BR102015032603A2 - Rotene catalyst for steam reform - Google Patents
Rotene catalyst for steam reform Download PDFInfo
- Publication number
- BR102015032603A2 BR102015032603A2 BR102015032603A BR102015032603A BR102015032603A2 BR 102015032603 A2 BR102015032603 A2 BR 102015032603A2 BR 102015032603 A BR102015032603 A BR 102015032603A BR 102015032603 A BR102015032603 A BR 102015032603A BR 102015032603 A2 BR102015032603 A2 BR 102015032603A2
- Authority
- BR
- Brazil
- Prior art keywords
- catalyst
- ruthenium
- steam reforming
- magnesium
- methane steam
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 57
- 238000004326 stimulated echo acquisition mode for imaging Methods 0.000 title description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 58
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 29
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 27
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 23
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 23
- 238000000629 steam reforming Methods 0.000 claims abstract description 21
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 20
- 239000011777 magnesium Substances 0.000 claims abstract description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 17
- 239000001257 hydrogen Substances 0.000 claims abstract description 17
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 11
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 8
- -1 magnesium metals Chemical class 0.000 claims description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 150000002431 hydrogen Chemical class 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- NCPHGZWGGANCAY-UHFFFAOYSA-N methane;ruthenium Chemical compound C.[Ru] NCPHGZWGGANCAY-UHFFFAOYSA-N 0.000 claims 2
- 238000009472 formulation Methods 0.000 claims 1
- 235000012245 magnesium oxide Nutrition 0.000 abstract description 24
- 230000015572 biosynthetic process Effects 0.000 abstract description 17
- 238000003786 synthesis reaction Methods 0.000 abstract description 10
- 239000007789 gas Substances 0.000 abstract description 8
- 150000002739 metals Chemical class 0.000 abstract description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 24
- 238000006555 catalytic reaction Methods 0.000 description 17
- 239000000571 coke Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 229910052759 nickel Inorganic materials 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 7
- 230000009849 deactivation Effects 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 238000002407 reforming Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- 239000000908 ammonium hydroxide Substances 0.000 description 5
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229910052596 spinel Inorganic materials 0.000 description 5
- 239000011029 spinel Substances 0.000 description 5
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 235000010210 aluminium Nutrition 0.000 description 1
- GSWGDDYIUCWADU-UHFFFAOYSA-N aluminum magnesium oxygen(2-) Chemical compound [O--].[Mg++].[Al+3] GSWGDDYIUCWADU-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- UAMZXLIURMNTHD-UHFFFAOYSA-N dialuminum;magnesium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mg+2].[Al+3].[Al+3] UAMZXLIURMNTHD-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/10—Magnesium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0036—Grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
- B01J37/035—Precipitation on carriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/20—Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
- B01J2523/22—Magnesium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/30—Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
- B01J2523/31—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/80—Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
- B01J2523/82—Metals of the platinum group
- B01J2523/821—Ruthenium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/02—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
- C10K3/023—Reducing the tar content
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/02—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
- C10K3/026—Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
catalisador de rutênio para a reforma a vapor resumo a presente invenção está relacionada a catalisadores de rutênio suportado em óxido de magnésio e óxidos de alumínio e magnésio nas razões molares alumínio/magnésio na faixa de 0,1 a 5. especificamente, a invenção referese a catalisadores com baixo teor de rutênio disperso em óxidos de alumínio e magnésio em diferentes razões molares desses metais. a invenção também se refere ao emprego desses catalisadores na reação reforma a vapor de metano para produção de hidrogênio de alta pureza gás de síntese.
Description
Relatório Descritivo de Patentes de Invenção de CATALISADOR DE RUTÊNIO PARA A REFORMA A VAPOR
Campo da Invenção [001] A presente invenção refere-se a catalisadores para a produção de hidrogênio, por meio da reforma a vapor de metano, constituídos por rutênio suportado em óxidos de alumínio e/ou magnésio. Especificamente, a invenção refere-se a catalisadores com baixo teor de rutênio disperso em óxidos de alumínio e/ou magnésio. A invenção também se refere ao emprego desses catalisadores na reação de reforma a vapor de metano para produção de gás de síntese (uma mistura de hidrogênio e monóxido de carbono) ou hidrogênio com baixo teor de monóxido de carbono, em função da composição do catalisador, [002] Ê também objeto desta invenção um processo simples de preparação de catalisadores, com elevada resistência ao depósito de coque.
