BRPI0610246A2 - processo para sintetizar metanol - Google Patents

processo para sintetizar metanol Download PDF

Info

Publication number
BRPI0610246A2
BRPI0610246A2 BRPI0610246-8A BRPI0610246A BRPI0610246A2 BR PI0610246 A2 BRPI0610246 A2 BR PI0610246A2 BR PI0610246 A BRPI0610246 A BR PI0610246A BR PI0610246 A2 BRPI0610246 A2 BR PI0610246A2
Authority
BR
Brazil
Prior art keywords
gas
hydrogen
synthesis
methanol
composition
Prior art date
Application number
BRPI0610246-8A
Other languages
English (en)
Inventor
Terence James Fitzpatrick
Original Assignee
Johnson Matthey Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey Plc filed Critical Johnson Matthey Plc
Publication of BRPI0610246A2 publication Critical patent/BRPI0610246A2/pt
Publication of BRPI0610246B1 publication Critical patent/BRPI0610246B1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C11/00Fermentation processes for beer
    • C12C11/02Pitching yeast
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Processo para síntese de metanol compreendendo as etapas de: (i) reformar um insumo de hidrocarboneto e separar a água da mistura de gás reformada resultante para gerar um gás de composição compreendendo hidrogênio e áxidos de carbono, a mistura de gás de composição tendo um índice estequiométrico, R, definida pela fórmula R = ([H2] - [C02])/([C02]+[CO]) de menos do que 2.0, (ii) combinar o gás de composição com um gás de síntese não-reagido para formar uma mistura de gás de síntese, (iii) passar a mistura de gás de síntese em temperatura e pressão elevadas através de uma camada de catalisador de síntese de metanol para gerar um fluxo de produto compreendendo metanol e gás de síntese não-reagido, (iv) esfriar o fluxo de produto para recuperar um fluxo de metanol bruto a partir do gás de síntese não-reagido, <v) remover uma porção do gás de síntese não-reagido como um gás de purgação, e (vi) alimentar o gás de síntese não-reagido restante para etapa (ii) caracterizado em que o hidrogênio é recuperado a partir de pelo menos uma porção do gás de purgação e de uma porção de gás de composição, e o hidrogênio recuperado é incluido na mistura de gás de síntese.

