CA1102729A - Process for the hydrotreating of heavy hydrocarbon streams - Google Patents
Process for the hydrotreating of heavy hydrocarbon streamsInfo
- Publication number
- CA1102729A CA1102729A CA318,313A CA318313A CA1102729A CA 1102729 A CA1102729 A CA 1102729A CA 318313 A CA318313 A CA 318313A CA 1102729 A CA1102729 A CA 1102729A
- Authority
- CA
- Canada
- Prior art keywords
- catalyst
- range
- ang
- pores
- pore volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims abstract description 88
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 65
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 64
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 59
- 239000003054 catalyst Substances 0.000 claims abstract description 218
- 239000011148 porous material Substances 0.000 claims abstract description 172
- 229910052751 metal Inorganic materials 0.000 claims abstract description 79
- 239000002184 metal Substances 0.000 claims abstract description 79
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 67
- 150000002739 metals Chemical class 0.000 claims abstract description 53
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 38
- 239000001257 hydrogen Substances 0.000 claims abstract description 38
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000011733 molybdenum Substances 0.000 claims abstract description 37
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 37
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims abstract description 35
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 34
- 239000011651 chromium Substances 0.000 claims abstract description 34
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 30
- 239000010941 cobalt Substances 0.000 claims abstract description 30
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 150000003568 thioethers Chemical class 0.000 claims abstract description 10
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 4
- -1 asphaltenes Chemical class 0.000 claims description 23
- 229910017464 nitrogen compound Inorganic materials 0.000 claims description 14
- 150000002830 nitrogen compounds Chemical class 0.000 claims description 14
- 150000003464 sulfur compounds Chemical class 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 11
- 230000003068 static effect Effects 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 238000001354 calcination Methods 0.000 claims description 6
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 61
- 239000000463 material Substances 0.000 description 44
- 235000016768 molybdenum Nutrition 0.000 description 32
- 229910052759 nickel Inorganic materials 0.000 description 31
- 238000006243 chemical reaction Methods 0.000 description 29
- 229910052720 vanadium Inorganic materials 0.000 description 20
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 239000007789 gas Substances 0.000 description 18
- 239000003921 oil Substances 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 229910052717 sulfur Inorganic materials 0.000 description 15
- 239000011593 sulfur Substances 0.000 description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 12
- 238000006477 desulfuration reaction Methods 0.000 description 12
- 230000023556 desulfurization Effects 0.000 description 12
- 229940065278 sulfur compound Drugs 0.000 description 12
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 9
- 239000000356 contaminant Substances 0.000 description 9
- 238000005984 hydrogenation reaction Methods 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 239000003209 petroleum derivative Substances 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 238000005470 impregnation Methods 0.000 description 7
- 150000002431 hydrogen Chemical class 0.000 description 6
- 239000000395 magnesium oxide Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 238000004517 catalytic hydrocracking Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 4
- 239000011609 ammonium molybdate Substances 0.000 description 4
- 235000018660 ammonium molybdate Nutrition 0.000 description 4
- 229940010552 ammonium molybdate Drugs 0.000 description 4
- 238000004523 catalytic cracking Methods 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011269 tar Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- JOSWYUNQBRPBDN-UHFFFAOYSA-P ammonium dichromate Chemical compound [NH4+].[NH4+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O JOSWYUNQBRPBDN-UHFFFAOYSA-P 0.000 description 3
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000010763 heavy fuel oil Substances 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 238000006317 isomerization reaction Methods 0.000 description 3
- 150000002902 organometallic compounds Chemical class 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000002407 reforming Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 241000588731 Hafnia Species 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical class [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 101000952982 Conus striatus Conopressin-S Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- RNGSTWPRDROEIW-UHFFFAOYSA-N [Ni].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 Chemical class [Ni].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 RNGSTWPRDROEIW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000011021 bench scale process Methods 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940055042 chromic sulfate Drugs 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- 229910000356 chromium(III) sulfate Inorganic materials 0.000 description 1
- 239000011696 chromium(III) sulphate Substances 0.000 description 1
- 235000015217 chromium(III) sulphate Nutrition 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 229940000425 combination drug Drugs 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- 150000002816 nickel compounds Chemical group 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical class [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- IOVGROKTTNBUGK-SJCJKPOMSA-N ritodrine Chemical compound N([C@@H](C)[C@H](O)C=1C=CC(O)=CC=1)CCC1=CC=C(O)C=C1 IOVGROKTTNBUGK-SJCJKPOMSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8878—Chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
- B01J35/67—Pore distribution monomodal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/107—Atmospheric residues having a boiling point of at least about 538 °C
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
PROCESS FOR THE HYDROTREATING OF
HEAVY HYDROCARBON STREAMS
Abstract of the Invention The process comprises contacting a heavy hydro-carbon stream containing metals and asphaltenes under suitable conditions and in the presence of hydrogen with a catalyst comprising a hydrogenating component com-prising molybdenum and chromium, their oxides, their sulfides, or mixtures thereof on a large-pore, cata-lytically active alumina. The catalyst has a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m2/gm to about 300 m2/gm, and an average pore diameter within the range of about 100 .ANG. (10 nm) to about 200 .ANG.
(20 nm). The hydrogenating component can include cobalt and/or its oxide and/or its sulfide.
The molybdenum is present in an amount within the range of about 5 wt.% to about 15 wt.%, calculated as MoO3 and based upon total catalyst weight, the chromium is present in an amount within the range of about 5 wt.%
to about 20 wt.%, calculated as Cr2O3 and based upon the total catalyst weight, and the cobalt, when present, is there in an amount within the range of about 0.1 wt.% to about 5 wt.%, calculated as CoO and based upon the total catalyst weight.
HEAVY HYDROCARBON STREAMS
Abstract of the Invention The process comprises contacting a heavy hydro-carbon stream containing metals and asphaltenes under suitable conditions and in the presence of hydrogen with a catalyst comprising a hydrogenating component com-prising molybdenum and chromium, their oxides, their sulfides, or mixtures thereof on a large-pore, cata-lytically active alumina. The catalyst has a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m2/gm to about 300 m2/gm, and an average pore diameter within the range of about 100 .ANG. (10 nm) to about 200 .ANG.
(20 nm). The hydrogenating component can include cobalt and/or its oxide and/or its sulfide.
The molybdenum is present in an amount within the range of about 5 wt.% to about 15 wt.%, calculated as MoO3 and based upon total catalyst weight, the chromium is present in an amount within the range of about 5 wt.%
to about 20 wt.%, calculated as Cr2O3 and based upon the total catalyst weight, and the cobalt, when present, is there in an amount within the range of about 0.1 wt.% to about 5 wt.%, calculated as CoO and based upon the total catalyst weight.
Description
~G;Z7Z~
PROCESS FOR THE HYDROTREATING OF
HEAVY HY~ROCARBON STREAMS
Background of the Invention This invention is related to the catalytic treat-ment in the presence of hydrogen of heavy hydrocarbonstreams containing asphaltenic material, metals, nitrogen compounds, and sulfur compounds.
It is widely known that various organometallic compounds and asphaltenes are present in petroleum crude 0 oils and other heavy petroleum hydrocarbon streams, such as petroleum hydrocarbon residua, hydrocarbon streams derived from tar sands, and hydrocarbon streams derived from coal. The most common metals found in such hydrocarbon streams are nickel, vanadium, and iron.
Such metals are very harmful to various petroleum refining operations, such as hydrocracking, hydrode-sulfurization, and catalytic cracking. The metals and asphaltenes cause interstitial plugging of the catalyst bed and reduced catalyst life. The various metal deposits on a catalyst tend to poison or deactivate the catalyst. Moreover, the asphaltenes tend to reduce the susceptibility of the hydrocarbons to desulfurization.
If a catalyst, such as a desulfurization catalyst or a fluidized cracking catalyst, is exposed to a hydrocarbon fraction that contains metals and asphaltenes, the ; catalyst will become deactivated rapidly and will be ~! subject to premature removal from the particular reactor and replacement by new catalyst.
Although processes for the hydrotreating of heavy 30 hydrocarbon streams, including but not limited to heavy crudes, reduced crudes, and petroleum hydrocarbon residua, are known, the use of fixed-bed catalytic processes to convert such feedstocks without appreciable asphaltene precipitation and reactor plugging and with effective removal of metals and other contaminants, such as sulfur compounds and nitrogen compounds, are not too common.
While the heavy portions of hydrocarbon streams once could be used as a low-quality fuel or as a source of -~ ~A
' ,...... . . , . . . . ' ' : ,:-,, , ::' .. ' . - . ., :.' ',- .. , :'. . . ', ,: -- '' :' ' . - ' ' ~ ' ' '' :' . ' ': . ' . ' - ' '', . ' ' - -: ' - ' ~ ': : :' ': ~:: . .: - - : ' . ' .' : -" . ' . ~ ': . . ' ' : ' . ,, . , : . ~.. , ,.. . ' : . ' . -- : , ' :. ' . . ~ ~ -.. . ... . . .
asphaltic-type materials, the politics and economics of today require that such material be hydrotrea~ed to remove environmental hazards therefrom and to obtain a greater proportion of usable products from such feeds.
It is well known that petroleum hydrocarbon streams can be hydrotreated, i.e., hydrodesulfurized, hydrode-nitrogenated, and/or hydrocracked, in the presence of a catalyst comprising a hydrogenating component and a suitable support material, such as an alumina, an alumina-silica, or silica-alumina. The hydrogenating component comprises one or more metals from Group VI and/or Group VIII of the Periodic Table of Elements, such as the Periodic Table presented on page 628 of WEBSTER'S SEVENTH
NEW COLLEGIATE DICTIONARY, G. & C. Merriam Company, Springfield, Massachusetts, U.S.A. (1963). Such combi-nations of metals as cobalt and molybdenum, nickel and molybdenum, cobalt, nickel, and molybdenum, and nickel and tungsten have been found useful. For example, United States Patent No. 3,340,180 teaches that heavy 20 hydrocarbon streams containing sulfur, asphaltic materials, and metalliferous compounds as contaminants can be hydrotreated in the presence of a catalyst com-prising such metal combinations and an activated alumina having less than 5% of its pore volume that is in the form of pores having a radius of 0 Angstrom units ¦A]
(O nm) to 300 A (30 nm) in pores larger than l00 A
(l0 nm) radius and having less than 10% of said pore volume in pores larger than 80 A (8 nm) radius.
United States Patent No. 4,016,067 discloses that 30 heavy hydrocarbon streams can be demetalated and desul-furized in a dual catalyst system in which the first catalyst comprises a Group VI metal and a Group VIII
metal, preferably molybdenum and cobalt, composited with an alumina support having a demonstratable content of 35 delta and/or theta alumina and has at least 60% of its pore volume in pores having a diameter of about l00 A
(l0 nm) to 200 A (~0 nm), at least about 5% of its pore volume in pores greater than 500 A (50 nm) in diameter, .
. . .
.
. . .
- .. .
- . . .: .
. . , . : .
-- : , :
~1~'29 and a surface area of up to about 110 square meters per gram (m /gm) and in which the second catalyst comprises a similar hydrogenating component composited with a refractory base, preferably alumina, and has at least 50%, and preferably at least 60%, of its pore volume contributed by pores that have a diameter of 30 A (3 nm) to 100 A (10 nm) and a surface area of at least 150 m /gm.
United States Patent No. 2,890,162 teaches that o catalysts comprising active catalytic components on alumina and having a most frequent pore diameter of 60 A
(6 nm) to 400 A (40 nm) and pores which may have di-ameters in excess of 1,000 A (100 nm) are suitable for desulfurization, hydrocracking, hydroforming of naphthene hydrocarbons, alkylation, reforming of naphthas, isomerization of paraffins and the like, hydrogenation, dehydrogena~ion, and various types of hydrofining operations, and hydrocracking of residua and other asphalt-containing materials. It is suggested that suitable active components and promoters comprise a metal or a catalytic compound of various metals, molybde-num and chromium being among 35 listed metals.
United Kingdom Patent Specification 1,051,341 discloses a process for the hydrodealkylation of certain aromatics, which process employs a catalyst consisting of the oxides or sulfides of a Group VI metal supported - on alumina, having a porosity of 0.5 milliliters per ; gram (ml/gm) to 1.8 ml/gm and a surface area of 138 m2/gm to 200 m2/gm, at least 85% of the total porosity 30 being due to pores having a diameter of 150 A (15 nm) to ; 550 A (55 nm).
United States Patents Nos. 3,245,919 and 3,267,025 disclose hydrocarbon conversion processes, such as reforming, hydrocracking, hydrodesulfurization, isomeri-zation, hydrogenation, and dehydrogenation, that employa catalyst of a catalytic amount of a metal component selected from metals of Group VI and Group VIII, such as chromium, molybdenum, tungsten, iron, nickel, cobalt, .
~ ' ' ' ,: ~
.
: , . .
- - -, . .. ... : ; , , .
~2729 and the platinum group metals, their compounds, and mixtures thereof, supported on gamma-alumina obtained by the drying and calcining of a boehmite alumina product and having a pore structure totalling at least about 0.5 cc/gm in pores larger than 80 A (8 nm) in size.
United States Patent No. 3,630,888 teaches the treatment of residuum hydrocarbon feeds in the presence of a catalyst comprising a promoter selected from the group consisting of the elements of Group VIB and lo Group VIII of the Periodic Tab~e, oxides thereof, and combinations thereof, and a particulate catalytic agent of silica, alumina, and combinations thereof, having a total pore volume greater than 0.40 cubic centimeters per gram (cc/gm), which pore volume comprises micropores and access channels, the access channels being interstitially spaced through the structure of the micropores, a first portion of the access channels having diameters between about 100 A (10 nm) and about 1,000 A (100 nm), which first portion comprises 10% to 40% of the pore volume, a second portion of the access channels having diameters greater than 1,000 A, (100 nm) which second portion comprises 10% to 40% of the pore volume, and the remainder of the pore volume being micropores having diameters of less than 100 A (10 nm), which remainder comprises 20% to 80% of the total pore volume.
United States Patent No. 3,114,701, while pointing out that in hydrofining processes nitrogen compounds are removed from petroleum hydrocarbons in the presence of various catalysts generally comprising chromium and/or molybdenum oxides together with iron, cobalt, and/or : nickel oxides on a porous oxide support, such as alumina or silica-alumina, discloses a hydrodenitrification process employing a catalyst containing large concen-trations of nickel and molybdenum on a predominantly alumina carrier to treat hydrocarbon streams boiling at 180F. (82C.) to about 1,050F. (566C.).
, .
United States Patent No. 2,843,552 discloses that a catalyst containing chromia in an appreciable amount - with alumina provides a very good attrition resistant catalyst, can have molybdenum oxide impregnated thereon, and can be used in reforming, desulfurization, and isomerization processes.
United States Patent No. 2,577,823 teaches that hydrodesulfurization of heavy hydrocarbon fractions containing from 1% to 6.5% sulfur in the form of organic lo sulfur compounds, such as a reduced crude, can be con-ducted over a catalyst of chromium, molybdenum, and aluminum oxides, which catalyst is prepared by simul-taneously precipitating the oxides of chromium and molybdenum on a preformed alumina slurry at a pH of 6 to 8.
United States Patent No. 3,265,615 discloses a method for preparing a supported catalyst in which a catalyst carrier of high surface area, such as alumina, is impregnated with ammonium molybdate and then immersed in an aqueous solution of chromic sulfate, and the treated carrier is dried overnight and subsequently reduced by treatment with hydrogen at the following sequential temperatures: 550F. (288C.) for 1/2 hour;
750F. (399C.) for 1/2 hour; and 950F. (510C.) for 1/2 hour. The reduced material is sulfided and employed to hydrofine a heavy gas oil boiling from 650F. (343C.) to 930~F. (493C.).
United States Patent No. 3,95~,105 discloses a process for hydrotreating petroleum hydrocarbon fractions, such as residual fuel oils, which process employs a catalyst comprising a Group VIB metal (chromium, molybde-num, tungsten), a Group VIII metal (nickel, cobalt) and a refractory inorganic oxide, which can be alumina, silica, zirconia, thoria, boria, chromia, magnesia, and 35 composites thereof. The catalyst is prepared by dry mixing a finely divided Group VIB metal compound, a Group VIII metal compound, and a refractory inorganic oxide, peptizing the mixture and forming an extrudable dough, extruding, and calcining.
^
.
. . , ~ - -.
- , . ~ ~ - -,, :
United States Patent No. 3,64~,817 discloses a two-stage process for treating asphaltene-containing hydrocarbons. Both catalysts in the process comprise one or more metallic components selected from the group consisting of molybdenum, tungsten, chromium, iron, cobalt, nickel, and the platinum group metals on a porous carrier material, such as alu~ina, silica, 7irconia, magnesia, titania, and mixtures thereof, the first catalyst having more than 50% of its macropore 0 volume characterized by pores having a pore diameter that is greater than about 1,000 A (100 nm) and the second catalyst having less than 50% of its macropore volume characterized by pores having a pore diameter that is greater than about 1,000 A (100 nm).
United States Patent No. 3,957,622 teaches a two-stage hydroconversion process for treating asphaltene-containing black oils. Desulfurization occurs in the first stage over a catalyst that has less than 50% of ; its macorpore volume characterized by pores having a 20 pore diameter greater than about 1,000 A (100 nm).
