BRPI0714807A2 - produÇço de painÉis de uhmwpe - Google Patents

produÇço de painÉis de uhmwpe Download PDF

Info

Publication number
BRPI0714807A2
BRPI0714807A2 BRPI0714807-0A BRPI0714807A BRPI0714807A2 BR PI0714807 A2 BRPI0714807 A2 BR PI0714807A2 BR PI0714807 A BRPI0714807 A BR PI0714807A BR PI0714807 A2 BRPI0714807 A2 BR PI0714807A2
Authority
BR
Brazil
Prior art keywords
matrix
die
uhmwpe
slot
panel
Prior art date
Application number
BRPI0714807-0A
Other languages
English (en)
Inventor
Joseph V Gregg
Wesley Allen Kohler
Lyle D Berning
Original Assignee
Quadrant Epp Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/491,361 external-priority patent/US7803450B2/en
Priority claimed from US11/491,356 external-priority patent/US7758797B2/en
Priority claimed from EP06020690A external-priority patent/EP1908570A1/en
Application filed by Quadrant Epp Ag filed Critical Quadrant Epp Ag
Publication of BRPI0714807A2 publication Critical patent/BRPI0714807A2/pt
Publication of BRPI0714807B1 publication Critical patent/BRPI0714807B1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/475Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/865Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/87Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/872Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone characterised by differential heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/875Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling for achieving a non-uniform temperature distribution, e.g. using barrels having both cooling and heating zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92447Moulded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92942Moulded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films

Abstract

PRODUÇçO DE PAINÉIS DE UHMWPE. A presente invenção refere-se a painéis de UHMWPE de grande largura que podem ser preparados por um processo de extrusão RAM contínua, empregando uma matriz do tipo fenda que estreia, de preferência, ambos as lados em direção transversal à da direção da máquina, e/ou que emprega uma pluralidade de zonas de resfriamento, posicionadas transversalmente, localizada na parte de cima e de baixo da matriz, próxima à saída da mesma. O painel sai da matriz em temperatura abaixo da temperatura de fusão cristalina