Description

PROCESSO PARA SINTETIZAR METANOL
Esta invenção se refere à síntese de metanol eespecificamente à síntese de metanol a partir de um gás desíntese que é deficiente em hidrogênio.
A síntese de metanol geralmente é realizadamediante passagem de um gás de síntese compreendendohidrogênio, óxidos de carbono e quaisquer gases inertes emuma temperatura e pressão elevadas através de uma ou maiscamadas de um catalisador de síntese de metanol, a qualfreqüentemente é uma composição contendo cobre. O metanolgeralmente é recuperado mediante esfriamento do fluxo degás de produto até abaixo do ponto de orvalho do metanol eseparando o produto como um líquido. O processo énormalmente operado em um circuito fechado: desse modo ofluxo de gás não-reagido restante é normalmente recicladopara o reator de síntese como parte do gás de síntese porintermédio de um circulador. Gás de síntese novo,denominado gás de composição, é comprimido e adicionado aogás não-reagido reciclado para formar o fluxo de gás desíntese. Um fluxo de purgação é freqüentemente tirado dofluxo de gás circulante para evitar o desenvolvimento degases inertes. Tal processo é descrito, por exemplo, na EP0329292.
Esse arranjo, contudo, é inadequado para os gasescujo índice estequiométrico (R), definido pela fórmula:
<formula>formula see original document page 2</formula>
é inferior a 2, significando que o gás é deficiente em H2para a fabricação de metanol. Gases de síntese deficientesem hidrogênio podem ser obtidos a partir de processos dereforma incluindo uma etapa de oxidação parcial, tal comoreforma autotérmica. Em tal caso, o hidrogênio seráconsumido na reação de síntese de metanol enquanto que umaparte substancial dos óxidos de carbono permanece não-reagida levando a uma composição no circuito fechado desíntese que tem níveis muito altos de óxidos de carbono,mas tem baixo nível de hidrogênio. Isso tem váriasconseqüências, entre elas que o volume de catalisadorexigido será elevado e que o nível de subprodutos (alcoóise cetonas superiores especificamente) será muito superiorao normal.
É sabido que o hidrogênio pode ser recuperado apartir do fluxo de gás de purgação utilizando uma unidadede recuperação de hidrogênio e reciclado de volta para ogás de alimentação de modo que o gás dentro do circuitofechado de síntese é significativamente mais rico em H2 doque o gás de síntese. Contudo, uma das dificuldades comessa abordagem é que para os gases de síntese que são muitodeficientes em H2, é necessário recuperar grandesquantidades de H2 a partir do gás de purgação, e ter talfluxo grande de gás de purgação significa ou operar ocircuito fechado de síntese em baixa pressão ou ter umarelação baixa de fluxo de gás de reciclagem/fluxo de gás desíntese novo. Executar o circuito fechado de síntese embaixa pressão não é atraente para as instalações comerciaisde grande escala devido ao tamanho da canalização, aosdiâmetros de recipientes, etc, ao passo que executar comuma baixa relação de reciclagem pode impor restrições emrelação ao reator de síntese de metanol que podem serinaceitáveis. Por exemplo, uma baixa relação de reciclagemsignifica que usar o gás de circulação para esfriar areação, seja em um reator tubular ou resfriado subitamente,é impossível de modo que a única opção é um reator degeração de vapor. Além disso, a baixa relação de reciclagemsignifica que a concentração de reagente na entrada para oreator é alta assim como serão elevadas as taxas de reação,de modo que para impedir temperaturas excessivas na camadade catalisador, o catalisador terá que ser instalado dentrodos tubos de um reator de geração de vapor tubular. Essa éuma escolha não atraente uma vez que leva à utilizaçãoinsuficiente do volume dentro do invólucro do reator assimcomo a exigência de folhas de tubo extremamente grossas,pesadas. Existe também um limite para a pressão na qual ovapor pode ser gerado, de modo que utilização desse vaporpode complicar o modelo do sistema de vapor em talinstalação desse modo aumentando o custo e reduzindo aoperabilidade e a confiabilidade.
Outra alternativa é a de considerar um fluxosecundário do gás de síntese novo, também denominado gás decomposição (MUG), recuperar hidrogênio a partir do mesmoutilizando uma unidade de recuperação de hidrogênio, ealimentar esse hidrogênio de volta para o gás de síntese.Contudo, o empecilho para esse arranjo é que algumhidrogênio é perdido dentro da unidade de recuperação dehidrogênio antes dele chegar ao circuito fechado desíntese, e o gás de síntese, após enriquecimento com essehidrogênio, terá agora um índice estequiométrico maior doque 2, de modo que o gás de purgação consistirá agora emuma porção significativa de H2 não-reagido. O efeito dissoé que a quantidade de metanol produzido a partir de umaquantidade fixa de gás de síntese é reduzida, e assim umaunidade de geração de gás de síntese grande é necessáriapara uma determinada capacidade de produção. Como a unidadede geração de gás de síntese é a parte mais dispendiosa dainstalação, gasto aumentado nessa área não é econômico.
Desse modo existe uma necessidade de prover umprocesso de síntese de metanol incluindo a etapa derecuperação de hidrogênio sem as desvantagens de qualquerum dos métodos.
Conseqüentemente a invenção prove um processopara sintetizar metanol compreendendo as etapas de:
(i) reformar um insumo de hidrocarboneto eseparar a água da mistura de gás reformadaresultante para gerar um gás de composiçãocompreendendo hidrogênio e óxidos decarbono, a mistura de gás de composiçãotendo um índice estequiométrico, R,definido pela fórmula;
<formula>formula see original document page 5</formula>
[C02] ) / ( [C02] + [CO] ) de menos do que 2,0,
(ii) combinar o gás de composição com um gás desíntese não-reagido para formar umamistura de gás de síntese,
(iii) passar a mistura de gás de síntese emtemperatura e pressão elevadas através deuma camada de catalisador de síntese demetanol para gerar um fluxo de produtocompreendendo metanol e gás de síntesenão-reagido,
(iv) esfriar o fluxo de produto para recuperarum fluxo de metanol bruto a partir do gásde síntese não-reagido,
(v) remover uma porção do gás de síntese não-reagido como um gás de purgação, e
