive ink circuit patterns, and to a process for making such boards.
Circuit boards are made using techniques such as using porcelainized steel blanks with screened silver inks which are fired;
copper patterns on dielectric boards; polymer thick films on dielectric boards. Connections can be made by soldering for the first two examples, while a connector is required for polymer thick films as these are not solderable. For copper patterns on dielectric boards, contact areas are generally produced by plating on to the conductor patterns at desired places.
To reduce the cost it has been proposed to use conventional printed circuit board copper patterns, screen printed with conductive inks at positions where contact pads are required. A
further reduction in cost could be obtained by avoiding the preparation of the copper patterns and printing the pattern directly on the board. However, this would require a connector to connect the ink circuitry to components or other boards or devices.
The present invention proposes the die stamping of contact pads on to the dielectric board, at desired locations, followed by screen printing of conduc~ive ink patterns. Typically, a strip of copper is fed over boards; the contact pads are die cut from the copper strip and pressed onto the boards, with the perforated strip wound up; the copper pads are bonded to the boards with heat and pressure; conductive ink patterns are then printed on the boards, connecting with the contact pads. The copper strip has an adhesive on its lower side and this adhesive is cured by the heating and 6~

pressure. While the boards can be singly fed, with suitable locating means, it will usually be more effective to feed the boards in strips, with punchiny or shearing of finished boards ~rom the strips, The invention will be readily understood by the following description of typical circuit boards and a process, in conjunction with the accompanyirg drawings, in which:-Figures 1 and 2 illustrate two typical examples ofcircuit boards for telephone keypads;
Figure 3 illustrates a modification to the board of Figure 2, with enlarged contact pads; and Figures 4(a) to 4(d) illustrate the steps in the production of boards, in accordance with the present invention.
In the circuit boards illustrated in Figures 1 and 2, the dielectric base or board is indicated at 10, circuit patterns at 11, formed by copper, with contact pads at 12. The contact pads 12 usually have holes 13 therethrough for reception of pins of a connector, or passage of wires, usually afterwards soldered to the pads 12. Contact areas for push-button keys are formed at 14, as by printing conductive inks at areas indicated at 15. It is often very difficult to obtain accurate register between the conductive ink areas 15 and the copper pattern at those areas. Clearances between the various areas 15 at a position 14 are very small, as are the clearances between the copper areas at these positions and short-circuits can occur~
Figure 3 illustrates a board which is similar to that of Figure 2, but with contact pads 12 made slightly elongate. The pads are applied by die cutting or stamping from copper film or 3~
.

strips, and the circuit patterns 11 are formed by printed conductive ink~ Holes 13 can be provided in die pads 12. The contact areas 14 in Figure 2 are formed by printing ink on to copper. In a board as in Figure 3, the contact areas are formed at the same time as the patterns 11 are formed. Thus the need for accurate register between contact areas and conductor patterns is avoided.
A process, or method, of forming circuit boards is illustrated in Figures 4(a) to 4(d). In Figure 4(a), a strip of dielectric material 20 is fed along on a support surface, holes 21 in khe strip acting as locating means. A strip of copper foil 22 is fed from a feed roll 23 beneath a press 24 with a die 25. The strip has an adhesive on its lower surface. The die 25, which may be heated, stamps out contact pads from the copper foil and presses them on to the strip 20, the pads seen at 26. The scrap, perforated strip is wound up on a take-up roll 27.
In Figure 4(b) the strip 20 passes beneath a press 30 having a heated pad 31 which presses on the pads 26 and cures the adhesive. In Figure 4(c) a printing machine 34 prints the circuit pattern on the strip 20, the circuit patterns indicated at 3S. In Figure 4(d) the strip passes beneath a blanking press 37. The press 37, in addition to blanking out the circuit boards, indicated at 38, can also form any holes required in the circuit board.
The strip of dielectric material is of a length sufficient to produce a predetermined number of circuit boards. The strips are fed beneath the various presses and other apparatus by means of a conventional stepping mechanism which feeds the strip in steps, a step being equal to the pitch of holes 21 for exampleO The presses 24, 30, and 37 and printing machine 3~ are shown electrically operated, the operation being readily controlled by d central control. T~us the strip 20 is moved one pitch, then the various presses and printing machine actuated, then the strip advanced one step, and so on. ~owever, it would be possible to actuate the presses and printing machine hydraulically or pneumatically. The heating pad 31 would normally be heated electrically. If desired, some form of heating of the printed strip, after printing of the circuit pattern, can be provided.
Various advantages result from the invention. The die-press application of the contact pads is simple and accurate.
The step of printing the conductive ink circuit patterns is also simple and inexpensive. No very accurate register between the printing of the circuit patterns and the contact pads is required and shorting between adjacent areas of a circuit pattern is avoided. The overall cost is reduced. The scrap f-ronn the contact pad forming foil has a high resale value as it is clean and has very little contamination. It is also possible to apply the invention to individual precut circuit boards. It would be necessary to provide the circuit boards with some locating rnenas, such as holes, to ensure that the individual boards are fed consequtively alony beneath tlle various machines. In this arrangement, the blanking press may not be required, or may be required for forming holes only.