Accelerated conversion and desulfurization of the asphaltenic portion occur in the second stage over a catalyst having more than 50% of its macropore volume characterized by pores having a pore diameter that is 25 greater than 1,000 A (100 nm). Each catalyst comprises one or more metallic components selected from the group consisting of molybdenum, tungsten, chromium, iron, cobalt, nickel, the platinum group metals, and mixtures thereof on a support material of alumina, silica, 30 zirconia, magnesia, titania, boria, strontia, hafnia, or mixtures thereof.
French patent publication No. 2,281,972 teaches the preparation of a catalyst comprising the oxides of cobalt, molybdenum, and/or nickel on a base of aluminum 35 oxide and 3 to 15 wt.% chromium oxide and its use for the refining of hydrocarbon fractions, preferably for the hydrodesulfurization of fuel oils obtained by vacuum distillation or residual oils obtained by atmospheric , . - -. :
, . : ~ , ~- - . .
. . . . , . . -distillation. The base can be prepared by co-precipi-tation of compounds of chromium and aluminum.
United States Patent No. 3,162,596 teaches that, in an integrated process, a residual hydrocarbon oil con-S taining metal contaminants (nickel and vanadium) isfirst hydrogenated ei~her with a hydrogen donor diluent or over a catalyst having one or more hydrogenation promoting metals supported on a solid carrier exempli-fied by alumina or silica and then vacuum distilled to 1~ separate a heavy gas oil fraction containing reduced quantities of metals from an undistilled residue boiling primarily above about 1,100F. (593C.) and containing asphaltic material. The heavy gas oil fraction is subsequently catalytically cracked.
lS United States Patent No. 3,180,820 discloses that a - heavy hydrocarbon stock can be upgraded in a two-zone hydrodesulfurization process, wherein each zone employs a solid hydrogenation catalyst comprising one or more metals from Groups VB, VIB, and VIII of the Periodic Table of Elements. Either catalyst can be supported or unsupported. In a preferred embodiment, the first zone contains an unsupported catalyst-oil slurry and the second zone contains a supported catalyst in a fixed bed, slurry, or fluidized bed. The support of the supported catalyst is a porous refractory inorganic ~; oxide carrier, including alumina, silica, zirconia, magnesia, titania, thoria, boria, strontia, hafnia, and complexes of two or more oxides, such as silica-alumina, silica-zirconia, silica-magnesia, alumina-titania, and silica-magnesia-zirconia, among others. The patent provides that the supported catalyst which is appropri-ate for use in the invention will have a surface area of about 50 m~/gm to 700 m2/gm, a pore diameter of about 20 A
(2 nm) to 600 A (60 nm), and a pore volume of about 0.10 ml/gm to 20 ml/gm.
United States Patents Nos. 3,977,961 and 3,985,684 disclose processes for the hydroconversion of heavy crudes and residua, which processes employ one or two ., - , ,- ,.
~ . . . . . . . . .
:. .. . . - , : --- : :: . . . -- - . . .. ~ - .: - - :
:. . - . .
. .
7;~9 catalysts, each of which comprises a Group VIB metal and/or a Group VIII metal on a refractory inorganic oxide, such as alumina, silica, zirconia, magnesia, boria, phospha~e, titania, ceria, and thoria, can com-prise a Group IVA metal, such as germanium, has a veryhigh surface area and contains ultra-high pore volume.
The first catalyst has at least about 20% of its total pore volume of absolute diameter within the range of about lO0 A (10 nm) to about 200 A (20 nm), when the catalyst has a particle size diameter ranging up to 1/50 inch (0.051 cm), at least about 15% of its total pore volume of absolute diameter within the range of about o O
150 A (15 nm) to about 250 A (25 nm), when the catalyst has a particle size diameter ranging from about 1/50 inch (0.051 cm) to about 1/25 inch (0.102 cm), at least about 15% of its total pore volume of absolute diameter within the range of about 175 A (17.5 nm) to about 275 A
(27.5 nm), when the catalyst has an average particle size diameter ranging from about 1/25 inch (0.102 cm) to about l/8 inch (0.32 cm~, a surface area of about 200 m2/gm to about 600 m2/gm, and a pore volume of about 0.8 ; cc/gm to about 3.0 cc/gm. The second catalyst has at least about 55% of its total pore volume of absolute diameter within the range of about 100 A (10 nm) to about 200 A (20 nm), less than 10% of its pore volume with pore diameters of 50 A- (5 nm-), less than about 25% of its total pore volume with pore diameters of 300 A+ (30 nm~), a surface area of about 200 m2/gm to about 600 m /gm, and a pore volume of about 0.6 cc/gm to about 1.5 cc/gm. These patents teach also that the effluent from such processes may be sent to a catalytic cracking unit or a hydrocracking unit.
United States Patent No. 4,054,508 discloses a ; process for demetallization and desulfurization of 35 residual oil fractions, which process utilizes 2 cata-lysts in 3 zones. The oil is contacted in the first zone with a major portion of a first catalyst comprising a Group VIB metal and an iron group metal oxide com-posited with an alumina support, the first catalyst .. . .
, .. . . , . ~ .
. ~
- . . ..
- . ;: : ~ :
.
- : ,. , _ 9 - O
having at least 60% of its pore volume in pores of 100 A
(10 nm) to 200 A (20 nm) diameter and at least about 5%
of its pore volume in pores having a diameter greater than 500 A (50 nm), in the second zone with the second catalyst comprising a Group VIB metal and an iron group metal oxide composited with an alumina support, the second catalyst having a surface area of at least 150 m2/gm and at least 50% of its pore volume in pores with O O
diameters of 30 A (3 nm) to 100 A (10 nm), and then in a third zone with a minor portion of the first catalyst.
Now there has been found and developed a process for hydrotreating a heavy hydrocarbon stream containing metals, asphaltenes, nitrogen compounds, and sulfur compounds, which process employs a catalyst that has special physical characteristics and a hydrogenating component comprising molybdenum and chromium and option-ally cobalt.
Summary of the Invention Broadly, according to the present invention, there is provided a process for the hydrotreating of a heavy hydrocarbon stream containing metals, asphaltenes, nitrogen compounds, and sulfur compounds, which process comprises contacting said stream under suitable con-ditions and in the presence of hydrogen with a catalyst comprising a hydrogenating component comprising molybde-num and chromium, their oxides, their sulfides, and mixtures thereof on a large-pore, catalytically active alumina. The molybdenum can be present in an amount within the range of about 5 wt.% to about 15 wt.%, - 30 calculated as MoO3 and based upon the total catalyst weight, and the chromium can be present in an amount within the range of about 5 wt.% to about 20 wt.%, calculated as Cr2O3 and based upon the total catalyst weight. The catalyst possesses a pore volume within the 35 range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m /gm to about 300 m /gm, and an average pore diameter within the range of about 100 A (10 nm) to about 200 A (20 nm).
The catalyst can additionally con~ain cobalt and/or its oxide, and/or its sulfide. When cobalt is present, it is there in an amount within the range of about 0.1 wt.% to about 5 wt.%, calculated as CoO and based upon the total catalyst weight.
The catalyst that is employed in the process of the present invention can be prepared by calcining the alumina (pseudo-boehmite) in air at a temperature of about 800F. (427C.~ to about 1,400F. (760C.) for a period of time within the range of about l/2 hour to about 2 hours to produce a gamma-alumina and subse-quently impregnating the gamma-alumina with one or more aqueous solutions containing heat-decomposable salts of the molybdenum and the chromium.
The catalyst that is employed in the process of the present invention has about 0% to about 10% of its pore volume in pores having diameters that are smaller than 50 A (5 nm), about 30% to about 80% of its pore volume in pores having diameters within the range of about 50 A
(5 nm) to about 100 A (10 nm), about 10% to about 50% of its pore volume in pores having diameters within the range of about 100 A (10 nm) to about 150 A (15 nm), and about 0% to about 10% of its pore volume in pores having diameters that are larger than 150 A (15 nm~.
The process of the present invention is carried out at a hydrogen partial pressure within the range of about 1,000 psia (6.9 MPa) to about 3,000 psia (29.7 MPa), an average catalyst bed temperature within the range of about 700F. (371C.) to about 820F. (438C.), a liquid 30 hourly space velocity (LHSV) within the range of about 0.1 volu~e of hydrocarbon per hour per volume of catalyst to about 3 volumes of hydrocarbon per hour per volume of catalyst, and a hydrogen recycle rate or hydrogen addition rate within the range of about 2,000 standard cubic feet ; 35 of hydrogen per barrel of hydrocarbon [SCFB] (356 m3/m3) to about 15,000 SCFB (2,672 m3/m3).
- ~ :
: . . . : - . -. . , . : - ~
' ' ' ' -. ~ ' . ', ' ~. :
Brief Description of the Drawing The accompanying figure is a simplified flow diagram of a preferred embodiment of the process of the present invention.
Detailed Description of the Invention The present invention is directed to a novel process for the hydrotreating of heavy hydrocarbon feedstocks.
Such feedstocks will contain asphaltenes, metals, nitrogen compounds, and sulfur compounds. It is to be understood that the feedstocks that are to be treated by the process of the present invention will contain from a small amount of nickel and vanadium, e.g., less than 40 ppm, up to more than 1,000 ppm of nickel and vanadium (a combined total amount of nickel and vanadium) and up to about 25 wt.% asphaltenes. If the feedstock contains either a combined amount of nickel and vanadium that is too large or an amount of asphaltenes that is exception-ally large, the feedstock can be subjected to a pre-liminary treatment to reduce the excessive amount of the particular contaminant. Such preliminary treatment will comprise a suitable hydrogenation treatment for the removal of metals from the feedstock and/or the con-version of asphaltenes in the feedstock to reduce the contaminants to satisfactory levels, such treatment employing any suitable relatively cheap catalyst. The above-mentioned contaminants will deleteriously affect the subsequent processing of such feedstocks, if they are not lowered to acceptable levels.
Typical feedstocks that can be treated satis-factorily by the process of the present invention willoften contain a substantial amount of components that boil appreciably above 1,000F. (538C.). Examples of typical feedstocks are crude oils, topped crude oils, petroleum hydrocarbon residua, both atmospheric and 35 vacuum residua, oils obtained from tar sands and residua derived from tar sand oil, and hydrocarbon streams derived from coal. Such hydrocarbon streams contain organometallic contaminants which create deleterious ' . , ' ' . .
effects in various refining processes that employ cata-lysts in the conversion of the particular hydrocarbon stream being treated. The metallic contaminants that are found in such feedstocks include, but are not limited to, iron, vanadium, and nickel.
Nickel is present in the form of soluble organo-metallic compounds in most crud~ oils and residuum fractions. The presence of nickel porphyrin complexes and other nickel organometallic complexes causes severe difficulties in the refining and utilization of heavy hydrocarbon fractions, even if the concentration of such complexes is relatively small. It is known that a cracking catalyst deteriorates rapidly and its se-lectivity changes when in the presence of an appreciable lS quantity of the organometallic nickel compounds. An appreciable quantity of such organometallic nickel compounds in feedstocks that are being hydrotreated or hydrocracked harmfully affects such processes. The catalyst becomes deactivated and plugging or increasing of the pressure drop in a fixed-bed reactor results from the deposition of nickel compounds in the interstices between catalyst particles.
Iron-containing compounds and vanadium-containing compounds are present in practically all crude oils that are associated with the high Conradson carbon asphaltic and/or asphaltenic portion of the crude. Of course, such metals are concentrated in the residual bottoms, when a crude is topped to remove those fractions that boil below about 450F. (232C.) to 600F. (316C.). If such residuum is treated by additional processes, the presence of such metals adversely affects the catalyst in such processes. It should be pointed out that nickel-containing compounds deleteriously affect cracking catalysts to a greater extent than do iron-containing compounds. If an oil containing such metals is used as a fuel, the metals will cause poor fuel oil performance in industrial furnaces, since they corrode the metal surfaces of the furnaces.
.
, . . ~ -- : , .
,. . ~ . : . .
-- - : - . . .
While metallic contaminants, such as vanadium, nickel, and iron, are often present in various hydro-carbon streams in rather small a~ounts, they are often found in concentrati~ns in excess of 40 to 50 ppm by weight, often in excess of 1,000 ppm. Of course, other metals are also present in a particular hydrocarbon stream. Such metals exist as the oxides or sulfides of the particular metal, or they are present as a soluble salt of the particular metal, or they are present as high molecular weight organometallic compounds, in-cluding metal naphthenates and metal porphyrins, and derivatives thereof. In any event, the feed stream can be treated for demetallization prior to use in the process of the present invention if the total amount of lS nickel and vanadium is excessive.
Broadly~ according to the process of the present invention, there is provided a process for hydrotreating a heavy hydrocarbon stream containing metals, asphaltenes, nitrogen compounds~ and sulfur compounds to reduce the contents of metals, asphaltenes, nitrogen compounds, and sulfur compounds in said stream, wherein said stream is contacted with a catalyst under suitable conditions and in the presence of hydrogen, characterized in that the catalyst comprises a hydrogenating component comprising the metals of molybdenum and chromium, their oxides, their sulides, or mixtures thereof, on a large-pore, catalytically active alumina, said molybdenum being present in an amount within the range of about 5 wt.% to about 15 wt.%, calculated as MoO3 and based upon the total catalyst weightf said chromium being present in an amount within the range of about 5 wt.% to about 20 wt.%, calculated as Cr203 and based upon the total catalyst weight, and said catalyst possessing a pore vo].ume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m2/gm to about 300 m2/gm, and an a~erage pore diameter within the range of about 100 A (10 nm) to about 200 A
(20 nm).
'' ~&
The process of the present invention can be charac-terized further in that the hydrogenating component of said catalyst contains the metal cobalt, its o~ide, its sulfide, or mixtures thereof, said cobalt being present in an amount within the range of about 0.1 wt.% to about 5 wt.%, calculated as CoO and based upon the total catalyst weight.
It is to be understood that as used herein all values that are given for surface area would be those that are obtained by ~he BET nitrogen adsorption method;
all values that are given for pore volume would be those that are obtained by nitrogen adsorption; and all values that are given for average pore diameter would be those that are calculated by means of the expression:
A.P.D. = 4 x P V x 104 wherein A.P.D. = average pore diameter in A, P.V. = pore volume in cc/gm, and S.A. = surface area in m /gm.
Furthermore, pore size distributions are those that are obtained by a Digisorb 2500 instrument through the use of nitrogen desorption techniques.
In the process of the present invention, the cata-lyst provides good demetallization activity, moderate desulfurization activity, and possesses good stability to deactivation, when being used at a high temperature and/or moderate pressure, such as about 1,200 psig (8.37 MPa).
The hydrogenating component of the catalyst that is employed in the process of the present invention is a particular component comprising molybdenum and chromium.
In one embodiment of the process of the present invention, the hydrogenating component of the catalyst 35 consists essentially of molybdenum and chromium, their oxides, their sulfides, or mixtures thereof. According to this embodiment, there is provided a process for hydrotreating a heavy hydrocarbon stream containing .
-:-metals, asphaltenes, nitrogen compounds, and sulfurcompounds to reduce the contents of metals, asphaltenes, nitrogen compounds, and sulfur compounds in said stream, wherein said stream is contacted with a catalyst under suitable conditions and in the presence of hydrogen, characterized in that the catalyst comprises a hydro-genating component consisting essentially of the metals of molybdenum and chromium, their oxides, their sulfides, or mixtures thereof, on a large-pore, catalytically active alumina, said molybdenum being present in an amount within the range of about S wt.% to about 15 wt.%
calculated as MoO3 and based upon the total catalyst weight, said chromium being present in an amount within the range of about S wt.% to about 20 wt.%, calculated lS as Cr2O3 and based upon the total catalyst weight, and said catalyst possessing a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m /gm to about 300 m /gm~
and an average pore diameter within the range of about 100 A (10 nm) to about 200 A (20 nm).
Optionally, the hydrogenating component of the catalyst that is used in the process of the present invention can also contain cobalt. The molybdenum and chromium and cobalt, when present, are present in the elemental form, as oxides of the metals, as sulfides of the metals, or mixtures thereof. The molybdenum is present in an amount within the range of about S wt.% to about lS wt.%, calculated as MoO3 and based upon the total catalyst weight. The chromium is present in an 30 amount within the range of about 5 wt.% to about 20 wt.%, calculated as Cr2O3 and based upon the total catalyst weight. The cobalt, when present, is present in an amount within the range of about 0.1 wt.% to about 5 wt.%, calculated as CoO and based upon the total 35 catalyst weight. Preferably, the molybdenum is present in an amount within the range of about 7 wt.% to about 13 wt.%, calculated as MoO3 and based upon the total catalyst weight, the chromium is present in an amount within the range of about 6 wt.% to about 15 wt.%, calculated as Cr2O3 and based upon the total catalyst weight, and the cobalt is present in an amount within the range of about 1 wt.% to about 3 wt.%, calculated as CoO and based upon the total catalyst weight.
