CA1041150A - Coil and solenoid incorporating same - Google Patents

Coil and solenoid incorporating same

Info

Publication number
CA1041150A
CA1041150A CA236,584A CA236584A CA1041150A CA 1041150 A CA1041150 A CA 1041150A CA 236584 A CA236584 A CA 236584A CA 1041150 A CA1041150 A CA 1041150A
Authority
CA
Canada
Prior art keywords
core
bobbin
coil
guide
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA236,584A
Other languages
French (fr)
Inventor
Kenji Yatsushiro
George F. Kuchuris
John Willigman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Singer Co
Original Assignee
Singer Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Singer Co filed Critical Singer Co
Application granted granted Critical
Publication of CA1041150A publication Critical patent/CA1041150A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1623Armatures having T-form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/04Arrangements of electric connections to coils, e.g. leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F2007/062Details of terminals or connectors for electromagnets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Abstract

COIL AND SOLENOID INCORPORATING SAME

ABSTRACT OF THE DISCLOSURE
The coil bobbin has a terminal support integral with one end flange. The terminals are inserted into the terminal slots in the support after the wire is wound on the bobbin. The slots are tapered so the terminal end which passes through the slot must be forced and a seal around the terminal results. The seal prevents leakage past the terminal when the coil is encapsulated. The bobbin interior forms a core guide and the bobbin includes projecting integral guides for the solenoid core, thus eliminating the usual metal guides. One side flange of each guide is cut back to receive a tang of a metal bracket. The tang serves to hold the core in place and projects into the groove on the side of the core to function as a core stop when the end of the groove hits the tang.

1.

Description

1~4 ~ 15 ~

BACKGROUND OF THE INVENTION
In manufacture of solenoids of the general type shown herein the art has adopted the encapsulated coil as a standard in high volume production. Encapsulated coils are cheaper and better. Prior coil designs, however, have used separate bridges to support the terminals and have required three or more mold sections (with resultant high cost) or tape wrapped with undesirable cost penalties. Further, the prior designs have required core guides inside the bobbin which used costly metal parts and increased the wire-to-core gap with consequent reduction in magnetic coupling.

SUMMARY OF THE INVENTION
An ob;ect of the present invention is to provide a coil design which completes the magnet wire termination with minimal labor and parts while providing firm support for the terminals. Another object is to design the coil bobbin to permit high pressure encapsulation with a 2-section mold while avoiding flash on the terminals. These objectives are achieved by the design described above which ~upport~ the terminals on a bobbin flange extension ant seals and grips the terminals to prevent flash and pull-out of the terminals.
Another ob;ect is to eliminate the customary core guides. This is accomplished by molding the bobbin with integral guide extensions. As a consequence the magnetic coupling is closer and the working force is increased or for the same force less wire is required.
A final object is to provide a solenoid construction incorporating the coil and providing a core stop which also retains the core in the assembly. This is accomplished by providing a tang which projects from a bracket through a
2.
-~041~5~ ~
cutout in the bobbin guide flange into a groove on the core while the bracket retains the coil. - ' The invention relates to a coil comprising a coil bobbin having a spool-like central portion and a flange on each end of the central portion, a wire wound on the central ~-portion of the bobbin, one of the flanges being e~tended and being provided with two terminal receiving slots located beyond the depth of the wire wound on the spool with each slot being tapered in bo'th directions from the outside o~ the flange' ~
towards the spool side of the flange, a terminal mounted in ''' '' each slot and sized to require a sealing force-fit between the terminal and the extended flange, the ends of the wire being connected to the terminals, encapsulating material surrounding ~ ' '' the wire and the inside ends of the terminals, integral opposed guides projecting beyond the central portion of the bobbin with -the inside surfaces of the guides being aligned with and form-ing a continuation of the inside surface of the bobbin, each ~uide having three guiding surfaces.
......... ,.. , . ,: .
DESCRIPTION OF THE DRAWI~GS
Fig. 1 is a perspective view of the bobbin.
Fig. 2 is a fragmentary plan view of the terminal end of the bobbin. ;~
Figs, 3 and 4 are, respectively, horizontal and vertical sections through the terminal slot~ of the bobbin.
Fig, 5 is a perspective of the bobbin after winding and mounting the terminals, ' ''~
Fig. 6 is a fragmentary horizontal section showing the manner in which the terminal is mounted in the slot.
Fig. 7 is a vertical section showing the terminal ;~
' 30 mounted in the slot.
Fiq. 8 is a top plan view of the encap~ulated coil~
. . .
Fig, 9 is a side elevation of the encapsulated coil. ' ' Fig. 10 LJ an end view of the encapsulated coil.