Antecedentes da Invenção [003] Esta invenção refere-se a um CATALISADOR DE RUTÊNIO PARA A PRODUÇÃO DE HIDROGÊNIO, bem como um processo para a sua preparação e emprego na reforma a vapor de metano.
[004] A reação entre vapor d’água e hidrocarbonetos leves (gás natural, formado principalmente por metano) é, desde o início do século XX, o principal meio de obtenção de gás de síntese, mistura de monóxido de carbono e hidrogênio. Industrialmente, esta reação ocorre em uma faixa de 600 a 900 °C e de pressão que pode chegar a 30 atm [Níelsen, J. R.; Catalysis Today, 2009,145,72-75], sobre pastilhas do catalisador de níquel, empacotado em tubos dispostos paralelamente ao longo de uma fornalha. O diâmetro externo do tubo varia tipicamente de 10 a 15 cm e o comprimento de 10 a 13 m. Conforme a aplicação, os reagentes podem ser alimentados ao leito catalítico a 450 °C e saírem do reator a até 950 °C. Atualmente, os reformadores tubulares são construídos com uma capacidade para produzir até 300.000 Nm3/h de hidrogênio ou gás de síntese [Chorkendorff & Niemantsverdriet, 2003, Concepts of Modem Catalysis and Kinetics, Wiley-VCH] [005] Embora amplamente empregado nos processos industriais de obtenção de hidrogênio via reforma de hidrocarbonetos, o catalisador baseado em níquel sofre rápida desativação por coque (deposição de carbono seguida pelo crescimento de cadeias pouco hidrogenadas, na superfície do catalisador). Dessa forma, a maioria dos estudos tem investigado o uso de suportes óxidos neste catalisador com propriedades que desfavoreçam a desativação por deposito de coque, bem como o emprego de metais mais resistentes à desativação para compor sua fase ativa [Sidjabat, O.; Topics in Catalysis, 2000, 279, 279-282; Nielsen, Journal of Catalysis, 1984, 85, 31-43].
[008] O catalisador comercial usado na reforma a vapor é constituído por níquel suportado em alumina (Ni/AfaOa). A alumina é o suporte mais utilizado, uma vez que, este material refratário apresenta importantes propriedades catalíticas, como alta área superficial específica e estabilidade. Uma variedade de aditivos, especialmente íons alcalinos como magnésio, potássio e cálcio são adicionados ao suporte, em pequenas quantidades, a fim de otimizar o funcionamento do catalisador, em especial, a estabilidade e a resistência à desativação por [Armor, J. N.; Applied Catalysis A: General, 1999,176, 159-176].
[007] Muitos estudos [Parizotto, N. V; Applied Catalysis A: General, 2007, 330, 12-22; Parmaliana, A.; Journal of Catalysis, 1993, 141, 34-47] têm sido conduzidos afim de aperfeiçoar as propriedades dos catalisadores empregados em reforma a vapor, tais como o aumento da sua atividade e da resistência térmica, além da resistência ao depósito de coque. Isto pode envolver mudanças no suporte e a adição de promotores, entre outras intervenções [Bengaard, H. S.; Journal of Catalysis, 2002, 209, 365-384; King, D. L; Journal of Catalysis, 2008, 258, 356-365]. Por exemplo, o uso de outros suportes, diferentes da alumina pura, foi investigado com um catalisador do tipo Ni/MgO. Neste sólido houve uma diminuição da quantidade de centros ativos na superfície do suporte devido à migração do níquel para a rede do oxido de magnésio e formação de uma solução sólida, o que diminuiu os valores de conversão de metano desse catalisador [Parmaliana, A,; Journal of Catalysis, 1993, 141, 34-47]. Em catalisadores do tipo Nt/MgAfeOü» também investigados, o suporte mostrou um alto grau de resistência à sinterização mesmo após longos períodos de reação [Sehested, J,; Journal of Catalysis, 2001, 197, 200-209], [008] Os óxidos mistos têm sido apontados como uma importante classe de suportes, uma vez que podem conciliar diferentes propriedades que favorecem o bom funcionamento da fase ativa do catalisador, com o aumento da atividade e seletividade. No caso do sistema de reforma de gás natural, o emprego de óxido de magnésio juntamente com a alumína pode ser benéfico ao sistema catalítico pois, além de inibir a formação de coque, pode aumentar o controle sobre a seletividade. Isso ocorre, em parte, em função da diminuição da quantidade e força dos centros ácidos da alumína pela presença do óxido de magnésio. Além disso, o óxido de magnésio proporciona aumento da estabilidade térmica do suporte [Cosimo, J. D. I.; Journal of Catalysis, 1998, 178, 499-510; Choudhary, V, R.; Applied Catalysis A: General, 1998,168, 33-46]. Outra vantagem do uso desse tipo de suporte, em lugar do aluminato de magnésio (espinélio), que é uma variação do suporte comercial de alumina, é a manutenção de uma elevada área superficial específica.