(vi) alimentar o gás de síntese não-reagidorestante para etapa (ii)
caracterizado em que o hidrogênio é recuperado apartir de uma porção do gás de purgação e de umaporção do gás de composição, e o hidrogêniorecuperado é incluído na mistura de gás desíntese.
O gás de composição compreendendo hidrogênio eoxido de carbono é obtido mediante reforma de um insumo dehidrocarboneto tal como metano, gás natural, gás associadoou nafta e remoção de água a partir da mistura de gásreformada resultante. O processo de reforma podecompreender uma ou mais etapas de reforma a vapor e/ouoxidação parcial. Por exemplo, a reforma pode compreender aetapa de reforma a vapor primária na qual um hidrocarbonetoe vapor, e opcionalmente dióxido de carbono, são passadosatravés de tubos cheios com catalisador, externamenteaquecidos em um reformador aquecido a gás ou inflamado porcombustão e uma etapa de reforma secundária na qual osgases reformados primários, opcionalmente comhidrocarboneto adicional, são submetidos a uma etapa decombustão parcial com um gás contendo oxigênio,preferivelmente oxigênio substancialmente puro, e os gasesparcialmente inflamados passados através de uma camada decatalisador de reforma a vapor. Em uma modalidadepreferida, os gases reformados secundários são usados paraaquecer externamente os tubos cheios com catalisador doreformador primário. Alternativamente, o processo dereforma pode compreender uma etapa de reforma autotérmicana qual o insumo de hidrocarboneto é alimentado a umreformador onde ele é primeiramente submetido à oxidaçãoparcial com um gás contendo oxigênio e os gasesparcialmente queimados quentes passados através de umacamada de catalisador de reforma a vapor. O vapor pode seradicionado ao hidrocarboneto e/ou gás contendo oxigênio.
Catalisadores de reforma a vapor primárioscompreendem tipicamente níquel sobre um suporte refratario,por exemplo, alumina ou aluminato de cálcio. Catalisadoresde reforma de vapor secundários e autotérmicos tambémcompreendem tipicamente níquel em um suporte refratario.
Alternativamente um catalisador de metal precioso pode serempregado tal como platina, paládio e/ou ródio.
Adicionalmente o processo de reforma podecompreender uma ou mais etapas de reforma de vaporadiabática sobre uma camada de catalisador de reforma devapor de níquel sustentado em temperaturas entre 450 e650°C. Tal reforma de vapor à baixa temperatura adiabática,freqüentemente denominada pré-reforma, tem a vantagem deque hidrocarbonetos superiores são convertidos em metano ealgum hidrogênio é gerado, desse modo reduzindo apossibilidade de formação de carbono no reformador de fluxoprimário ou reformador autotérmico, especialmente em baixasrazões de vapor.
A mistura de gás reformada, dependendo doprocesso de reforma usado, pode estar em uma temperatura nafaixa de 400-1150°C, uma pressão de 1000-3000 kPa abs ecompreende diferentes quantidades de vapor, hidrogênio,óxidos de carbono, isto é, monóxido de carbono e dióxido decarbono, metano, e gases inertes tais como nitrogênio eargônio.
O gás de composição é obtido preferivelmente apartir da mistura de gás reformada mediante esfriamento damesma até abaixo do ponto de orvalho do vapor e separando aágua condensada a partir da mistura de gás. O esfriamentopode ser realizado mediante troca de calor com água paragerar vapor. A mistura de gás reformada é preferivelmenteesfriada até abaixo de 100°C, mais preferivelmente abaixode 60°C para condensar a água. A mistura esfriada épreferivelmente alimentada a um separador onde a águacondensada pode ser separada da mistura de gás. A águaseparada pode ser reciclada de forma útil para gerar vaporpara realizar a etapa de reforma.
Qualquer que seja a forma em que o gás o decomposição é gerado; ele deve ter um índice estequiométrico(R), definido pela fórmula;
<formula>formula see original document page 8</formula>
na qual [H2] , [C02] e [CO] são as concentrações dehidrogênio, dióxido de carbono e monóxido de carbono,respectivamente, de menos do que 2,0, preferivelmente menosdo que 1,8. Desse modo ele é deficiente em hidrogênio paraa etapa de síntese de metanol.
Na presente invenção um fluxo secundário de gásde composição é tirado para recuperação de hidrogênio. Orestante é alimentado a um circuito fechado de síntese demetanol no qual uma mistura de gás de síntese,compreendendo o gás de composição e gás de síntese não-reagido contendo hidrogênio e óxidos de carbono, éalimentada a uma ou mais etapas da síntese de metanol porintermédio de um ou mais circuladores. A temperatura e apressão do gás de composição são preferivelmente ajustadasde modo a ser adequado para síntese de metanol antes daalimentação da mesma ao circuito fechado de síntese demetanol por intermédio de compressores e trocadores decalor conhecidos daqueles versados na técnica. A síntese demetanol pode ser desejavelmente realizada em pressões nafaixa de 4000-15000, e mais convenientemente na faixa de4500-12000 kPa abs. A temperatura do catalisador de sínteseestá adequadamente na faixa de 160-300°C; preferivelmente atemperatura máxima está abaixo de 285°C. O gás de síntesepreferivelmente entra na camada de catalisador em umatemperatura na faixa de 200-250°C e sai das camadas emtemperaturas preferivelmente na faixa de 220-260°C. Taistemperaturas proporcionam uma taxa de saída de metanolaceitável (devido ao equilíbrio favorável) sem produzir omaior teor de impurezas de subproduto, e redução nadurabilidade do catalisador, que resultaria da operação emtemperaturas superiores.
O catalisador de síntese de metanol épreferivelmente um catalisador baseado em cobre.Particularmente adequados são os catalisadores contendocobre e compostos, por exemplo, óxidos de zinco, alumínio,cromo, titânio, zircônio, e/ou magnésio. O catalisador podeestar na forma de pelotas, tabletes ou extrudatos.
Catalisadores particularmente preferidos são descritos emUS 4788175.