Accordingly, there is provided a process for the hydrotreating of a heavy hydrocarbon stream containing metals, asphaltenes, nitrogen compounds, and sulfur compounds to reduce the contents of metals, asphaltenes, nitrogen compounds, and sulfur compounds in said stream, wherein said stream is contacted with a catalyst under suitable conditions and in the presence of hydrogen, characterized in that the catalyst c~mprises a hydro-genating component comprising molybdenum, chromium, and cobalt, their oxides, their sulfides, and mixtures thereof on a large-pore, catalytically active alumina, said molybdenum being presen~ in an amount within the range of about 5 wt.% to about 15 wt.%, calculated as MoO3 and based upon the total catalyst weight, said chromium being present in an amount within the range of about 5 wt.% to about 20 wt.%, calculated as Cr2O3 and based upon the total catalyst weight, said cobalt being present in an amount within the range of about 0 wt.% to about 5 wt.%, calculated as CoO and based upon the total catalyst weight, and said catalyst possessing a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m2/gm to about 300 m2/gm, and an average pore diameter within the range of about 100 A (10 nm) to about 200 A
(20 nm).
Suitable catalytically active large-pore aluminas are employed in the catalyst that is utilized in the process of the present invention. A typical example of such an alumina is Aero-100 alumina, manufactured by the 35 American Cyanamid Company. The alumina s~ould have a pore volume that is in excess of 0.4 cc/gm, a surface area that is in excess of 150 m2/gm, and an average pore diameter that is greater than 100 A (10 nm).
- . . .
' ~
.
- . .
. - - - .
.. . . -.
Typically, the catalytic composition ~hat is em-ployed in the process of the present invention may be prepared by impregnating the various metals upon the suitable catalytically active large-pore alumina. Such impregnation may be accomplished with one or more solutions of heat-decomposable compounds of the appropriate metals. The impregnation may be a co-impregnation when a single solution of the metals is employed. Alternatively, impregnation may be accom-plished by the sequential impregnation of the variousmetals from two or more solutions of the heat-decom-posable compounds of t~e appropriate metals. The impregnated support is dried at a temperature of at least 250F. (121C.) for a period of at least 1 hour and calcined in air at a temperature of at least 1,000F.
(538C.) for a period of time of at least 2 hours.
Preferably, the catalyst that is used in the process of the present invention is prepared by first calcining pseudo-boehmite in static air at a temperature of about 800F. (427~C.) to about 1,400F. (760C.) for a period of time within the range of about 1/2 hour to about 2 hours to produce a gamma-alumina. This gamma-alumina is subsequently impregnated with the aqueous solution or solutions containing the heat-decomposable salts of the cobalt, if present, and the molybdenum and chromium.
; The finished catalyst that is employed in the process of the present invention possesses a pore volume within the range of about 0.4 cc/gm to about 0 8 cc/gm, a surface area within the range of about 150 m /gm to about 300 m2/gm, and an average pore diameter within the range of about 100 A (lO nm) to about 200 A (20 nm).
Preferably, the catalyst possesses a pore volume within the range of about 0.5 cc/gm to about 0.7 cc/gm, a surface area within the range of about 150 m2/gm to about 250 m2/gm, and an average pore diameter within the range of about llO A (11 nm) to about 150 A (15 nm).
The catalyst employed in the process of the present ; invention should have about 0% to about 10% of its pore ~, , .
. .
: :
volume in pores havinK ~iameters that are smaller than 50 A (5 nm), about 30% to about 80% of its pore volume in pores having diameters within the range o~ about 50 A
(5 nm) to about 100 A (10 nm), about 10% to about 50% of its pore volume in pores having diameters within the range of about 100 A (10 nm) to about 150 A (l~ nm), and about 0% to about 10% of its pore volume in pores having diameters that are larger than 150 A (15 nm).
The process of the subject application is particu-: lO larly useful for hydrotreating heavy hydrocarbon streams such as petroleum residua, both atmospheric resids and vacuum resids, tar sands oils, tar sands resids, and liquids obtained from coal. In addition, the process may be employed to satisfactorily hydrotreat petroleum hydrocarbon distillates, such as gas oils, cycle stocks,and furnace oils. I~ the amount of nickel and vanadium is excessive or the concentration of asphaltenes is too large, the feedstock should be subjected to a prelimi-nary treatment to reduce the excessive amount or amounts to more tolerable levels before the feedstock is used in the process of the present invention.
Operating conditions for the hydrotreatment of heavy hydrocarbon streams, such as petroleum hydrocarbon residua and the like, comprise a hydrogen partial 25 pressure within the range of about 1,000 psia (6.9 MPa) to about 3,000 psia (20.7 MPa), an average catalyst bed temperature within the range of about 700F. (371C.) to about 820F. (438C.), a LHSV within the range of about 0.1 volume of hydrocarbon per hour per volume of cata-lyst to about 3 volumes of hydrocarbon per hour pervolume of catalyst, and a hydrogen recycle rate or hydrogen addition rate within the range of abou-t 2,000 SCFB ~356 m3/m3) to about 15,000 SCFB (2,672 m3/m3).
Preferably, the operating conditions comprise a hydrogen 35 partial pressure within the range of about 1,200 psia (8.27 MPa) to about 2,000 psia (13.8 MPa), an average catalyst bed temperature wi~hin the range of about 730F. (388C.) to about 810F. (432C.), a LHSV within - .. : . . ... .. . . .
:. : : . .... ..
,: . . .. .: : :. . :
- .. . .
, - . .
.. . ... .
.
.
.. .. ~.
.' , "' . : .' .' ' ~ -the range of about 0.4 to about 1, and a hydrogen recycle rate or hydrogen addition rate within the range of about 5,000 SCFB (890 m3/m3) to about 10,000 SCFB (1,780 m3/m3).
If the process of the present invention were to be used to treat hydrocarbon distillates, the operating conditions would comprise a hydrogen partial pressure within the range of about 200 psia (1.4 MPa3 to about 3,000 psia (20.7 MPa), an average catalyst bed temper-ature within the range of about 600F. (316C.) to about 800F. (427C.), a LHSV within the range of about 0.4 volume of hydrocarbon per hour per volume of catalyst to about 6 volumes of hydrocarbon per hour per volume of catalyst, and a hydrogen recycle rate or hydrogen ad-dition rate within the range of about 1,0~0 SCFB
(178 m3/m3) to about 10,000 SCFB (1,780 m3/m3). Pre-ferred operating conditions for the hydrotreating of hydrocarbon distillates comprise a hydrogen partial pressure within the range of aboùt 200 psia (1.4 MPa) to about 1,200 psia (8.27 MPa), an average catalyst bed temperature within the range of about 600F. (316C.) to about 750F. (399C.), a LHSV within the range of about 0.5 volume of hydrocarbon per hour per volume of cata-lyst to about 4 volumes of hydrocarbon per hour per volume of catalyst, and a hydrogen recycle rate or hydrogen addition rate within the range of about 1,000 SCFB (178 m3/m3) to about 6,000 SCFB (1,069 m3/m3).
A preferred embodiment of the process of the present invention is presented in the accompanying figure, which is a simplified flow diagram and does not show various 30 pieces of auxiliary equipment, such as pumps, com-pressors, heat exchangers, and valves. Since one having ordinary skill in the art would recognize easily the need for and location of such auxiliary equipment, its omission is appropriate and facilitates the simplifi-cation of the figure. This process scheme is presentedfor the purpose of illustration only and is not intended to limit the scope of the present invention.
..
,, ~ . . . .
.- .
'. ~.. :
.. ..
,~
-:
Referring to the figure, an Arabian light vacuum resid~ containing about 4 wt.% sulfur, less than 0.5 wt.% nitrogen, and less than 100 ppm of nickel and vanadium, is withdrawn from source 10 through line 11 into pump 12, whereby it is pumped through line 13. A
hydrogen-containing recy~le gas stream, discussed here-inafter, is passed from line 14 into line 13 to be mixed with the hydrocarbon feed stream to form a mixed hydrogen-hydrocarbon stream. The mixed hydrogen-hydrocarbon lo stream is then passed from line 13 into furnace lS where it is heated to a temperature within the range of about 760F. (404C.) to about 780F. (416C.). The heated stream is then passed through line 16 into reaction zone 17.
Reaction zone 17 comprises one or more reactors 9 each of which contains one or more fixed beds of cata-lyst. The catalyst comprises a hydrogenation component comprising about 5 wt.% to about 15 wt.% molyhdenum, calculated as MoO3 and based upon the total ca~alyst 20 weight, and about 5 wt.% to about 20 wt.% chromium, calculated as Cr2O3 and based upon the total catalyst weight, on a large-pore, catalytically active alumina.
The molybdenum and the chromium are present either in the elemental form, as oxides of the metals, as sulfides of the metals, or as mixtures thereof. The catalyst has a pore volume within the range of about 0.4 cc/gm to abo~t 0.8 cc/gm, a surface area within the range of about 150 m2/gm to about 300 m2/gm, an average pore diameter within the range of about 100 A (10 nm) to 30 about 200 A (20 nm), and a pore-size distribution wherein about 0% to about 10% of the pore volume has pore diameters within the range of about 0 A ~0 nm) to about 50 A (5 nm), about 30% to about 80% of the pore volume has pore diameters within the range of about 50 A
(5 nm) to about 100 A (10 nm), about 10% to about 50% of the pore volume has pore diameters within the range of about 100 A (10 nm) to about 150 A (15 nm), and about 0%
to about 10% of the pore volume has pore diameters that are larger than 150 A (15 nm).
- :
: , '., ' ' . .
- ~ .
., ' ' ' , ~ .
7~
The operating conditions employed in this scheme comprise a hydrogen partial pressure of about 1,200 psia (8.27 MPa) to about 1,600 psia (11.0 MPa), an average catalyst bed temperature within the range of about 760F. (404C.) to about 780F. (416C.), an LHSV within the range of about 0.4 volume of hydrocarbon per hour per volume of catalyst to about 0.8 volume of hydro-carbon per hour per volume of catalyst, and a hydrogen recycle rate within the range of about 5,000 SCFB
o (890 m3/m3) to about 8,000 SCFB (1,425 m3/m3).
The effluent from reaction zone 17 is passed through line 18 into high-temperature, high-pressure, gas-liquid separator 19, which is operated at reactor pressure and a temperature within the range of about 760F. (404C.~ to abou-t 780F. (416C.). In separator 19, hydrogen-containing gas is separated from the rest of the effluent. The hydrogen-containing gas is passed from separator 19 through line 20. It is cooled and sent into light-hydrocarbon separator 21, wherein the con-densed light hydrocarbons are separated from the hydrogen-containing gas and withdrawn via line 22. The hydrogen-containing gas is removed by way of line 23 and passed into scrubber 24, wherein the hydrogen sulfide is removed or scrubbed from the gas. The hydrogen sulfide is removed from the system by way of line 25. The scrubbed hydrogen-containing gas is then passed through line 14 where it can be joined by make-up hydrogen, if neces-sary, via line 26. The hydrogen-containing gas stream is then added to the hydrocarbon feed stream in line 13, as described hereinabove.
The liquid portion of the effluent is passed from the high-temperature, high-pressure, gas-liquid sepa-rator 19 by way of line 27 to high-temperature flash drum 28. In flash drum 28, the pressure is reduced to atmospheric pressure and the temperature of the material is within the range of about 700F. (371C.) to about 800F. (427~C.). In flash drum 28, the light hydro-carbons containing not only the naphtha but those .
.
.
.. . .
.
, . , , .: .
, . : ~ ~ . : . . .
.. . . . ~ :
-: . . . : . : : ~
distillates boiling up to a temperature of about 550F.
(288C.) to 600F. (316C.), such as fuel oils, is flashed from the rest of the produc~ and is removed from the system by way of line 29. Such light hydrocarbons, which comprise about 1 wt.% to about 4 wt.% C4-material, about 2 wt.% to 5 wt.% naphtha (C5-to-360F.
[C5-to-182C.] material), and about 10 wt.% to about 15 wt.% 360F.-650F. (182C.-343C.) material, based upon hydrocarbon feed, can be separated into their various ~ :
components and sent to storage or to other processing units.
The heavier material that is separated from the light hydrocarbons, that is, material that boils at a temperature above about 600F. (316C.), present in an amount of about 60 wt.% to about 90 wt.% based upon the hydrocarbon feed, is removed from flash drum 28 by way of line 30 for use as feeds to other processes or as a low-sulfur, heavy industrial fuel. Such liquid material contains about 0.6 wt./~ to about 1.2 wt.% sulfur, about 1.0 wt.% to about 3.0 wt.% asphaltenes, and about 5 ppm to about 15 ppm nickel and vanadium. Furthermore, more than 50% of the 1,000F.+ (538C.+) material is con-verted to 1,000F.- (538C.-) material.
This liquid effluent is passed via line 31 to 2S furnace 32, or other suitable heating means, to be heated to a temperature as high as 800F. (427C.).
The heated stream from furnace 32 is passed by way of line 33 into vacuum tower 34, where vacuum gas oil (VGO) is separated from a low-sulfur residual fuel. The 30 ~GO is passed from vacuum tower 34 by way of line 35 to storage or to a conventional catalytic cracking unit ; (not shown). The low-sulfur residual fuel is passed from vacuum tower 34 by way of line 36 to storage or to other processing units where it can be used as a source 35 of energY-Alternatively, the material boiling above 600F.(316C.) that is removed from flash drum 28 through line 30 can be sent by way of line 37 to a resid catalytic cracking unit (not shown).
!
.
' The following examples are presented to facilitatethe understanding of the present invention and are presented for the purposes of illustration only and are not intended to limit the scope of the present in-vention.
Example 1 A catalyst, hereinafter identified as Catalyst A,was prepared to contain 8.3 wt.% MoO3 and 8.3 wt.%
Cr2O3, based upon the total catalyst weight, on a large-pore, catalytically active alumina. A 40.8-gram sample of Aero-100 alumina, obtained from the American Cyanamid Company, was impregnated with a solution containing ammonium dichromate and ammonium molybdate. The Aero-lO0 alumina was in the form of 14-to-20-mesh (1.17-to-0.83 mm) material and had been previously calcined ata temperature of about 1,200F. (649C.) in air for a period of 2 hours.
The solution that was used for the impregnation was prepared by dissolving 6.8 grams of the ammonium dichro-20 mate and 5.3 grams of the ammonium molybdate in 40 milliliters of distilled water.
The impregnated alumina was dried under a heat lamp in static air overnight to remove the excess water. The dried material was then calcined in static air at a temperature of 1,000F. (538C.) for a period of 2 hours. This finished catalyst, Catalyst A, is an embodi-ment of the catalyst that is employed in the process of the present invention.
Example 2 For comparative purposes, a commercially-available catalyst was obtained from the American Cyanamid Company.
This commercial catalyst was identified as HDS-2A and was specified by the American Cyanamid Company to contain 3 wt.% CoO and 13 wt.% MoO3 on an alumina support. This 3~ catalyst is identified hereinafter as Catalyst B.
Example 3 A second hydrotreating catalyst was employed for comparative purposes. This catalyst was obtained from - - ''~ '.
. . . .. . . . .. - - : -. .. , . , . .:
.. . . . .
: . . - - . : , :
, - . .- ~ .
, -,. ~ .. . . :
- -.
- : , the Nalco Chemical Company. The catalyst, identified - hereinafter as Catalyst C, was specified to contain about 3 wt.% CoO and 13 wt.% MoO3 on an alumina support.
The properties of Ca~alysts A, B, and C are presented S hereinbelow in Table I.
:, .
. .
:-' . :
~.
.
TABLE I
CATALYST PROPERTIES
CATALYST A B C D
HYDROGENATION
COMPONENT, WT.%
CoO ____ 3 3 _ _ Cr2O3 8.3 ---- -___ __ _ MoO3 8.3 13 13 ----PHYSICAL PROPERTIES
SURFACE AREA, m /gm208 330 284 222 PORE VOLUME, cc/gm0.600.61 0.61 0.73 AVG. PORE DIAM., A116 73 86 131 nm11.67.3 8.6 13.1 % OF PORE VOLUME IN:
0-50 A (0-5 nm~
PORES 6.3 26.7 14.2 1.4 50-100 A (5-10 nm~
PORES 69.5 58.8 76.3 56.7 100-150 A (10-15 nm) PORES 23.1 4.3 2.1 36.6 150-200 A (15-20 nm) PORES 0.4 1.6 0.7 1.6 200-300 A (20-30 nm) PORES 0.3 2.1 1.1 1.4 300-400 A (30-40 nm) PORES 0.1 0.8 0.8 0.4 400 A+ (40 nm+) PORES 0.3 5.7 4.8 1.9 :`
.
.
27Zg TABLE I (Cont'd.~
CATALYST PROPERTIES
CATALYST E F G
HYDROGENATION
COMPONENT, WT.%
CoO __ __ _ ___ Cr2O3 5.2 15.4 MoO3 9 8.6 7.7 10 PHYSI~AL PROPERTIES
SURFACE AREA, m /gm201 197 198 PORE VOLUME, cc/gm0.66 0.60 0.59 AVG. PORE DIAM., A 130 122 119 nm 13.0 12.2 11.9 % OF PORE VOLUME IN: :
0-50 A (0-5 nm) PORES 3.1 2.2 2.7 50-100 A (5-10 nm) PORES 68.0 64.8 65.8 100-150 A (10-15 nm) PORES 27.8 30.6 30.2 O . .
150-200 A (15-20 nm) PORES 0.2 0.8 0.2 I 200-300 A (20-30 nm) :l 25 PORES 0.3 0.7 0.3 ', 300-400 A (30-40 nm) PORES 0.1 0.2 0.1 ~; o 400 A+ (40 nm+) PORES 0.5 0.6 0.5 ; 30 :` :
~, .
i, 35 ( .1 ~1~2729 In addition> the physical properties of the alumina that was used as the suppor~ material for Catalyst A are presented in Table I. This support material is identi-fied as Catalyst D. The introduction of the metals into the alumina did not affect appreciably the por~ size distribution, pore volume, surface area, or average pore diameter of the alumina.