[009] Foi investigado, também, o efeito do óxido de magnésio como dopante de um catalisador de níquel suportado em óxido de lantânio, especialmente no que se refere à deposição de coque. Os resultados indicaram que, embora a presença do dopante dificulte a redução do níquel, ela eleva os valores de atividade do sólido e modifica a seletividade a monóxido de carbono. O catalisador de níquel suportado em óxido de magnésio puro foi o que apresentou menor depósito de coque [Moura, J. S.; Fuet, 2008, 87, 3627-3630]. Em outro estudo, investigando-se o efeito do alumínio nas propriedades do catalisador de níquel suportado em óxido de lantânio, observou-se que o catalisador suportado em oxido de alumínio e laníânio apresentou valores de conversão de metano e de seletividade a hidrogênio mais elevados do que aquele de níquel suportado apenas em oxido de lantânio [Uma, S. P.; Catalysis Today, 2008» 133-135» 925-930].
[010] No caso dos catalisadores baseados em níquel contendo magnésio no suporte têm sido registradas invenções especialmente com uso de hidrotafcitas (U. S. Patent 20090261020 A1) e espinélio (U. S. Patent 6416731). No caso do emprego de espinélio como suporte» embora este amenize a deposição de coque» devido à presença do magnésio» ele apresenta como desvantagem a baixa área superficial específica» devido à alta temperatura necessária à sua formação e uma tendência à formação de aluminato de níquel» o que dificulta a redução da fase ativa.
[011] O emprego de metais nobres» como rutênio e platina, para compor a fase ativa de catalisadores de reforma a vapor de metano» tem sido apontado como uma opção conveniente para superar o problema da desativação por coque, por apresentarem alta atividade e, diferentemente do níquel» não desativarem por reação com o suporte [Cosimo, J. L; Latin American Applied Research, 2003, 33, 79-86; At-Qahtan, Chemical Engineering Journal, 1997, 66, 51].
[012] Os catalisadores de metais nobres têm sido extensivamente testados em variados suportes, a fim de otimizar suas propriedades catalíticas aplicadas à reforma do gás natural. Entre estes suportes está o espinélio de alumínio e magnésio, suportando ródio (PI 0207275-0). Em outro invento (U. S. Patent 4755498), o catalisador baseado em metal nobre (platina, irídio e paládio) suportado em alumina dopada com lantânio e magnésio, apresentou atividade e seletividade a hidrogênio elevadas, na reação de reforma a vapor. A presença de lantânio em na ausência de magnésio reduziu significativamente a área superficial específica desse material.
[013] Em um invento (U. S. Patent 6416731) que focou emprego de óxido de alumínio e magnésio como suporte de catalisadores da reforma a vapor de metano, foi observado que o catalisador apresentou, além da prevenção ao coque, resistência ao envenenamento por enxofre. Neste caso, os inventores utilizaram, na preparação desse suporte, uma solução de hidróxido e carbonato de sódio, que aliada à alta temperatura de calcinação (900 °C), contribuiu para a diminuição da área especifica e, consequentemente, dos valores de conversão.
[014] Outros trabalhos que avaliaram o efeito dopante do rutênio no sistema Ni/MgAIO, observou-se que a presença desse metal traz diversos benefícios, como a diminuição na temperatura de redução do níquel e na desativação, pela diminuição do teor de coque gerado na superfície do catalisador [Miyata, 2007. Catalysis Communications, 8, 447-451].
[015] Ferreira-Aparicio e colaboradores, considerando a resistência do rutênio ao coque, empregaram esse metal como fase ativa de um catalisador de reforma a seca de metano (sistema mais vulnerável à desativação). O metal foi suportado em dois materiais diferentes, síltea e gama-alumina. Os autores concluíram que, além do metal nobre, a superfície do catalisador pode contribuir na atividade e resistência ao coque por promover a migração de grupos hidroxila na superfície do sólido [Ferreira-Aparicio. Applied Catalysis A: General 2000, 202, 183-198], [016] Err» outro estudo, investigou-se o emprego de metais nobres (Ru, Rh e Pt) suportados em óxido de alumínio e magnésio oriundo de hidrotálcita na reforma combinada, oxidação parcial e reforma a seco de metano. Neste trabalho, os autores empregaram uma razão atômica magnésio/alumínio igual a 30 e após calcinação observaram formação das fases periclase (própria do óxido de magnésio) e espinélio (devido à formação de aluminato de magnésio), o que resultou em sólidos com área superficial específica abaixo de 100m2g1. Foi observado que os catalisadores de rutênio e ródio apresentaram valores de conversão de metano mais altos do que o de platina. Além disso, o catalisador de rutênio apresentou seletividade a hidrogênio mais elevados que os demais [Tsyganok. Applied Catalysis A: General 2004, 275,149-155].
[017] Há registros de pedidos de patente envolvendo o emprego de rutênio como catalisador em variadas reações. Como exemplos, podem ser citadas a síntese de amônía (PI0214722-0 A2), a hidrogenação catalítica (PI0210333-8 A2), a remoção de monóxido de carbono da corrente de gás reformado na presença de ouro (P10201294-4 A2), a conversão de gás de síntese em hidrocarbonetos de cadeias longas usando síntese de Fischer-Tropsch {PI0112705-5 A2; PI0214722-0 A2) e, até mesmo, a síntese de polímeros (PI9810488-8 A2), [018] Entretanto, nenhum dos documentos encontrados trata de catalisadores de rutênio suportado em óxido de magnésio, bem como em óxido de alumínio e magnésio, para reforma a vapor do metano. Esses sólidos, além de contar com a atividade catalítica do rutênio. possuem um suporte cuja superfície é favorável à reação, por manter centros de caráter mais básicos, que promovem migração de grupos hidroxila adsorvidos favorecendo, assim, a gaseificação do carbono depositado. Além disso, as alterações nas propriedades dos sólidos, obtidas a partir da variação do teor de óxido de magnésio podem favorecer a seletividade a hidrogênio.
Sumário da Invenção [019] A presente invenção refere-se à síntese de catalisadores de rutênio preparados pelo método de impregnação desse metal em óxido de magnésio e em óxidos de alumínio e magnésio, em diferentes razões molares Al/Mg, Os suportes foram preparados pelo método de coprecípitaçáo e hidrólise dos sais precursores. A invenção também se refere ao emprego desses sólidos como catalisadores em reação de reforma a vapor de metano para a produção de hidrogênio de alta pureza e gás de síntese.
Breve Descrição das Figuras [020] A Figura 1 representa um diagrama típico de raios X de alguns dos sólidos formadores do suporte.
[021] A Figura 2 representa curvas de conversão de metano em função do tempo» de alguns dos catalisadores obtidos na presente invenção.
Breve Pescricio da Tabela [022] A Tabela 1 apresenta os valores de área superficial específica, de alguns dos sólidos» obtidos por fisissorção de nitrogênio.
Descrição detalhada da Invenção [023] Os suportes foram preparados por coprecipitação dos sais precursores» em diferentes concentrações, com hidróxido de amônio concentrado. Os precipitados formados foram lavados, secos em estufa e calcinados entre 400 e 900 °C. Obteve-se suportes com razão molar Al/Mg na faixa de 0,1 a 5,0. O suporte baseado em oxido de magnésio puro foi preparado seguindo-se o mesmo procedimento de preparação, porém sem o precursor de alumínio, e foi denominado de Amostra M. Os suportes obtidos foram impregnados com rutênio, de modo a conter um teor de metal na faixa de 0,1 a 2 %.
Exemplo 1: Preparação do óxido magnésio (suporte) [024] Adicionou-se um volume adequado de solução de nitrato de magnésio e uma solução de hidróxido de amônio concentrada a um béquer contendo água, sob agitação constante, à temperatura ambiente. O precipitado formado foi maturado e depois centrifugado, lavando-se com solução de hidróxido de amônio até a eliminação dos íons nitrato. O gel foi seco em estufa entre 60 e 150 °C e depois triturado e peneirado.
Exemplo 2: Preparação dos óxidos mistos de alumínio e magnésio (suporte) [025] Foi efetuada por coprecipitação, adicionando-se, simultaneamente, as soluções de nitrato de alumínio e de nitrato de magnésio, e uma solução concentrada de hidróxido de amônio, a um béquer contendo água, sob agitação constante, à temperatura ambiente. O precipitado formado foi maturado e centrifugado, lavando-se o mesmo entre as centrifugações com solução de hidróxido de amônio,até a eliminação dos íons nitrato. O gel foi seco em estufa, em temperatura na faixa de 60 a 150 "C e depois triturado e peneirado. Foram utilizadas soluções concentrações adequadas dos sais precursores, de forma a se obter suportes com razões molares Al/Mg entre 0,1 e 5. As amostras foram denominadas AMX, sendo X correspondente à razão Al/Mg utilizada.
[026] A Figura 1 evidencia a formação da fase " -alumina de alguns dos suportes com teores de magnésio mais baixos e da fase periclase para o suporte de oxido de magnésio e para um dos suportes com teor mais alto desse metal.
Exemplo 3: Impregnação dos suportes com fase ativa (rutênio) [027] Os óxidos obtidos foram impregnados com solução aquosa de cloreto de rutênio III, de modo a se obter teores entre 0,1 e 2,0 % de Ru, em cada suporte. Após impregnação, evaporou-se o solvente e secou-se as amostras em estufa por 12 a 24 h. Em seguida, as amostras foram calcinadas, sob fluxo de ar (50-100 mLmirr1), empregando-se a mesma faixa de temperatura usada na calcinação dos óxidos.
Exemplo 4: Avaliação catalítica [028] Os catalisadores foram avaliados em uma unidade catalítica de bancada de reforma a vapor de metano. A reação foi conduzida entre 500 e 900°C, 1 atm e sob fluxo de reagentes de modo a obter diferentes razoes molares vapor d’água/metano. Antes da reação, as amostras foram reduzidas, in situ, na faixa de 500-700°C por 1 -6h, sob fluxo de hidrogênio. Foi utilizado um microreator de aço inoxidável, com regime de fluxo ascendente e condições de operação que prevenissem os efeitos difusionais. Os efluentes do reator, (hidrogênio, monóxido de carbono, dióxido de carbono e o metano que não reagiu) foram analisados em um cromatógrafo a gás, equipado com detector de condutividade térmica (TCD), detector de ionização em chama (FID) e um metanador.
[029] A Figura 2 evidencia o catalisador RM como sendo o que apresentou mais alta atividade.
REIVINDICAÇÕES
Claims (8)
1. Catalisador de rutênio, com teores entre 0,1 e 2,0 %, para reforma a vapor de metano, caracterizado por o referido catalisador ser de rutênio suportado em óxido de magnésio e óxidos mistos de alumínio e magnésio com razões Al/Mg na faixa de 0,1 a 6,0.
2. Catalisador de rutênio para reforma a vapor de metano de acordo com a reivindicação 1, caracterizado por o referido catalisador ser utilizado na reforma a vapor de metano.
3. Catalisador de rutênio para reforma a vapor de metano de acordo com a reivindicação 1 e 2, caracterizado por o referido catalisador ser empregado na conversão de vapor d’água e metano em hidrogênio e monóxido de carbono.
4. Catalisador de rutênio para reforma a vapor de metano de acordo com a reivindicação 1,2 e 3, caracterizado por o referido catalisador ser empregado para produzir hidrogênio, monóxido de carbono e dióxido de carbono.
5. Catalisador de rutênio para reforma a vapor de metano de acordo com a reivindicação 1, 2 e 3, caracterizado por o referido catalisador possuir como fase ativa o rutênio em seu estado metálico.
6. Catalisador de rutênio para reforma a vapor de metano de acordo com a reivindicação 1, 2 e 3, caracterizado por o referido catalisador possuir rutênio suportado em óxido de magnésio como formulação.
7. Catalisador de rutênio para reforma a vapor de metano de acordo com a reivindicação 1, 2 e 3, caracterizado por o referido catalisador possuir o rutênio suportado em óxido contendo os metais alumínio e magnésio em diferentes razões molares.