A etapa de síntese de metanol pode ser realizadaem um reator de síntese de metanol do tipo conversor deesfriamento brusco ou em um reator no qual a camada decatalisador tem tubos de troca de calor imersos nela,através dos quais passa o gás de síntese no caminho para acamada de catalisador, por exemplo, como descrito na EP0082070. Alternativamente, pode ser usado um reator do tipotubo de esfriamento, por exemplo, como descrito na EP0081948, onde o calor exotérmico da síntese de metanol éremovido por um fluxo de refrigerante, particularmenteágua, através de tubos de refrigerante dispostos na camadaou camadas de catalisador. Alternativamente, a camada decatalisador de tubo de esfriamento pode ser disposta em umrecipiente de reação como uma camada anular com meio deentrada de gás de síntese adjacente à periferia externa dacamada e meio de saída de gás de síntese reagido adjacenteao eixo do recipiente, de modo que o gás de síntese fluiradialmente no sentido para dentro através da camada decatalisador, isto é, em um reator de fluxo radial. Em umarranjo de fluxo radial, os tubos de refrigerante serãogeralmente dispostos em planos perpendiculares ao eixo dorecipiente. Um exemplo de um modelo de reator de fluxoradial adequado é mostrado na EP 1060788.
Mediante passagem da mistura de gás de síntese emtemperatura e pressão elevadas através de uma camada decatalisador de síntese de metanol, um fluxo de produtocompreendendo metanol e gás de síntese não-reagido égerado.
O metanol é recuperado mediante esfriamento dofluxo de produto para condensar o metanol bruto, o qualcontém água e pequenas quantidades de alcoóis superiores eoutros compostos, a partir do gás de síntese não-reagido. Ometanol bruto pode então ser usado, mas, preferivelmente éenviado para uma ou mais etapas de destilação nas quais ometanol puro é separado da água, alcoóis superiores eoutros subprodutos.
Como a etapa de síntese de metanol consomehidrogênio e óxidos de carbono o gás de síntese não-reagidopode se tornar enriquecido em gases inertes tais comonitrogênio e argônio, que são impurezas no gás contendooxigênio e/ou hidrocarboneto. O metano não-reagido a partirda etapa de reforma também pode se desenvolver. Odesenvolvimento de tais gases é indesejável e, portanto,uma porção do gás de síntese não-reagido é removida como umgás de purgação. A quantidade de gás de purgação dependeráda folha de fluxo exata. Preferivelmente o gás de síntesenão-reagido restante é comprimido antes da mistura dele como gás de composição. A mistura de gás de síntese resultanteé preferivelmente aquecida antes de se alimentar a mesma aoreator de síntese de metanol.
Na presente invenção o hidrogênio é recuperado apartir de pelo menos uma porção do gás de purgação e apartir de uma porção do gás de composição e o hidrogêniorecuperado é incluído na mistura de gás de síntesealimentado ao reator de síntese de metanol. Os gases depurgação e de composição compreendem hidrogênio e óxidos decarbono assim como pequenas quantidades de metano não-reagido e gases inertes. O hidrogênio pode ser recuperado apartir desses gases, o que pode ou não ser combinado deantemão, utilizando uma ou mais unidades de recuperação dehidrogênio. Essas unidades são conhecidas e podem funcionarpor intermédio da assim chamada absorção de oscilação depressão (PSA) na qual um material absorvente é disposto naunidade que captura os componentes que não são hidrogêniodo fluxo de gás, desse modo permitindo que um gás rico emhidrogênio passe através do mesmo. A vantagem de umaunidade de recuperação de hidrogênio PAS é que o gás ricoem hidrogênio é recuperado na pressão de operação PAS e ogás de refugo, o qual pode ser usado como combustível, érecuperado em baixa pressão. A desvantagem é que oabsorvedor tem que ser periodicamente limpo do materialcapturado mediante ajuste (isto é, diminuição) da pressãohidrogênio PSA é uma unidade de recuperação de hidrogêniode membrana, a qual funciona continuamente. A membranafunciona por permitir que o hidrogênio passe através delaenquanto retendo os componentes que não são hidrogênio dofluxo de gás alimentado a ela. A unidade de recuperação demembrana, contudo, recupera um fluxo de gás rico emhidrogênio em uma pressão reduzida abaixo da pressãoparcial do hidrogênio no fluxo de alimentação para aunidade, ao passo que o gás de refugo é recuperado napressão de operação da membrana.
Conseqüentemente, onde uma unidade de recuperaçãode hidrogênio PSA é empregada, o hidrogênio recuperado podeou ser alimentado ao gás de composição antes da sua adiçãoao circuito fechado de síntese, ou o hidrogênio recuperadopode ser alimentado diretamente ao circuito fechado desíntese mediante adição do mesmo ou ao gás de síntese não-reagido antes ou após o fluxo de purgação ter sido removidoou à mistura de gás de síntese (compreendendo o gás decomposição e o gás de síntese não-reagido, combinados). Aocontrário, onde a unidade de recuperação de hidrogênio éuma unidade de recuperação de membrana, o hidrogêniorecuperado é preferivelmente alimentado ao fluxo de gás decomposição destinado ao circuito fechado de síntese antesde sua compressão. Em um processo preferido, o hidrogêniorecuperado é alimentado ao gás de composição. O gás decomposição de hidrogênio-ajustado resultante é entãocomprimido, alimentado ao circuito fechado de síntese ondeele é misturado com o gás de síntese não-reagido restante,isto é, após o fluxo de purgação ter sido removido,aquecido e alimentado ao reator de síntese de metanol.
A adição de hidrogênio aumenta o valor de R namistura de gás de síntese no sentido do valor deestequiometria ótimo para síntese de metanol.
Preferivelmente a quantidade de hidrogênio adicionadaaumenta o valor de R na direção de 2,0, preferivelmente até2,2, especialmente até 2,1 ± 0,1.
A quantidade de hidrogênio recuperada do gás depurgação ou do gás de composição pode ser variadadependendo da folha de fluxo precisa adotada e do conteúdode hidrogênio e óxidos de carbono no gás de composiçãoprovido pelo estágio de reforma. Por exemplo, o gás depurgação pode prover entre 5 e 95% do hidrogênio exigido emuma base molar para trazer o valor de R na direção de 2,0 eo gás de composição conseqüentemente entre 95 e 5%.
Preferivelmente, todo o gás de purgação é alimentado àunidade de recuperação de hidrogênio, mais preferivelmentepara prover >50% em uma base molar do hidrogênio exigido,com o restante provido pelo fluxo de gás de composição.Desse modo, em um arranjo preferido, o gás de purgação éencaminhado para a unidade de recuperação de hidrogênio eessa fonte de hidrogênio é suplementada com um fluxosecundário do gás de composição.