Example 4 Three other catalysts were prepared to show the effect of different concentrations of chromia upon the catalyst which comprises approximately 9 wt.% molybdena and an Aero-100 alumina support. These catalysts were prepared according to the preparation method discussed in Example 1 hereinabove. However, only the appropriate lS amounts of the metals were used to provide the desired compositions of the finished catalysts. These three catalysts are identified hereinafter as Catalysts E, F, and G and were prepared with the same type of Aero-100 alumina that was used in the preparation of Catalyst A.
Their chemical compositions and physical properties are presented also in Table I hereinabove. Again it is seen that the introduction of the metals onto and into the alumina has not greatly affected the physical properties of the alumina.
Example 5 Each of the above-discussed catalysts was tested for its ability to convert an Arabian light vacuum resid. Appropriate properties of this feedstock are presented hereinbelow in Table II.
3~
,~
, - , . . . . . :
- - . ~ - ~
.- : ' . : - -.. - . ~
, : ,, - : : .:
- ~8 -TABLE II
FEED PROPERTIES
Carbon, wt.% 84.91 Hydrogen, wt.% 10.61 H/C (atomic) 1.499 Nitrogen, wt.% 0.34 Sulfur, wt.% 4.07 Nickel, ppm 17.5 - lo Vanadium 51.1 1,000F.- (538C.-)fraction 13.6 Ramsbottom carbon, wt.% 15.2 Gravity, API 8.8 Density, at 15C., gm/cc 1.0080 Asphaltenes, wt.% 8.0 Oils, wt.% 39.2 Resins, wt.% 52.8 Resins/asphaltenes 6.6 -. .
Each test was carried out in a bench-scale test unit having automatic controls for pressure, flow of reactants, and temperature. The reactor was made from 3/8-inch(0.95-cm)-inside-diameter stainless-steel, ; heavy-walled tubing. A 1/8-inch(0.32-cm)-outside-diameter thermowell extended up through the center of the reactor. The reactor was heated by an electrically-heated steel block. The hydrocarbon feedstock was fed to the unit by means of a Ruska pump~ a positive-dis-` placement pump. The 14-to-20-mesh (1.17-to-0.83 mm) 30 catalyst material was supported on 8-to-10-mesh (2.38-to-
PROCESS FOR THE HYDROTREATING OF
HEAVY HY~ROCARBON STREAMS
Background of the Invention This invention is related to the catalytic treat-ment in the presence of hydrogen of heavy hydrocarbonstreams containing asphaltenic material, metals, nitrogen compounds, and sulfur compounds.
It is widely known that various organometallic compounds and asphaltenes are present in petroleum crude 0 oils and other heavy petroleum hydrocarbon streams, such as petroleum hydrocarbon residua, hydrocarbon streams derived from tar sands, and hydrocarbon streams derived from coal. The most common metals found in such hydrocarbon streams are nickel, vanadium, and iron.
Such metals are very harmful to various petroleum refining operations, such as hydrocracking, hydrode-sulfurization, and catalytic cracking. The metals and asphaltenes cause interstitial plugging of the catalyst bed and reduced catalyst life. The various metal deposits on a catalyst tend to poison or deactivate the catalyst. Moreover, the asphaltenes tend to reduce the susceptibility of the hydrocarbons to desulfurization.
If a catalyst, such as a desulfurization catalyst or a fluidized cracking catalyst, is exposed to a hydrocarbon fraction that contains metals and asphaltenes, the ; catalyst will become deactivated rapidly and will be ~! subject to premature removal from the particular reactor and replacement by new catalyst.
Although processes for the hydrotreating of heavy 30 hydrocarbon streams, including but not limited to heavy crudes, reduced crudes, and petroleum hydrocarbon residua, are known, the use of fixed-bed catalytic processes to convert such feedstocks without appreciable asphaltene precipitation and reactor plugging and with effective removal of metals and other contaminants, such as sulfur compounds and nitrogen compounds, are not too common.
While the heavy portions of hydrocarbon streams once could be used as a low-quality fuel or as a source of -~ ~A
' ,...... . . , . . . . ' ' : ,:-,, , ::' .. ' . - . ., :.' ',- .. , :'. . . ', ,: -- '' :' ' . - ' ' ~ ' ' '' :' . ' ': . ' . ' - ' '', . ' ' - -: ' - ' ~ ': : :' ': ~:: . .: - - : ' . ' .' : -" . ' . ~ ': . . ' ' : ' . ,, . , : . ~.. , ,.. . ' : . ' . -- : , ' :. ' . . ~ ~ -.. . ... . . .
asphaltic-type materials, the politics and economics of today require that such material be hydrotrea~ed to remove environmental hazards therefrom and to obtain a greater proportion of usable products from such feeds.
It is well known that petroleum hydrocarbon streams can be hydrotreated, i.e., hydrodesulfurized, hydrode-nitrogenated, and/or hydrocracked, in the presence of a catalyst comprising a hydrogenating component and a suitable support material, such as an alumina, an alumina-silica, or silica-alumina. The hydrogenating component comprises one or more metals from Group VI and/or Group VIII of the Periodic Table of Elements, such as the Periodic Table presented on page 628 of WEBSTER'S SEVENTH
NEW COLLEGIATE DICTIONARY, G. & C. Merriam Company, Springfield, Massachusetts, U.S.A. (1963). Such combi-nations of metals as cobalt and molybdenum, nickel and molybdenum, cobalt, nickel, and molybdenum, and nickel and tungsten have been found useful. For example, United States Patent No. 3,340,180 teaches that heavy 20 hydrocarbon streams containing sulfur, asphaltic materials, and metalliferous compounds as contaminants can be hydrotreated in the presence of a catalyst com-prising such metal combinations and an activated alumina having less than 5% of its pore volume that is in the form of pores having a radius of 0 Angstrom units ¦A]
(O nm) to 300 A (30 nm) in pores larger than l00 A
(l0 nm) radius and having less than 10% of said pore volume in pores larger than 80 A (8 nm) radius.
United States Patent No. 4,016,067 discloses that 30 heavy hydrocarbon streams can be demetalated and desul-furized in a dual catalyst system in which the first catalyst comprises a Group VI metal and a Group VIII
metal, preferably molybdenum and cobalt, composited with an alumina support having a demonstratable content of 35 delta and/or theta alumina and has at least 60% of its pore volume in pores having a diameter of about l00 A
(l0 nm) to 200 A (~0 nm), at least about 5% of its pore volume in pores greater than 500 A (50 nm) in diameter, .
. . .
.
. . .
- .. .
- . . .: .
. . , . : .
-- : , :
~1~'29 and a surface area of up to about 110 square meters per gram (m /gm) and in which the second catalyst comprises a similar hydrogenating component composited with a refractory base, preferably alumina, and has at least 50%, and preferably at least 60%, of its pore volume contributed by pores that have a diameter of 30 A (3 nm) to 100 A (10 nm) and a surface area of at least 150 m /gm.
United States Patent No. 2,890,162 teaches that o catalysts comprising active catalytic components on alumina and having a most frequent pore diameter of 60 A
(6 nm) to 400 A (40 nm) and pores which may have di-ameters in excess of 1,000 A (100 nm) are suitable for desulfurization, hydrocracking, hydroforming of naphthene hydrocarbons, alkylation, reforming of naphthas, isomerization of paraffins and the like, hydrogenation, dehydrogena~ion, and various types of hydrofining operations, and hydrocracking of residua and other asphalt-containing materials. It is suggested that suitable active components and promoters comprise a metal or a catalytic compound of various metals, molybde-num and chromium being among 35 listed metals.
United Kingdom Patent Specification 1,051,341 discloses a process for the hydrodealkylation of certain aromatics, which process employs a catalyst consisting of the oxides or sulfides of a Group VI metal supported - on alumina, having a porosity of 0.5 milliliters per ; gram (ml/gm) to 1.8 ml/gm and a surface area of 138 m2/gm to 200 m2/gm, at least 85% of the total porosity 30 being due to pores having a diameter of 150 A (15 nm) to ; 550 A (55 nm).
United States Patents Nos. 3,245,919 and 3,267,025 disclose hydrocarbon conversion processes, such as reforming, hydrocracking, hydrodesulfurization, isomeri-zation, hydrogenation, and dehydrogenation, that employa catalyst of a catalytic amount of a metal component selected from metals of Group VI and Group VIII, such as chromium, molybdenum, tungsten, iron, nickel, cobalt, .
~ ' ' ' ,: ~
.
: , . .
- - -, . .. ... : ; , , .
~2729 and the platinum group metals, their compounds, and mixtures thereof, supported on gamma-alumina obtained by the drying and calcining of a boehmite alumina product and having a pore structure totalling at least about 0.5 cc/gm in pores larger than 80 A (8 nm) in size.
United States Patent No. 3,630,888 teaches the treatment of residuum hydrocarbon feeds in the presence of a catalyst comprising a promoter selected from the group consisting of the elements of Group VIB and lo Group VIII of the Periodic Tab~e, oxides thereof, and combinations thereof, and a particulate catalytic agent of silica, alumina, and combinations thereof, having a total pore volume greater than 0.40 cubic centimeters per gram (cc/gm), which pore volume comprises micropores and access channels, the access channels being interstitially spaced through the structure of the micropores, a first portion of the access channels having diameters between about 100 A (10 nm) and about 1,000 A (100 nm), which first portion comprises 10% to 40% of the pore volume, a second portion of the access channels having diameters greater than 1,000 A, (100 nm) which second portion comprises 10% to 40% of the pore volume, and the remainder of the pore volume being micropores having diameters of less than 100 A (10 nm), which remainder comprises 20% to 80% of the total pore volume.
United States Patent No. 3,114,701, while pointing out that in hydrofining processes nitrogen compounds are removed from petroleum hydrocarbons in the presence of various catalysts generally comprising chromium and/or molybdenum oxides together with iron, cobalt, and/or : nickel oxides on a porous oxide support, such as alumina or silica-alumina, discloses a hydrodenitrification process employing a catalyst containing large concen-trations of nickel and molybdenum on a predominantly alumina carrier to treat hydrocarbon streams boiling at 180F. (82C.) to about 1,050F. (566C.).
, .
United States Patent No. 2,843,552 discloses that a catalyst containing chromia in an appreciable amount - with alumina provides a very good attrition resistant catalyst, can have molybdenum oxide impregnated thereon, and can be used in reforming, desulfurization, and isomerization processes.
United States Patent No. 2,577,823 teaches that hydrodesulfurization of heavy hydrocarbon fractions containing from 1% to 6.5% sulfur in the form of organic lo sulfur compounds, such as a reduced crude, can be con-ducted over a catalyst of chromium, molybdenum, and aluminum oxides, which catalyst is prepared by simul-taneously precipitating the oxides of chromium and molybdenum on a preformed alumina slurry at a pH of 6 to 8.
United States Patent No. 3,265,615 discloses a method for preparing a supported catalyst in which a catalyst carrier of high surface area, such as alumina, is impregnated with ammonium molybdate and then immersed in an aqueous solution of chromic sulfate, and the treated carrier is dried overnight and subsequently reduced by treatment with hydrogen at the following sequential temperatures: 550F. (288C.) for 1/2 hour;
750F. (399C.) for 1/2 hour; and 950F. (510C.) for 1/2 hour. The reduced material is sulfided and employed to hydrofine a heavy gas oil boiling from 650F. (343C.) to 930~F. (493C.).
United States Patent No. 3,95~,105 discloses a process for hydrotreating petroleum hydrocarbon fractions, such as residual fuel oils, which process employs a catalyst comprising a Group VIB metal (chromium, molybde-num, tungsten), a Group VIII metal (nickel, cobalt) and a refractory inorganic oxide, which can be alumina, silica, zirconia, thoria, boria, chromia, magnesia, and 35 composites thereof. The catalyst is prepared by dry mixing a finely divided Group VIB metal compound, a Group VIII metal compound, and a refractory inorganic oxide, peptizing the mixture and forming an extrudable dough, extruding, and calcining.
^
.
. . , ~ - -.
- , . ~ ~ - -,, :
United States Patent No. 3,64~,817 discloses a two-stage process for treating asphaltene-containing hydrocarbons. Both catalysts in the process comprise one or more metallic components selected from the group consisting of molybdenum, tungsten, chromium, iron, cobalt, nickel, and the platinum group metals on a porous carrier material, such as alu~ina, silica, 7irconia, magnesia, titania, and mixtures thereof, the first catalyst having more than 50% of its macropore 0 volume characterized by pores having a pore diameter that is greater than about 1,000 A (100 nm) and the second catalyst having less than 50% of its macropore volume characterized by pores having a pore diameter that is greater than about 1,000 A (100 nm).
United States Patent No. 3,957,622 teaches a two-stage hydroconversion process for treating asphaltene-containing black oils. Desulfurization occurs in the first stage over a catalyst that has less than 50% of ; its macorpore volume characterized by pores having a 20 pore diameter greater than about 1,000 A (100 nm).
Accelerated conversion and desulfurization of the asphaltenic portion occur in the second stage over a catalyst having more than 50% of its macropore volume characterized by pores having a pore diameter that is 25 greater than 1,000 A (100 nm). Each catalyst comprises one or more metallic components selected from the group consisting of molybdenum, tungsten, chromium, iron, cobalt, nickel, the platinum group metals, and mixtures thereof on a support material of alumina, silica, 30 zirconia, magnesia, titania, boria, strontia, hafnia, or mixtures thereof.
French patent publication No. 2,281,972 teaches the preparation of a catalyst comprising the oxides of cobalt, molybdenum, and/or nickel on a base of aluminum 35 oxide and 3 to 15 wt.% chromium oxide and its use for the refining of hydrocarbon fractions, preferably for the hydrodesulfurization of fuel oils obtained by vacuum distillation or residual oils obtained by atmospheric , . - -. :
, . : ~ , ~- - . .
. . . . , . . -distillation. The base can be prepared by co-precipi-tation of compounds of chromium and aluminum.
United States Patent No. 3,162,596 teaches that, in an integrated process, a residual hydrocarbon oil con-S taining metal contaminants (nickel and vanadium) isfirst hydrogenated ei~her with a hydrogen donor diluent or over a catalyst having one or more hydrogenation promoting metals supported on a solid carrier exempli-fied by alumina or silica and then vacuum distilled to 1~ separate a heavy gas oil fraction containing reduced quantities of metals from an undistilled residue boiling primarily above about 1,100F. (593C.) and containing asphaltic material. The heavy gas oil fraction is subsequently catalytically cracked.
lS United States Patent No. 3,180,820 discloses that a - heavy hydrocarbon stock can be upgraded in a two-zone hydrodesulfurization process, wherein each zone employs a solid hydrogenation catalyst comprising one or more metals from Groups VB, VIB, and VIII of the Periodic Table of Elements. Either catalyst can be supported or unsupported. In a preferred embodiment, the first zone contains an unsupported catalyst-oil slurry and the second zone contains a supported catalyst in a fixed bed, slurry, or fluidized bed. The support of the supported catalyst is a porous refractory inorganic ~; oxide carrier, including alumina, silica, zirconia, magnesia, titania, thoria, boria, strontia, hafnia, and complexes of two or more oxides, such as silica-alumina, silica-zirconia, silica-magnesia, alumina-titania, and silica-magnesia-zirconia, among others. The patent provides that the supported catalyst which is appropri-ate for use in the invention will have a surface area of about 50 m~/gm to 700 m2/gm, a pore diameter of about 20 A
(2 nm) to 600 A (60 nm), and a pore volume of about 0.10 ml/gm to 20 ml/gm.
United States Patents Nos. 3,977,961 and 3,985,684 disclose processes for the hydroconversion of heavy crudes and residua, which processes employ one or two ., - , ,- ,.
~ . . . . . . . . .
:. .. . . - , : --- : :: . . . -- - . . .. ~ - .: - - :
:. . - . .
. .
7;~9 catalysts, each of which comprises a Group VIB metal and/or a Group VIII metal on a refractory inorganic oxide, such as alumina, silica, zirconia, magnesia, boria, phospha~e, titania, ceria, and thoria, can com-prise a Group IVA metal, such as germanium, has a veryhigh surface area and contains ultra-high pore volume.
The first catalyst has at least about 20% of its total pore volume of absolute diameter within the range of about lO0 A (10 nm) to about 200 A (20 nm), when the catalyst has a particle size diameter ranging up to 1/50 inch (0.051 cm), at least about 15% of its total pore volume of absolute diameter within the range of about o O
150 A (15 nm) to about 250 A (25 nm), when the catalyst has a particle size diameter ranging from about 1/50 inch (0.051 cm) to about 1/25 inch (0.102 cm), at least about 15% of its total pore volume of absolute diameter within the range of about 175 A (17.5 nm) to about 275 A
(27.5 nm), when the catalyst has an average particle size diameter ranging from about 1/25 inch (0.102 cm) to about l/8 inch (0.32 cm~, a surface area of about 200 m2/gm to about 600 m2/gm, and a pore volume of about 0.8 ; cc/gm to about 3.0 cc/gm. The second catalyst has at least about 55% of its total pore volume of absolute diameter within the range of about 100 A (10 nm) to about 200 A (20 nm), less than 10% of its pore volume with pore diameters of 50 A- (5 nm-), less than about 25% of its total pore volume with pore diameters of 300 A+ (30 nm~), a surface area of about 200 m2/gm to about 600 m /gm, and a pore volume of about 0.6 cc/gm to about 1.5 cc/gm. These patents teach also that the effluent from such processes may be sent to a catalytic cracking unit or a hydrocracking unit.