8. Catalisador de rutênio para reforma a vapor de metano de acordo com a reivindicação 1, 2 e 3, caracterizado por o referido catalisador possuir o rutênio suportado em oxido contendo os metais alumínio e magnésio em diferentes razões molares, preparados por método que confere elevada área específica ao suporte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102015032603A BR102015032603A2 (pt) | 2015-12-17 | 2015-12-17 | Rotene catalyst for steam reform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102015032603A BR102015032603A2 (pt) | 2015-12-17 | 2015-12-17 | Rotene catalyst for steam reform |
Publications (1)
Publication Number | Publication Date |
---|---|
BR102015032603A2 true BR102015032603A2 (pt) | 2017-06-20 |
Family
ID=61198407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BR102015032603A BR102015032603A2 (pt) | 2015-12-17 | 2015-12-17 | Rotene catalyst for steam reform |
Country Status (1)
Country | Link |
---|---|
BR (1) | BR102015032603A2 (pt) |
-
2015
- 2015-12-17 BR BR102015032603A patent/BR102015032603A2/pt not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sharma et al. | Ethanol steam reforming for hydrogen production: Latest and effective catalyst modification strategies to minimize carbonaceous deactivation | |
Angeli et al. | Catalyst development for steam reforming of methane and model biogas at low temperature | |
US10144000B2 (en) | Sulfur resistant nickel based catalysts, methods of forming and using such catalysts | |
Gallegos-Suárez et al. | Efficient hydrogen production from glycerol by steam reforming with carbon supported ruthenium catalysts | |
Ou et al. | Highly active and stable Ni/perovskite catalysts in steam methane reforming for hydrogen production | |
JP6541339B2 (ja) | 炭化水素含有ガスの水蒸気改質触媒、水素製造装置、及び水素製造方法 | |
Alves et al. | CO2 methanation over metal catalysts supported on ZrO2: Effect of the nature of the metallic phase on catalytic performance | |
Can et al. | New Active and Selective Rh− REO x− Al2O3 Catalysts for Ethanol Steam Reforming | |
WO2015054755A1 (pt) | Catalisador para produção de gás de síntese e processo de obtenção do mesmo | |
Jiao et al. | Hydrogen-rich syngas production by toluene reforming in a microchannel reactor coated with Ni/MgO–Al2O3 multifunctional catalysts | |
BRPI1002970B1 (pt) | processo para a produção de hidrogênio a partir do etanol | |
Yu et al. | Effects of alkaline-earth strontium on the performance of Co/Al2O3 catalyst for methane partial oxidation | |
BRPI1107073B1 (pt) | Catalisador de reforma a vapor, processo para a preparação do referido catalisador e processo para a produção de hidrogênio e gás natural sintético | |
Belhadi et al. | Methane steam reforming on supported nickel based catalysts. effect of oxide ZrO 2, La 2 O 3 and Nickel Composition | |
BR102015032603A2 (pt) | Rotene catalyst for steam reform | |
Li et al. | Effect of Promoters on the Catalytic Performance of Ni‐Based Catalysts for Dry Reforming of Methane | |
Mierczynski et al. | Influence of the Zn–Al binary oxide composition on the physicochemical and catalytic properties of Ni catalysts in the oxy-steam reforming of methanol | |
WO2023111017A1 (en) | High pressure nh3-reforming and combined reforming of nh3 as co-feed for hydrocarbon/co2-reforming | |
WO2021138728A1 (pt) | Método de preparo de catalisador de reforma a vapor, catalisador e seu uso | |
BR102016022467A2 (pt) | processo para preparação de um catalisador à base de níquel, catalisador à base de níquel, e, seu uso em um processo de reforma a vapor | |
WO2015070298A1 (pt) | Catalisador para processo de reforma à vapor a baixa temperatura | |
BR102015032605A2 (pt) | Catalisador de platina para reforma a vapor | |
BR102016022962A2 (pt) | Processo de preparação de um catalisador de ferro-cromo promovido com platina, e, catalisador composto de ferro-cromo promovido com platina | |
BR102021015712A2 (pt) | Método de preparo do catalisador de deslocamento do gás d'água, catalisador, uso e processo para reduzir o teor de monóxido de carbono | |
BR102020006833A2 (pt) | Catalisador para geração de hidrogênio e/ou gás de síntese, seu método de obtenção e uso em processo de reforma a vapor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B03A | Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette] | ||
B06F | Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette] | ||
B06V | Preliminary requirement: patent application procedure suspended [chapter 6.22 patent gazette] | ||
B11B | Dismissal acc. art. 36, par 1 of ipl - no reply within 90 days to fullfil the necessary requirements |