- mb/,~b ~ ~ 3 ~ ' ' ~' , . ~

- 104~
Fig. 11 is a section through the coil taken on line 11--11 in Fig. 10.
Fig. 12 is a plan view of the core.
Fig. 13 is a side elevation of the core.
Fig. 14 is a plan view of the assembled solenoid, DESCRIPTION OF THE PREFERRED EMBODIMENT
., . . _ . . . . . ...... .. . . . :. ~
The bobbin 10 is spool-like in appearance with a smooth, generally rectangular central bore 12 and has guide channels 14 projecting from one end to extend the core guiding surface. It will be noted that each guide channel -~
has side flanges 16 and one corner of the flange is cut out ;~

'',~' . ' "

mb~b - 3a -''~
.. . . . . . . . .. .. . , ... _ .. . ... .. ... . . . . ...... . . . . . .

at 18 to receive the core stop tang as will appear more fully hereinafter. The bobbin has end flanges 20,22 between which the magnet wire is wound. The larger flange 20 projects upwardly and flares outwardly and includes thickened portions 24 through which slots are provided to receive terminals. As can be seen in Figs. 3 and 4, these slots are tapered inwardly towards the wire side of the flange. Thus in Fig. 3 there is a rounded entry into the slot 26 and the slot tapers inwardly from the entry. As can be seen in Fig. 4, the slot in vertical section has a straight portion leading to a rather abrupt inward taper at the wire side of the slot.
Thus when the terminal 28 is pressed in from the outside, the small portion 30 of the terminal must be forced into the slot and it achieves a good mechanical fit while sealing the terminal relative to the end flange 20. This seal prevents the encapsulating material from being orced out along the terminal and getting onto the spade portion of the terminal which would require handwork to clean up the terminal.
Magnet wire 34 is wound on the bobbin and then the terminals are pressed in from the outside, as in Fig. 5.
,' Then the magnet wire i8 mechanically connected to the ~lots 32 in the terminal end and preferably then soldered or welded. The coil is now ready for encapsulation and a 2-part or section mold is clamped onto the end flange of the bobbin securely enough to permit high pressure injection or transfer molding. The encapsulant co~ers the wire 34 completely and locks onto the flanges as may be seen in Fig. 11. Thus the perimeter of each flange is slightly reduced at 36 so the encapsulant can flow slightly over the end of the flange.
The portion adjacent the terminals is molded with the incline 38 and the flares 40. This completely encloses the terminals . .. . . . .

~(~4~5() on the inside. This locks the terminals in the assembly and there is no danger of terminal pull-out.
The solenoid core is designated by reference - numeral a2 and comprises a stack of laminations 44 with theoutside of the stack on each side having a heavier piece of metal 46 running down the length and then bent in at one end to Provide the connection point for the device to be actuated.
It will be noted that a groove 48 is provided on each side of the core. This groove is to receive the core stop tang, as will appear hereafter.
The solenoid has a C-frame 50. The laminations on the closed end of the frame are formed so as to provide a - projection 52 into the center of the coil which serves to center the end of the bobbin in the frame. The coil is placed in the C-frame after shading coils 54 are positioned in place. Then the kickout springs 56 are positioned in the assembly, the core is put into the coil and the coil stop . members 58 are riveted into place. It wili be noted that tlle 5, stops 58 are formed to provide a channel-like portion 60 s 20 which cooperates with the extending plastic core guide to reinforce the core guide. Also each stop has a tang 62 which projects through the cutout corner 18 of the guide and into the groove 48 On each side of the core. The bracket holds the coil relative to the frame and the tang cooperates with the inboard end 64 of the groove to limit outward movement of the core.
It should be no~ed each of the two guides has side flanges which guide the stem of the core in one direc-tion while the flat of the guides guide in the other (90~) directio~. The guides obviously could be one tubular member.
Therefore, in the claims the use of the term "guides" is , ' ' , . .