United States Patent No. 4,054,508 discloses a ; process for demetallization and desulfurization of 35 residual oil fractions, which process utilizes 2 cata-lysts in 3 zones. The oil is contacted in the first zone with a major portion of a first catalyst comprising a Group VIB metal and an iron group metal oxide com-posited with an alumina support, the first catalyst .. . .
, .. . . , . ~ .
. ~
- . . ..
- . ;: : ~ :
.
- : ,. , _ 9 - O
having at least 60% of its pore volume in pores of 100 A
(10 nm) to 200 A (20 nm) diameter and at least about 5%
of its pore volume in pores having a diameter greater than 500 A (50 nm), in the second zone with the second catalyst comprising a Group VIB metal and an iron group metal oxide composited with an alumina support, the second catalyst having a surface area of at least 150 m2/gm and at least 50% of its pore volume in pores with O O
diameters of 30 A (3 nm) to 100 A (10 nm), and then in a third zone with a minor portion of the first catalyst.
Now there has been found and developed a process for hydrotreating a heavy hydrocarbon stream containing metals, asphaltenes, nitrogen compounds, and sulfur compounds, which process employs a catalyst that has special physical characteristics and a hydrogenating component comprising molybdenum and chromium and option-ally cobalt.
Summary of the Invention Broadly, according to the present invention, there is provided a process for the hydrotreating of a heavy hydrocarbon stream containing metals, asphaltenes, nitrogen compounds, and sulfur compounds, which process comprises contacting said stream under suitable con-ditions and in the presence of hydrogen with a catalyst comprising a hydrogenating component comprising molybde-num and chromium, their oxides, their sulfides, and mixtures thereof on a large-pore, catalytically active alumina. The molybdenum can be present in an amount within the range of about 5 wt.% to about 15 wt.%, - 30 calculated as MoO3 and based upon the total catalyst weight, and the chromium can be present in an amount within the range of about 5 wt.% to about 20 wt.%, calculated as Cr2O3 and based upon the total catalyst weight. The catalyst possesses a pore volume within the 35 range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m /gm to about 300 m /gm, and an average pore diameter within the range of about 100 A (10 nm) to about 200 A (20 nm).
The catalyst can additionally con~ain cobalt and/or its oxide, and/or its sulfide. When cobalt is present, it is there in an amount within the range of about 0.1 wt.% to about 5 wt.%, calculated as CoO and based upon the total catalyst weight.
The catalyst that is employed in the process of the present invention can be prepared by calcining the alumina (pseudo-boehmite) in air at a temperature of about 800F. (427C.~ to about 1,400F. (760C.) for a period of time within the range of about l/2 hour to about 2 hours to produce a gamma-alumina and subse-quently impregnating the gamma-alumina with one or more aqueous solutions containing heat-decomposable salts of the molybdenum and the chromium.
The catalyst that is employed in the process of the present invention has about 0% to about 10% of its pore volume in pores having diameters that are smaller than 50 A (5 nm), about 30% to about 80% of its pore volume in pores having diameters within the range of about 50 A
(5 nm) to about 100 A (10 nm), about 10% to about 50% of its pore volume in pores having diameters within the range of about 100 A (10 nm) to about 150 A (15 nm), and about 0% to about 10% of its pore volume in pores having diameters that are larger than 150 A (15 nm~.
The process of the present invention is carried out at a hydrogen partial pressure within the range of about 1,000 psia (6.9 MPa) to about 3,000 psia (29.7 MPa), an average catalyst bed temperature within the range of about 700F. (371C.) to about 820F. (438C.), a liquid 30 hourly space velocity (LHSV) within the range of about 0.1 volu~e of hydrocarbon per hour per volume of catalyst to about 3 volumes of hydrocarbon per hour per volume of catalyst, and a hydrogen recycle rate or hydrogen addition rate within the range of about 2,000 standard cubic feet ; 35 of hydrogen per barrel of hydrocarbon [SCFB] (356 m3/m3) to about 15,000 SCFB (2,672 m3/m3).
- ~ :
: . . . : - . -. . , . : - ~
' ' ' ' -. ~ ' . ', ' ~. :
Brief Description of the Drawing The accompanying figure is a simplified flow diagram of a preferred embodiment of the process of the present invention.
Detailed Description of the Invention The present invention is directed to a novel process for the hydrotreating of heavy hydrocarbon feedstocks.
Such feedstocks will contain asphaltenes, metals, nitrogen compounds, and sulfur compounds. It is to be understood that the feedstocks that are to be treated by the process of the present invention will contain from a small amount of nickel and vanadium, e.g., less than 40 ppm, up to more than 1,000 ppm of nickel and vanadium (a combined total amount of nickel and vanadium) and up to about 25 wt.% asphaltenes. If the feedstock contains either a combined amount of nickel and vanadium that is too large or an amount of asphaltenes that is exception-ally large, the feedstock can be subjected to a pre-liminary treatment to reduce the excessive amount of the particular contaminant. Such preliminary treatment will comprise a suitable hydrogenation treatment for the removal of metals from the feedstock and/or the con-version of asphaltenes in the feedstock to reduce the contaminants to satisfactory levels, such treatment employing any suitable relatively cheap catalyst. The above-mentioned contaminants will deleteriously affect the subsequent processing of such feedstocks, if they are not lowered to acceptable levels.
Typical feedstocks that can be treated satis-factorily by the process of the present invention willoften contain a substantial amount of components that boil appreciably above 1,000F. (538C.). Examples of typical feedstocks are crude oils, topped crude oils, petroleum hydrocarbon residua, both atmospheric and 35 vacuum residua, oils obtained from tar sands and residua derived from tar sand oil, and hydrocarbon streams derived from coal. Such hydrocarbon streams contain organometallic contaminants which create deleterious ' . , ' ' . .
effects in various refining processes that employ cata-lysts in the conversion of the particular hydrocarbon stream being treated. The metallic contaminants that are found in such feedstocks include, but are not limited to, iron, vanadium, and nickel.
Nickel is present in the form of soluble organo-metallic compounds in most crud~ oils and residuum fractions. The presence of nickel porphyrin complexes and other nickel organometallic complexes causes severe difficulties in the refining and utilization of heavy hydrocarbon fractions, even if the concentration of such complexes is relatively small. It is known that a cracking catalyst deteriorates rapidly and its se-lectivity changes when in the presence of an appreciable lS quantity of the organometallic nickel compounds. An appreciable quantity of such organometallic nickel compounds in feedstocks that are being hydrotreated or hydrocracked harmfully affects such processes. The catalyst becomes deactivated and plugging or increasing of the pressure drop in a fixed-bed reactor results from the deposition of nickel compounds in the interstices between catalyst particles.
Iron-containing compounds and vanadium-containing compounds are present in practically all crude oils that are associated with the high Conradson carbon asphaltic and/or asphaltenic portion of the crude. Of course, such metals are concentrated in the residual bottoms, when a crude is topped to remove those fractions that boil below about 450F. (232C.) to 600F. (316C.). If such residuum is treated by additional processes, the presence of such metals adversely affects the catalyst in such processes. It should be pointed out that nickel-containing compounds deleteriously affect cracking catalysts to a greater extent than do iron-containing compounds. If an oil containing such metals is used as a fuel, the metals will cause poor fuel oil performance in industrial furnaces, since they corrode the metal surfaces of the furnaces.
.
, . . ~ -- : , .
,. . ~ . : . .
-- - : - . . .
While metallic contaminants, such as vanadium, nickel, and iron, are often present in various hydro-carbon streams in rather small a~ounts, they are often found in concentrati~ns in excess of 40 to 50 ppm by weight, often in excess of 1,000 ppm. Of course, other metals are also present in a particular hydrocarbon stream. Such metals exist as the oxides or sulfides of the particular metal, or they are present as a soluble salt of the particular metal, or they are present as high molecular weight organometallic compounds, in-cluding metal naphthenates and metal porphyrins, and derivatives thereof. In any event, the feed stream can be treated for demetallization prior to use in the process of the present invention if the total amount of lS nickel and vanadium is excessive.
Broadly~ according to the process of the present invention, there is provided a process for hydrotreating a heavy hydrocarbon stream containing metals, asphaltenes, nitrogen compounds~ and sulfur compounds to reduce the contents of metals, asphaltenes, nitrogen compounds, and sulfur compounds in said stream, wherein said stream is contacted with a catalyst under suitable conditions and in the presence of hydrogen, characterized in that the catalyst comprises a hydrogenating component comprising the metals of molybdenum and chromium, their oxides, their sulides, or mixtures thereof, on a large-pore, catalytically active alumina, said molybdenum being present in an amount within the range of about 5 wt.% to about 15 wt.%, calculated as MoO3 and based upon the total catalyst weightf said chromium being present in an amount within the range of about 5 wt.% to about 20 wt.%, calculated as Cr203 and based upon the total catalyst weight, and said catalyst possessing a pore vo].ume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m2/gm to about 300 m2/gm, and an a~erage pore diameter within the range of about 100 A (10 nm) to about 200 A
(20 nm).
'' ~&
The process of the present invention can be charac-terized further in that the hydrogenating component of said catalyst contains the metal cobalt, its o~ide, its sulfide, or mixtures thereof, said cobalt being present in an amount within the range of about 0.1 wt.% to about 5 wt.%, calculated as CoO and based upon the total catalyst weight.
It is to be understood that as used herein all values that are given for surface area would be those that are obtained by ~he BET nitrogen adsorption method;
all values that are given for pore volume would be those that are obtained by nitrogen adsorption; and all values that are given for average pore diameter would be those that are calculated by means of the expression:
A.P.D. = 4 x P V x 104 wherein A.P.D. = average pore diameter in A, P.V. = pore volume in cc/gm, and S.A. = surface area in m /gm.
Furthermore, pore size distributions are those that are obtained by a Digisorb 2500 instrument through the use of nitrogen desorption techniques.
In the process of the present invention, the cata-lyst provides good demetallization activity, moderate desulfurization activity, and possesses good stability to deactivation, when being used at a high temperature and/or moderate pressure, such as about 1,200 psig (8.37 MPa).
The hydrogenating component of the catalyst that is employed in the process of the present invention is a particular component comprising molybdenum and chromium.
In one embodiment of the process of the present invention, the hydrogenating component of the catalyst 35 consists essentially of molybdenum and chromium, their oxides, their sulfides, or mixtures thereof. According to this embodiment, there is provided a process for hydrotreating a heavy hydrocarbon stream containing .
-:-metals, asphaltenes, nitrogen compounds, and sulfurcompounds to reduce the contents of metals, asphaltenes, nitrogen compounds, and sulfur compounds in said stream, wherein said stream is contacted with a catalyst under suitable conditions and in the presence of hydrogen, characterized in that the catalyst comprises a hydro-genating component consisting essentially of the metals of molybdenum and chromium, their oxides, their sulfides, or mixtures thereof, on a large-pore, catalytically active alumina, said molybdenum being present in an amount within the range of about S wt.% to about 15 wt.%
calculated as MoO3 and based upon the total catalyst weight, said chromium being present in an amount within the range of about S wt.% to about 20 wt.%, calculated lS as Cr2O3 and based upon the total catalyst weight, and said catalyst possessing a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m /gm to about 300 m /gm~
and an average pore diameter within the range of about 100 A (10 nm) to about 200 A (20 nm).
Optionally, the hydrogenating component of the catalyst that is used in the process of the present invention can also contain cobalt. The molybdenum and chromium and cobalt, when present, are present in the elemental form, as oxides of the metals, as sulfides of the metals, or mixtures thereof. The molybdenum is present in an amount within the range of about S wt.% to about lS wt.%, calculated as MoO3 and based upon the total catalyst weight. The chromium is present in an 30 amount within the range of about 5 wt.% to about 20 wt.%, calculated as Cr2O3 and based upon the total catalyst weight. The cobalt, when present, is present in an amount within the range of about 0.1 wt.% to about 5 wt.%, calculated as CoO and based upon the total 35 catalyst weight. Preferably, the molybdenum is present in an amount within the range of about 7 wt.% to about 13 wt.%, calculated as MoO3 and based upon the total catalyst weight, the chromium is present in an amount within the range of about 6 wt.% to about 15 wt.%, calculated as Cr2O3 and based upon the total catalyst weight, and the cobalt is present in an amount within the range of about 1 wt.% to about 3 wt.%, calculated as CoO and based upon the total catalyst weight.
Accordingly, there is provided a process for the hydrotreating of a heavy hydrocarbon stream containing metals, asphaltenes, nitrogen compounds, and sulfur compounds to reduce the contents of metals, asphaltenes, nitrogen compounds, and sulfur compounds in said stream, wherein said stream is contacted with a catalyst under suitable conditions and in the presence of hydrogen, characterized in that the catalyst c~mprises a hydro-genating component comprising molybdenum, chromium, and cobalt, their oxides, their sulfides, and mixtures thereof on a large-pore, catalytically active alumina, said molybdenum being presen~ in an amount within the range of about 5 wt.% to about 15 wt.%, calculated as MoO3 and based upon the total catalyst weight, said chromium being present in an amount within the range of about 5 wt.% to about 20 wt.%, calculated as Cr2O3 and based upon the total catalyst weight, said cobalt being present in an amount within the range of about 0 wt.% to about 5 wt.%, calculated as CoO and based upon the total catalyst weight, and said catalyst possessing a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m2/gm to about 300 m2/gm, and an average pore diameter within the range of about 100 A (10 nm) to about 200 A
(20 nm).
Suitable catalytically active large-pore aluminas are employed in the catalyst that is utilized in the process of the present invention. A typical example of such an alumina is Aero-100 alumina, manufactured by the 35 American Cyanamid Company. The alumina s~ould have a pore volume that is in excess of 0.4 cc/gm, a surface area that is in excess of 150 m2/gm, and an average pore diameter that is greater than 100 A (10 nm).
- . . .
' ~
.
- . .
. - - - .
.. . . -.
Typically, the catalytic composition ~hat is em-ployed in the process of the present invention may be prepared by impregnating the various metals upon the suitable catalytically active large-pore alumina. Such impregnation may be accomplished with one or more solutions of heat-decomposable compounds of the appropriate metals. The impregnation may be a co-impregnation when a single solution of the metals is employed. Alternatively, impregnation may be accom-plished by the sequential impregnation of the variousmetals from two or more solutions of the heat-decom-posable compounds of t~e appropriate metals. The impregnated support is dried at a temperature of at least 250F. (121C.) for a period of at least 1 hour and calcined in air at a temperature of at least 1,000F.
(538C.) for a period of time of at least 2 hours.
Preferably, the catalyst that is used in the process of the present invention is prepared by first calcining pseudo-boehmite in static air at a temperature of about 800F. (427~C.) to about 1,400F. (760C.) for a period of time within the range of about 1/2 hour to about 2 hours to produce a gamma-alumina. This gamma-alumina is subsequently impregnated with the aqueous solution or solutions containing the heat-decomposable salts of the cobalt, if present, and the molybdenum and chromium.
; The finished catalyst that is employed in the process of the present invention possesses a pore volume within the range of about 0.4 cc/gm to about 0 8 cc/gm, a surface area within the range of about 150 m /gm to about 300 m2/gm, and an average pore diameter within the range of about 100 A (lO nm) to about 200 A (20 nm).
Preferably, the catalyst possesses a pore volume within the range of about 0.5 cc/gm to about 0.7 cc/gm, a surface area within the range of about 150 m2/gm to about 250 m2/gm, and an average pore diameter within the range of about llO A (11 nm) to about 150 A (15 nm).
The catalyst employed in the process of the present ; invention should have about 0% to about 10% of its pore ~, , .
. .
: :
volume in pores havinK ~iameters that are smaller than 50 A (5 nm), about 30% to about 80% of its pore volume in pores having diameters within the range o~ about 50 A
(5 nm) to about 100 A (10 nm), about 10% to about 50% of its pore volume in pores having diameters within the range of about 100 A (10 nm) to about 150 A (l~ nm), and about 0% to about 10% of its pore volume in pores having diameters that are larger than 150 A (15 nm).
The process of the subject application is particu-: lO larly useful for hydrotreating heavy hydrocarbon streams such as petroleum residua, both atmospheric resids and vacuum resids, tar sands oils, tar sands resids, and liquids obtained from coal. In addition, the process may be employed to satisfactorily hydrotreat petroleum hydrocarbon distillates, such as gas oils, cycle stocks,and furnace oils. I~ the amount of nickel and vanadium is excessive or the concentration of asphaltenes is too large, the feedstock should be subjected to a prelimi-nary treatment to reduce the excessive amount or amounts to more tolerable levels before the feedstock is used in the process of the present invention.
Operating conditions for the hydrotreatment of heavy hydrocarbon streams, such as petroleum hydrocarbon residua and the like, comprise a hydrogen partial 25 pressure within the range of about 1,000 psia (6.9 MPa) to about 3,000 psia (20.7 MPa), an average catalyst bed temperature within the range of about 700F. (371C.) to about 820F. (438C.), a LHSV within the range of about 0.1 volume of hydrocarbon per hour per volume of cata-lyst to about 3 volumes of hydrocarbon per hour pervolume of catalyst, and a hydrogen recycle rate or hydrogen addition rate within the range of abou-t 2,000 SCFB ~356 m3/m3) to about 15,000 SCFB (2,672 m3/m3).