Description

Relatório Descritivo da Patente de Invenção para "PRODUÇÃO DE PAINÉIS DE UHMWPE".
Antecedentes da Invenção Campo da invenção
A presente invenção refere-se à produção de folhas de polietile- no de ultra-alto peso molecular em larguras, de preferência, acima de apro- ximadamente 60 cm, pelo processo de extrusão RAM (extrusão por pistão). Antecedentes da técnica
Polímeros convencionais de polietileno, conhecidos por muitos, ou seja, aqueles de baixa densidade e de alta densidade, são materiais sóli- dos cerosos, cujas propriedades de resistência não são reconhecidamente excepcionais. Além disso, devido à sua relativa maciez, enquanto geralmen- te oleosos, são facilmente erodidos. Polietileno de ultra alto peso molecular, "UHMWPE", "WHMWPE" é, por outro lado, um polímero excepcionalmente forte e durável, totalmente diferente de seus similares menos sofisticados.
UHMWPE é preparado por processos especiais de polimeriza- ção, nos quais o peso molecular adquirido das cadeias de polietileno é ex- cepcionalmente alto, variando em média, tipicamente, de 1,5 χ 106 a 1 χ 107 Dalton, e fornecido sob a forma de resina em pó. UHMWPE inclui também aqueles polímeros definidos em AST D4020-05, D6712-01 e ISO 11542-2. Embora geralmente de natureza homopolimérica, o UHMWPE inclui também copolímeros com quantidades fixadas de outros comonômeros que podem se polimerizar. No caso de copolímero de UHMWPE, este deve atender às exigências supramencionadas de ASTM e ISO. A característica que torna estes polímeros únicos é a sua cadeia polimérica muito longa. Embora polie- tileno comum possa ser fundido-extrusado, até mesmo o polietileno de peso molecular muito alto, as tentativas para fusão-extrusão de UHMWPE foram, em grande parte, mal sucedidas, apesar de muitas pesquisas nessa área, e virtualmente todos os produtos de UHMWPE são produzidos por moldagem por compressão ou extrusão ram, conforme indicado pela Patente U.S. 5 286 576 que assinala que métodos de processamento aplicáveis a termo- plásticos convencionais, como de extrusão contínua, calandragem e molda- gem por injeção, não se aplicam geralmente ao UHMWPE.
Assim, por exemplo, a Patente U.S. 5 422 061 expõe a produção de componentes deslizantes por extrusão mono rosca de UHMWPE a partir do material fundido. No entanto, o êxito desse processo requer o uso de mis- turas de UHMWPE, polietileno ("PE") de peso molecular mais baixo e de lu- brificantes. Há uma perda considerável em termos de propriedades mecâni- cas, resultante da diluição do UHMWPE com tipos de peso molecular mais baixo. Perdas adicionais em propriedades são causadas pela degradação, ocorrida por cisalhamento na extrusora. A Patente U.S. 5 399 308 expõe um processo de fusão-extrusão
através de uma matriz, cujo corte transverso é consideravelmente menor quando comparado ao diâmetro da extrusora, e em que é mantido gradiente muito baixo de velocidade de alongamento. No entanto, apesar destas exi- gências, somente PE de peso molecular muito alto e UHMWPE, no intervalo mais baixo de peso molecular, de aproximadamente de 1,5 χ 106, podem ser utilizados. A Patente U.S. 5 449 484 expõe uma geometria para extrusora mono rosca, a qual, segundo o afirmado, pode ser utilizada com resinas de PE de pesos moleculares acima de 1 χ 106. No entanto, perfis maiores não podem ser produzidos empregando este processo de fusão-extrusão. As questões associadas ao processamento de UHMWPE são
decorrentes, em parte, à natureza similar a gel do polímero quando acima de sua temperatura de fusão cristalina, em torno de 135°C a 150°C. Embora polietileno comum esteja em estado líquido viscoso com consistência de me- laço nestas temperaturas, UHMWPE é um gel expandido que possui visco- sidade extremamente alta e que exerce tensão excepcional por fricção con- tra as paredes de extrusoras e os similares. As questões associadas ao UHMWPE são descritas com clareza pelas Patentes U.S. 3 883 631 e 3 887 319. Pelos motivos discutidos nas mesmas, extrusão ram e moldagem por compressão têm sido, por conseguinte, até o momento, os únicos processos utilizados extensamente para produção de produtos de UHMWPE extensa- mente.
Em moldagem por compressão, UHMWPE em pó é introduzido em um molde similar a um cofre com seção de grande espessura. Em se- guida, a cavidade do molde é recoberta por uma cobertura espessa que se ajusta ao seu interior e é disposta sobre o pó, seguido por aquecimento de todo o conjunto até acima da temperatura de fusão cristalina, ao mesmo tempo em que este é comprimido até uma pressão muito alta. Os moldes são, então, resfriados lenta e uniformemente, e o produto, em forma de pla- cas grossas, é retirado do molde. Para produção de estoque fino, por exem- plo, de 1 cm a 3 cm de espessura, as placas grossas são desbastadas e "aplainadas". O processo de desbastamento requer uma etapa extra, e o produto resultante pode apresentar margem em espiral. Conforme pode ser observado, a moldagem por compressão é um processo de produção de produtos de UHMWPE de custo alto e mão-de-obra intensa. No entanto, é essencialmente o único processo que pode ser utilizado para produção de painéis ou folhas de largura grande e, por conseguinte, um processo ainda muito utilizado.
Um processo contínuo para a produção de folha de UHMWPE de calibre fino tem sido utilizado pela Crown Plastics, Harrison, OH, EUA. Neste processo, uma prensa em esteira rolante, anteriormente fabricada pe- la Hoover Ball and Bearing Co. como o Iaminador Lam-N-Hard, e conforme descrita para uso em laminação de madeira por Tarkow et ai.,"Surface Den- sification of WoocT', FOREST PRODUCTS JOURNAL, 18(a): 104-107, é utili- zada para consolidar UHMWPE em pó. Contudo, o processo tem se restrin- gido até agora à produção de folhas finas com espessura máxima de 3 a 4 mm e larguras relativamente estreitas. Somente recentemente, foi produzida uma folha de 0,6 m (24 polegadas) de largura por este processo, e acredita- se que seja impossível utilizar este processo para produzir folhas mais lar- gas por causa das altas pressões envolvidas.
Extrusão ram (por pistão) é um processo único, consideravel- mente diferente de fusão-extrusão. A extrusão ram pode ser ilustrada com referência às Patentes U.S. 3 883 631, 3 887 319 e 4 145 175. Apesar de, nestas referências, a tecnologia de extrusão ram ter sido exposta há mais de anos, houve somente alterações em termos de ampliação em processos de extrusão ram, desde então.
A figura 1 descreve o processo global, apresentando esquemati- camente, em corte transversal, uma máquina de extrusão ram simples para produção de barra de UHMWPE. A máquina de extrusão ram é constituída por um componente de aço (2) de seção muito grossa com canal em seu interior 3 e em cuja margem o pistão 4 é recebido. UHMWPE em pó 5 flui por gravidade no canal 3, vindo do funil 6. Essa sequencia é repetida em poucos minutos. O canal 7 da matriz é aquecido por aquecedores 8 que a circundam e aquecem as partículas da resina até uma temperatura relativa- mente alta, por exemplo entre 177°C e 260°C (350°F e 500°F). Geralmente são evitadas temperaturas acima de 260°C (500°F), uma vez que o polímero oxida-se rapidamente acima desta temperatura. O polímero oxidado exerce ainda mais fricção contra a matriz e, por causa da oxidação, as característi- cas físicas dos produtos são reduzidas. O pistão exerce pressão de até al- guns mPa (milhares de libras/polegada2) e consolida as partículas aqueci- das similares a gel de UHMWPE. A barra de UHMWPE 9 deixa a matriz, em intervalos distintos, estando, nesse estágio, quente com temperatura acima da de fusão cristalina, e relativamente translúcida. No entanto, a alguma dis- tância da face anterior da matriz, o polímero cristaliza e transforma-se em sólido opaco.
A extrusão ram tem sido utilizada para produzir perfis redondos de diâmetro relativamente grande, por exemplo, 300 mm, além de em tubo, perfis pequenos de formato complexo, e "placas" de largura até 660 mm e espessura de, por exemplo, 100 mm. No entanto, estas placas estão longe de permanecerem planas à medida que produzidas. Quando se necessita que sejam planas ou finas, as placas são desbastadas. O pistão, mesmo sendo feito de aço de resistência muito alta, por causa da alta fricção no in- terior da matriz e, consequentemente, as pressões muito altas envolvidas pode flambar-se. Este é especialmente o caso em peças cujo corte transver- so é bem assimétrico, e ainda mais especialmente o caso em peças com corte transverso substancialmente retangular de alta razão de aspecto. Por exemplo, um pistão para produção de uma placa de 1 cm χ 30 cm de corte transverso retangular pode exibir flambagem, enquanto que um pistão de uma placa mais grossa, por exemplo, 10 cm χ 30 cm, não terá virtualmente qualquer problema a esse respeito. Não só a flambagem danifica o pistão, mas, o pistão distorcido pode também arranhar as paredes da matriz, intro- duzido partículas de metal no produto e alterando a geometria da matriz.
Seria altamente desejável empregar extrusão por pistão para produzir folhas e painéis de grande largura, por exemplo, de 1 a 3 metros e de uma gama de espessuras, especialmente, em espessuras convencionais que possam ser vendidas no estado, sem desbastamento. Contudo, tentati- vas feitas para utilizar o processo de extrusão por pistão para preparar estas folhas e painéis de acordo com os padrões necessários dos produtos têm sido, em grande parte, mal sucedidas. A falha de outros no passado pode ser atribuída a alguns fatores. Em primeiro lugar, a natureza do UHMWPE é tal que há uma contração considerável de volume tanto no resfriamento quanto na cristalização. O diferencial de resfriamento ou cristalização gera uma tensão interna, conforme o faz graus diferentes de orientação do polí- mero. Em perfis pequenos ou mesmo em produtos maiores que são relati- vamente simétricos, esses problemas são mínimos ou, em certo grau, anu- lam-se. No entanto, em larguras grandes, estes problemas manifestam-se como "características do produto" indesejáveis como variações de espessu- ra, dobramento, deformidades, fraturas em superfície, irregularidades em superfície, "movimentação", ondulação de margens, etc. Quanto maior a lar- gura do produto, maior a dificuldade para controlar esses defeitos.
Além disso, o próprio equipamento para extrusão ram possui desvantagens graves. As grandes áreas de superfície na parte de cima e de baixo que se associam à matriz do tipo fenda, combinadas à alta pressão interna, criam forças que são muito difíceis de controlar. Uma matriz do tipo fenda de 1 cm de altura e 1 m de largura, e de 0,5 m de comprimento, pode apresentar força de 2,1 χ 106 N ou mais, em cada metade da matriz, depen- dendo da pressão interna que é sempre alta. Os parafusos de contenção, nesse caso, terão que suportar uma força de quase 4,4 χ 106 Ν. Mesmo quando feita de aço inoxidável de alta resistência com, por exemplo, 10 cm de espessura em cada lado, a matriz ainda defletirá pela pressão interna resultante de uma placa com espessura pronunciadamente maior no meio em relação às margens. Matrizes desse tamanho e construção se romperão também, a não ser se sustentada por estruturas maciças de contenção, Ioca- Iizadas na parte externa da matriz.
Diferentemente de perfis simétricos, como barras, tubos, esto- que quadrado ou perfis pequenos irregulares, a grande área de superfície e alta razão de aspecto de folhas e painéis fazem com que estas se deformem ao se resfriarem em temperatura abaixo da de fusão cristalina ao deixarem a matriz. Taxa diferentes de resfriamento e de cristalização podem causar de- formidade, dobramento e irregularidades de espessura e superfície, além de outros defeitos similares. Nesse caso, estes defeitos requereriam, no míni- mo, raspagem da superfície e retifica quanto ao tamanho. No entanto, às vezes, não se consegue remover estes defeitos, por exemplo, como defor- midade e dobras.
Por todos os motivos acima, a produção por extrusão ram de folhas e painéis largos de qualidade comercialmente aceitáveis não foi con- siderada possível. Sumário da Invenção Foi surpreendentemente descoberto agora que painéis planos
de UHWMPE, em larguras acima de 0,6 m e espessura substancialmente constante, podem ser produzidos por extrusão ram através de matriz do tipo fenda, sob a forma de sólido parcialmente cristalino, a matriz do tipo fenda sendo provida com múltiplas zonas de resfriamento posicionadas transver- salmente, na parte de cima e de baixo da matriz, próximas à saída da matriz. Foi ainda surpreendentemente descoberto que um produto mais plano, con- tando com mais qualidade, é obtido se a matriz provida for colocada entre uma estrutura de suporte, se a altura de sua fenda não for uniforme quando nenhuma pressão é exercida, e a matriz com uma fenda de altura não uni- forme quando não está sob pressão, porém que auxiliada por sua flexão e a da estrutura de suporte sob pressão da extrusão ram, for distorcida de forma a fornecer um produto substancialmente plano. De preferência, a matriz, conforme descrita, é utilizada em conjunto com as múltiplas zonas de resfri- amento para que o processo resultante possa ser estável e robusto. Breve Descrição dos Desenhos
A figura 1 ilustra esquematicamente o processo de extrusão ram.
A figura 2 é um desenho em perspectiva de uma matriz e estru-
tura de suporte de uma concretização de máquina de extrusão ram, adequa- da para produção de painéis largos.
A figura 3 é uma visão em perspectiva de uma concretização de matriz do tipo fenda, objeto da invenção, mostrando as zonas de aquecimen- to e de resfriamento.
A figura 4 é a visão de um corte lateral de uma concretização de uma matriz, mostrando um cabeçote vertical em forma aumentada.
A figura 5 é uma visão de uma concretização de matriz em sen- tido descendente.
A figura 6 é uma outra concretização de matriz objeto da inven-
ção em sentido descendente.
A figura 7 é uma outra concretização de matriz objeto da inven- ção em sentido descendente.
A figura 8 ilustra uma concretização de um pistão cujo uso é a- dequado na presente invenção.
A figura 9 ilustra uma outra concretização de matriz do tipo fenda e quadro de janela de contenção, adequados para uso na presente inven- ção.
As figuras 10a - 10c ilustram três concretizações de marcações de disparo nos painéis de UHMWPE da invenção.
Descrição detalhada da(s) concretização(ões) preferida(s)
O processo de extrusão ram, empregando o fluxo ascendente da matriz, objeto da invenção, é substancialmente aquele descrito nas Patentes U.S. 3 887 319, 3 883 631 e 4 145 175, aqui incorporados por referência neste pedido de patente.
O campo da presente invenção pertence ao de extrusão ram de painéis de grande largura e razão, conforme doravante descrita. O termo "painel" refere-se à extrusão substancialmente plana. Tipicamente, os cantos agudos do corte transverso nominalmente retangular podem ser arredonda- dos e, de fato, as partes de toda a margem podem ser circulares, elípticas, etc. Geralmente, um corte transverso puramente retangular com cantos agu- dos não é o desejado, pelo aparecimento de pontos de tensão na matriz nestes cantos. A utilidade, em princípio, da presente invenção é a de produ- zir folhas de grande largura de espessura constante, esta espessura cons- tante estendendo-se até uma posição ou próxima da margem. Dessa forma, a definição de "painel", conforme utilizado nesta exposição, pretende signifi- car uma folha geralmente plana, cuja espessura varia em menos de ± 1,27 mm (± 0,050 polegada) acima a de uma parte central do painel, essa varia- ção incluindo, pelo menos, aproximadamente 80% de toda a largura do pai- nel, de preferência, pelo menos, 90% da largura do painel e, o mais preferí- vel, 95% ou mais de toda a largura do painel. Dessa forma, a produção de uma folha em forma de "halteres" ou outro corte transverso, cujas margens são significativamente mais grossas ou finas do que a maior parte do painel, não se afastaria do espírito da invenção. Estas margens podem ser facil- mente removidas, de preferência pelo fabricante, porém também pelo usuá- rio final, por etapas de serragem e fatiamento.
Por causa de sua largura grande e sua assimetria, decorrente da relação entre grande largura e aspectos quanto à espessura, a produção de painéis largos a partir de uma matriz substancialmente retangular, ou seja, uma matriz com superfícies substancialmente paralelas em toda a sua largu- ra, é muito problemática, tendo havido muitas tentativas mal sucedidas para esse efeito. Diferentemente de muitos produtos menores de extrusão ram, produzidos em temperaturas de saída acima daquela de fusão cristalina, painéis de grande largura, quando a cristalização é iniciada, poderão se dis- torcer de maneiras imprevisíveis pelo volume contraído durante a cristaliza- ção, bem como pelas tensões internas criadas. No entanto, a solidificação completa antes de saída matriz não é geralmente praticada pela perda de contato com as paredes da matriz. Se as paredes da matriz forem progressi- vamente estreitadas até a saída, o contato pode ser mantido, porém a pres- são acumulada pode, às vezes, ser tão alta que conduza à separação das metades da matriz ou até mesmo a sua ruptura ou a de seu suporte.
Os painéis de UHMWPE da presente invenção são parcialmente cristalinos, por terem saído da matriz tipo fenda do equipamento de extrusão ram em temperatura abaixo daquela de fusão cristalina. Enquanto que para painéis de calibre fino, ou seja, aqueles com espessura de 1,5 a 2 cm ou menos, a temperatura de todo o painel (por exemplo, em toda a sua espes- sura) pode ser inferior à de fusão cristalina, para painéis especialmente mais largos, o interior do painel pode estar em temperatura mais alta. Dessa for- ma, não é necessário que todo o painel esteja nesta temperatura baixa, des- de que a superfície do painel e, de preferência, o interior do painel até uma profundidade de aproximadamente 3 mm, esteja abaixo da temperatura de fusão cristalina. Para reduzir ainda mais a temperatura interna de painéis largos, a taxa de extrusão pode ser diminuída, fazendo com que mais tempo seja gasto na zona de resfriamento; a zona de resfriamento pode ser esten- dida ou a temperatura do fluído de resfriamento pode ser diminuída. Esses métodos podem ser empregados isoladamente ou em qualquer combinação.
Os Requerentes descobriram surpreendentemente um meio pa- ra que um produto solidificado seja fornecido sem perda de contato com a matriz, ao mesmo tempo em que quaisquer excursões de pressão são mini- mizadas. O processo faz uso de um dispositivo de contra-pressão que é ob- jeto de um pedido de patente copendente, intitulado "Processo para Extru- são Ram de Produtos de Folha de UHMWPE" e depositado em data paralela ao presente. No entanto, apesar de utilizarem um dispositivo de contra- pressão, os Requerentes constataram ser muito difícil manter o processo operando de maneira estável, ou seja, definido como a produção de um pro- duto plano comercialmente aceitável com taxa de rejeição pequena.
Os Requerentes acreditam que a natureza não robusta destes processos decorre de fatores que destroem a uniformidade produzida de painéis amorfos, iguais aos ocorridos durante resfriamento e cristalização, porém, nesse caso, as irregularidades estão presentes na matriz, em oposi- ção ao lado externo da matriz. Os Requerentes descobriram surpreenden- temente que um processo robusto pode ser provido se uma pluralidade de três ou mais zonas de resfriamento estiverem localizadas próximas à face de saída da matriz, distribuídas na orientação da largura, sobre a metade de cima e a de baixo da matriz, ou em uma matriz monolítica, acima e abaixo da matriz tipo fenda. As zonas múltiplas de resfriamento estão, de preferên- cia, em arranjo simétrico sobre a metade de cima, a de baixo, ou ambas, próximas à linha central da matriz. O mais preferível é que sejam utilizadas de 5 a 10 zonas de resfriamento, ou mais, sobre a parte de cima ou de bai- xo, números maiores sendo mais vantajosos à medida que aumenta a Iargu- ra do painel. Até o presente, para folhas de aproximadamente 1 m a 1,2 de largura, 5 a 7 zonas de resfriamento de tamanho substancialmente igual, conforme apresentado na figura 2, são utilizadas de preferência. As metades de cima e de baixo da matriz não precisam ter o mesmo número de zonas de resfriamento, porém um número igual é preferido. As múltiplas zonas de resfriamento são controladas independen-
temente. Cada zona de resfriamento é controlada, de preferência, indepen- dentemente, embora possa ser constatado, em uma determinada instalação, que duas ou mais zonas podem ser controladas juntas. A experiência de- monstrou, no entanto, que controle independente é altamente desejável e, na maioria das circunstâncias, este é necessário. Cada zona de resfriamento possui, de preferência, a sua própria entrada e saída, embora saídas pos- sam ser compartilhadas paralelamente em zonas adjacentes em desenhos adequados. Conexão em série de todas as zonas não funcionará. As zonas são alimentadas por um fluído de resfriamento, o qual pode ser em gás ou líquido, porém é altamente preferido que seja líquido, devido às altas de- mandas de remoção de calor. O líquido de resfriamento pode ser água, em- bora glicóis ou outros fluídos de transferência de calor possam ser utilizados. A água é preferível, sendo desejável um sistema fechado com meio de res- friamento que assegure temperatura uniforme da água. A temperatura em uma determinada zona é medida por meios adequados de medição, de pre- ferência por termopar, posicionado na matriz próxima à zona, e o fluxo e ou temperatura do líquido refrigerante são regulados por controles convencio- nais do processo. De preferência, válvulas de controle proporcional, em vez de válvulas do tipo liga/desliga, são empregadas, e a regulação de tempera- tura é, de preferência, ajustada por variação da taxa de escoamento do lí- quido refrigerante, em vez de ajuste de sua temperatura. A temperatura po- de também ser ajustada, resfriando a temperatura suficientemente abaixo da desejada e, em seguida, elevando a temperatura para a desejada por aque- cimento elétrico. Esse método não é preferido. A temperatura, em cada zona de resfriamento, é regulada, de preferência, entre ± 1,7°C (3°F) do ponto fixado, mais preferivelmente ± 0,6°C (1°F).
A temperatura de cada zona é ajustada para que um produto plano seja fornecido. Em uma concretização de máquina, as zonas de resfri- amento, posicionadas em toda uma das metades da matriz, estarão na mesma temperatura daquela para a maior parte em que a máquina opera, e as zonas de resfriamento na parte de baixo da matriz estarão em temperatu- ra uniforme entre si, porém em temperatura diferente daquela das zonas de resfriamento da metade de cima da matriz. Dependendo, em parte do com- primento da zona de resfriamento na direção da máquina, a temperatura de cada zona pode variar de 27C° (80°F) a 93°C (200°F), de preferência de 32°C (90°F) a 82°C (180°F). As zonas de resfriamento da parte de baixo são geralmente mantidas em temperatura mais baixa do que aquelas na parte de cima, ou seja, diferentes em aproximadamente 0,6°C a 14°C (1°F a 25°F), em geral, aproximadamente 1,7°C a 8,3°C (3°F a 15°F). Foi surpreendente- mente descoberto que as temperaturas mais baixas produzem folhas com marcas de disparo de altura relativamente baixas. As múltiplas zonas de res- friamento transversais podem ser utilizadas também com matrizes desenha- das para extrusão de painéis mais estreitos, por exemplo, de 0,4 m de largu- ra.
O operador da máquina, observando a saída de painéis da má- quina, ajustará individualmente a temperatura das zonas de resfriamento, se forem notadas deformidades ou imperfeições na superfície. Por exemplo, se o painel deformar ou dobrar em direção ascendente sobre o lado direito à frente, as zonas da parte de cima ou da parte de baixo correspondentes à posição da deformidade serão ajustadas fazendo com que a zona da parte de cima fique mais fria ou a zona da parte de baixo fique mais quente, ou ambos. Em geral, é desejável que a temperatura de uma determinada zona seja o mais próxima possível daquela de zonas vizinhas para minimizar res- friamento irregular. De maneira similar, se toda a folha dobrar-se uniforme- mente, ou seja, "em espiral", então o diferencial de temperatura entre as zo- nas de cima e as de baixo é ajustado para remover a dobra. Somente trei- namento mínimo do operador é necessário para manter a operação estável.
O processo pode ser ainda facilmente implementado sob a for- ma de processo automático em computador e/ou programa, por exemplo, de varredura transversal do painel, em uma ou mais posições, juntamente com o seu comprimento, por meio de comparador óptico ou dispositivo similar, ou medidores sensíveis, etc., que detectam deformidade ou dobra, e que efetua correções automaticamente. Cabe observar que devido à natureza dos pro- blemas associados à extrusão ram de painéis de alta razão de aspecto, inú- meros fatores causarão instabilidade, por exemplo, oscilações em tempera- tura de refrigerante, alterações em lote de matéria-prima, etc., e até mesmo a abertura de uma porta para o ambiente em que está ocorrendo a opera- ção. Informação adicional referente às zonas de resfriamento será apresen- tada nos Exemplos.
Os painéis, objeto da invenção, devem ser planos, ou seja, sem deformidade e dobra, além de com espessura uniforme, de preferência de ± 0,76 cm (0,030 polegada). O corte transverso é, dessa forma, substancial- mente retangular. No entanto, os lados dos painéis são geralmente redon- dos, pelo menos, nos cantos, visto que esse arredondamento diminui a pressão na matriz, além de eliminar cantos agudos da matriz que poderiam ser, então, pontos de tensão que poderiam se romper nas temperaturas al- tas envolvidas. Por "substancialmente retangular", pretende-se significar uma folha geralmente plana quando considerado o resultado final, com lados perpendiculares, curvos ou com mesmo raio, e principais superfícies parale- las ou substancialmente paralelas. Da mesma forma, uma matriz retangular do tipo fenda é aquela com duas faces de comprimento iguais à largura do painel a ser produzido, sendo estas faces planas e paralelas entre si, sob pressão de extrusão, as faces unidas por lados que são, de preferência, re- dondos ou de mesmo raio. O caráter plano dos painéis e das faces da matriz é o responsável pela produção de um painel substancialmente plano que satisfaz a definição "substancialmente retangular" na presente exposição.
Foi constatado, no entanto, que se uma matriz de geometria substancialmente retangular, quando não submetida à pressão operacional, for empregada como matriz na extrusão de painéis de grande largura, os painéis resultantes não exibem espessura uniforme, apresentam inúmeras irregularidades de superfície e, em geral, o produto final é de qualidade co- mercial inferior e geralmente não aceitável. Para a maioria das aplicações, a superfície destes produtos deverá ser retificada ou desbastada para que fi- que plana. Esse processo resulta em desperdício do polímero caro e acres- centa etapas adicionais ao processo que aumenta mais ainda o seu custo. Foi constatado que é vantajoso utilizar uma matriz, construída
com forma diferente de substancialmente retangular, especialmente uma forma na qual a região periférica das superfícies de cima e de baixo da ma- triz do tipo fenda não são planas e paralelas entre si, acoplada a uma estru- tura de suporte que, semelhantemente à matriz, distorce sob pressão, o re- vestimento da matriz e da estrutura de suporte que permita que a distorção da matriz não retangular, sob pressão operacional, transforme a abertura da matriz em uma abertura que permita a produção de um produto plano. Em uma outra concretização, a matriz e a estrutura de suporte estão fundidos em um componente, empregando metades maciças da parte cima e da parte de baixo da matriz. Esta matriz maciça não é preferida, devido ao seu custo.
A geometria preferida da matriz é aquela na qual a maior parte da porção central da matriz é de altura inferior à de suas regiões periféricas. Quando a matriz expande contra a estrutura de suporte, as regiões periféri- cas da matriz distorcerão menos, enquanto que a área central e a estrutura de suporte acima e abaixo da área central distorcerão mais, levando as fa- ces da matriz a uma geometria substancialmente paralela. Para fins desta invenção, uma matriz terá geometria substancialmente paralela se, durante a operação, um painel com variações de espessura acima de sua largura, com valor de 3o inferior a 1,27 mm (0,050 polegada) for produzido. Os Requeren- tes descobriram que um painel de alta qualidade de grande largura pode ser produzido, empregando uma matriz que possua, de preferência, cabeçote duplo de extrusão, e um no qual a matriz é resfriada próximo da saída de forma que o painel deixa a matriz em temperatura abaixo daquela de fusão cristalina.
Os cabeçotes duplos de uma concretização da matriz objeto da invenção podem ser divididos conceitualmente em cabeçote vertical e cabe- çote transversal. O cabeçote vertical é um estreitamento da matriz próximo ao final de sua entrada, conforme observado lateralmente ou seja, um estrei- tamento em direção vertical. O cabeçote transversal é um estreitamento da altura da matriz do tipo em direção transversal à da máquina, ou seja, em toda a largura do estoque de painel produzido continuamente. O cabeçote vertical é mostrado mais claramente por referência à
figura 4. A matriz 40 é submetida é retificada, de preferência, a partir de aço inoxidável, em duas peças 41 e 42. A matriz do tipo fenda 43 possui altura substancialmente constante na direção da máquina, até o cabeçote vertical, embora seja possível suprir um cabeçote estreito adicional à matriz em suas zonas de calor. Dessa forma, em vez de ser necessário um único cabeçote vertical, pode haver vários cabeçotes verticais, ou um único cabeçote cuja inclinação aumenta progressivamente, as paredes da matriz tornando-se substancialmente paralelas antes da face de saída da matriz 44, e antes ou próxima da zona de resfriamento. A área 45 é a área de entrada do pistão e possui altura substancialmente constante para acomodar o pistão 46. A a- bertura 47 permite a introdução de UHMWPE em pó na cavidade 49. O pis- tão avança em direção à face de saída da matriz 44 e para no ponto 50, compactando, dessa forma, a resina em pó em um comprimento L2. O ca- beçote vertical inicia no ponto 50, embora possa iniciar também mais adian- te, ou seja, mais próximo da face de saída da matriz 44. O cabeçote, diferen- temente daqueles ensinados pela técnica anterior para uso na produção de perfis pequenos, é mínimo, o ângulo incluído Θ, de preferência, menor do que 10° no total, mais preferivelmente menos de 5o e, o mais preferido, entre 1o e 3o. O cabeçote pode ser simétrico próximo da linha central 51 da matriz, ou pode ser assimétrico desde que todo o cabeçote esteja expresso em uma das metades da matriz. De preferência, o vertical é dividido desigualmente entre as metades da matriz e tenha um pouco menos de 3o, no total. O ca- beçote estende-se pelo comprimento L1. Este comprimento é determinado pelo ângulo do cabeçote e a razão entre a altura do canal de entrada do pis- tão e a altura nominal da fenda de saída da matriz. Em uma matriz para pro- dução de estoque de painel de valor nominal de 0,953 cm ou próximo a 0,375 polegada de espessura, o comprimento do cabeçote vertical é, de pre- ferência, em torno de 7,5 cm (3 polegadas). Se o comprimento deste cabe- çote for muito longo, ou se a sua extensão atingir substancialmente as zonas de resfriamento da matriz, a incompressibilidade bem conhecida de UHMW- PE tenderá a forçar a separação das metades da matriz, em extensão ainda maior do que a decorrente de pressão interna normal.
A figura 5 ilustra uma concretização da face de saída de uma matriz, objeto da invenção. Nesta concretização, a fenda da matriz torna-se cada vez mais estreita à medida que progride em direção à linha central 58 em sentido transversal. A matriz 55 é apresentada mais uma vez em duas peças 56 e 57. Na margem da fenda da matriz 58, a altura Ti é substancial- mente a mesma da espessura nominal do painel a ser produzido, porém é, de modo geral, ligeiramente maior do que a do painel após a saída da ma- triz. Os cantos 5a são, de preferência, chanfrados ou arredondados, por e- xemplo, em 59, para aliviar a tensão e minimizar a fricção. Na linha central da matriz, a altura T2 é inferior a Ti. Para um painel de largura nominal de 1,2 m, a diferença Ti - T2 é de aproximadamente 0,05 mm a 0,5 mm, de- pendendo da deflexão da matriz e de sua estrutura de suporte, mais preferi- velmente em torno de 0,3 mm. A forma da superfície da matriz que está em contato com o UHMWPE pode ser, de maneira expediente, em corte cônico, pelos menos em parte. Exemplos destes cortes cônicos são parábolas, hi- pérboles, elipses oblatas e prolatas, círculos, etc. Cabe observar que, a não ser se indicado de outra forma, uma "curvatura" inclui uma curva de raio infi- nito, ou seja, uma linha reta.
Se a altura na margem da fenda de saída da matriz for T, a altu- ra em outras partes da matriz pode ser estabelecida aproximadamente por Te e Tm1 onde Te é a altura em uma distância De da margem da cavidade, onde De é 22,5 cm (9 polegadas) ou menos, e Tm é a altura da cavidade em uma distância Dm da margem da cavidade, onde Dm é > 22,5 cm (9 polega- das). Os valores de Te e Tm para matrizes de larguras nominais de 1,2 m, são fornecidos, então, por
Te = Ti - 0,00275 De e Tm = T1 - [0,00275 De - (0,00175 (Dm - De))]
As constantes 0,00275 e 0,00175 estão relacionadas com a es- pessura da matriz (não com a altura da cavidade), a espessura de qualquer estrutura de suporte, a largura da matriz, etc., devido à natureza complexa do processo e as excentricidades da matriz, etc., por si só, por exemplo, as passagens de resfriamento, comprimento de matriz, zona de transição de matriz, etc.; para matrizes de dimensões consideravelmente diferentes, constantes diferentes e valores Iimitantes de De e Dm deverão ser determi- nados. É possível usar como recurso técnicas como análise finita de elemen- tos, para a qual há programas disponíveis. No entanto, pode ser mais eficaz retificar a matriz, por tentativa e erro, com retirada conservadora do material, para que a forma final seja aproximada por refinos sucessivos sem ter-se que reiniciar processo de retifica.
A diferença T1 - T2 pode ser determinada empiricamente por produção de uma matriz com valor de T1 - T2, de preferência, inadequado, conduzindo uma extrusão ram de experiência e medindo as diferenças em espessura do painel produzido, em sentido transversal ao da máquina. Em caso de serem observadas diferenças significativas em espessura ou irregu- laridades na superfície, a matriz pode ser, então, retificada, para uma varia- ção maior em altura na fenda. Cabe observar que a forma mais vantajosa da superfície da matriz 60 não é necessariamente circular, porém pode ser, na verdade, parabólica, hiperbólica, elíptica, etc., e pode ser de fato, conforme discutido posteriormente, estreitada em várias vezes. Foi constatado com esforço que a forma da fenda da matriz e o valor de T2 - Ti são dependentes de vários fatores, os quais, reunidos, defi- nem a geometria necessária. O último termo pretende significar uma forma de fenda de matriz que, junto com os parâmetros operacionais da máquina, por exemplo, tipo de resina, temperatura, pressão interna, comprimento (di- reção da máquina) da matriz; largura (transversal) da matriz, produza um painel com variação de espessura em toda a largura do painel abaixo de 1,27 mm (0,050 polegada), mais preferivelmente, abaixo de 0,76 mm (0,030 polegada) e, o mais preferível, abaixo de 0,51 mm (0,020 polegada). Como esses valores representam a variação total de espessura, as oscilações de altura de superfície são geralmente ± a metade destes valores, ou seja, de preferência, ± 0,25 mm (0,010 polegada) ou menos.
Os parâmetros mais importantes na determinação do cabeçote transversal da fenda são: a pressão interna, a largura do painel e os meios que restringem a deflexão da estrutura de suporte, preferivelmente utiliza- dos. À medida que a largura do painel aumenta, a força exercida sobre as duas metades do molde, em qualquer pressão fixada, aumenta também. Es- ta pressão tenderá a forçar as metades do molde a separarem-se e, em má- quinas anteriores, literalmente assim o fez. As metades da matriz da concre- tização preferida das máquinas, objeto da invenção, possuem aproximada- mente 11 a 12 cm de espessura. Se estas metades da matriz não forem su- portadas em sua face externa, elas se curvariam tanto ao produzir um painel de 1 cm de espessura e 1,2 m de largura que se deformariam e quebrariam. Seria possível, evidentemente, produzir as metades da matriz com material mais grosso. No entanto, aço inoxidável é caro e, até mesmo em as metades de matrizes com 25 cm de espessura, a dobradura ainda seria grave. Um material preferido para as matrizes é o aço inoxidável T420, de preferência polido e revestido com material resistente a desgaste e, de preferência, lubri- ficante. Os revestimentos de conversão e, de preferência, revestimentos de metal, como cromo ou níquel endurecido, podem ser utilizados. Vantajosa- mente, são utilizados revestimentos de carbono similar a diamante (DLC), como os fornecidos pela Diamonex Products, Allentown, PA, como Diamo- nex® DLC1 ou revestimentos de diamante amorfo, como os expostos na Pa- tente U.S. 6 103 305, aqui incorporada por referência neste pedido de paten- te. Estes revestimentos de diamante são bem conhecidos por seus coefici- entes baixos de fricção. Componentes periféricos de matrizes podem ser produzidos de aço endurecido, por exemplo, aço pré-endurecido PHS 4140.
O grau de distorção da matriz em sentido transversal à direção da máquina depende da largura do painel em produção. Quanto maior a lar- gura do painel, maior a área de superfície interna da matriz e maior a força exercida sobre as metades da matriz. Além disso, a distorção, transversal à direção da máquina, pode ser vista como uma força momentânea distante dos dispositivos de fixação que unem as metades da matriz. Por exemplo, em uma matriz de duas peças, presa em suas laterais por uma série de pa- rafusos e dispositivos similares, a distorção será maior, quanto mais distante estiver dos dispositivos de fixação. Dessa forma, a matriz distorcerá um pou- co mais no meio do que nas margens. Ademais, a força sobre os parafusos de fixação receberá uma contribuição muito maior da área central da matriz do que aquela de suas margens.
A fim de diminuir a distorção da matriz, é utilizada, de preferên- cia, uma estrutura de suporte de "quadro de janela" (concreta) com as matri- zes da presente invenção. O "quadro de janela" consiste em suportes maci- ços acima e abaixo das matrizes, estes suportes possuindo módulo alto. De preferência, os suportes são feitos de aço carbono, por exemplo, aço Vis- count® 44. Os suportes são apresentados na figura 2, representados por 21 e 22, acima e abaixo da matriz 20. Estes, juntamente com parafusos de uni- ão 23, localizados em ambos os lados da estrutura, formam um "quadro" em torno das metades 20a e 20b da matriz, mantendo-as sob compressão. Em uma máquina preferida, os suporte superior 21 e o inferior 22 possuem a- proximadamente 40 cm de espessura ou mais alta, e aproximadamente 3/4, desde que a matriz esteja na direção da máquina. A sua largura é maior do que a das metades da matriz, em aproximadamente 10 a 15 cm em cada lado, para que parafusos maciços possam ser utilizados, em conjunto, contra a tensão. Apesar da massividade (cerca de 3 toneladas de aço, cada) dos suportes, a deflexão ainda é observada. No entanto, quanto mais maciço o suporte, menor a deflexão. Suportes múltiplos individuais, em vez de um Cí- nico suporte, podem ser utilizados também.
Dessa forma, para painéis relativamente "estreitos" de 0,6 a 1 m, pelo uso de suportes de corte excepcionalmente pesado, por exemplo, 1 m de espessura, ou por chanfro reverso dos suportes contra distorção, a fenda da matriz pode possuir cabeçote transversal mínimo ou até mesmo nenhum cabeçote. No entanto, estes suportes maciços não são geralmente desejá- veis, não só por aumentarem o custo da máquina, mas também porque acar- retam aumento de peso importante, requerendo, dessa forma, uma base mais forte e muito mais maciça, ou seja, piso, para suportar o peso.
A figura 6 é uma concretização alternativa, particularmente útil para painéis de menos de 1,2 m de largura. Na figura 6, onde os cabeçotes estão aumentados a título de clareza, a matriz 60 está novamente dividida em duas peças, 61 e 62. A fenda 63 possui um corte plano 64, em cada me- tade da matriz, e cortes estreitados 65, por cabeçote com ângulo Q2 muito baixo incluído. Este ângulo incluído possui geralmente muito menos do que 0,5°, sendo, de preferência, em torno de 0,1°. Um cabeçote de 0,05° em ca- da metade do molde, por exemplo, pode ser satisfatório. A junção 66, entre o corte plano e cabeçote, pode ser suave ou arredondada. O cabeçote, transi- ção entre porção estreitada e porção plana, e comprimento da porção plana são ajustados para permitir a produção de um painel plano.
A figura 7 ilustra uma concretização preferida da presente inven- ção que combina as características da figura 5 e da figura 6. Na figura 7, a matriz 70, para um painel de aproximadamente 1,2 m de largura e 1 cm de espessura, possui cabeçotes laterais 71, conforme na figura 6, de preferên- cia, estendendo-se para o interior desde a margem da matriz por aproxima- damente 10 a 40 cm, de preferência, 20 a 30 cm, em ângulo Q2 de preferên- cia entre 0,02° e 0,1°, o mais preferível de aproximadamente 0,06°. A porção central 72 das faces da matriz, em vez de ser reta, é curva em direção ao interior ("convexa"), em direção à linha central horizontal da matriz, com raio longo L, por exemplo, de 200 m a 1000 m, de preferência, de 250 m a 500 m. A porção central da matriz é convexa em cada face e possui raio de pre- ferência de 1000/2 W, onde W é a largura da fenda de saída, em metros. Acoplado a um suporte de quadro de janela de espessura de aproximada- mente 40 cm, foi surpreendentemente constatado que estas superfícies rela- tivamente não planas da matriz, com cabeçote duplo (cabeçote lateral mais curvatura central) não resultaram em um produto de espessura estreitada, porém, sim, um painel plano produzido com espessura altamente uniforme e excelente qualidade de superfície.
Em ainda uma outra concretização, a matriz do tipo fenda é reti- ficada para conter um corte principal reto não estreitado, ou mesmo um com cabeçote reverso, ou seja, com altura maior no meio do que nas margens, porém contornada por suportes de quadro de janela, conforme apresentado na figura 9, onde, mais uma vez, os contornos são aumentados a título de clareza. Os suportes 91,92 possuem superfícies estreitadas em direção ao interior, os quais, quando montados sobre as metades da matriz 95, 96, dis- torcerão a fenda 97 para que a forma não seja substancialmente retangular, porém mais similares às das figuras 5 e 6. Dessa forma, quando montada, a matriz não será substancialmente retangular. Em operação, no entanto, a pressão no molde tentará forçar a separação das metades da matriz, a su- perfície da estrutura de suporte ao lado da matriz se curvará para o centro acima, em torno do meio do suporte, e fenda se projetará para fora e distor- cerá até próximo da forma final, ou seja, até uma forma na qual o painel pro- duzido possua um corte transverso substancialmente retangular.
Dessa forma, em relação à geometria da matriz, a forma da fen- da é tal que as superfícies de cima e de baixo fornecidas do painel produzido sejam substancialmente planas, quando sob carga, ou seja, na alta pressão operacional do processo de extrusão ram. Esse resultado é obtido com o uso de molde contornado que distorça até a forma desejada sob carga; um molde sem contorno, com um quadro de janela contornado que possa dis- torcer, ou molde sem contorno com quadro de janela maciço e que não pos- sa distorcer substancialmente. Para uma matriz de cerca de 1,2 m de largura e altura de fenda de saída de cerca de 1 cm, a espessura dos suportes aci- ma e abaixo da matriz deverá ser de aproximadamente 0,75 m, para a última concretização. Matrizes preferidas contarão também com o cabeçote verti- cal, descrito anteriormente.
Os pistões utilizados na produção dos painéis, objeto da inven- ção, são do tipo pistão de passo, conforme ilustrado na figura 8, feitos de preferência de aço de alta resistência, como o aço Viscount® 44. O final 71 do pistão 70 que penetra na cavidade 45 da figura 4 possui espessura ligei- ramente menor do que a da cavidade e comprimento de aproximadamente L2 (consultar a figura 4). O pistão é de preferência hidráulico, operado por um ou mais cilindros hidráulicos, e penetra na matriz através de um lacre, por exemplo, de poliamida. Os atributos precedentes do pistão são típicos dos pistões utilizados em extrusão por pistão de formas convencionais. Da margem estreita 71 até a parte hidráulica (à direita, não mostrada), a espes- sura do pistão aumenta significativamente até uma seção muito mais grossa 72. Esta seção mais grossa reduz a flexão e qualquer tendência a entortar- se que ocorreria de outra forma. A espessura da parte 72 do pistão pode ser de 7 cm, por exemplo, enquanto que a "língua" 71 pode ser de 1 cm. Obser- var que a língua do pistão, no caso da concretização preferida, é somente ligeiramente mais grossa do que a espessura no final da saída, por fator que corresponde à cabeça vertical da matriz. É possível também empregar pis- tões com língua da mesma espessura daquela da saída da matriz, porém este não é preferido, exceto, talvez, em painéis de espessura maior, por e- xemplo, 4 cm, de preferência de 10 cm ou mais.
A matriz contém pelo menos uma seção aquecida e outra resfri- ada, em relação à direção da máquina. Uma seção aquecida está próxima da porção da matriz de entrada do pistão, embora possa ser vantajoso tam- bém estabelecer uma zona de resfriamento entre o ponto de entrada do pis- tão ou cavidade 45 da figura 4 e a zona de aquecimento, para minimizar a sinterização da resina em pó próxima da entrada do pó. A zona de aqueci- mento inicia, de preferência, aproximadamente 15 cm (6 polegadas) antes que o cabeçote vertical inicie, e continua por um comprimento, na direção da máquina, que permita a consolidação completa do UHMWPE. Este compri- mento variará inversamente com a temperatura estabelecida na zona aque- cida, a "zona quente", e diretamente com a espessura do painel. Nenhuma dessas variáveis inversas e diretas é necessariamente linear. Painéis mais grossos requerem período mais longo em uma determinada temperatura para consolidar o interior do painel. A temperatura na zona quente é, de pre- ferência, de 127°C (260°F) a 260°C (500°F), mais preferivelmente, de 204 a 232°C (400 a 450°F) e, o mais preferível, de aproximadamente 216°C (420°F). Temperaturas acima de 260°C (500°F) tenderão a causar degrada- ção oxidativa da resina e não são desejadas. A zona quente pode ser dividi- da em várias subzonas de temperaturas variadas. As temperaturas são per- cebidas por dispositivos convencionais, de preferência, termopares, conec- tados a dispositivos automáticos de controle de temperatura. O aquecimento é obtido, de preferência, por aquecedores em cartucho inseridos transver- salmente na matriz.
Várias destas zonas de aquecimento são apresentadas no de-
senho em perspectiva de uma matriz do tipo fenda na figura 3. As duas me- tades, 30 e 31, da matriz possuem passagens 32, perfuradas através da ma- triz, em sentido transversal à direção da máquina. Estas passagens podem conter aquecedores por resistência do tipo cartucho, ou podem usar óleo quente, etc., como fluído de aquecimento.
A seção de resfriamento está localizada, de preferência, próxima à saída da matriz, e consiste em várias passagens de resfriamento 33, cada uma com entrada e saída. Também são possíveis outros arranjos de zonas de resfriamento, por exemplo, várias entradas perfuradas em paralelo à dire- ção da máquina e comunicando-se com uma ou mais saídas em comum, perfuradas transversalmente à direção da máquina. O arranjo em si não é fundamental. No entanto, independente do arranjo, as zonas de resfriamento deverão permitir o estabelecimento de variação de temperatura desejado, em sentido transversal à fenda da matriz, por exemplo, para manter a área central da fenda em temperatura mais alta ou mais baixa do que a de regi- ões periféricas ou de zonas intermediárias.
É altamente vantajoso para a operação do presente processo de extrusão de pistão minimizar a pressão acumulada no interior da matriz. O bom controle de temperatura é uma exigência necessária para produção de um produto uniforme, porém o aumento de temperatura não exerce grande efeito em diminuir a pressão operacional, uma vez que UHMWPE é similar a gel e borracha, em vez de a um líquido viscoso. Foi descoberto que a adição de pequenas quantidades de ácidos graxos de cadeia grande e de sais de ácidos graxos, como ácido esteárico, ácido palmítico, ácido linolênico e os seus sais, especialmente seus sais de cálcio e zinco, auxiliam na diminuição da pressão interna, supostamente por redução da fricção das partículas de gel com as paredes da matriz. Outros lubrificantes, como ésteres de Monta- na, amidas, ceras de polietileno, óleos de silicone e similares são adequados também. A quantidade utilizada destes lubrificantes varia de 0,1 a 3% por peso, mais preferivelmente, de 0,2 a 2% por peso e, o mais preferível, de 0,5 a 1,5% por peso. É importante, contudo, minimizar a quantidade de Iubrifi- cante para evitar perda de propriedades mecânicas. Dessa forma, é preferí- vel empregar 1,5% ou menos.
Foi também surpreendentemente descoberto que minimizando o teor de oxigênio da resina em pó, durante o processo, a pressão operacional diminui bastante. Tipicamente, em extrusão ram, a resina em pó é direciona- da pneumaticamente para um funil de abastecimento, acima da máquina de extrusão ram, por ar. Foi constatado que se um gás sem oxigênio for injeta- do no funil, de preferência no fundo ou próximo, para arrastar ou "espalhar" o ar para fora do funil, a pressão na matriz é reduzida em 1,03 mPa a 1,38 mPa (150 a 200 libras/polegada2), valor bem surpreendente. Essa redução em pressão pode resultar em diminuição da força exercida contra as meta- des da matriz em tanto quanto 6,67 kN (1,5 χ 104 Ibs) em matriz de 1 m χ 0,5 m. Qualquer gás sem oxigênio ou drenado de oxigênio pode ser utiliza- do, inclusive hélio, argônio, dióxido de carbono, nitrogênio ou gás similar.
Os UHMWPEs, empregados no processo, são resinas em pó do tipo convencional, como as fornecidas pela Ticona, Braskem e DSM, por exemplo. Os pesos moleculares médios preferidos variam entre 2 χ 106 Dae χ 106 Da, mais preferivelmente entre 4 χ 106 Da e 8 χ 106 Da. Embora o UHMWPE preferido, utilizado na presente invenção seja homopolimérico ou substancialmente homopolimérico, ou seja, com somente pequeno teor de comonômeros copolimerizáveis, as composições podem, conforme indicado também em qualquer outra parte desta exposição, incluir adjuvantes con- vencionais de beneficiamento ou aditivos modificadores de propriedades. Exemplos dos últimos grupos de componentes incluem, mas não são limita- dos a, componentes como estabilizantes térmicos; estabilizantes de UV; a- gentes nucleantes e clarificantes; corantes e pigmentos; materiais de condu- ção elétrica, como metal em pó, carbono em pó, grafite e similares; materiais de enchimento, por exemplo, materiais de enchimento não reforçados, com áreas de superfície BET <50 m2/g, e materiais de enchimento reforçados, como sílica em pó, com áreas de superfície >50 m2/g; reforços Iamelares como mica, xisto expandido e similares; reforço fibroso, na forma de fibras picadas ou, de outra forma, em partículas, por exemplo, fibras de vidro, fi- bras de cerâmica, fibras de aramida, fibras de metal, fibras de carbono, fi- bras termofixas e termoplásticas, como aquelas de poliimida, polieterimida, polissulfona, poliéterssulfona, poliéter cetona (PEK) e seus variantes (PEKK, PEEK, etc.); endurecedores, como elastômeros particulados; outros termo- plásticos, como PE não UHMW; plastificantes, etc. As quantidades destes aditivos são geralmente pequenas.
Tendo descrito em detalhes cada componente da presente in- venção, uma concretização preferida é um processo de extrusão ram, em- pregando matriz do tipo fenda com largura acima de 0,6 m e, de preferência, razão de aspecto entre largura e altura acima de 10:1, mais preferivelmente, acima de 20:1, e ainda mais preferivelmente acima de 40:1, a matriz com uma parte de cima e uma de baixa, cada parte de cima e de baixo contendo uma pluralidade de três e, de preferência, pelo menos, cinco zonas de resfri- amento, posicionados através da largura da matriz, a temperatura de uma pluralidade de zonas, em cada conjunto de zonas, podendo ser ajustada in- dependentemente. O comprimento da zona de resfriamento, na direção da máquina, e a temperatura das zonas são de tal forma que um painel de UHMWPE saindo da matriz seja resfriado abaixo de sua temperatura de fu- são cristalina e seja, pelo menos, parcialmente cristalino.
Em uma outra concretização preferida, uma matriz de duas pe- ças, cuja forma de saída, quando não sob pressão, não é a da seção trans- versa desejada de um produto obtido por extrusão ram, está contida em uma estrutura de suporte de alta resistência e módulos que se sustentam contra as metades da matriz e restringem a sua distorção para fora na pressão ope- racional do processo de extrusão ram. No entanto, sob pressão, a distorção, que não pode ser completamente refreada pela estrutura de suporte, distor- ce a matriz e estrutura de suporte de uma maneira que a saída da matriz assume uma forma que permite a produção dos painéis por extrusão ram com, pelo menos, 0,6 m de largura e, de preferência, pelo menos, as razões de aspecto previamente descritas, o painel com variações em espessura abaixo de 1,27 mm (0,050 polegadas), preferivelmente, abaixo de 0,76 mm (0,030 polegadas) e, mais preferivelmente, abaixo de 0,38 mm (0,015 pole- gadas). A matriz com, pelo menos, uma zona de resfriamento em cada me- tade da matriz, próxima à saída da matriz, de forma que o painel de UHMW- PE que deixa a matriz está em temperatura abaixo da de fusão cristalina, de preferência, abaixo de 137°C, mais preferivelmente, abaixo de 1210C (250°F), mais preferivelmente, abaixo de 120°C, ainda mais preferivelmente, abaixo de 110°C , mais preferível ainda, no intervalo de 40 a 100°C e, o mais preferível entre 75°C e 85°C.
Em ainda uma outra concretização preferida, a matriz da concre- tização precedente possui um cabeçote vertical pequeno ou "estreitamento" a partir da altura da matriz onde o pistão penetra, até uma altura algo uni- forme e mais estreita ao longo da direção da máquina para a saída da ma- triz. Além disso, nesta concretização preferida, a forma da matriz, transversal à direção da máquina, é tal que a altura da fenda da matriz é menor na regi- ão central do que nas periféricas da fenda, e a estrutura de suporte consiste em placas pesadas de aço, retificadas para apresentarem faces substanci- almente planas que se sustentam contra as respectivas metades da matriz. As placas de aço são submetidas à tensão, exercida por múltiplos conecto- res rosqueados, o mais preferível, por parafusos-tensor machos, como aque- Ies disponibilizados por Superbolt1 Inc. Carnegie, PA, e descritos nas paten- tes U.S. 6.263.764, 6.112.396, 6.381.827, 6.199.453, 5.083.889 e 4.846.614.
Em ainda uma outra concretização preferida, a matriz da concre- tização precedente é empregada e também suprida com uma pluralidade de, pelo menos, três zonas de resfriamento em metade da matriz, conforme pre- viamente descrito. As temperaturas das várias zonas de resfriamento são fixadas para proporcionar estabilidade na extrusão do painel produzido e ajustadas individualmente quando necessário para oporem-se a variações do processo que produzem deformidade, arco, irregularidades de superfície e variações em espessura, esses ajustes sendo efetuados, de preferência, durante operação da máquina.
O produto resultante do processo da invenção é um novo produ- to cuja produção não era possível antes da presente invenção. Conforme indicado previamente, devido às dificuldades da extrusão ram, era impossí- vel obter painéis de espessura constante de grande largura e alta razão de aspecto por extrusão ram, ou seja, painéis finos. Dessa forma, para produzir painéis finos, painéis grossos moldados por compressão eram desbastados até serem produzidas folhas finas. No entanto, estas folhas possuem super- fícies irregulares, tanto em termos de variação de espessura como de aspec- to.
Painéis produzidos pelo processo, objeto da invenção, são ca- racterizados por superfície macia, brilhante e uniforme. A maciez pode ser avaliada facilmente pelo toque, e o brilho da superfície, visualmente ou por técnicas de inspeção óptica, como os métodos de teste D2457-03 e D523-89 da norma ASTM, de preferência em ângulo de 60°. Usando essa metodolo- gia de testes com o BYK Gardner Color Guide Glass Meter, fornecido pela BYK Gardner, E.U.A., Columbia, MD, e ângulo de teste de 60°, as medições médias de brilho variam, de preferência, de 35 para cima, com a maioria dos painéis no intervalo de 35 a 45. Por outro lado, painéis desbastados, apesar de macios também, possuem brilho significativamente mais baixo, obtendo em média aproximadamente 24 na mesma metodologia de teste.
A superfície uniforme possui variação de espessura 3σ abaixo de ± 1,25 mm (0,050 polegadas), mais preferivelmente em ± 0,76 mm (0,030 polegadas) e, ainda mais preferível, em ± 0,50 mm (0,20 polegadas). Ao mesmo tempo em que macia e brilhante, a superfície pode ser ainda distin- guida de painéis desbastados pela presença de marcas de disparo substan- cialmente perpendiculares ao comprimento da folha (na direção da máquina) e substancialmente paralelas entre si. Estas marcas de disparo supostamen- te são causadas pelo tempo de permanência estacionário entre os ciclos de extrusão ram, e o perfil e altura das marcas de disparo podem ser medidos por técnicas convencionais de perfilometria. As marcas de disparo possuem altura máxima (de cima a baixo) de somente alguns mícrons, ou seja, abaixo de 70 pm, mais preferivelmente, abaixo de 25 μιη, e, de modo importante, não interferem com usos conhecidos de estoque de painel fino. Em estudos prolongados, foram obtidos produtos com marcas de disparo, cuja altura média aproximadamente 5 a 10 pm. As marcas de disparo podem ser facil- mente vistas, observando o painel em ângulo oblíquo.
As figuras 10a - 10c ilustram vários perfis de marca de disparo. Na figura 10a, um perfil "ideal" de marca de disparo é apresentado, onde as margens 101 que delimitam as marcas de disparo são exatamente paralelas entre si e perpendiculares à direção da máquina no painel 100. Este tipo de padrão seria resultante se todo o UHMWPE na matriz fluísse exatamente na mesma taxa, sofresse a mesma contra-pressão, etc., e esses parâmetros não se alterassem em todo o comprimento do painel.
No entanto, o fluxo de UHMWPE é geralmente um pouco retar- dado nas margens da matriz, e pode sofrer menos retardo no centro da ma- triz. O retardo nas duas margens pode não ser o mesmo também. O resulta- do é que as marcas de disparo são tipicamente um pouco "ondeadas" ou "ondulantes" por todas as superfícies do painel (existem marcas de disparo nas superfícies anterior e posterior), conforme mostrado em 102 na figura 10b. A orientação geralmente perpendicular à direção da máquina é clara, como também o é a orientação geralmente paralela, relativa a marcas de disparo adjacentes. Na figura 10c é apresentado um painel similar, porém no qual as marcas de disparo alteraram as suas respectivas orientações ao longo do painel, inicialmente em 102, sendo a mesma da figura 10b, afas- tando um pouco na porção 103 e tornando mais uma vez igual na porção 104. As marcas de disparo são ainda substancialmente perpendiculares à direção da máquina e substancialmente paralelas entre si.
Dessa forma, a presente invenção pertence também a um painel
de UHMWPE com largura acima de 0,6 m e caracterizado por marcas de disparo geralmente paralelas sobre as superfícies de cima e de baixo. Para painéis cuja direção do comprimento corresponde à da marca, estas marcas de disparo são transversais à direção da máquina do painel. A superfície dos painéis é macia e brilhante, e possui tolerância de espessura conforme pre- viamente descrita. Painéis preferidos são de 4 mm a 10 cm em espessura, mais preferivelmente com menos de 2 cm de espessura. Painéis preferidos possuem variação de aplainamento global inferior a 3,8 mm; 3σ (0,150 pole- gadas) com tolerância de ± 0,8 mm; 3o (0,030 polegadas) e, de preferência, variação de aplainamento global inferior a 2,5 mm (0,100 polegadas) com tolerância abaixo de 0,6 mm; 3σ (± 0,024 polegadas). O arco lateral (curvatu- ra) dos painéis, sem aparo, está incluído, de preferência, nos mesmos valo- res daqueles para aplainamento global. Cabe observar que estas tolerâncias de arcos laterais para o painel, conforme extrusado, são superiores as que podem ser habitualmente obtidas por serragem convencional da margem. Dessa forma, o preferido é que os painéis da presente invenção retenham suas margens "conforme produzidas" e não sejam serrados.
Tendo sido a invenção descrita de modo geral, é possível obter um entendimento adicional sobre esta invenção por referência a certos e- xemplos específicos, fornecidos nesta exposição a título somente de ilustra- ção, sem pretensão de limitação, a não ser que especificado de outra forma. Exemplo 1
É fornecida uma máquina de extrusão ram com matriz em aço inoxidável, composta por duas metades, substancialmente conforme descrita nesta exposição e conforme ilustrada, por exemplo, pelas figuras 2, 3 e 4. A matriz possui comprimento, na direção da máquina, de 81,25 cm, largura de 172 cm e altura de 96,5 cm. A metade de baixo da matriz é similar à de ci- ma, porém não contém passagens 47 para entrada de UHMWPE em pó, e suas margens são configuradas para se combinarem com as da metade de cima. A matriz possui cabeçote vertical, em relação à direção da máquina, desde a entrada do pistão, com ângulo de aproximadamente 3o, e a geome- tria da fenda é geralmente circular com raio muito longo, cerca de 375 m. A zona quente da matriz é mantida em 227°C ± 110C (440°F ± 20°F), e o final da saída da matriz é provido com cinco zonas de resfriamento em cada me- tade da matriz, estendendo-se aproximadamente por 7,6 cm (3 polegadas) na matriz, na direção da máquina. A matriz está contida em uma estrutura de suporte, constituída
por dois lingotes de aço carbono de superfície plana, medindo 1,7 m (68 po- legadas) por 0,58 m (22,5 polegadas), que são submetidos à tensão exerci- da por 5 parafusos multitensor machos com diâmetro de parafuso de 5 m (2 polegadas). Os lingotes de aço estão posicionados sobre a matriz, aproxi- madamente uma polegada do final da saída, e estendendo-se daquele ponto até o final da entrada do pistão da matriz, conforme ilustrado na figura 2.
Resina de UHMWPE em pó 6540 da Braskem, São Paulo, Bra- sil, com temperatura de fusão de 133°C, tamanho médio de partícula (D50) de 190 pm e peso molecular médio de 8 χ 106 g/mol, é introduzida pneuma- ticamente em um funil acima das portas de entrada de UHMWPE, na metade de cima da matriz. É introduzido fluxo de nitrogênio no funil, próximo ao fun- do, para remover ar da resina em pó. O pistão é puxado para trás e permiti- do que a resina em pó encha a cavidade da matriz, abaixo do funil. O pistão, em seguida, entra na matriz e comprime a resina em pó, empurrando-a para a porção estreitada verticalmente da matriz, esta resina, por seu turno, em- purrando a porção anterior da resina em pó, que está sendo agora aquecida até formação de gel, em direção à saída da matriz. O pistão permanece nes- sa posição por aproximadamente 1 segundo e, em seguida, o ciclo é repeti- do. No início de cada ciclo, quando a matriz está cheia, um 0,5 polegada (12,5 mm) de comprimento de um painel de UHMWPE de 0,375 polegadas (9,5 mm) de espessura e 4 pés de largura (1,22 m) sai da matriz. O painel é parcialmente impedido de movimentar-se por um dispositivo de contra- pressão coberto por um pano que facilita o contato continuado do painel res- friado (250°F) com as paredes da matriz. O dispositivo de contra-pressão é construído de forma a permitir variações em contra-pressão por toda a largu- ra do painel. O painel é coletado em uma esteira plana, e o operador ajusta as temperaturas das zonas de resfriamento para remover deformidades e arcos do painel. As temperaturas de zonas de resfriamento de cima e de baixo, na produção estável de painel plano são 42°C, 56°C, 60°C, 49°C, 43°C e 42°C, 49°C, 53°C, 44°C e 41 °C, respectivamente. O painel sai da matriz em temperatura abaixo de 100°C, muito abaixo daquela de fusão cris- talina. Os painéis planos produzidos são cortados em comprimento, e pos- suem uma superfície plana brilhante com variação de espessura abaixo de 0,030 polegadas. "Marcas de disparo" do molde, de comprimento equivalen- te a cada batida de produção do pistão, podem ser vistas, se observadas cuidadosamente em ângulo alto de incidência, porém são virtualmente invi- síveis quando vistas em diante. O painel possui margens ligeiramente arre- dondadas que são uniformes de painel para painel e de qualidade comercial. Exemplo 2
A mesma máquina e processo são utilizadas, conforme no E- xemplo 1, porém a matriz possui, além do cabeçote vertical, faces de saída não paralelas com cabeçotes laterais duplos e um corte superior curvilíneo, conforme descrito na figura 7. As zonas de resfriamento de cima são todas fixadas em 76,7°C, e as de baixo, todas, em 73,9°F. Durante a operação, é preciso muito pouco ajuste. O painel extrusado sai da matriz em uma tempe- ratura de aproximadamente 79°C. É produzido um painel plano de qualidade ainda maior do que o do Exemplo 1, em termos de variação de espessura e uniformidade de margem. A taxa de produção é de 5,8 m/hora (19 pés/hora ou 71,4 kg/hora (160 libras/hora)). Exemplo comparativo 1
É empregada uma operação comercial de moldagem por com- pressão com um molde grande similar a cofre de corte largo. A resina de UHMWPE em pó é introduzida na cavidade do molde é um acessório de fe- chamento, inserido na parte de cima do molde. O molde e três outros moldes de tamanho similar são carregados em uma placa (stack), colocados sob pressão de 1000 libras/polegada2 (6,9 MPa) e aquecidos até acima da tem- peratura de fusão cristalina, mantidos nesta temperatura por 90 minutos, sendo, em seguida, lentamente permitido o resfriamento. Placas grossas são obtidas, das quais painéis de 0,375 polegadas (0,95 cm) podem ser produzi- dos por desbastamento em uma etapa separada. Antes do desbastamento, a taxa de produção é de 75 libras/hora (33,5 kg/hora). Após o desbastamen- to, um tempo longo de têmpera em temperatura elevada é exigido para re- duzir ondulação final e ondulação em margens e tensões internas.
Embora as concretizações da invenção tenham sido ilustradas e
descritas, estas não se destinam a ilustrar e descrever todas as possíveis formas da invenção. Além disso, as palavras utilizadas no relatório são pala- vras de descrição e não de limitação, ficando entendido que várias altera- ções podem ser feitas sem afastarem-se do espírito e escopo da invenção.

Claims (22)

1. Processo de extrusão ram para preparo de painéis de UHMWPE de larguras superiores a 0,6 m, compreendendo: - fornecimento de matriz do tipo fenda com corte transverso substancialmente retangular, sob pressão operacional da extrusão ram, a matriz com uma porção superior e uma porção inferior e uma face de entra- da e uma face de saída, e contendo, pelo menos, três zonas de resfriamento que podem ser controladas independentemente em cada parte superior e inferior, as referidas zonas de resfriamento localizadas próximas à face de saída da matriz e posicionadas por toda a largura da matriz; - a introdução de forma crescente de partículas de resina de UHMWPE na matriz, sob pressão de um pistão; - o aquecimento das partículas de UHMWPE até uma temperatu- ra acima da temperatura de fusão cristalina de UHMWPE para formar um termoplástico amolecido substancialmente contínuo; - o resfriamento do UHMWPE até uma temperatura abaixo da temperatura de fusão cristalina, enquanto ainda no interior da matriz, ao mesmo tempo em que mantendo contato com as paredes da matriz; e - a obtenção de um produto em forma de painel de UHMWPE solidificado que sai da matriz.
2. Processo de acordo com a reivindicação 1, em que um dispo- sitivo de contra-pressão, localizado no lado externo e em sentido descen- dente da matriz, exerce uma pressão contra painéis de UHMWPE que dei- xam a matriz, aumentando o contato do UHMWPE com as paredes da ma- triz.
3. Processo de acordo com a reivindicação 1, em que a referida matriz possui uma cavidade substancialmente retangular para receber UHMWPE em pó e para processá-lo até a formação de um painel de UHMWPE consolidado, a cavidade substancialmente retangular compreen- dendo: a) uma cavidade de entrada; b) uma fenda de saída; a aItura da cavidade de entrada sendo maior do que a aItura media da fenda de saida; c) uma cavidade de consolidagao, posicionada entre a cavidade de entrada e a fenda de saida e contendo uma zona aquecida em sentido descendente da cavidade de entrada e uma zona de resfriamento, proxima a fenda de saida; e d) um cabegote vertical, na transigao entre a cavidade de entra- da e a cavidade de consolidagao, ο qual e opcionalmente aquecido.
4. Processo de acordo com a reivindicagao 3, em que a altura da matriz no centro da fenda de saida e menor do que a altura nas margens da fenda de saida.
5. Processo de acordo com a reivindicagao 4, em que a forma do corte transverso da fenda de saida de, pelo menos, uma metade da matriz e uma segao conica, uma combinagao de duas ou mais segoes conicas, ou uma combinagao de uma ou mais segoes conicas e uma ou mais segoes retas.
6. Processo de acordo com a reivindicagao 4’ em que a fenda de saida, vista da face anterior da fenda, compreende porgoes direita e esquer- da, proximas as margens esquerda e direita, respectivamente da matriz, as referidas porgoes esquerda e direita estendendo-se progressivamente para cima em diregao a Iinha central da fenda da saida para formar zonas estrei- tadas, cujas alturas, no final da zona estreitada mais proxima da Iinha central sao menores do que a altura das margens da fenda de saida, e uma superfi- cie central estendendo-se entre as referidas zonas estreitadas, a curvatura da referida superficie central sendo diferente daquela das referidas zonas estreitadas.
7. Processo de acordo com a reivindicagao 6’ em que as referi- das zonas estreitadas sao planas ou possuem curvatura muito pequena com raio acima de 1000 m, e a referida superficie central possui raio acima de aproximadamente 1000 m/2 W, onde Wea Iargura da fenda de saida em metros, e a curvatura da superficie central e maior do que a das zonas es- treitadas.
8. Processo para produgao de um painel de UHMWPE de Iargu- ra acima de 0,6 m, compreendendo a extrusao ram do UHMWPE atraves de uma matriz do tipo fenda, contida em uma estrutura de suporte, a fenda de saida da matriz nao tendo forma substancialmente retangular, conforme pro- duzida, porem ο revestimento da matriz com a estrutura de suporte para dis- torcer uma forma substancialmente retangular, sob pressao da extrusao ram.
9. Processo de acordo com a reivindicagao 8, em que a referida estrutura de suporte compreende, pelo menos, uma estrutura de suporte de quadro de janela.
10. Processo de acordo com a reivindicagao 8, em que a fenda de saida da referida matriz do tipo fenda possui uma aItura em seu centro menor do que a aItura em uma margem.
11. Processo de acordo com a reivindicagao 10’ em que a forma das superficies superior e inferior da fenda de saida sao superficies conve- xas.
12. Processo de acordo com a reivindicagao 10, em que a matriz do tipo fenda possui superficies superior e inferior, cada uma destas com regiao periferica e regiao central, a forma das regioes perifericas e a da regi- ao central sendo diferente.
13. Processo de acordo com a reivindicagao 9, em que a super- ficie superior e superficie a inferior da fenda de saida da matriz do tipo fenda sao paralelas planas, e a estrutura de suporte de quadro de janela possui uma espessura de forma a ser extrusado um painel com variagao de espes- sura de, no maximo, 土 1,27 mm.
14. Processo de acordo com a reivindicagao 8, compreendendo ainda uma contra-pressao exercida contra um painel que sai da matriz do tipo fenda.
15. Processo para extrusao de paineis de UHMWPE de Iargura acima de 0,4 m, compreendendo a extrusao ram de UHMWPE atraves de uma matriz do tipo fenda, em temperatura mais alta do que a de fusao crista- Iina do UHMWPE, e resfriamento do UHMWPE para uma temperatura mais baixa do que a de fusao cristalina enquanto ainda no interior da matriz do tipo fend a, ο referido resfriamento efetuado por uma pluralidade de zonas de resfriamento que podem ser controladas independentemente, Iocalizadas acima e abaixo da fenda e proxima a face de saida da matriz do tipo fenda.
16. Processo de acordo com a reivindicagao 15’ compreendendo ainda ο ajuste da temperatura de uma ou mais das referidas zonas de resfri- amento, durante a referida extrusao, para manter ou melhorar caracteristicas do ρ rod uto.
17. Processo de acordo com a reivindicagao 15, em que a tem- peratura media das zonas de resfriamento, na metade de baixo da matriz, e mais baixa do que a temperatura media das zonas de resfriamento da meta- de de cima da matriz.
18. Processo de acordo com a reivindicagao 15,compreendendo ainda ο monitoramento da espessura do painel em Iocais por tod a a largura; a determinagao se a espessura em qualquer um dos referidos Iocais e me- nor do que outras; e ο ajuste da temperatura da zona correspondente ao local da menor espessura para que esta aumente naquele local.
19. Painel de UHMWPE por extrusao ram com largura de 0,6 m ou mais, variagao de espessura com valor 3σ abaixo de 1,27 mm e superfi- cies superior e inferior Iisas e brilhantes, as referidas superficies superior e inferior com uma pluralidade de marcas de disparo substancialmente parale- las, com aItura media de aproximadamente 70 μηη ou menos.
20. Painel de acordo com a reivindicagao 19’ em que a espessu- ra media do painel έ entre 4 mm e 2 cm.
21. Painel de acordo com a reivindicagao 19’ que possui largura de 1,0 m a 3,0 m.
22. Painel de acordo com a reivindicasao 19’ que possui brilho especular a 60° de 35 ou mais alto, quando medido de acordo com ASTM D2457
BRPI0714807-0A 2006-07-21 2007-07-19 Produção de painéis de uhmwpe BRPI0714807B1 (pt)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US11/491,356 2006-07-21
US11/491,361 US7803450B2 (en) 2006-07-21 2006-07-21 Production of UHMWPE sheet materials
US11/491,356 US7758797B2 (en) 2006-07-21 2006-07-21 Production of UHMWPE sheet materials
US11/491,361 2006-07-21
EP06020690.1 2006-10-02
EP06020690A EP1908570A1 (en) 2006-10-02 2006-10-02 Production of UHMWPE panels
PCT/CH2007/000352 WO2008009150A1 (en) 2006-07-21 2007-07-19 Production of uhmwpe panels

Publications (2)

Publication Number Publication Date
BRPI0714807A2 true BRPI0714807A2 (pt) 2013-05-21
BRPI0714807B1 BRPI0714807B1 (pt) 2018-06-12

Family

ID=38544322

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI0714807-0A BRPI0714807B1 (pt) 2006-07-21 2007-07-19 Produção de painéis de uhmwpe

Country Status (8)

Country Link
EP (1) EP2043838B1 (pt)
JP (1) JP5087621B2 (pt)
KR (1) KR101410652B1 (pt)
BR (1) BRPI0714807B1 (pt)
CA (1) CA2655616C (pt)
MX (1) MX2009000810A (pt)
PL (1) PL2043838T3 (pt)
WO (1) WO2008009150A1 (pt)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758797B2 (en) 2006-07-21 2010-07-20 Quadrant Epp Ag Production of UHMWPE sheet materials
US7758796B2 (en) 2006-07-21 2010-07-20 Quadrant Epp Ag Production of UHMWPE sheet materials
US7803450B2 (en) 2006-07-21 2010-09-28 Quadrant Epp Ag Production of UHMWPE sheet materials
US7736579B2 (en) 2006-07-21 2010-06-15 Quadrant Epp Ag Production of UHMWPE sheet materials
CN101486250B (zh) * 2009-02-13 2010-12-08 华南理工大学 超高分子量聚乙烯低温低压挤出方法
US20130154142A1 (en) * 2011-12-19 2013-06-20 Warren Paul Ripple Conicity correction for rubber component extrusion
KR20140130917A (ko) 2013-05-02 2014-11-12 삼성디스플레이 주식회사 탄소나노튜브-초고분자량폴리에틸렌 복합체, 이를 포함하는 성형품 및 그 성형품의 제조방법
JP6710593B2 (ja) * 2015-06-29 2020-06-17 三ツ星ベルト株式会社 押出成形用金型
JP6489691B2 (ja) * 2015-06-29 2019-03-27 三ツ星ベルト株式会社 押出成形用金型
US20190047821A1 (en) * 2017-08-11 2019-02-14 Otis Elevator Company Load bearing member for lifting system
JP7093073B2 (ja) * 2018-03-29 2022-06-29 本田技研工業株式会社 熱可塑性樹脂複合材料の製造方法及び製造装置
NL2023518B1 (en) 2019-07-17 2021-02-22 Tekalen Holding Verwaltungs Gmbh A method for continuously manufacturing UHMWPE products

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492310A (en) * 1966-10-06 1970-01-27 Phillips Petroleum Co Thermoplastic extrusion
US3883631A (en) * 1966-11-25 1975-05-13 Impact Plastics Inc Method and means for making high molecular weight polyethylene sheets
JPS5173564A (pt) * 1974-12-24 1976-06-25 Mitsui Petrochemical Ind
US4145175A (en) * 1976-03-08 1979-03-20 Keltrol Enterprises, Inc. Extrusion apparatus
US4240997A (en) * 1978-06-23 1980-12-23 Jex Edward R Extrusion technique with ram speed control
JPS60101021A (ja) * 1983-11-09 1985-06-05 Asahi Chem Ind Co Ltd 超高分子量ポリエチレンの押出成形方法及び押出成形装置
JPS60229726A (ja) * 1984-04-28 1985-11-15 Toyoda Gosei Co Ltd シ−ト押出用ダイ
DE4418527A1 (de) * 1993-12-23 1995-06-29 Hoechst Ag Formmassen aus Polyethylen und Verfahren zur Herstellung von Formkörpern aus diesen Formmassen
US7344672B2 (en) * 2004-10-07 2008-03-18 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials

Also Published As

Publication number Publication date
JP5087621B2 (ja) 2012-12-05
BRPI0714807B1 (pt) 2018-06-12
CA2655616A1 (en) 2008-01-24
EP2043838B1 (en) 2015-10-21
WO2008009150A1 (en) 2008-01-24
EP2043838A1 (en) 2009-04-08
MX2009000810A (es) 2009-02-03
KR101410652B1 (ko) 2014-07-03
JP2009544485A (ja) 2009-12-17
CA2655616C (en) 2014-07-08
KR20090033276A (ko) 2009-04-01
PL2043838T3 (pl) 2016-04-29

Similar Documents

Publication Publication Date Title
BRPI0714807A2 (pt) produÇço de painÉis de uhmwpe
US7736579B2 (en) Production of UHMWPE sheet materials
US7803450B2 (en) Production of UHMWPE sheet materials
US7758797B2 (en) Production of UHMWPE sheet materials
US7758796B2 (en) Production of UHMWPE sheet materials
JP2009544485A5 (pt)
US7687002B2 (en) Substantially proportional drawing die for polymer compositions
EP1871586A1 (en) Method of producing resin sheet
Chen et al. Optimization of the coathanger manifold via computer simulation and an orthogonal array method
EP3825095B1 (en) Ram extruding thin panels of uhmw polymers
CN111716672A (zh) 专用于生产pbt塑料板的工艺方法
US11292172B2 (en) Ram extruding thin panels of UHMW polymers
EP2043836B1 (en) Production of uhmwpe panels
EP1908570A1 (en) Production of UHMWPE panels
US20220347909A1 (en) A method for continuously manufacturing uhmwpe products
JPS59114027A (ja) 押出成形用ダイ
CN111716673A (zh) 专用于生产pet塑料板的工艺方法
EP1908568A1 (en) Production of UHMWPE panels

Legal Events

Date Code Title Description
B15K Others concerning applications: alteration of classification

Ipc: B29C 47/00 (1985.01), B29C 47/14 (1985.01), B29C 4

B06A Patent application procedure suspended [chapter 6.1 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]