Claims (8)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A method of making circuit boards, comprising sequentially passing flat dielectric material beneath a die, a heated pad and a printing machine, interposing a strip of copper foil between the die and the dielectric material, the copper foil having a layer of adhesive on its under surface, cutting die pads from the copper foil with said die and pressing the contact pads on to said dielectric material; bonding said contact pads to said dielectric material by said heated pad; and printing a circuit pattern on said dielectric material, the circuit pattern connecting to said contact pads.
2. A method as claimed in claim 1, wherein said dielectric material is in the form of a strip, including the further step of feeding the dielectric material beneath a blanking press and blanking circuit boards from said strip after printing said circuit pattern.
3. A method as claimed in claim 1, wherein said die is heated.
4. A method as claimed in claim 1, including feeding the copper foil from a spool before the die and collecting hte perforated copper foil on a spool after the die.
5. A method of making circuit boards, comprising:-feeding a strip of dielectric material along a support surface;

locating said strip of dielectric material by locating means in said strip;
feeding said strip of dielectric material and a strip of copper foil beneath the die of a press, and actuating said die to stamp contact pads from said foil and press the contact pads on said strip of dielectric material at predetermined positions;
removing the foil strip from the strip of dielectric material;
feeding the strip of dielectric material beneath a press having a heated pad and bonding said contact pads on to said strip of dielectric material feeding the dielectric strip beneath a printing head and printing a circuit pattern on the dielectric material, the circuit pattern connecting with said contact pads; and feeding the dielectric strip to a blanking press and cutting individual circuit boards from said strip.
6. A method as claimed in claim 5, said strip of copper foil having a layer of adhesive on its surface in contact with the strip of dielectric material, including pressing the contact pads on to said dielectric material by said die to cause initial adhesion of said contact pads, and curing said adhesive with heat and pressure by said heated pad.
7. A method as claimed in claim 5, including forming holes through said contact pads and said dielectric material.
8. A printed circuit board comprising a flat member of dielectric material, a predetermined arrangement of contact pads of copper foil bonded to a surface of the dielectric material and a circuit pattern printed on said surface and connecting to said contact pads.
CA000441235A 1983-11-15 1983-11-15 Circuit boards with die stamped contact pads and conductive ink circuit patterns Expired CA1189631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000441235A CA1189631A (en) 1983-11-15 1983-11-15 Circuit boards with die stamped contact pads and conductive ink circuit patterns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000441235A CA1189631A (en) 1983-11-15 1983-11-15 Circuit boards with die stamped contact pads and conductive ink circuit patterns

Publications (1)

Publication Number Publication Date
CA1189631A true CA1189631A (en) 1985-06-25

Family

ID=4126532

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000441235A Expired CA1189631A (en) 1983-11-15 1983-11-15 Circuit boards with die stamped contact pads and conductive ink circuit patterns

Country Status (1)

Country Link
CA (1) CA1189631A (en)

Similar Documents

Publication Publication Date Title
DE3125518C2 (en) Method of making a thin wiring assembly - US Pat
US4517739A (en) Method for making circuit boards with die stamped contact pads and conductive ink circuit patterns
US4327124A (en) Method for manufacturing printed circuits comprising printing conductive ink on dielectric surface
US5952713A (en) Non-contact type IC card
EP0720123A2 (en) Non-contact type IC card and method and apparatus for manufacturing the same
US5560795A (en) Process for manufacturing a printed circuit board and printed circuit board
US3107414A (en) Method of forming circuit cards
US4457861A (en) Method, materials and apparatus for manufacturing printed circuits
DE4303743C2 (en) Process for mounting electronic components on printed circuit boards
CA1189631A (en) Circuit boards with die stamped contact pads and conductive ink circuit patterns
JPH06342977A (en) Manufacture of printed circuit board
DE2746732A1 (en) Stacked capacitor prodn. method - producing electrodes on second strip and transferring by pressure to dielectric layer on first strip
JPH0321095A (en) Manufacturing method for large electric current circuit substrate
JP2927215B2 (en) Method for manufacturing flexible circuit board
US4429657A (en) Method, materials and apparatus for manufacturing printed circuits
JPH0723974Y2 (en) High current circuit board
JP3474910B2 (en) Manufacturing method of printed wiring board
EP1996001A2 (en) Method for manufacturing a substrate
DE1923199C (en) Method of manufacturing a circuit board
JPS58154291A (en) Method of producing printed circuit board
JPH06268354A (en) Manufacture of flexible circuit board
JP2534355B2 (en) High current circuit board manufacturing method
JP3989183B2 (en) Flat cable manufacturing method
JP3294312B2 (en) Manufacturing method of jumper chip
JPH04305997A (en) Printing and stacking method for multilayer board

Legal Events

Date Code Title Description
MKEC Expiry (correction)
MKEX Expiry