Preferably, the operating conditions comprise a hydrogen 35 partial pressure within the range of about 1,200 psia (8.27 MPa) to about 2,000 psia (13.8 MPa), an average catalyst bed temperature wi~hin the range of about 730F. (388C.) to about 810F. (432C.), a LHSV within - .. : . . ... .. . . .
:. : : . .... ..
,: . . .. .: : :. . :
- .. . .
, - . .
.. . ... .
.
.
.. .. ~.
.' , "' . : .' .' ' ~ -the range of about 0.4 to about 1, and a hydrogen recycle rate or hydrogen addition rate within the range of about 5,000 SCFB (890 m3/m3) to about 10,000 SCFB (1,780 m3/m3).
If the process of the present invention were to be used to treat hydrocarbon distillates, the operating conditions would comprise a hydrogen partial pressure within the range of about 200 psia (1.4 MPa3 to about 3,000 psia (20.7 MPa), an average catalyst bed temper-ature within the range of about 600F. (316C.) to about 800F. (427C.), a LHSV within the range of about 0.4 volume of hydrocarbon per hour per volume of catalyst to about 6 volumes of hydrocarbon per hour per volume of catalyst, and a hydrogen recycle rate or hydrogen ad-dition rate within the range of about 1,0~0 SCFB
(178 m3/m3) to about 10,000 SCFB (1,780 m3/m3). Pre-ferred operating conditions for the hydrotreating of hydrocarbon distillates comprise a hydrogen partial pressure within the range of aboùt 200 psia (1.4 MPa) to about 1,200 psia (8.27 MPa), an average catalyst bed temperature within the range of about 600F. (316C.) to about 750F. (399C.), a LHSV within the range of about 0.5 volume of hydrocarbon per hour per volume of cata-lyst to about 4 volumes of hydrocarbon per hour per volume of catalyst, and a hydrogen recycle rate or hydrogen addition rate within the range of about 1,000 SCFB (178 m3/m3) to about 6,000 SCFB (1,069 m3/m3).
A preferred embodiment of the process of the present invention is presented in the accompanying figure, which is a simplified flow diagram and does not show various 30 pieces of auxiliary equipment, such as pumps, com-pressors, heat exchangers, and valves. Since one having ordinary skill in the art would recognize easily the need for and location of such auxiliary equipment, its omission is appropriate and facilitates the simplifi-cation of the figure. This process scheme is presentedfor the purpose of illustration only and is not intended to limit the scope of the present invention.
..
,, ~ . . . .
.- .
'. ~.. :
.. ..
,~
-:
Referring to the figure, an Arabian light vacuum resid~ containing about 4 wt.% sulfur, less than 0.5 wt.% nitrogen, and less than 100 ppm of nickel and vanadium, is withdrawn from source 10 through line 11 into pump 12, whereby it is pumped through line 13. A
hydrogen-containing recy~le gas stream, discussed here-inafter, is passed from line 14 into line 13 to be mixed with the hydrocarbon feed stream to form a mixed hydrogen-hydrocarbon stream. The mixed hydrogen-hydrocarbon lo stream is then passed from line 13 into furnace lS where it is heated to a temperature within the range of about 760F. (404C.) to about 780F. (416C.). The heated stream is then passed through line 16 into reaction zone 17.
Reaction zone 17 comprises one or more reactors 9 each of which contains one or more fixed beds of cata-lyst. The catalyst comprises a hydrogenation component comprising about 5 wt.% to about 15 wt.% molyhdenum, calculated as MoO3 and based upon the total ca~alyst 20 weight, and about 5 wt.% to about 20 wt.% chromium, calculated as Cr2O3 and based upon the total catalyst weight, on a large-pore, catalytically active alumina.
The molybdenum and the chromium are present either in the elemental form, as oxides of the metals, as sulfides of the metals, or as mixtures thereof. The catalyst has a pore volume within the range of about 0.4 cc/gm to abo~t 0.8 cc/gm, a surface area within the range of about 150 m2/gm to about 300 m2/gm, an average pore diameter within the range of about 100 A (10 nm) to 30 about 200 A (20 nm), and a pore-size distribution wherein about 0% to about 10% of the pore volume has pore diameters within the range of about 0 A ~0 nm) to about 50 A (5 nm), about 30% to about 80% of the pore volume has pore diameters within the range of about 50 A
(5 nm) to about 100 A (10 nm), about 10% to about 50% of the pore volume has pore diameters within the range of about 100 A (10 nm) to about 150 A (15 nm), and about 0%
to about 10% of the pore volume has pore diameters that are larger than 150 A (15 nm).
- :
: , '., ' ' . .
- ~ .
., ' ' ' , ~ .
7~
The operating conditions employed in this scheme comprise a hydrogen partial pressure of about 1,200 psia (8.27 MPa) to about 1,600 psia (11.0 MPa), an average catalyst bed temperature within the range of about 760F. (404C.) to about 780F. (416C.), an LHSV within the range of about 0.4 volume of hydrocarbon per hour per volume of catalyst to about 0.8 volume of hydro-carbon per hour per volume of catalyst, and a hydrogen recycle rate within the range of about 5,000 SCFB
o (890 m3/m3) to about 8,000 SCFB (1,425 m3/m3).
The effluent from reaction zone 17 is passed through line 18 into high-temperature, high-pressure, gas-liquid separator 19, which is operated at reactor pressure and a temperature within the range of about 760F. (404C.~ to abou-t 780F. (416C.). In separator 19, hydrogen-containing gas is separated from the rest of the effluent. The hydrogen-containing gas is passed from separator 19 through line 20. It is cooled and sent into light-hydrocarbon separator 21, wherein the con-densed light hydrocarbons are separated from the hydrogen-containing gas and withdrawn via line 22. The hydrogen-containing gas is removed by way of line 23 and passed into scrubber 24, wherein the hydrogen sulfide is removed or scrubbed from the gas. The hydrogen sulfide is removed from the system by way of line 25. The scrubbed hydrogen-containing gas is then passed through line 14 where it can be joined by make-up hydrogen, if neces-sary, via line 26. The hydrogen-containing gas stream is then added to the hydrocarbon feed stream in line 13, as described hereinabove.
The liquid portion of the effluent is passed from the high-temperature, high-pressure, gas-liquid sepa-rator 19 by way of line 27 to high-temperature flash drum 28. In flash drum 28, the pressure is reduced to atmospheric pressure and the temperature of the material is within the range of about 700F. (371C.) to about 800F. (427~C.). In flash drum 28, the light hydro-carbons containing not only the naphtha but those .
.
.
.. . .
.
, . , , .: .
, . : ~ ~ . : . . .
.. . . . ~ :
-: . . . : . : : ~
distillates boiling up to a temperature of about 550F.
(288C.) to 600F. (316C.), such as fuel oils, is flashed from the rest of the produc~ and is removed from the system by way of line 29. Such light hydrocarbons, which comprise about 1 wt.% to about 4 wt.% C4-material, about 2 wt.% to 5 wt.% naphtha (C5-to-360F.
[C5-to-182C.] material), and about 10 wt.% to about 15 wt.% 360F.-650F. (182C.-343C.) material, based upon hydrocarbon feed, can be separated into their various ~ :
components and sent to storage or to other processing units.
The heavier material that is separated from the light hydrocarbons, that is, material that boils at a temperature above about 600F. (316C.), present in an amount of about 60 wt.% to about 90 wt.% based upon the hydrocarbon feed, is removed from flash drum 28 by way of line 30 for use as feeds to other processes or as a low-sulfur, heavy industrial fuel. Such liquid material contains about 0.6 wt./~ to about 1.2 wt.% sulfur, about 1.0 wt.% to about 3.0 wt.% asphaltenes, and about 5 ppm to about 15 ppm nickel and vanadium. Furthermore, more than 50% of the 1,000F.+ (538C.+) material is con-verted to 1,000F.- (538C.-) material.
This liquid effluent is passed via line 31 to 2S furnace 32, or other suitable heating means, to be heated to a temperature as high as 800F. (427C.).
The heated stream from furnace 32 is passed by way of line 33 into vacuum tower 34, where vacuum gas oil (VGO) is separated from a low-sulfur residual fuel. The 30 ~GO is passed from vacuum tower 34 by way of line 35 to storage or to a conventional catalytic cracking unit ; (not shown). The low-sulfur residual fuel is passed from vacuum tower 34 by way of line 36 to storage or to other processing units where it can be used as a source 35 of energY-Alternatively, the material boiling above 600F.(316C.) that is removed from flash drum 28 through line 30 can be sent by way of line 37 to a resid catalytic cracking unit (not shown).
!
.
' The following examples are presented to facilitatethe understanding of the present invention and are presented for the purposes of illustration only and are not intended to limit the scope of the present in-vention.
Example 1 A catalyst, hereinafter identified as Catalyst A,was prepared to contain 8.3 wt.% MoO3 and 8.3 wt.%
Cr2O3, based upon the total catalyst weight, on a large-pore, catalytically active alumina. A 40.8-gram sample of Aero-100 alumina, obtained from the American Cyanamid Company, was impregnated with a solution containing ammonium dichromate and ammonium molybdate. The Aero-lO0 alumina was in the form of 14-to-20-mesh (1.17-to-0.83 mm) material and had been previously calcined ata temperature of about 1,200F. (649C.) in air for a period of 2 hours.
The solution that was used for the impregnation was prepared by dissolving 6.8 grams of the ammonium dichro-20 mate and 5.3 grams of the ammonium molybdate in 40 milliliters of distilled water.
The impregnated alumina was dried under a heat lamp in static air overnight to remove the excess water. The dried material was then calcined in static air at a temperature of 1,000F. (538C.) for a period of 2 hours. This finished catalyst, Catalyst A, is an embodi-ment of the catalyst that is employed in the process of the present invention.
Example 2 For comparative purposes, a commercially-available catalyst was obtained from the American Cyanamid Company.
This commercial catalyst was identified as HDS-2A and was specified by the American Cyanamid Company to contain 3 wt.% CoO and 13 wt.% MoO3 on an alumina support. This 3~ catalyst is identified hereinafter as Catalyst B.
Example 3 A second hydrotreating catalyst was employed for comparative purposes. This catalyst was obtained from - - ''~ '.
. . . .. . . . .. - - : -. .. , . , . .:
.. . . . .
: . . - - . : , :
, - . .- ~ .
, -,. ~ .. . . :
- -.
- : , the Nalco Chemical Company. The catalyst, identified - hereinafter as Catalyst C, was specified to contain about 3 wt.% CoO and 13 wt.% MoO3 on an alumina support.
The properties of Ca~alysts A, B, and C are presented S hereinbelow in Table I.
:, .
. .
:-' . :
~.
.
TABLE I
CATALYST PROPERTIES
CATALYST A B C D
HYDROGENATION
COMPONENT, WT.%
CoO ____ 3 3 _ _ Cr2O3 8.3 ---- -___ __ _ MoO3 8.3 13 13 ----PHYSICAL PROPERTIES
SURFACE AREA, m /gm208 330 284 222 PORE VOLUME, cc/gm0.600.61 0.61 0.73 AVG. PORE DIAM., A116 73 86 131 nm11.67.3 8.6 13.1 % OF PORE VOLUME IN:
0-50 A (0-5 nm~
PORES 6.3 26.7 14.2 1.4 50-100 A (5-10 nm~
PORES 69.5 58.8 76.3 56.7 100-150 A (10-15 nm) PORES 23.1 4.3 2.1 36.6 150-200 A (15-20 nm) PORES 0.4 1.6 0.7 1.6 200-300 A (20-30 nm) PORES 0.3 2.1 1.1 1.4 300-400 A (30-40 nm) PORES 0.1 0.8 0.8 0.4 400 A+ (40 nm+) PORES 0.3 5.7 4.8 1.9 :`
.
.
27Zg TABLE I (Cont'd.~
CATALYST PROPERTIES
CATALYST E F G
HYDROGENATION
COMPONENT, WT.%
CoO __ __ _ ___ Cr2O3 5.2 15.4 MoO3 9 8.6 7.7 10 PHYSI~AL PROPERTIES
SURFACE AREA, m /gm201 197 198 PORE VOLUME, cc/gm0.66 0.60 0.59 AVG. PORE DIAM., A 130 122 119 nm 13.0 12.2 11.9 % OF PORE VOLUME IN: :
0-50 A (0-5 nm) PORES 3.1 2.2 2.7 50-100 A (5-10 nm) PORES 68.0 64.8 65.8 100-150 A (10-15 nm) PORES 27.8 30.6 30.2 O . .
150-200 A (15-20 nm) PORES 0.2 0.8 0.2 I 200-300 A (20-30 nm) :l 25 PORES 0.3 0.7 0.3 ', 300-400 A (30-40 nm) PORES 0.1 0.2 0.1 ~; o 400 A+ (40 nm+) PORES 0.5 0.6 0.5 ; 30 :` :
~, .
i, 35 ( .1 ~1~2729 In addition> the physical properties of the alumina that was used as the suppor~ material for Catalyst A are presented in Table I. This support material is identi-fied as Catalyst D. The introduction of the metals into the alumina did not affect appreciably the por~ size distribution, pore volume, surface area, or average pore diameter of the alumina.
Example 4 Three other catalysts were prepared to show the effect of different concentrations of chromia upon the catalyst which comprises approximately 9 wt.% molybdena and an Aero-100 alumina support. These catalysts were prepared according to the preparation method discussed in Example 1 hereinabove. However, only the appropriate lS amounts of the metals were used to provide the desired compositions of the finished catalysts. These three catalysts are identified hereinafter as Catalysts E, F, and G and were prepared with the same type of Aero-100 alumina that was used in the preparation of Catalyst A.
Their chemical compositions and physical properties are presented also in Table I hereinabove. Again it is seen that the introduction of the metals onto and into the alumina has not greatly affected the physical properties of the alumina.
Example 5 Each of the above-discussed catalysts was tested for its ability to convert an Arabian light vacuum resid. Appropriate properties of this feedstock are presented hereinbelow in Table II.
3~
,~
, - , . . . . . :
- - . ~ - ~
.- : ' . : - -.. - . ~
, : ,, - : : .:
- ~8 -TABLE II
FEED PROPERTIES
Carbon, wt.% 84.91 Hydrogen, wt.% 10.61 H/C (atomic) 1.499 Nitrogen, wt.% 0.34 Sulfur, wt.% 4.07 Nickel, ppm 17.5 - lo Vanadium 51.1 1,000F.- (538C.-)fraction 13.6 Ramsbottom carbon, wt.% 15.2 Gravity, API 8.8 Density, at 15C., gm/cc 1.0080 Asphaltenes, wt.% 8.0 Oils, wt.% 39.2 Resins, wt.% 52.8 Resins/asphaltenes 6.6 -. .
Each test was carried out in a bench-scale test unit having automatic controls for pressure, flow of reactants, and temperature. The reactor was made from 3/8-inch(0.95-cm)-inside-diameter stainless-steel, ; heavy-walled tubing. A 1/8-inch(0.32-cm)-outside-diameter thermowell extended up through the center of the reactor. The reactor was heated by an electrically-heated steel block. The hydrocarbon feedstock was fed to the unit by means of a Ruska pump~ a positive-dis-` placement pump. The 14-to-20-mesh (1.17-to-0.83 mm) 30 catalyst material was supported on 8-to-10-mesh (2.38-to-
2.00 mm) alundum particles. Approximately 20 cubic centimeters of catalyst were employed as the catalyst bed in each test. This amount of catalyst provided a catalyst bed length of about 10 inches (25.4 cm) to 35 about 12 inches (30.5 cm). A 10-inch (25.4 cm) layer of 8-to-10-mesh (2.38-to-2.00 mm) alundum particles was placed over the catalyst bed in the reactor for each test. The catalyst that was employed was located in the -- ~ . .
. - . -, , : : :
.
.- : : . . ,: . . .
t~7;~
annular space between the thermowell and the internal wall of the 3/8-inch(0.95-cm)-lnside-diameter reactor.
Prior to its use, each catalyst was calcined in still air at a temperature of about l,000F. (538DC.) S ~or 1 hour. It was subsequently cooled in a desiccator and loaded into the appropriate reactor.
The catalyst was then subjected to the following pretreatment. The reactor was placed in the reactor block at a temperature of 300F. (149C.). A gas 0 mixture containing 8 mole % hydrogen sulfide in hydrogen was-passed over the catalyst at the rate of 1 standard cubic foot per hour [SCFH] (28.3 l/hr) at a pressure of 500 psig (3.5 MPa) and a temperature of about 300F.
(149C.). After 10 to 15 minutes of such treatment, the temperature of the block was raised to 400F. After at least an additional 1 hour of time had elapsed and at least 1 standard cubic foot (28.3 l) of gas mixture had passed through the system, the temperature of the block was raised to 700F. (371C.). Then the gas mixture was passed through the catalyst bed for at least 1 additional hour and in an amount of at least 1 standard cubic foot (28.3 l). At this point, the gas mixture was discontinued, hydrogen was introduced into the unit at a pressure of 1,200 psig (8.37 MPa), the flow of hydrogen was established at a rate of about 0.6 SCFH (17 l/hr), and the temperature was incre~ased to provide an average catalyst bed temper-ature of 760F. (404C.). Subsequently, the hydrocarbon flow was established at a rate that would provide an LHSV of 0.59 volume of hydrocarbon per hour per volume Of catalyst. Effluent from the reaction zone was collected in a liquid product receiver, while the gas that was formed was passed through the product receiver ~ to a pressure control valve and then through a wet test ; meter to an appropriate vent.