Preferivelmente o fluxo secundário do gás decomposição alimentado à unidade de recuperação dehidrogênio compreende <20%, preferivelmente slO% em volumedo gás de composição provido pelo estágio de reforma.Portanto, preferivelmente >80%, mais preferivelmente s90%em volume do gás de composição são alimentados ao circuitofechado de síntese. Desse modo, o modelo do circuitofechado de síntese pode ser estabelecido para permitir queo equipamento mais apropriado seja selecionado, enquantomantendo ainda um nível muito alto de conversão dehidrogênio em metanol.
A invenção é ilustrada mediante referência aosdesenhos anexos, nos quais a Figura 1 ilustra uma folha defluxo de uma modalidade preferida da presente invenção emque o hidrogênio é recuperado a partir do gás de purgação edo fluxo secundário de gás de composição combinadosutilizando uma unidade de recuperação de membrana, ealimentado ao gás de composição restante, o qual é entãocomprimido e alimentado ao circuito fechado de síntese. AsFiguras 2 e 3 por intermédio de comparação ilustram folhasde fluxo que não estão de acordo com a presente invençãonas quais apenas recuperação parcial de hidrogênio seja apartir do gás de purgação ou do gás de composição érealizada.Na Figura 1, o gás de composição é fornecido porintermédio da linha 10 dividida em duas porções. Umaprimeira porção 12, controlada pela válvula 14 é combinadacom um fluxo de hidrogênio 16 alimentada a partir daunidade de recuperação de hidrogênio PSA 18 e os gasescombinados passados por intermédio de uma linha 20 para ocompressor 22 onde a pressão dos mesmos é aumentada antesde serem alimentados através da linha 24 ao gás de síntesenão-reagido comprimido na linha 26. O gás de síntesecombinado é alimentado por intermédio da linha 27 aotrocador de calor 28 onde ele é aquecido e então alimentadopor intermédio da linha 3 0 para a zona de entrada 32 de umreator de síntese de metanol 34 definido pelas paredes dereator e folha de tubo 35. O gás de síntese passa para cimaatravés de uma pluralidade de tubos 36 se estendendo apartir da folha de tubos 35 no sentido para cima através deuma camada de um catalisador de síntese dealumina/cobre/zinco particulado 38 para dentro de um espaço40 acima da camada e daí para baixo através da camada parauma zona de saída acima da folha de tubo 35. A síntese demetanol ocorre quando os gases passam para baixo através dacamada de catalisador e o fluxo de produto resultante éalimentado a partir da zona de saída por intermédio dalinha 42 para o trocador de calor 44 onde ele é usado paradesprender vapor, dali para o trocador de calor 28 onde eleé usado para aquecer o gás de síntese e então para otrocador de calor 4 8 onde ele é esfriado com água fria paracondensar o metanol bruto. A mistura esfriada é alimentadaatravés da linha 4 9 ao separador 50 que separa o metanolbruto por intermédio da linha 52 a partir do gás de síntesenão-reagido na linha 54. Um fluxo de purgação 56 é tiradoda linha 54 e o gás de síntese não-reagido restante éalimentado por intermédio da linha 58 ao compressor 60. Ogás de síntese não-reagido comprimido sai do compressor 60por intermédio da linha 26 e é combinado com o gás decomposição a partir da linha 24. O segundo fluxo de gás decomposição 62 tirado da linha 10 é combinado com o fluxo degás de purgação 56 e o fluxo combinado é alimentado porintermédio da linha 54 à unidade de recuperação PSA 18. Osgases de refugo com hidrogênio esgotado são removidos daunidade de recuperação de hidrogênio 18 por intermédio dalinha 66.
Na Figura 2 (comparativo) ocorre recuperação dehidrogênio apenas a partir do fluxo de gás de purgação 56.
Desse modo o fluxo de gás de purgação 56 passa para aunidade de recuperação de hidrogênio 18, o fluxo de gás decomposição 62 está ausente e o hidrogênio recuperado 16 éadicionado ao fluxo 10. Nesse caso o reator de síntese énecessariamente um conversor de geração de vapor comesfriamento de água pressurizada dentro da camada e,portanto, o trocador de calor 44 é omitido. Nessa folha defluxo, é necessário usar um conversor de geração de vapormais propriamente do que o conversor de tubo de esfriamentomais barato, menor usado na Figura 1, porque a razão decirculação de gás de síntese é muito baixa para permitiruso efetivo do TCC. Isso porque uma grande quantidade degás de purgação tem que ser removida para prover ohidrogênio exigido.
Na Figura 3 (comparativa) há recuperação dehidrogênio a partir do gás de composição apenas através dofluxo 62. O gás de purgação na linha 56 é simplesmentequeimado. O reator de síntese está de acordo com aquele naFigura 1 e conseqüentemente o trocador de calor 44 estáoutra vez presente para esfriar o fluxo de produto 42 antesde ele passar para o trocador de calor 28.
A invenção é ilustrada adicionalmente mediantereferência aos seguintes exemplos calculados.
Exemplo 1
De acordo com a modalidade ilustrada na Figura 1.
<table>table see original document page 17</column></row><table>
A produção de metanol é elevada utilizando-se umbaixo volume de catalisador de síntese.
Exemplos Comparativos
A) Recuperação de H2 a partir apenas do fluxo degás de purgação (Figura 2)
<table>table see original document page 17</column></row><table><table>table see original document page 18</column></row><table>dispendioso. No caso de recuperação de hidrogênio a partirapenas de MUG, o hidrogênio está sendo perdido com o gás derefugo a partir da unidade de recuperação de hidrogênioassim como sendo perdido no fluxo de gás de purgação. Outravez, a elevada perda de hidrogênio leva à produção demetanol inferior.
Além disso, os cálculos também demonstram que senenhuma recuperação de hidrogênio for realizada, emcomparação com a folha de fluxo ilustrada na Figura 1, oprocesso requer 75% de volume de catalisador superiordevido à baixa pressão parcial de hidrogênio e resulta emtrês vezes mais subprodutos devido à elevada relação CO:H2.Desse modo, a recuperação de hidrogênio de acordo com apresente invenção é capaz de reduzir o volume decatalisador e a quantidade de produto de refugo, desse modoreduzindo o tamanho dos recipientes de reação esimplificando a purificação do metanol bruto, o que reduz ocusto global do processo.

Claims (12)

1. Processo para sintetizar metanol compreendendoas etapas de;(i) reformar um insumo de hidrocarboneto eseparar a água da mistura de gás reformada resultante paragerar um gás de composição compreendendo hidrogênio eóxidos de carbono, a mistura de gás de composição tendo umíndice estequiométrico, R, definido pela fórmula; R =([H2] - [C02] ) / ( [C02] + [CO] ) de menos do que 2,0,(ii) combinar o gás de composição com um gás desíntese não-reagido para formar uma mistura de gás desíntese,(iii) passar a mistura de gás de síntese emtemperatura e pressão elevadas através de uma camada decatalisador de síntese de metanol para gerar um fluxo deproduto compreendendo metanol e gás de síntese não-reagido,(iv) esfriar o fluxo de produto pararecuperar um fluxo de metanol bruto a partir do gás desíntese não-reagido,(v) remover uma porção do gás de síntese não-reagido como um gás de purgação, e(vi) alimentar o gás de síntese não-reagidorestante para etapa (ii)caracterizado pelo fato de que o hidrogênio érecuperado a partir de uma porção do gás de purgação e deuma porção do gás de composição, e o hidrogênio recuperadoé incluído na mistura de gás de síntese.
2. Processo, de acordo com a reivindicação 1,caracterizado pelo fato de que a recuperação de hidrogênioé realizada utilizando uma unidade de recuperação dehidrogênio de oscilação de pressão.
3. Processo, de acordo com a reivindicação 1,caracterizado pelo fato de que a recuperação de hidrogênioé realizada utilizando uma unidade de recuperação dehidrogênio de membrana.
4. Processo, de acordo com a reivindicação 2,caracterizado pelo fato de que o hidrogênio recuperado éadicionado ao gás de síntese não-reagido ou adicionado aogás de composição que é combinado com o gás de síntese não-reagido.
5. Processo, de acordo com a reivindicação 3,caracterizado pelo fato de que o hidrogênio recuperado éalimentado ao gás de composição que é combinado com o gásde síntese não-reagido.
6. Processo, de acordo com qualquer uma dasreivindicações 1, 2, 3, 4 ou 5, caracterizado pelo fato deque a camada de catalisador de síntese de metanol édisposta em um reator no qual a camada de catalisador éesfriada pela mistura de gás de síntese passando através detubos dispostos dentro da camada de catalisador.
7. Processo, de acordo com qualquer uma dasreivindicações 1, 2, 3, 4, 5 ou 6, caracterizado pelo fatode que o fluxo de produto é esfriado em estágios separadosde troca de calor com água sob pressão, a mistura de gás desíntese alimentada à camada de catalisador é água fria.
8. Processo, de acordo com qualquer uma dasreivindicações 1, 2, 3, 4, 5, 6 ou 7, caracterizado pelofato de que o gás de purgação prove entre 5 e 95% dohidrogênio exigido em uma base molar para trazer o valor deR em direção a 2,0.
9. Processo, de acordo com qualquer uma dasreivindicações 1, 2, 3, 4, 5, 6, 7 ou 8, caracterizado pelofato de que todo o gás de purgação é alimentado à unidadede recuperação de hidrogênio.
10. Processo, de acordo com qualquer uma dasreivindicações 1, 2, 3, 4, 5, 6, 7, 8 ou 9, caracterizadopelo fato de que a quantidade de gás de composiçãoalimentado para recuperação de hidrogênio compreende <20%em volume do gás de composição provido pelo estágio dereforma.
11. Processo, de acordo com qualquer uma dasreivindicações 1, 2, 3, 4, 5, 6, 7, 8, 9 ou 10,caracterizado pelo fato de que a reforma é reformaautotérmica.
12. Processo, de acordo com qualquer uma dasreivindicações 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ou 11,caracterizado pelo fato de que o metanol bruto é destiladopara obter um produto de metanol substancialmente puro.
BRPI0610246-8A 2005-05-27 2006-05-09 Processo para sintetizar metanol BRPI0610246B1 (pt)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0510823.8A GB0510823D0 (en) 2005-05-27 2005-05-27 Methanol synthesis
GB0510823.8 2005-05-27
PCT/GB2006/050096 WO2006126017A1 (en) 2005-05-27 2006-05-09 Methanol synthesis

Publications (2)

Publication Number Publication Date
BRPI0610246A2 true BRPI0610246A2 (pt) 2010-06-08
BRPI0610246B1 BRPI0610246B1 (pt) 2015-08-25

Family

ID=34834725

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI0610246-8A BRPI0610246B1 (pt) 2005-05-27 2006-05-09 Processo para sintetizar metanol

Country Status (11)

Country Link
US (1) US7786180B2 (pt)
CN (1) CN101184714B (pt)
AU (1) AU2006250932B2 (pt)
BR (1) BRPI0610246B1 (pt)
DE (1) DE112006001310T5 (pt)
EG (1) EG26121A (pt)
GB (2) GB0510823D0 (pt)
MY (1) MY144849A (pt)
NO (1) NO345189B1 (pt)
RU (1) RU2408567C2 (pt)
WO (1) WO2006126017A1 (pt)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007257434B2 (en) * 2006-05-30 2010-08-26 Starchem Technologies, Inc. Methanol production process and system
EP2228357A1 (en) * 2009-03-12 2010-09-15 Methanol Casale S.A. A process for synthesis of methanol
EP2228358A1 (en) * 2009-03-13 2010-09-15 Methanol Casale S.A. Recovery of CO2 in a process for synthesis of methanol
EP2438812B1 (en) * 2009-06-19 2015-12-02 Incorporated National University Iwate University Detection device and monitoring system therefor
CN103038468A (zh) * 2009-07-03 2013-04-10 詹姆斯·查尔斯·朱拉尼奇 低压反应器增强系统
DE102009034551A1 (de) * 2009-07-23 2011-02-03 Lurgi Gmbh Verfahren und Anlage zur Herstellung von Methanol
CN102531835B (zh) * 2010-04-20 2014-06-11 陕西延长石油(集团)有限责任公司 一种低碳技术合成甲醇的方法
US9561476B2 (en) 2010-12-15 2017-02-07 Praxair Technology, Inc. Catalyst containing oxygen transport membrane
DE102011017300A1 (de) 2011-04-15 2012-10-18 Lurgi Gmbh Verfahren und Anlage zur Herstellung vom Methanol aus inertenreichem Synthesegas
RU2635566C2 (ru) * 2011-08-04 2017-11-14 Стивен Л. КАННИНГЕМ Способ преобразования исходного топлива во вторичное топливо (варианты)
US8795417B2 (en) 2011-12-15 2014-08-05 Praxair Technology, Inc. Composite oxygen transport membrane
US9486735B2 (en) 2011-12-15 2016-11-08 Praxair Technology, Inc. Composite oxygen transport membrane
MX348623B (es) * 2012-07-18 2017-06-22 Haldor Topsoe As Proceso y sistema de reaccion para la preparacion de metanol.
CN103044195B (zh) * 2012-11-30 2015-10-21 河南心连心化肥有限公司 低压甲醇的合成方法
WO2014100376A1 (en) 2012-12-19 2014-06-26 Praxair Technology, Inc. Method for sealing an oxygen transport membrane assembly
US9453644B2 (en) 2012-12-28 2016-09-27 Praxair Technology, Inc. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
RU2522560C1 (ru) * 2013-03-04 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" Способ получения метанола
US9611144B2 (en) 2013-04-26 2017-04-04 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that is free of metal dusting corrosion
US9023245B2 (en) 2013-04-26 2015-05-05 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
US9115045B2 (en) 2013-04-26 2015-08-25 Praxair Technology, Inc. Method and system for producing methanol using an oxygen transport membrane based reforming system
US9365422B2 (en) 2013-04-26 2016-06-14 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system with recycling of the produced synthesis gas
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
CA2919959C (en) * 2013-09-05 2022-05-03 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
MX2016004495A (es) 2013-10-07 2016-06-16 Praxair Technology Inc Reactor ceramico de conversion de conjunto de membranas de transporte de oxigeno.
CA2924201A1 (en) 2013-10-08 2015-04-16 Praxair Technology, Inc. System and method for temperature control in an oxygen transport membrane based reactor
WO2015084729A1 (en) 2013-12-02 2015-06-11 Praxair Technology, Inc. Method and system for producing hydrogen using an oxygen transport membrane based reforming system with secondary reforming
CA2937943A1 (en) 2014-02-12 2015-08-20 Praxair Technology, Inc. Oxygen transport membrane reactor based method and system for generating electric power
US10822234B2 (en) 2014-04-16 2020-11-03 Praxair Technology, Inc. Method and system for oxygen transport membrane enhanced integrated gasifier combined cycle (IGCC)
EA201692175A1 (ru) * 2014-04-29 2017-06-30 Хальдор Топсёэ А/С Способ получения метанола
WO2016057164A1 (en) 2014-10-07 2016-04-14 Praxair Technology, Inc Composite oxygen ion transport membrane
AU2016261285B2 (en) 2015-05-11 2020-10-15 Haldor Topsøe A/S A novel method for methanol synthesis
US10441922B2 (en) 2015-06-29 2019-10-15 Praxair Technology, Inc. Dual function composite oxygen transport membrane
US10118823B2 (en) 2015-12-15 2018-11-06 Praxair Technology, Inc. Method of thermally-stabilizing an oxygen transport membrane-based reforming system
GB2545474A (en) * 2015-12-17 2017-06-21 Avocet Infinite Plc Integrated system and method for producing methanol product
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
GB201600475D0 (en) * 2016-01-11 2016-02-24 Johnson Matthey Plc Methanol process
EP3205622B1 (de) 2016-02-11 2018-05-09 Ulrich Wagner Verfahren zur synthese von methanol
EP3219697B1 (de) * 2016-03-16 2018-06-13 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Methanolsynthese aus synthesegasen mit wasserstoffmangel
JP2019513081A (ja) 2016-04-01 2019-05-23 プラクスエア・テクノロジー・インコーポレイテッド 触媒含有酸素輸送膜
RU2621671C1 (ru) * 2016-07-25 2017-06-07 Андрей Владиславович Курочкин Установка низкотемпературного получения метанола
EP3366663A1 (en) * 2017-02-23 2018-08-29 Casale Sa Process for methanol production
US10271753B1 (en) * 2018-03-14 2019-04-30 Medical Wearable Solutions Ltd. Electrocardiographic signal monitoring device and method
DK3556451T3 (da) * 2018-04-20 2020-08-31 Siemens Ag Fremgangsmåde til drift af et reaktoranlæg
GB201808019D0 (en) * 2018-05-17 2018-07-04 Johnson Matthey Davy Technologies Ltd Process for synthesising methanol
EP3797085A1 (en) 2018-05-21 2021-03-31 Praxair Technology, Inc. Otm syngas panel with gas heated reformer
CA3098596A1 (en) * 2018-06-08 2019-12-12 Casale Sa Process for methanol production
EP3914576A4 (en) 2019-01-21 2022-10-26 ENI S.p.A. PROCESS FOR THE PRODUCTION OF METHANOL WITH THE USE OF HIGHER CARBON BY CO2 RECYCLING
WO2020154284A1 (en) * 2019-01-21 2020-07-30 Sabic Global Technologies, B.V. Methanol production process
DK3744416T3 (da) * 2019-05-28 2022-01-31 Thyssenkrupp Ind Solutions Ag Fremgangsmåde og anlæg til syntese af metanol
GB201908450D0 (en) 2019-06-12 2019-07-24 Johnson Matthey Davy Technologies Ltd Process for synthesising methanol
GB201908449D0 (en) 2019-06-12 2019-07-24 Johnson Matthey Davy Technologies Ltd Process for synthesising methanol
EP3770145A1 (en) 2019-07-24 2021-01-27 Basf Se A process for the continuous production of either acrolein or acrylic acid as the target product from propene
ES2926723T3 (es) * 2019-10-31 2022-10-27 Air Liquide Procedimiento e instalación para la producción de metanol a partir de gas de síntesis rico en hidrógeno
EP3901126A1 (de) * 2020-04-20 2021-10-27 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Verfahren zur herstellung von methanol
DE102020120879A1 (de) 2020-08-07 2022-02-10 Karlsruher Institut für Technologie, Körperschaft des öffentlichen Rechts Vorrichtung und Verfahren zur Herstellung von Methanol aus Kohlendioxid
EP4015496B8 (de) 2020-12-15 2023-06-07 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren und anlage zum herstellen von methanol aus unterstöchiometrischem synthesegas
EP4056531B1 (en) * 2021-03-12 2023-10-11 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Apparatus and method for producing methanol
CA3216134A1 (en) 2021-04-30 2022-11-03 Veronika Gronemann Process and plant for producing methanol from substoichiometric synthesis gas
GB2606637B (en) * 2021-05-11 2023-07-26 Johnson Matthey Davy Technologies Ltd Process for synthesising methanol

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3266054D1 (en) 1981-11-19 1985-10-10 Ici Plc Synthesis process and reactor
EP0081948B1 (en) 1981-12-14 1987-05-13 Imperial Chemical Industries Plc Reactor
US4650814A (en) * 1984-03-07 1987-03-17 Keller Arnold P Process for producing methanol from a feed gas
GB8521650D0 (en) * 1985-08-30 1985-10-02 Ici Plc Catalyst
GB8803766D0 (en) 1988-02-18 1988-03-16 Ici Plc Methanol
EP0522744B1 (en) * 1991-07-09 1997-08-13 Imperial Chemical Industries Plc Synthesis gas production
GB9500675D0 (en) * 1995-01-13 1995-03-08 Davy Mckee London Process
GB9904649D0 (en) * 1998-05-20 1999-04-21 Ici Plc Methanol synthesis
EP1060788A1 (en) 1999-06-15 2000-12-20 Methanol Casale S.A. Isothermal catalytic reactor for exothermic or endothermic heterogeneous reactions
US6486219B1 (en) * 2000-09-27 2002-11-26 Exxonmobil Chemical Patents, Inc. Methanol, olefin, and hydrocarbon synthesis process
RS20060418A (en) * 2004-01-22 2008-09-29 Acetex (Cyprus) Limited, Integrated process for acetic acid and methanol
US7781490B2 (en) * 2006-05-05 2010-08-24 Exxonmobil Chemical Patents Inc. Process for the production of mixed alcohols

Also Published As

Publication number Publication date
GB0510823D0 (en) 2005-07-06
WO2006126017A1 (en) 2006-11-30
GB2439707B (en) 2009-01-28
GB2439707A (en) 2008-01-02
CN101184714B (zh) 2011-10-19
CN101184714A (zh) 2008-05-21
DE112006001310T5 (de) 2008-04-17
AU2006250932B2 (en) 2011-03-31
EG26121A (en) 2013-03-05
MY144849A (en) 2011-11-30
BRPI0610246B1 (pt) 2015-08-25
US20090018220A1 (en) 2009-01-15
AU2006250932A1 (en) 2006-11-30
US7786180B2 (en) 2010-08-31
RU2007149275A (ru) 2009-07-10
GB0721920D0 (en) 2007-12-19
NO20075861L (no) 2007-12-19
RU2408567C2 (ru) 2011-01-10
NO345189B1 (no) 2020-11-02

Similar Documents

Publication Publication Date Title
BRPI0610246A2 (pt) processo para sintetizar metanol
US9327972B2 (en) Systems and processes for producing ultrapure, high pressure hydrogen
JP5355062B2 (ja) メタノール及びアンモニアの併産方法
US8685358B2 (en) Producing ammonia using ultrapure, high pressure hydrogen
WO2019005225A1 (en) PROCESS AND APPARATUS FOR COPRODUCTION OF METHANOL AND HYDROGEN
AU2011258160A1 (en) Producing ammonia using ultrapure, high pressure hydrogen
GB2585477A (en) Process for synthesising methanol
AU2019269094B2 (en) Process for synthesising methanol
AU2020290690A1 (en) Process for synthesising methanol
WO2023170389A1 (en) Process for producing hydrogen and method of retrofitting a hydrogen production unit
WO2024143182A1 (ja) メタノール製造方法及びメタノール製造装置
US20240140891A1 (en) Process for synthesising methanol
WO2023218160A1 (en) Process for synthesising methanol
GB2606855A (en) Process for synthesising methanol

Legal Events

Date Code Title Description
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 09/05/2006, OBSERVADAS AS CONDICOES LEGAIS.

B21F Lapse acc. art. 78, item iv - on non-payment of the annual fees in time

Free format text: REFERENTE A 16A ANUIDADE.

B24J Lapse because of non-payment of annual fees (definitively: art 78 iv lpi, resolution 113/2013 art. 12)

Free format text: EM VIRTUDE DA EXTINCAO PUBLICADA NA RPI 2670 DE 08-03-2022 E CONSIDERANDO AUSENCIA DE MANIFESTACAO DENTRO DOS PRAZOS LEGAIS, INFORMO QUE CABE SER MANTIDA A EXTINCAO DA PATENTE E SEUS CERTIFICADOS, CONFORME O DISPOSTO NO ARTIGO 12, DA RESOLUCAO 113/2013.