.~ , r~Y~

` ",~. 1()411S() meant to embrace a tubular guide since it has plural gui~e - surfaces. The advantage of the channel-like guides (beyond using less material) resides in the fact the space between the flanges on each side can accept -- and permit use of --the shoulders 66 under the head 68 of the core. These shoulders increase the pull of the solenoid at the stage of travel where pull normally drops off (see U.S. Patent No.
2,468,052, issued April 26, 1949 in the name of H. Y. FisherJ
m e channel guides obviously are not as strong as a tubular guide would be. But the brackets 58 closely embrace the guides on all sides and reinforce the guides.
By way of recapitulating some of the advantages of the present construction, it will be noted that the metal core guides heretofore employed in solenoid manufacture have been eliminated and the wire, therefore, is closer to the -iron of the core. This means there is closer magnetic . ......... ................................................................... . :
coupling which develops a g~eater working force for the same - coil winding, or for the same working force the amount of -~
copper wire can be reduced. There is minimal amount of labor :, :
involved in winding the coil and assembling the terminals : since there are no separate pieces to be handled insofar as :' providing bridges and the like for the terminals. Furthermore, the method of mounting the terminal into the bobbin flange insures against any flash on the terminals which would require hand cleanup. The coil is designed to be molded in a 2-part mold whlch inherently results in the least cost of manufacture of the mold and also requires minimal maintenance. There is no need to design the mold to seal around the terminals. The .
terminal insertion in the flange provides a complete seal ~ against~ the encapsulating material working along the termin-als during the high pressure encapsulating proces~. Finally, -~ ` in .

: ~ - , . . . . ..
`~rw/J~

.

~ 5 ~
-~ the assembly of the solenoid the brackets hold the coil in position while the core stops provide a simple and effective m~an~ ior controlling core withdrawal.

`:
.1 .

.

.
: 7.

Claims (6)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A coil comprising a coil bobbin having a spool-like central portion and a flange on each end of the central portion, a wire wound on the central portion of the bobbin, one of the flanges being extended and being provided with two terminal receiving slots located beyond the depth of the wire wound on the spool with each slot being tapered in both directions from the outside of the flange towards the spool side of the flange, a terminal mounted in each slot and sized to require a sealing force-fit between the terminal and the extended flange, the ends of the wire being connected to said terminals, encapsulating material surrounding the wire and the inside ends of the terminals, integral opposed guides projecting beyond the central portion of the bobbin with the inside surfaces of the guides being aligned with and forming a continuation of the inside surface of the bobbin, each guide having three guiding surfaces.
2. A solenoid having a frame, a core and the coil according to claim 1, said core being guided in the bobbin and guides and having a groove along one side, and a bracket connected to the frame and including a tang projecting into said groove to act as a limit stop when the end of the groove strikes the tang.
3. A solenoid according to claim 2 in which the tang engages the guide to retain the core.
4. A solenoid according to claim 3 in which each guide is channel-like and a bracket fits over each projecting guide to reinforce the guide.
5. A solenoid according to claim 4 in which the side flange of the guide is cut away to receive the tang.
6. A solenoid according to claim 5 in which the confronting side flanges of the channel-like guides are spaced far enough to permit passage of an enlarged section of the core stem.
CA236,584A 1974-11-22 1975-09-29 Coil and solenoid incorporating same Expired CA1041150A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US526073A US3928831A (en) 1974-11-22 1974-11-22 Coil and solenoid incorporating same

Publications (1)

Publication Number Publication Date
CA1041150A true CA1041150A (en) 1978-10-24

Family

ID=24095806

Family Applications (1)