After a period of from 1 to 3 days, the average catalyst bed temperature was increased to 7S0F. (416C.).
After an additional amount of time, e.g., about 3 to 5 days, the average catalyst bed temperature was increased to about 800F. (427C.).
. . .
: . .
.
:: . . ~ :
. . . .
~27Z~
Selected samples were obtained from the product receiver and were analyzed for pertinent information.
Results of the tests are presented hereinbelow in Table III. These data were obtained from samples taken during the fifth to ninth day of operation conducted at an LHSV
of 0.59 volume of hydrocarbon per hour per volume of catalyst, a temperature of 800F. (427C.), and a pressure of 1,200 psig (8.37 MPa), unless otherwise indicated.
TABLE III
TEST ~ESULTS
Run No. 1 2 3 4 15 Catalyst A . B C E
Temperature, F. 800 800 780 780 C. 427 427 416 416 Pressure, psig 1,200 1,200 1,200 1,200 MPa 8.37 8.37 8.37 8.37 LHSV 0.59 0.59 0.59 0.59 : % Sulfur removal 65.4 77.4 85 59 % Nickel removal 85 43 48 40 % Vanadium removal 92.5 94.9 57 79 25 % Asphaltene conversion 70 68.8 54 67.5 Liq~id gravity, API 20.1 19.9 20.4 17.5 Density, at 15C., gm/cc 0.9328 0.9341 0.9310 0.9491 % Conversion of I,000F.+ (538C.+) material 59.1 47.3 40 ----Days on Stream 6 7 7-18(1) 5 (1) Composite sample of material obtained from Day 7 through Day 18.
. ''' :
:
27~9 TABLE III
TEST RESULTS
Run No. 4 5 6 Catalyst E F G
Temperature, F. 800 800 800 C. 427 427 427 Pressure, psig 1,200 1,200 1,200 MPa 8.37 8.37 8.37 LHSV 0.59 0.59 0.59 % Sulfur removal 60.5 60 69.6 % Nickel removal 64 64 78 15 % Vanadium removal 81 87 90.6 % Asphaltene conversion 66 70 71 Liquid gravity, API 19.3 17.6 21.1 : 20 Density, at 15C., gm/cc 0.9378 0.9485 0.9267 % Conversion of 1,000F.+ (538C.+) material 53 60.6 58.6 25 Days on Stream 9 10 7 .~, -, 35 '' .
-'.
:
. - - ' 27~9 The results presented in Table III demonstrate that the run employing Catalyst A, i.e., an embodiment of the process of the present invention, was superior to the two tests that employed other catalysts. The data show that the process of the present invention provided better nickel removal, about as good vanadium removal, better asphaltene conversion, better conversion of the 1,000F.+ (538C.+) material, but less sulfur removal than the processes employing the other catalysts.
Hence, the process of the present invention is a suit-able process for demetallization, desulfurization, asphaltene conversion, and conversion of 1,000F.+
(538C.+) material, when treating a heavy hydrocarbon stream. Moreover, the data from Runs 1, 4, 5, and 6 show that the presence of the Cr2O3 in the catalyst promoted better metals removal, sulfur removal, asphaltene conversion, and conversion of l,000F.+
(538C.+) material to 1,000F.- (53~C.-) material.
Example 6 A catalyst, hereinafter identified as Catalyst H, was prepared to contain 1.1 wt.% CoO, 8.2 wt.% MoO3, and 8.2 wt.% Cr2O3, based upon the total catalyst weight, on a large-pore, catalytically active alumina. A 63.8-gram sample of Aero-100 alumina, obtained from the American Cyanamid Company, was impregnated with a solution con-taining ammonium dichromate and ammonium molbydate. The Aero-100 alumina was in the form of 14-to-20-mesh (1.17-to-0.83 mm) material and had been previously calcined at a temperature of about 1,200F. (649C.) in 30 air for a period of 2 hours.
The solution that was used for the impregnation was prepared by dissolving 10.6 grams of ammonium dichromate and 8.3 grams of ammonium molybdate in 80 milliliters of distilled water. The alumina to be impregnated was 35 added to the solution and the resulting mixture was allowed to stand overnight.
The impregnated alumina was dried subsequently under a heat lamp in static air for a period of about 2 hours to remove the excess water. The dried material 27~g was then calcined in static air at a temperature of 1,000F. (538C.) for a period of 2 hours.
One-half of the calcined material was impregnated with a solution of cobalt nitrate. This solution was prepar~d by dissolving 1.2 grams of Co(NO3)2.6H2O in 40 milliliters of distilled water. The mixture of calcined material and solution was allowed to stand overnight.
The material was then dried under a heat lamp in static air for a period of about 2 hours. The dried material was calcined in static air at a temperature of 1,000F. (538C.) for a period of 2 hours. The finished catalyst, Catalyst H, is a preferred embodiment of the catalyst that is employed in the process of the present invention. Its properties are listed hereinbelow in Table I.
Example 7 A second catalyst, hereinafter identified as Cata-lyst I, was prepared to contain 3.1 wt.% CoO, 8.1 wt.%
MoO3, and 8.1 wt.% Cr2O3 3 based upon the total catalyst 20 weight, on an Aero-100 alumina support. This catalyst was prepared according to the preparation method dis-cussed hereinabove in Example 6; however, the appropri-ate amounts of metals were utilized to furnish the desired composition. This catalyst, Catalyst I, is another embodiment of the catalyst that is employed in the process of the present invention. Its properties are listed hereinbelow in Table IV.
.. ' ' ~' ' - ` ' ' ,, ' .
- .
, :. : .-: . , , , , - , ' TABLE IV
CATALYST PROPERTIES
CATALYST H
HYDROGENATION
COMPONENT, WT.%
CoO 1.1 3.1 Cr2O3 8.2 8.1 MoO3 8.2 8.1 PHYSICAL PROPERTIES
SURFACE AREA, m /gm 176 186 PORE VOLUME, cc/gm 0.55 0.56 AVG. PORE DIAM., A 125 120 nm 12.5 12.0 % OF PORE VOLUME IN:
0-50 A (0-5 nm) PORES 3.9 4.7 o 50-100 A (5-10 nm) PORES66.3 65.4 100-150 A (10-15 nm) PORES 28.9 29.1 150-200 A (15-20 nm) PORES 0.3 0.3 200-300 A (20-30 nm) PORES 0.3 0.3 300-400 A (30-40 nm) PORES 0.1 0.1 400-600 A (40-60 nm) PORES 0.2 0.1 - .: . . .
72g Example 8 Catalyst H and Catalyst I were each tested for their respective ability to convert the Arabian light vacuum resid described hereinabove in Table II. Each . S test was conducted as described hereinabove in Example 5.
The results of these tests are presented herein-below in Table V. Also presented in Table V are the test results from Runs Nos. 1, 2, and 3, shown herein-above in Table III.
, .
.~
.
- . . , ' .~ ~ - , . . - :
. . :
`' ~
TABLE V
TEST RESULTS
RUN NO. 7 8 CATALYST H
OPERATING CONDITIONS
TEMPERATURE, F. 800 800 C. ~27 427 PRESSURE, psig 1,200 1,200 lo MPa 8.37 8.37 LHSV 0.59 0.59 % SULFUR REMOVAL 75 83 15 % NICKEL REMOVAL 79 73 % VANADIUM REMOVAL 93 86 % ASPHALTENE CONVERSION 79 75 % CONVERSION OF 1,000F.+
(538C.+) MATERIAL 66 50 20 LIQUID GRAVITY, API 20.9 20.7 DENSITY, AT 15C., gm/cc 0.9280 0.9292 , -.
. - . . : .
.
- . . . .
TABLE V (Cont'd).
TEST RESULTS
: RUN NO. 1 2 3 CATALYST A B C
S
OPERATING CONDITIONS
TEMPERATURE, F.800 800 780 C.427 427 416 PRESSURE, psig1,2001,200 1,200 MPa8.37 8.37 8.37 LHSV 0.59 0.59 0.5g SAMPLE FROM DAY 6 7 7-18(1) % SULFUR REMOVAL 65 77 85 15 % NICKEL REMOVAL 85 43 48 % VANADIUM REMOVAL 93 95 57 % ASPHALTENE CONVERSION 70 69 54 % CONVERSION OF 1,000F.+
(538C.+) MATERIAL 59 47 40 LIQUID GRAVITY, API20.1 19.9 20.4 DENSITY, AT 15C., gm/cc 0.9328 0.9341 0.9310 (1) Composite sample of material obtained from Day 7 through Day 18.
' .
i :
..
' :
, .
7~9 These results demonstrate that Run No. 7, which is a preferred embodiment of the process of the present invention and which employs a preferred embodiment of the catalyst that is employed in the process of the 5 present invention, provides overall superior performance when compared to the other test runs. It furnishes good desulfurization, good nickel removal, superior vanadium removal, superior asphaltene conversion, and superior conversion of l,000F.+ (538C.+) material to l,000F.-(538C.-) material.
Run No. 8, which is another embodiment of the process of the present invention, employs a catalyst that contains more cobalt (3.1 wt.% CoO) than Catalyst A
(l.l wt.% CoO), but this larger amount still falls within the broad range of O.l wt.% to 5 wt.% CoO that is specified hereinabove for a catalyst that can be utilized in the process of the present invention. The increased amount of cobalt improves the desulfurization activity, somewhat lowers the metals removal, asphaltene con-20 version, and conversion of the l,000F.+ (538C+) ma-terial to l,000F.- (538C.-) material of the catalyst.
Run No. l, utilizes a catalyst that contains chromium and molybdenum, but not cobalt, in its hydro-genating component. The absence of cobalt results in less sulfur removal, slightly improved metals removal, less asphaltene conversion, and less conversion of the 1,000F.+ (538C.+) material.
Runs Nos. 2 and 3 represent comparative tests employing prior art catalysts. These two runs provided 30 essentially the same amount of desulfurization as that furnished by the process of the present invention.
However, they gave poorer metals removal, asphaltene conversion, and conversion of l,000F.+ (538C.+) ma-terial to l,000F.- (538C.-) material.
In view of the above, the process of the present invention represents a new and novel process for hydro-treating heavy hydrocarbon streams. The use of a small amount of cobalt in the catalyst in conjun~tion with -~lG2 two metals of Group VIB of the Periodic Table of Elements, namely, chromium and molybdenum, unexpectedly makes the process utilizing that catalyst a very effective way to treat such heavy hydrocarbons.
WHAT IS CLAIMED IS:
.
. - . -, , : : :
.
.- : : . . ,: . . .
t~7;~
annular space between the thermowell and the internal wall of the 3/8-inch(0.95-cm)-lnside-diameter reactor.
Prior to its use, each catalyst was calcined in still air at a temperature of about l,000F. (538DC.) S ~or 1 hour. It was subsequently cooled in a desiccator and loaded into the appropriate reactor.
The catalyst was then subjected to the following pretreatment. The reactor was placed in the reactor block at a temperature of 300F. (149C.). A gas 0 mixture containing 8 mole % hydrogen sulfide in hydrogen was-passed over the catalyst at the rate of 1 standard cubic foot per hour [SCFH] (28.3 l/hr) at a pressure of 500 psig (3.5 MPa) and a temperature of about 300F.
(149C.). After 10 to 15 minutes of such treatment, the temperature of the block was raised to 400F. After at least an additional 1 hour of time had elapsed and at least 1 standard cubic foot (28.3 l) of gas mixture had passed through the system, the temperature of the block was raised to 700F. (371C.). Then the gas mixture was passed through the catalyst bed for at least 1 additional hour and in an amount of at least 1 standard cubic foot (28.3 l). At this point, the gas mixture was discontinued, hydrogen was introduced into the unit at a pressure of 1,200 psig (8.37 MPa), the flow of hydrogen was established at a rate of about 0.6 SCFH (17 l/hr), and the temperature was incre~ased to provide an average catalyst bed temper-ature of 760F. (404C.). Subsequently, the hydrocarbon flow was established at a rate that would provide an LHSV of 0.59 volume of hydrocarbon per hour per volume Of catalyst. Effluent from the reaction zone was collected in a liquid product receiver, while the gas that was formed was passed through the product receiver ~ to a pressure control valve and then through a wet test ; meter to an appropriate vent.
After a period of from 1 to 3 days, the average catalyst bed temperature was increased to 7S0F. (416C.).
After an additional amount of time, e.g., about 3 to 5 days, the average catalyst bed temperature was increased to about 800F. (427C.).
. . .
: . .
.
:: . . ~ :
. . . .
~27Z~
Selected samples were obtained from the product receiver and were analyzed for pertinent information.
Results of the tests are presented hereinbelow in Table III. These data were obtained from samples taken during the fifth to ninth day of operation conducted at an LHSV
of 0.59 volume of hydrocarbon per hour per volume of catalyst, a temperature of 800F. (427C.), and a pressure of 1,200 psig (8.37 MPa), unless otherwise indicated.
TABLE III
TEST ~ESULTS
Run No. 1 2 3 4 15 Catalyst A . B C E
Temperature, F. 800 800 780 780 C. 427 427 416 416 Pressure, psig 1,200 1,200 1,200 1,200 MPa 8.37 8.37 8.37 8.37 LHSV 0.59 0.59 0.59 0.59 : % Sulfur removal 65.4 77.4 85 59 % Nickel removal 85 43 48 40 % Vanadium removal 92.5 94.9 57 79 25 % Asphaltene conversion 70 68.8 54 67.5 Liq~id gravity, API 20.1 19.9 20.4 17.5 Density, at 15C., gm/cc 0.9328 0.9341 0.9310 0.9491 % Conversion of I,000F.+ (538C.+) material 59.1 47.3 40 ----Days on Stream 6 7 7-18(1) 5 (1) Composite sample of material obtained from Day 7 through Day 18.
. ''' :
:
27~9 TABLE III
TEST RESULTS
Run No. 4 5 6 Catalyst E F G
Temperature, F. 800 800 800 C. 427 427 427 Pressure, psig 1,200 1,200 1,200 MPa 8.37 8.37 8.37 LHSV 0.59 0.59 0.59 % Sulfur removal 60.5 60 69.6 % Nickel removal 64 64 78 15 % Vanadium removal 81 87 90.6 % Asphaltene conversion 66 70 71 Liquid gravity, API 19.3 17.6 21.1 : 20 Density, at 15C., gm/cc 0.9378 0.9485 0.9267 % Conversion of 1,000F.+ (538C.+) material 53 60.6 58.6 25 Days on Stream 9 10 7 .~, -, 35 '' .
-'.
:
. - - ' 27~9 The results presented in Table III demonstrate that the run employing Catalyst A, i.e., an embodiment of the process of the present invention, was superior to the two tests that employed other catalysts. The data show that the process of the present invention provided better nickel removal, about as good vanadium removal, better asphaltene conversion, better conversion of the 1,000F.+ (538C.+) material, but less sulfur removal than the processes employing the other catalysts.
Hence, the process of the present invention is a suit-able process for demetallization, desulfurization, asphaltene conversion, and conversion of 1,000F.+
(538C.+) material, when treating a heavy hydrocarbon stream. Moreover, the data from Runs 1, 4, 5, and 6 show that the presence of the Cr2O3 in the catalyst promoted better metals removal, sulfur removal, asphaltene conversion, and conversion of l,000F.+
(538C.+) material to 1,000F.- (53~C.-) material.
Example 6 A catalyst, hereinafter identified as Catalyst H, was prepared to contain 1.1 wt.% CoO, 8.2 wt.% MoO3, and 8.2 wt.% Cr2O3, based upon the total catalyst weight, on a large-pore, catalytically active alumina. A 63.8-gram sample of Aero-100 alumina, obtained from the American Cyanamid Company, was impregnated with a solution con-taining ammonium dichromate and ammonium molbydate. The Aero-100 alumina was in the form of 14-to-20-mesh (1.17-to-0.83 mm) material and had been previously calcined at a temperature of about 1,200F. (649C.) in 30 air for a period of 2 hours.
The solution that was used for the impregnation was prepared by dissolving 10.6 grams of ammonium dichromate and 8.3 grams of ammonium molybdate in 80 milliliters of distilled water. The alumina to be impregnated was 35 added to the solution and the resulting mixture was allowed to stand overnight.
The impregnated alumina was dried subsequently under a heat lamp in static air for a period of about 2 hours to remove the excess water. The dried material 27~g was then calcined in static air at a temperature of 1,000F. (538C.) for a period of 2 hours.
One-half of the calcined material was impregnated with a solution of cobalt nitrate. This solution was prepar~d by dissolving 1.2 grams of Co(NO3)2.6H2O in 40 milliliters of distilled water. The mixture of calcined material and solution was allowed to stand overnight.
The material was then dried under a heat lamp in static air for a period of about 2 hours. The dried material was calcined in static air at a temperature of 1,000F. (538C.) for a period of 2 hours. The finished catalyst, Catalyst H, is a preferred embodiment of the catalyst that is employed in the process of the present invention. Its properties are listed hereinbelow in Table I.
