BR112018072122A2 - sistema para detecção de doenças de plantas, método implementado por computador para detectar doenças de plantas e produto de programa de computador para detecção de doença de plantas - Google Patents

sistema para detecção de doenças de plantas, método implementado por computador para detectar doenças de plantas e produto de programa de computador para detecção de doença de plantas

Info

Publication number
BR112018072122A2
BR112018072122A2 BR112018072122-0A BR112018072122A BR112018072122A2 BR 112018072122 A2 BR112018072122 A2 BR 112018072122A2 BR 112018072122 A BR112018072122 A BR 112018072122A BR 112018072122 A2 BR112018072122 A2 BR 112018072122A2
Authority
BR
Brazil
Prior art keywords
plant
image
module
disease detection
plant disease
Prior art date
Application number
BR112018072122-0A
Other languages
English (en)
Other versions
BR112018072122A8 (pt
Inventor
Alexander Johannes
Eggers Till
Picon Artzai
Alvarez-Gila Aitor
Maria Ortiz Barredo Amaya
María Díez-Navajas Ana
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of BR112018072122A2 publication Critical patent/BR112018072122A2/pt
Publication of BR112018072122A8 publication Critical patent/BR112018072122A8/pt

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/188Vegetation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0098Plants or trees
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • G06F18/24155Bayesian classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30188Vegetation; Agriculture

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Multimedia (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Quality & Reliability (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

um sistema (100), método e produto de programa de computador para determinar doenças de plantas. o sistema inclui um módulo de interface (110) configurado para receber uma imagem (10) de uma planta, a imagem (10) incluindo uma representação visual (11) de pelo menos um elemento de planta (1). um módulo de normalização de cor (120) é configurado para aplicar um método de constância de cor à imagem recebida (10) para gerar uma imagem normalizada por cor. um módulo extrator (130) é configurado para extrair uma ou mais partes de imagem (11e) da imagem normalizada por cor, em que as partes de imagem extraídas (11e) correspondem ao pelo menos um elemento de planta (1). um módulo de filtragem (140) configurado: para identificar um ou mais agrupamentos (c1 a cn) por uma ou mais características visuais dentro das partes de imagem extraídas (11e), em que cada agrupamento está associado a uma parte de elemento de planta mostrando características de uma doença de plantas; e para filtrar uma ou mais regiões candidatas dos um ou mais agrupamentos identificados (c1 a cn) de acordo com um limiar predefinido, usando um classificador bayes que modela estatísticas de características visuais que estão sempre presentes em uma imagem de planta doente. um módulo de diagnóstico de doenças de plantas (150) configurado para extrair, usando um método de inferência estatística, de cada região candidata (c4, c5, c6, cn) uma ou mais características visuais para determinar, para cada região candidata, uma ou mais probabilidades indicando uma doença particular; e para calcular um escore de confiança (cs1) para a doença particular, avaliando todas as probabilidades determinadas das regiões candidatas (c4, c5, c6, cn).
BR112018072122A 2016-05-13 2017-04-19 Sistema para detecção de doenças de plantas, método implementado por computador para detectar doenças de plantas e meio legível por computador para detecção de doença de plantas BR112018072122A8 (pt)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16169719 2016-05-13
EP16169719.8 2016-05-13
PCT/EP2017/059231 WO2017194276A1 (en) 2016-05-13 2017-04-19 System and method for detecting plant diseases

Publications (2)

Publication Number Publication Date
BR112018072122A2 true BR112018072122A2 (pt) 2019-02-12
BR112018072122A8 BR112018072122A8 (pt) 2023-04-04

Family

ID=56068688

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112018072122A BR112018072122A8 (pt) 2016-05-13 2017-04-19 Sistema para detecção de doenças de plantas, método implementado por computador para detectar doenças de plantas e meio legível por computador para detecção de doença de plantas

Country Status (9)

Country Link
US (1) US11037291B2 (pt)
EP (1) EP3455782B1 (pt)
CN (1) CN109154978B (pt)
AR (1) AR108473A1 (pt)
AU (1) AU2017264371A1 (pt)
BR (1) BR112018072122A8 (pt)
CA (1) CA3021795A1 (pt)
RU (1) RU2018142757A (pt)
WO (1) WO2017194276A1 (pt)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10748036B2 (en) * 2017-11-21 2020-08-18 Nvidia Corporation Training a neural network to predict superpixels using segmentation-aware affinity loss
CN108021948A (zh) * 2017-12-27 2018-05-11 深圳春沐源控股有限公司 一种病虫害的巡检方法及装置
CN110659659A (zh) * 2018-07-19 2020-01-07 清华珠三角研究院 一种智能识别和预警害虫的方法及系统
CN110895804A (zh) * 2018-09-10 2020-03-20 上海市农业科学院 模糊边缘病斑提取方法和装置
AU2019365219A1 (en) 2018-10-24 2021-05-20 Climate Llc Detecting infection of plant diseases with improved machine learning
US10818386B2 (en) 2018-11-21 2020-10-27 Enlitic, Inc. Multi-label heat map generating system
AU2019389302A1 (en) * 2018-11-29 2021-07-22 Dennis Mark GERMISHUYS Plant cultivation
WO2020165913A1 (en) * 2019-02-12 2020-08-20 Tata Consultancy Services Limited Automated unsupervised localization of context sensitive events in crops and computing extent thereof
DE102019201826B4 (de) 2019-02-13 2024-06-13 Zf Friedrichshafen Ag Bestimmung eines Pflanzenzustands
CN109993228A (zh) * 2019-04-02 2019-07-09 南通科技职业学院 基于机器视觉的植保无人机水稻纹枯病识别方法
CN110013197A (zh) * 2019-04-16 2019-07-16 上海天诚通信技术股份有限公司 一种扫地机器人物体识别方法
WO2020216808A1 (en) * 2019-04-23 2020-10-29 L'oréal Sa Machine image colour extraction and machine image construction using an extracted colour
CN110135481B (zh) * 2019-04-30 2023-01-24 佛山科学技术学院 一种农作物病变检测方法以及检测装置
EP3739504A1 (en) 2019-05-16 2020-11-18 Basf Se System and method for plant disease detection support
CN110555416B (zh) * 2019-09-06 2021-09-03 杭州睿琪软件有限公司 一种植物识别方法及装置
JPWO2021095672A1 (pt) * 2019-11-15 2021-05-20
CN111178177A (zh) * 2019-12-16 2020-05-19 西京学院 一种基于卷积神经网络的黄瓜病害识别方法
CN111311542B (zh) * 2020-01-15 2023-09-19 歌尔股份有限公司 一种产品质量检测方法及装置
US11587678B2 (en) * 2020-03-23 2023-02-21 Clover Health Machine learning models for diagnosis suspecting
CN111539293A (zh) * 2020-04-17 2020-08-14 北京派得伟业科技发展有限公司 一种果树病害诊断方法及系统
US11748984B2 (en) * 2020-05-05 2023-09-05 Planttagg, Inc. System and method for horticulture viability prediction and display
WO2021228578A1 (de) 2020-05-13 2021-11-18 Bayer Aktiengesellschaft Früherkennung von krankheitserregern bei pflanzen
EP3933049A1 (de) 2020-07-03 2022-01-05 Bayer AG Früherkennung von krankheitserregern bei pflanzen
CN111598001B (zh) * 2020-05-18 2023-04-28 哈尔滨理工大学 一种基于图像处理的苹果树病虫害的识别方法
CN113689374B (zh) * 2020-05-18 2023-10-27 浙江大学 一种植物叶片表面粗糙度确定方法及系统
CN113763304B (zh) * 2020-05-19 2024-01-30 中移(成都)信息通信科技有限公司 农作物病虫害识别方法、装置、设备及介质
GB202009146D0 (en) * 2020-06-16 2020-07-29 Dark Horse Tech Ltd System and method for crop monitoring
CN111967385B (zh) * 2020-08-17 2023-11-14 之江实验室 基于深度学习目标检测算法的蓝莓灰霉病检测方法及系统
US20240020331A1 (en) 2020-09-04 2024-01-18 Basf Agro Trademarks Gmbh System and method for enhancing a plant image database for improved damage identification on plants
US20220414795A1 (en) * 2020-11-18 2022-12-29 Hijo Ip Pte Ltd. Crop disease prediction and treatment based on artificial intelligence (ai) and machine learning (ml) models
CN112102211B (zh) * 2020-11-18 2021-02-02 南京农业大学 一种基于温度和图像的作物胁迫预警系统及预警方法
US11982616B2 (en) * 2021-03-09 2024-05-14 Headwall Photonics Inc. Spectrally resolved imaging for agricultural product assessment
CN113256567B (zh) * 2021-05-08 2023-09-22 中国农业大学 香蕉叶面积指数检测方法及系统
CN113298777A (zh) * 2021-05-21 2021-08-24 山东大学 一种基于颜色特征和超像素聚类的棉花叶枯病检测方法及系统
CN113486773B (zh) * 2021-07-01 2024-03-12 山东大学 棉花植株生长期识别方法、系统、存储介质及设备
CN113554641B (zh) * 2021-07-30 2022-04-12 江苏盛泽医院 一种儿科咽部图像采集方法及装置
US20230169636A1 (en) * 2021-11-29 2023-06-01 Carl Zeiss Smt Gmbh Methods and evaluation devices for analyzing three-dimensional data sets representing devices
CN114141326A (zh) * 2021-12-02 2022-03-04 杭州睿胜软件有限公司 用于追踪植物的康复情况的方法、装置和存储介质
US20230186623A1 (en) * 2021-12-14 2023-06-15 Ping An Technology (Shenzhen) Co., Ltd. Systems and methods for crop disease diagnosis
CN114463322B (zh) * 2022-02-22 2024-10-15 鄂州市志超生态农业科技有限公司 一种蔬菜种植用病害识别及补光调节方法
CN114565580B (zh) * 2022-03-01 2024-03-19 广西壮族自治区林业科学研究院 使用图像和传感结合进行土壤数据采集的方法及装置
US11921493B2 (en) * 2022-05-13 2024-03-05 AgZen Inc. Systems and methods for real-time measurement and control of sprayed liquid coverage on plant surfaces
TWI847184B (zh) * 2022-07-08 2024-07-01 和碩聯合科技股份有限公司 物件偵測系統及物件偵測輔助系統
CN115471747B (zh) * 2022-08-30 2023-05-09 广东省农业科学院环境园艺研究所 一种山茶花病虫害和生理病害的ai快速判识方法及应用
DE202022105678U1 (de) 2022-10-08 2022-11-11 Priyanka Bhattacharya Ein System zur Erkennung von Krankheiten in Blättern
CN115376032B8 (zh) * 2022-10-25 2023-05-26 金乡县林业保护和发展服务中心(金乡县湿地保护中心、金乡县野生动植物保护中心、金乡县国有白洼林场) 一种基于图像理解的林业病虫智能识别方法及系统
CN116778343B (zh) * 2023-08-15 2023-11-14 安徽迪万科技有限公司 一种用于综合识别的目标图像特征提取方法
CN117036968B (zh) * 2023-10-09 2024-03-22 杭州稻道农业科技有限公司 一种用于农作物病虫危害的高分卫星遥感诊断方法及装置
CN117689966B (zh) * 2024-02-04 2024-05-24 中国科学院深圳先进技术研究院 一种基于量子贝叶斯神经网络的磁共振图像分类方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7911517B1 (en) * 2007-10-31 2011-03-22 The United States Of America As Represented By The Secretary Of Agriculture Device and method for acquiring digital color-infrared photographs for monitoring vegetation
US20140036054A1 (en) * 2012-03-28 2014-02-06 George Zouridakis Methods and Software for Screening and Diagnosing Skin Lesions and Plant Diseases
CN104598908B (zh) * 2014-09-26 2017-11-28 浙江理工大学 一种农作物叶部病害识别方法
CN105550651B (zh) * 2015-12-14 2019-12-24 中国科学院深圳先进技术研究院 一种数字病理切片全景图像自动分析方法及系统
EP3616120B1 (en) * 2017-04-27 2024-09-04 Retinascan Limited System and method for automated funduscopic image analysis

Also Published As

Publication number Publication date
RU2018142757A (ru) 2020-06-15
CA3021795A1 (en) 2017-11-16
US11037291B2 (en) 2021-06-15
WO2017194276A1 (en) 2017-11-16
CN109154978A (zh) 2019-01-04
US20200320682A1 (en) 2020-10-08
EP3455782A1 (en) 2019-03-20
AU2017264371A1 (en) 2018-11-01
EP3455782B1 (en) 2020-07-15
WO2017194276A9 (en) 2018-07-26
RU2018142757A3 (pt) 2020-08-19
CN109154978B (zh) 2023-04-11
AR108473A1 (es) 2018-08-22
BR112018072122A8 (pt) 2023-04-04

Similar Documents

Publication Publication Date Title
BR112018072122A2 (pt) sistema para detecção de doenças de plantas, método implementado por computador para detectar doenças de plantas e produto de programa de computador para detecção de doença de plantas
BR112018073172A8 (pt) Método para a identificação de um tipo de erva daninha, sistema de identificação e produto de programa de computador
BR112016006097A2 (pt) técnicas de análise de imagem para o diagnóstico de doenças
JP2017534117A5 (pt)
US20170059480A1 (en) Identification using spectroscopy
BR112016029932A2 (pt) classificação de toque
BR112017015786A2 (pt) método de análise do estado operacional de uma máquina, produto de programa de computador e sistema para a análise do estado operacional de uma máquina
BR112017017557A2 (pt) sistemas, dispositivos e métodos para detecção de fertilidade e gênero de ovos não nascidos
BR112017004586A2 (pt) sistema para analisar uma imagem de uma estrutura da válvula aórtica, estação de trabalho, equipamento de imageamento, método para analisar uma imagem de uma válvula aórtica, e produto de programa de computador
BR112014021260B1 (pt) Método de análise de dados de voo de aeronave
BR112022011111A2 (pt) Método para determinar a gravidade da doença da pele com base na porcentagem de área de superfície corporal coberta por lesões
BR112023018923A2 (pt) Método implementado por computador, e, dispositivo de armazenamento legível por computador
Alwawi et al. Convolution neural network and histogram equalization for COVID-19 diagnosis system
JP2018081402A5 (pt)
BR112015020423A2 (pt) aparelho para detectar diferentes indivíduos com base em sinais vitais, método para detectar diferentes indivíduos com base em sinais vitais, e, programa de computador
BR112018004673A2 (pt) sistemas e métodos para análise de partícula
Jian et al. Research and application of bird species identification algorithm based on image features
LV et al. Prevalence of chronic diseases and related risk factors among residents in Jiangsu province, China
Hamed et al. The role of diacritics in increasing the difficulty of Arabic lexical recognition tests
Ayma et al. Nutritional assessment of children under five based on anthropometric measurements with image processing techniques
Tang et al. Least squares regression methods for clustered ROC data with discrete covariates
Hamed et al. The role of diacritics in adapting the difficulty of Arabic lexical recognition tests
周丽 et al. An Analysis of Speech Structure and Perception Processes and Its Effects on Oral English Teaching Centering around Lexical Chunks
Martin et al. Overground gait adaptability in older adults with diabetes in response to virtual targets and physical obstacles
binti Murni Penyusunan Indeks Psikometrik Kewirausahaan Perbandingan Mahasiswa Indonesia Dan Malaysia

Legal Events

Date Code Title Description
B11A Dismissal acc. art.33 of ipl - examination not requested within 36 months of filing
B04C Request for examination: application reinstated [chapter 4.3 patent gazette]
B350 Update of information on the portal [chapter 15.35 patent gazette]
B06W Patent application suspended after preliminary examination (for patents with searches from other patent authorities) chapter 6.23 patent gazette]
B15K Others concerning applications: alteration of classification

Free format text: A CLASSIFICACAO ANTERIOR ERA: G06K 9/00

Ipc: G06T 7/90 (2017.01), G06F 18/2321 (2023.01)

B15K Others concerning applications: alteration of classification

Free format text: AS CLASSIFICACOES ANTERIORES ERAM: G06T 7/90 , G06F 18/2321

Ipc: G06T 7/90 (2017.01), G06T 7/00 (2017.01), G06F 18/

B09A Decision: intention to grant [chapter 9.1 patent gazette]
B11D Dismissal acc. art. 38, par 2 of ipl - failure to pay fee after grant in time