Application Number Title Priority Date Filing Date
CA236,584A Expired CA1041150A (en) 1974-11-22 1975-09-29 Coil and solenoid incorporating same

Country Status (5)

Country Link
US (1) US3928831A (en)
JP (1) JPS5547049Y2 (en)
CA (1) CA1041150A (en)
DE (1) DE7536819U (en)
GB (1) GB1481747A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2612582C3 (en) * 1976-03-24 1978-11-30 Siemens Ag, 1000 Berlin Und 8000 Muenchen Process for the production of a bobbin with injected connection pins
DE3316456A1 (en) * 1983-05-05 1984-11-08 Siemens AG, 1000 Berlin und 8000 München BOBBIN
US5353002A (en) * 1991-12-23 1994-10-04 Ford Motor Company Coil bobbin and sealing coupler
JP3032195B1 (en) * 1999-02-10 2000-04-10 株式会社タムラ製作所 Coil bobbin for AC adapter
EP1355328A1 (en) * 2002-04-15 2003-10-22 Magnetek S.p.A. Support for the assembly of inductive electronic components
US7704667B2 (en) * 2003-02-28 2010-04-27 Zink Imaging, Inc. Dyes and use thereof in imaging members and methods
EP1530225A3 (en) * 2003-11-06 2008-08-06 Tyco Electronics Belgium EC N.V. Electric coil arrangement
JP5459173B2 (en) * 2010-10-22 2014-04-02 株式会社豊田自動織機 Induction equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3032694A (en) * 1959-02-24 1962-05-01 Albert F Dormeyer External reluctance solenoid
US3119954A (en) * 1961-04-04 1964-01-28 Robert W Bachi Solenoid with molded plunger guide
US3215964A (en) * 1962-05-02 1965-11-02 Horbach Stephen Thin wall bobbins and method for constructing same
US3371302A (en) * 1965-04-23 1968-02-27 Dynamic Instr Corp Power supply and improved transformer structure therefor
US3530572A (en) * 1968-05-03 1970-09-29 Detroit Coil Co Method of assembling a solenoid
US3593240A (en) * 1969-03-10 1971-07-13 Whirlpool Co Solenoid structure having single sheet metal plunger and/or yoke
US3566322A (en) * 1969-06-20 1971-02-23 Stephen Horbach Bobbin for electrical windings

Also Published As

Publication number Publication date
US3928831A (en) 1975-12-23
JPS5547049Y2 (en) 1980-11-05
JPS5167355U (en) 1976-05-27
DE7536819U (en) 1976-05-26
GB1481747A (en) 1977-08-03

Similar Documents

Publication Publication Date Title
CA1041150A (en) Coil and solenoid incorporating same
CA1232041A (en) Transformer comprising coaxial coil formers
US4318069A (en) Bobbin with terminal block designed for machine wrap
DE29913160U1 (en) Isolation cover for transformer
US4649308A (en) Electric motor template-wound coil
EP0167293A1 (en) Trimmable coil assembly and method
US4075590A (en) Bobbin construction for electrical coils
US5447455A (en) Contact for termination of coil windings
US4394637A (en) Wound bobbin coil apparatus
JPH0831381B2 (en) Transformer
DE3027067C2 (en) Magnetic housing for a valve and method for its production
DE4041879A1 (en) BOBBIN
DE3532818A1 (en) Coil former consisting of insulating material with a potted electrical coil, and a method for its production
JPH05101960A (en) Manufacture of transformer
JP2605554B2 (en) Trance
CA1061422A (en) Device for attaching leads to a transformer or the like
KR960003234Y1 (en) Coil apparatus
US2958060A (en) Inductor devices
JPS5571005A (en) Connecting method of coil
WO1998035371A3 (en) Flow hole and flow projection
JPH0140175Y2 (en)
JPS6378510A (en) Small-sized winding part with case
JPH0246006Y2 (en)
JPH0338811Y2 (en)
KR920007331Y1 (en) Flyback transformer