Example 7 A second catalyst, hereinafter identified as Cata-lyst I, was prepared to contain 3.1 wt.% CoO, 8.1 wt.%
MoO3, and 8.1 wt.% Cr2O3 3 based upon the total catalyst 20 weight, on an Aero-100 alumina support. This catalyst was prepared according to the preparation method dis-cussed hereinabove in Example 6; however, the appropri-ate amounts of metals were utilized to furnish the desired composition. This catalyst, Catalyst I, is another embodiment of the catalyst that is employed in the process of the present invention. Its properties are listed hereinbelow in Table IV.
.. ' ' ~' ' - ` ' ' ,, ' .
- .
, :. : .-: . , , , , - , ' TABLE IV
CATALYST PROPERTIES
CATALYST H
HYDROGENATION
COMPONENT, WT.%
CoO 1.1 3.1 Cr2O3 8.2 8.1 MoO3 8.2 8.1 PHYSICAL PROPERTIES
SURFACE AREA, m /gm 176 186 PORE VOLUME, cc/gm 0.55 0.56 AVG. PORE DIAM., A 125 120 nm 12.5 12.0 % OF PORE VOLUME IN:
0-50 A (0-5 nm) PORES 3.9 4.7 o 50-100 A (5-10 nm) PORES66.3 65.4 100-150 A (10-15 nm) PORES 28.9 29.1 150-200 A (15-20 nm) PORES 0.3 0.3 200-300 A (20-30 nm) PORES 0.3 0.3 300-400 A (30-40 nm) PORES 0.1 0.1 400-600 A (40-60 nm) PORES 0.2 0.1 - .: . . .
72g Example 8 Catalyst H and Catalyst I were each tested for their respective ability to convert the Arabian light vacuum resid described hereinabove in Table II. Each . S test was conducted as described hereinabove in Example 5.
The results of these tests are presented herein-below in Table V. Also presented in Table V are the test results from Runs Nos. 1, 2, and 3, shown herein-above in Table III.
, .
.~
.
- . . , ' .~ ~ - , . . - :
. . :
`' ~
TABLE V
TEST RESULTS
RUN NO. 7 8 CATALYST H
OPERATING CONDITIONS
TEMPERATURE, F. 800 800 C. ~27 427 PRESSURE, psig 1,200 1,200 lo MPa 8.37 8.37 LHSV 0.59 0.59 % SULFUR REMOVAL 75 83 15 % NICKEL REMOVAL 79 73 % VANADIUM REMOVAL 93 86 % ASPHALTENE CONVERSION 79 75 % CONVERSION OF 1,000F.+
(538C.+) MATERIAL 66 50 20 LIQUID GRAVITY, API 20.9 20.7 DENSITY, AT 15C., gm/cc 0.9280 0.9292 , -.
. - . . : .
.
- . . . .
TABLE V (Cont'd).
TEST RESULTS
: RUN NO. 1 2 3 CATALYST A B C
S
OPERATING CONDITIONS
TEMPERATURE, F.800 800 780 C.427 427 416 PRESSURE, psig1,2001,200 1,200 MPa8.37 8.37 8.37 LHSV 0.59 0.59 0.5g SAMPLE FROM DAY 6 7 7-18(1) % SULFUR REMOVAL 65 77 85 15 % NICKEL REMOVAL 85 43 48 % VANADIUM REMOVAL 93 95 57 % ASPHALTENE CONVERSION 70 69 54 % CONVERSION OF 1,000F.+
(538C.+) MATERIAL 59 47 40 LIQUID GRAVITY, API20.1 19.9 20.4 DENSITY, AT 15C., gm/cc 0.9328 0.9341 0.9310 (1) Composite sample of material obtained from Day 7 through Day 18.
' .
i :
..
' :
, .
7~9 These results demonstrate that Run No. 7, which is a preferred embodiment of the process of the present invention and which employs a preferred embodiment of the catalyst that is employed in the process of the 5 present invention, provides overall superior performance when compared to the other test runs. It furnishes good desulfurization, good nickel removal, superior vanadium removal, superior asphaltene conversion, and superior conversion of l,000F.+ (538C.+) material to l,000F.-(538C.-) material.
Run No. 8, which is another embodiment of the process of the present invention, employs a catalyst that contains more cobalt (3.1 wt.% CoO) than Catalyst A
(l.l wt.% CoO), but this larger amount still falls within the broad range of O.l wt.% to 5 wt.% CoO that is specified hereinabove for a catalyst that can be utilized in the process of the present invention. The increased amount of cobalt improves the desulfurization activity, somewhat lowers the metals removal, asphaltene con-20 version, and conversion of the l,000F.+ (538C+) ma-terial to l,000F.- (538C.-) material of the catalyst.
Run No. l, utilizes a catalyst that contains chromium and molybdenum, but not cobalt, in its hydro-genating component. The absence of cobalt results in less sulfur removal, slightly improved metals removal, less asphaltene conversion, and less conversion of the 1,000F.+ (538C.+) material.
Runs Nos. 2 and 3 represent comparative tests employing prior art catalysts. These two runs provided 30 essentially the same amount of desulfurization as that furnished by the process of the present invention.
However, they gave poorer metals removal, asphaltene conversion, and conversion of l,000F.+ (538C.+) ma-terial to l,000F.- (538C.-) material.
In view of the above, the process of the present invention represents a new and novel process for hydro-treating heavy hydrocarbon streams. The use of a small amount of cobalt in the catalyst in conjun~tion with -~lG2 two metals of Group VIB of the Periodic Table of Elements, namely, chromium and molybdenum, unexpectedly makes the process utilizing that catalyst a very effective way to treat such heavy hydrocarbons.
WHAT IS CLAIMED IS:
.
Claims (8)
1. A process for hydrotreating a heavy hydro-carbon stream containing metals, asphaltenes, nitrogen compounds, and sulfur compounds to reduce the contents of metals, asphaltenes, nitrogen compounds, and sulfur compounds in said stream, wherein said stream is con-tacted with a catalyst under suitable conditions and in the presence of hydrogen, characterized in that the catalyst comprises a hydrogenating component comprising the metals of molybdenum and chromium, their oxides, their sulfides, or mixtures thereof, on a large-pore, catalytically active alumina, said molybdenum being present in an amount within the range of about 5 wt.% to about 15 wt.%, calculated as MoO3 and based upon the total catalyst weight, said chromium being present in an amount within the range of about 5 wt.% to about 20 wt.%, calculated as Cr2O3 and based upon the total catalyst weight, and said catalyst possessing a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m2/gm to about 300 m2/gm, and an average pore diameter within the range of about 100 .ANG. (10 nm) to about 200 .ANG.
(20 nm).
(20 nm).
2. The process of Claim 1, further characterized in that said catalyst is prepared by calcining a pseudo-boehmite in static air at a temperature of about 800°F.
(427°C.) to about 1,400°F. (760°C.) for a period of time within the range of about 1/2 hour to about 2 hours to produce a gamma-alumina and subsequently impregnating said gamma-alumina with one or more aqueous solutions of heat-decomposable compounds of said metals.
(427°C.) to about 1,400°F. (760°C.) for a period of time within the range of about 1/2 hour to about 2 hours to produce a gamma-alumina and subsequently impregnating said gamma-alumina with one or more aqueous solutions of heat-decomposable compounds of said metals.
3. The process of Claim 1, further characterized in that said catalyst has about 0% to about 10% of its pore volume in pores having diameters that are smaller than 50 .ANG. (5 nm), about 30% to about 80% of its pore volume in pores having diameters within the range of about 50 .ANG. (5 nm) to about 100 .ANG. (10 nm), about 10% to about 50% of its pore volume in pores having diameters within the range of about 100 .ANG. (10 nm) to about 150 .ANG.
(15 nm), and about 0% to about 10% of its pore volume in pores having diameters that are larger than 150 .ANG.
(15 nm).
(15 nm), and about 0% to about 10% of its pore volume in pores having diameters that are larger than 150 .ANG.
(15 nm).
4. The process of Claim 1, further characterized in that the hydrogenating component of said catalyst contains the metal cobalt, its oxide, its sulfide, or mixtures thereof, said cobalt being present in an amount within the range of about 0.1 wt.% to about 5 wt.%, calculated as CoO and based upon the total catalyst weight.
5. The process of Claim 2, further characterized in that said catalyst has about 0% to about 10% of its pore volume in pores having diameters that are smaller than 50 .ANG. (5 nm), about 30% to about 80% of its pore volume in pores having diameters within the range of about 50 .ANG. (5 nm) to about 100 .ANG. (10 nm), about 10% to about 50% of its pore volume in pores having diameters within the range of about 100 .ANG. (10 nm) to about 150 .ANG.
(15 nm), and about 0% to about 10% of its pore volume in pores having diameters that are larger than 150 .ANG.
(15 nm).
(15 nm), and about 0% to about 10% of its pore volume in pores having diameters that are larger than 150 .ANG.
(15 nm).
6. The process of Claim 4, further characterized in that said catalyst is prepared by calcining pseudo-boehmite in static air at a temperature of about 800°F.
(427°C.) to about PH (760°C.) for a period of time within the range of about l/2 hour to about 2 hours to produce a gamma-alumina and impregnating said gamma-alumina with one or more aqueous solutions containing heat-decomposable salts of said molybdenum and said chromium.
(427°C.) to about PH (760°C.) for a period of time within the range of about l/2 hour to about 2 hours to produce a gamma-alumina and impregnating said gamma-alumina with one or more aqueous solutions containing heat-decomposable salts of said molybdenum and said chromium.
7. The process of Claim 4, further characterized in that said catalyst has about 0% to about 10% of its pore volume in pores having diameters that are smaller than 50 .ANG. (5 nm), about 30% to about 80% of its pore volume in pores having diameters within the range of about 50 .ANG. (5 nm) to about 100 .ANG. (10 nm), about 10% to about 50% of its pore volume in pores having diameters within the range of about 100 .ANG. (10 nm) to about 150 .ANG.
(15 nm), and about 0% to about 10% of its pore volume in pores having diameters that are larger than 150 .ANG.
(15 nm).
(15 nm), and about 0% to about 10% of its pore volume in pores having diameters that are larger than 150 .ANG.
(15 nm).
8. The process of Claim 6, further characterized in that said catalyst has about 0% to about: 10% of its pore volume in pores having diameters that are smaller than 50 .ANG. (5 nm), about 30% to about 80% of its pore volume in pores having diameters within the range of about 50 .ANG. (5 nm) to about 100.ANG. (10 nm), about 10% to about 50% of its pore volume in pores having diameters within the range of about 100 .ANG. (10 nm) to about 150 .ANG.
(15 nm), and about 0% to about 10% of its pore volume in pores having diameters that are larger than 150 .ANG.
(15 nm).
(15 nm), and about 0% to about 10% of its pore volume in pores having diameters that are larger than 150 .ANG.
(15 nm).
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86284777A | 1977-12-21 | 1977-12-21 | |
US86284877A | 1977-12-21 | 1977-12-21 | |
US862,848 | 1977-12-21 | ||
US967,413 | 1978-12-07 | ||
US05/967,413 US4181602A (en) | 1977-12-21 | 1978-12-07 | Process for the hydrotreating of heavy hydrocarbon streams |
US05/967,432 US4188284A (en) | 1977-12-21 | 1978-12-07 | Process for the hydrotreating of heavy hydrocarbon streams |
US967,432 | 1978-12-07 | ||
US862,847 | 1992-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1102729A true CA1102729A (en) | 1981-06-09 |
Family
ID=27505940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA318,313A Expired CA1102729A (en) | 1977-12-21 | 1978-12-20 | Process for the hydrotreating of heavy hydrocarbon streams |
Country Status (6)
Country | Link |
---|---|
JP (1) | JPS582997B2 (en) |
CA (1) | CA1102729A (en) |
DD (1) | DD140894A5 (en) |
DE (1) | DE2855398A1 (en) |
FR (1) | FR2412603A1 (en) |
GB (1) | GB2011463B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4224144A (en) * | 1979-03-19 | 1980-09-23 | Standard Oil Company (Indiana) | Hydrotreating a hydrocarbon stream to remove nitrogen and sulfur |
ATE10068T1 (en) * | 1980-10-24 | 1984-11-15 | Standard Oil Company | CATALYST AND PROCESS FOR HYDRODENITRIFICATION AND HYDROCRACKING OF NITROGEN-RICH FEEDS. |
ZA814030B (en) * | 1980-10-24 | 1982-06-30 | Standard Oil Co | Catalyst and process for the hydrotreating of nitrogen-containing feeds |
CA1217756A (en) * | 1983-08-10 | 1987-02-10 | Hri, Inc. | Demetallization catalyst and process for metals- containing hydrocarbon feedstocks |
JPS6065092A (en) * | 1983-09-21 | 1985-04-13 | Res Assoc Petroleum Alternat Dev<Rapad> | Removal of metal from oil sand oil and residual oil |
JPS60225397A (en) * | 1984-04-20 | 1985-11-09 | 株式会社東芝 | High frequency heater |
JPS6166397A (en) * | 1984-09-07 | 1986-04-05 | 株式会社東芝 | High frequency heater |
GB8701740D0 (en) * | 1987-01-27 | 1987-03-04 | Shell Int Research | Catalytic conversion of hydrocarbon oils |
US8123932B2 (en) * | 2002-12-20 | 2012-02-28 | Eni S.P.A. | Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues |
GB201615197D0 (en) * | 2016-09-07 | 2016-10-19 | Mexichem Fluor Sa De Cv | Catalyst and process using the catalyst |
GB201615209D0 (en) * | 2016-09-07 | 2016-10-19 | Mexichem Fluor Sa De Cv | Catalyst and process using the catalyst |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB353507A (en) * | 1930-04-25 | 1931-07-27 | Bataafsche Petroleum | Process of refining liquid carbonaceous materials such as petroleum products and residues, asphalt and the like |
US2577823A (en) * | 1948-02-06 | 1951-12-11 | Standard Oil Co | Hydrodesulfurization of sulfurcontaining hydrocarbon fractions |
DE1037627B (en) * | 1953-06-15 | 1958-08-28 | Socony Mobil Oil Co Inc | Catalyst for the treatment of hydrocarbons or hydrocarbon mixtures, in particular for reforming processes and processes for their production |
US3245919A (en) * | 1961-05-22 | 1966-04-12 | Sinclair Refining Co | Boehmite base precursor |
US3265615A (en) * | 1963-12-05 | 1966-08-09 | Chevron Res | Chromium-containing hydrofining catalysts |
US3752776A (en) * | 1970-11-16 | 1973-08-14 | Mobil Oil Corp | Multimetalite catalysts |
-
1978
- 1978-12-18 GB GB7848853A patent/GB2011463B/en not_active Expired
- 1978-12-20 CA CA318,313A patent/CA1102729A/en not_active Expired
- 1978-12-21 FR FR7836039A patent/FR2412603A1/en active Granted
- 1978-12-21 DE DE19782855398 patent/DE2855398A1/en not_active Withdrawn
- 1978-12-21 DD DD78210059A patent/DD140894A5/en unknown
- 1978-12-21 JP JP53158114A patent/JPS582997B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS54116004A (en) | 1979-09-10 |
FR2412603B1 (en) | 1984-02-24 |
GB2011463B (en) | 1982-05-19 |
JPS582997B2 (en) | 1983-01-19 |
DD140894A5 (en) | 1980-04-02 |
FR2412603A1 (en) | 1979-07-20 |
GB2011463A (en) | 1979-07-11 |
DE2855398A1 (en) | 1979-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4181602A (en) | Process for the hydrotreating of heavy hydrocarbon streams | |
CA1117456A (en) | Process for the cracking of heavy hydrocarbon streams | |
US4188284A (en) | Process for the hydrotreating of heavy hydrocarbon streams | |
US4431525A (en) | Three-catalyst process for the hydrotreating of heavy hydrocarbon streams | |
US4328127A (en) | Residua demetalation/desulfurization catalyst | |
CA1132078A (en) | Process for demetallation and desulfurization of heavy hydrocarbons | |
CA2228889C (en) | Hydroconversion process employing a catalyst with specified pore size distribution and no added silica | |
US4082695A (en) | Catalyst for residua demetalation and desulfurization | |
CA2846754C (en) | Catalyst support and catalysts prepared therefrom | |
US4306965A (en) | Hydrotreating process | |
US4404097A (en) | Residua demetalation/desulfurization catalyst and methods for its use | |
CA1129839A (en) | Hydrotreating a hydrocarbon stream to remove nitrogen and sulfur | |
US4119531A (en) | Large-pore hydrodemetallization catalyst and process employing same | |
US5210061A (en) | Resid hydroprocessing catalyst | |
WO1999065825A1 (en) | Two stage hydrodesulfurization process | |
JPS62260888A (en) | Mild hydrocracking of hydrocarbon supply raw material | |
WO1993021283A1 (en) | Demetallation catalyst | |
US4278566A (en) | Hydrotreating process | |
CA1102729A (en) | Process for the hydrotreating of heavy hydrocarbon streams | |
US5100855A (en) | Mixed catalyst system for hyproconversion system | |
CA1187468A (en) | Hydrotreating catalyst and process | |
EP0590894B1 (en) | Hydroconversion process | |
US5009771A (en) | Hydroconversion process using mixed catalyst system | |
CA1133457A (en) | Hydrodemetallization catalyst and process employing same | |
JPH01210034A (en) | Ni-p-mo catalyst and hydrogenation treating method using said catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |