BE887514A - Poyols modifies par des polymeres et utiles dans la fabrication des polyurethanes - Google Patents

Poyols modifies par des polymeres et utiles dans la fabrication des polyurethanes Download PDF

Info

Publication number
BE887514A
BE887514A BE0/203790A BE203790A BE887514A BE 887514 A BE887514 A BE 887514A BE 0/203790 A BE0/203790 A BE 0/203790A BE 203790 A BE203790 A BE 203790A BE 887514 A BE887514 A BE 887514A
Authority
BE
Belgium
Prior art keywords
polyol
isocyanate
emi
alkanolamine
reaction
Prior art date
Application number
BE0/203790A
Other languages
English (en)
Original Assignee
Rowlands Jeffrey P
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rowlands Jeffrey P filed Critical Rowlands Jeffrey P
Publication of BE887514A publication Critical patent/BE887514A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/409Dispersions of polymers of C08G in organic compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0871Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being organic
    • C08G18/0876Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being organic the dispersing or dispersed phase being a polyol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description


  "Polvols modifiés riar des polymères et utiles dans la fabrication des polyuréthanes".

  
La présente invention concerne des polyols modifiés par des polymères et utiles dans la fabrication des polyuréthanes. On fabrique la mousse de polyuréthane en faisant réagir un polyol avec un polyisocyanate en présence d'un agent gonflant et habituellement également en présence d'un ou plusieurs autres additifs.

  
Afin d'obtenir une modification souhaitée des propriétés physiques de la mousse obtenue, il est connu d'utili-

  
 <EMI ID=1.1> 

  
polyols modifiés par des polymères préformés (c'est-à-dire des polyols contenant une matière polymère supplémentaire).

  
C'est ainsi que, par exemple, dans le brevet britannique n[deg.]
1.501.172, on décrit l'utilisation de dispersions de polyols constituées de produits de polyaddition de polyisocyanates et d'amines primaires, d'amines secondaires, d'hydrazines ou

  
 <EMI ID=2.1> 

  
est dispersée une matière polymère dérivant de la polymérisation in situ de monomères à insaturation éthylénique, cette matière polymère étant également copolymérisée avec ces polyols.

  
Un objet de la présente invention est de fournir d'autres polyols modifiés par des polymères, qui peuvent être utiles dans la fabrication des polyuréthanes.

  
En conséquence, suivant l'invention, on prévoit un procédé de formation d'un polyol modifié par un polymère, dans lequel on polymérise une olamine avec un polyisocyanate organique en présence d'un polyol, cette olamine réagissant au moins principalement de manière polyfonctionnelle avec l'isocyanate.

  
Suivant le procédé de l'invention, l'olamine (on entend par là un composé organique comportant un ou plusieurs groupes hydroxy (-OH) et également un ou plusieurs groupes

  
 <EMI ID=3.1> 

  
agit comme réactif polyfonctionnel (comportant deux ou plusieurs atomes d'hydrogène réactifs) et il se forme un produit de polyaddition avec le polyisocyanate (on entend par là un composé comportant deux groupes isocyanate ou plus). Lorsque l'olamine est une amine primaire ou secondaire, elle comporte des groupes alcool et amino ayant des atomes d'hydrogène

  
 <EMI ID=4.1> 

  
Lorsque l'olamine est une amine tertiaire, elle comporte plusieurs groupes alcool dont tous les atomes d'hydrogène actifs peuvent être réactifs vis-à-vis de l'isocyanate. Dans chaque cas, tous les atomes d'hydrogène réactifs ou certains d'entre eux seulement peuvent, en fait, réagir. On pense que la réaction de polyaddition donne lieu à la formation de chaînes droites et/ou ramifiées par combinaison des groupes isocyanates et hydroxy pour former des liaisons uréthane (-NH-CO-O-) et par combinaison de groupes isocyanate et amino pour former

  
 <EMI ID=5.1> 

  
approprié. On peut mélanger et/ou combiner chimiquement (par exemple, par copolymérisation) ce produit de polyaddition avec le polyol et il est entendu que l'expression "polyol modifié par un polymère", que l'on utilise dans la présente spécification, englobe à la fois les combinaisons physiques et chimiques, de même que leurs mélanges encore que, le plus souvent, on pense que le procédé de la présente invention aboutit à une combinaison principalement physique. Cette combinaison physique peut être sous forme d'une solution ou d'une dispersion stable du produit de polyaddition dans le polyol suivant les matières de départ utilisées. En particulier, le choix de l'olamine et éventuellement également du polyol peut déterminer l'état physique du polyol modifié par un polymère.

  
Selon une caractéristique de loin préférée, dans le procédé de l'invention, on mélange l'olamine et l'isocyanate dans un rapport molaire d'environ 1/0,5 à 1/1,5 en présence d'un polyéther-polyol ayant un poids moléculaire se situant  <EMI ID=6.1> 

  
de 2.800 à 7*000), tandis que l'olamine et le polyisocyanate ayant réagi représentent ensemble une quantité de 1 à 35%, calculés sur le poids du polyol....

  
Comme olamine suivant la présente invention, on peut utiliser n'importe quelle alcanolamine appropriée ou n'importe quelle combinaison appropriée d'alcanolamines, y compris, mais sans aucune restriction, des alcanolamines primaires, secondaires et tertiaires telles que la mono éthano lamine, la diéthanolamine, la triéthanolamine, la N-méthyléthanolamine,

  
 <EMI ID=7.1> 

  
diéthanolamine, la N-éthyldiéthanolamine, la N-butyldiéthanolamine, la monoisopropanolamine, la diisopropanolamine, la triisopropanolamine, la N-méthylisopropanolamine, la N-éthyl-  isopropanolamine, la N-propylisopropanolamine. Telle qu'elle est utilisée dans la présente spécification, l'expression "alcanolamine" englobe les alcanolamines substituées et, par

  
 <EMI ID=8.1> 

  
et secondaires substituées par un atome d'halogène sur l'atome d'azote, ou encore des alcanolamines secondaires ou tertiaires substituées par un atome d'halogène sur le groupe alkyle
(c'est-à-dire que le groupe alcool est remplacé par un atome  d'halogène). Dans une forme de réalisation particulièrement  préférée, comme alcanolamine, on utilise la triéthanolamine.

  
Bien que, comme on peut le constater, suivant le 

  
procédé de l'invention, on utilise le plus souvent, comme olamine, une alcanolamine, en particulier, une alcanolamine  aliphatique à chaîne ouverte, il est entendu que l'on peut  également utiliser d'autres composés d'olamines comportant

  
des groupes hydroxy et amino fixés à des noyaux carbocycliques, aromatiaues ou hétérocycliques ou encore à des combinaisons  de ces noyaux l'un avec l'autre et/ou avec des noyaux alipha-  tiques à chaîne ouverte. 

  
On peut utiliser n'importe quel polyisocyanate organique approprié, notamment les polyisocyanates aliphatiques, cycloaliphatiques, araliphatiques, aromatiques et hétérocycliques qu'il est connu d'employer dans la réaction de formation d'un polyisocyanate/polyol-polyuréthane (voir, par exemple, le brevet britannique n[deg.] 1.453.258). 

  
Parmi les polyisocyanates appropriés que l'on peut aisément obtenir dans le commerce, il y a le 2,4-tolylènediisocyanate et le 2,6-tolylène-diisocyanate, de même que des mélanges de ces isomères (que l'on désigne généralement par

  
 <EMI ID=9.1> 

  
polyméthylène-polyisocyanates du type obtenu par condensation d'aniline avec le formaldéhyde, puis par phosgénation (que

  
l'on désigne généralement par l'abréviation "MDI" brut = méthylène-diisocyanate ) et également les polyisocyanates contenant des groupes carbodiimide, des groupes uréthane, des groupes allophanate, des groupes isocyanate, des groupes urée ou des groupes biuret (que l'on appelle généralement "polyisocyanates").

  
On peut utiliser n'importe quel polyol approprié;

  
y compris les polyéthers-polyols ayant un poids moléculaire

  
se situant dans l'intervalle allant de 200 à 10.000, qu'il

  
est connu d'utiliser dans la réaction de formation

  
d'un polyisocyanate/polyol-polyuréthane comme décrite par

  
 <EMI ID=10.1> 

  
obtenir ces polyéthers-polyols connus en faisant réagir des oxydes d'alkylène avec des composés contenant des atomes  d'hydrogène actifs, le poids moléculaire du produit réactionnel dépendant de la quantité d'oxyde d'alkylène ayant réagi, Les produits de polyaddition obtenus suivant la présente invention peuvent être modifiés par l'utilisation proportionnelle de N-dialkylalcanolamines, d'amines ou d'isocyanates monofonctionnels. Par exemple, on peut régler

  
le poids moléculaire moyen des produits de polyaddition en  incorporant des composés monofonctionnels de ce type en proportions allant jusqu'à 25% molaires, calculés sur le composant "olamine".

  
Parmi les isocyanates monofonctionnels appropriés,

  
il y a le méthyl-isocyanate, l'éthyl-isocyanate, l'isopropyl-  isocyanate, l'isobutyl-isocyanate, l'hexyl-isocyanate, le  lauryl-isocyanate, le stéaryl-isocyanate, le cyclohexyl-  isocyanate, le phényl-isocyanate, le tolyl-isocyanate, le i  4-chlorophényl-isocyanate et le diisopropyl-phényl-isocyanate. 

  
 <EMI ID=11.1> 

  
1

  
 <EMI ID=12.1> 

  
éthanolamine et la diéthyléthanolamine. 

  
Il est entendu que les groupes alcool/amino de l'ola-  mine'utilisée lors de la réaction de polyaddition de la pré-  sente invention ne doivent pas nécessairement réagir tous dans tous les cas avec l'isocyanate et, c'est ainsi que, dans 

  
 <EMI ID=13.1> 

  
nelle, faisant ainsi elle-même office d'agent de terminaison

  
de chaîne.

  
La réaction de polyaddition de la présente invention  peut éventuellement être catalysée en introduisant des subs-  tances telles que celles habituellement utilisées comme catalyseurs dans la réaction de formation du polyisocyanate/polyol-polyuréthane. C'est ainsi que l'on peut utiliser

  
 <EMI ID=14.1>  

  
et le dilaurate d'étain-dibutyle et/ou des amines telles que la triéthylène-diamine. La quantité du catalyseur utilisé peut être faible par rapport à celle que l'on emploie normalement dans la réaction de formation de polyuréthanes, par

  
 <EMI ID=15.1> 

  
calculé sur le poids total du polyol, encore que l'on puisse également utiliser éventuellement des quantités plus importantes.

  
Une catalyse peut ne pas être nécessaire lors de la réaction dans laquelle on utilise une alcanolamine primaire ou secondaire, cependant que cette catalyse peut être avantageuse lorsqu'il s'agit d'une alcanolamine tertiaire telle que la triéthanolamine.

  
On peut régler le poids moléculaire du produit de

  
 <EMI ID=16.1> 

  
(et 1 e s composants mono fonctionnels si ceux-ci sont utilisés). C'est ainsi que, par exemple, bien qu'un rapport molaire de 1/0,5 à 1/1,5 entre l'olamine et le polyisocyanate soit préféré et que des quantités molaires pratiquement équivalentes soient particulièrement préférées, on peut utiliser l'isocyanate en

  
une proportion plus élevée si l'on peut tenir compte, dans la mesure

  
 <EMI ID=17.1> 

  
tion rapide ayant tendance à se produire à des teneurs plus élevées en isocyanate. Dès lors, on peut envisager un rapport supérieur, par exemple, de 1/1,55 ou 1/1,6. A mesure que la quantité d'isocyanate est réduite, le poids moléculaire du produit de polyaddition diminue également avec la viscosité. En règle générale, un rapport molaire de 1/0,8 à 1/1,1 entre l'olamine et le polyisocyanate organique est préféré.

  
On peut même dépasser sensiblement la limite supérieure du rapport précité de 1/1,6 si l'on introduit un

  
agent de "protection" en vue de limiter la réticulation et , partant, la gélification. Dès lors, bien qu'il puisse être normalement préférable d'adopter des conditions réactionnelles donnant lieu à une réaction bifonctionnelle de l'olamine avec llisocyanate, dans certains cas et avec certaines olamines, en particulier, la triéthanolamine, il peut être préférable de provoquer une réaction trifonctionnelle de l'olamine avec llisocyanate de telle sorte qu'il n'y ait pratiquement aucun groupe hydroxy libre qui pourrait gêner inopportunément la réaction ultérieure de formation d'un polyuréthane en utilisant le polyol modifié par un polymère.

   Dans ce dernier cas, il peut être souhaitable d'adopter, entre l'olamine et l'isocyanate, un rapport allant, par exemple, jusqu'à 1/2,1 ou plus et l'on peut ajouter un agent de "protection" (par exemple, la N-diméthyléthanolamine) (par exemple, dans un rapport de 1/1,2 entre l'olamine et l'agent de protection) afin de limiter la réticulation.

  
Bien que la concentration de l'olamine et de l'iso&#65533; cyanate (et partant, des produits de polyaddition) ayant réagi dans le polyéther-polyol puisse varier dans de larges limites, elle doit se situer généralement entre 1 et 35% en poids, de préférence, entre 3 et 30% en poids. Lorsqu'une concentration spécifique du produit de polyaddition est requise (par exemple, lorsqu'on l'utilise dans la fabrication de mousses de polyuréthanes ayant certaines propriétés optimales, une concentration d'environ 10% en poids peut être requise), cette concentration peut être obtenue directement moyennant; un choix judicieux des réactifs pour obtenir la concentration requise ou, en variante, en procédant à une dilution ultérieure d'un produit de polyaddition formé avec une quantité supplémentaire d'un polyéther-polyol selon les conditions appropriées. 

  
En règle générale, on peut mélanger les réactifs

  
à des températures allant de 0[deg.]C, ou à des températures supérieures à leurs points de fusion, aussi basses qu'elles puissent être, jusqu'à 150[deg.]C. De préférence, on mélange les réactifs à la température ambiante, ou à des températures juste supérieures à leurs points de fusion, aussi basses qu'elles puissent être, jusqu'à 70[deg.]C. On peut également mélanger les réactifs à une température inférieure à leurs points de fusion.

  
La réaction est exothermique et on observe une élévation de température suivant la proportion du produit de polyaddition obtenu, basée sur le poids du polyéther-polyol.

  
Plus le mélange des réactifs est efficace, plus la granularité des particules de la dispersion (lorsque celle-ci est préparée) est faible et plus la viscosité est réduite. Bien que l'on puisse adopter un simple procédé discontinu par lequel on dissout ou disperse en tout premier lieu un des réactifs choisis parmi l'olamine et le polyisocyanate dans le polyéther-polyol, pour procéder ensuite à l'addition de l'autre réactif dans la zone à agitation maximale, on peut également mélanger les matières en ligne , Dans ce dernier cas, on pompe tous les réactifs à des débits réglés et on peut les mélanger simultanément ou encore on peut mélanger tout d'abord un réactif avec le polyéther-polyol, pour procéder ensuite à l'addition et au mélange de l'autre réactif.

  
La dispersion dans le polyéther-polyol peut être utilisée soit immédiatement au terme de la réaction, soit après un laps de temps prolongé. Par exemple, le produit

  
de polyaddition dispersé dans un polyéther-polyol peut être dosé à partir d'une unité de mélange en ligne dans laquelle la réaction à lieu, directement dans la tête de mélange d'une machine de fabrication de polyuréthanes d'un type bien connu.

  
Lorsque la réaction de l'olamine avec le polyisocyanate est relativement lente, on peut alors utiliser un réservoir de maintien intermédiaire entre cette unité de mélange en ligne et la tête de mélange des polyuréthanes afin de laisser s'écouler un laps de temps supplémentaire pour que la réaction complète ait lieu.

  
Des additifs tels que des activateurs, des stabilisant des agents de réticulation, de l'eau, des agents gonflants, des agents ignifuges et des pâtes de pigments, peuvent être ajoutés au polyol modifié par un polymère suivant la présente invention pendant ou après la réaction.

  
Le produit de polyaddition de la présente invention peut être utilisé dans la fabrication des mousses de polyuréthanes. Lorsque le produit est sous forme d'une dispersion stable de polyol, c'est-à-dire une dispersion qui ne décante pas ou qui, du moins, subsiste au cours du mélange avec d'autres ingrédients formateurs de mousse, le produit de polyaddition dispersé est particulièrement efficace comme charge polymère lors de la fabrication d'une mousse hautement élastique pouvant être commodément traitée, ce produit dispersé agissant pour assurer la résistance, tout en brisant en même temps les parois des cellules.

  
Lorsque le produit est sous forme d'une solution de polyol, celle-ci peut être utilisée pour la formation d'une matière polymère ayant des propriétés différentes de celles obtenues avec des dispersions de polyols.

  
En règle générale, lorsque le produit de polyaddition est sous forme d'une dispersion stable, celle-ci peut être traitée pour être transformée en mousses de polyuréthanes souples, semi-dures et dures ayant de meilleures propriétés  par exemple, une meilleure dureté ; de plus, on peut fabrique des mousses irrétrécissables du type à haute résilience qui sont bien connues dans l'industrie, puisqu'aussi bien le produit de polyaddition dispersé dans Le polyol a pour effet d'ouvrir les cellules. En outre, les dispersions sont également appropriées, par exemple, pour la fabrication d'élastomè de recouvrements et de revêtements à base de polyuréthanes.

  
Lorsque la dispersion doit être utilisée pour la fabrication d'un polyuréthane, dans le procédé de formation du polyuréthane, on utilise habituellement le polyol de la dis-

  
 <EMI ID=18.1> 

  
en particulier, son indice hydroxyle et sa fonctionnalité, seront choisies de façon connue en fonction du type de polyuréthane à former. Par exemple, pour la préparation d'élastomères, le polyéther-polyol sera, de préférence, principalement linéaire, c'est-à- dire difonctionnel,et il aura un indice hydroxyle se situant dans l'intervalle compris entre 30 et
170. Pour la fabrication de mousses, les polyéthers-polyols sont choisis de façon connue pour obtenir des mousses qui sont flexibles, semi-flexibles ou rigides. C'est ainsi que, pour la fabrication de mousses flexibles, les polyétherspolyols ont, de préférence, des indices hydroxyle se situant dans l'intervalle allant de 20 à 80 avec deux à quatre groupes hydroxy par molécule, par exemple, le polyol "PBA 1233" de "ICI". On peut éventuellement utiliser des mélanges de polyéthers-polyols.

  
Des polyisocyanates organiques pouvant être utilisés lors de la fabrication des polyuréthanes ont été décrits dans la technique antérieure et ils peuvent être identiques à ceux décrits ci-dessus pour la réaction avec l'olamine. 

  
Le mélange réactionnel destiné à la formation d'une mousse de polyuréthane peut également contenir d'autres ingrédients classiques suivant le type de polyuréthane à former.

  
C' est ainsi que le mélange réactionnel peut contenir un catalyseur, par exemple, des amines tertiaires et des composés organiques d'étain, des agents de réticulation ou des agents d'allongement de chaîne, par exemple, la diéthanolamine,

  
la triéthanolamine, l'éthylène-glycol, le glycérol, le dipropylène-glycol et la phénylène-diamine, des agents ignifuges, par exemple, des phosphates d'alkyle halogènes, de même que des charges, par exemple, le sulfate de baryum.

  
Pour la fabrication de mousses, on incorpore des agents gonflants dans le mélange réactionnel. Parmi les agents gonflants appropriés, il y a, par exemple, l'eau qui réagit avec le polyisocyanate en formant de l'anhydride carbonique, de même que les liquides volatils inertes qui s'évaporent sous l'influence de la réaction exothermique ou suite à la détente de pression si l'on adopte un procédé mécanique pour la formation de la mousse. Parmi ces liquides, il y a, par exemple, les hydrocarbures halogénés ayant des points d'ébullition ne dépassant pas 100[deg.]C à la pression

  
 <EMI ID=19.1> 

  
fluorés tels que le trichlorofluorométhane et le dichlorodifluorométhane, de même que les hydrocarbures chlorés tels que le dichlorométhane. La quantité de l'agent gonflant

  
est choisie de façon connue pour obtenir des mousses de

  
la densité désirée. En règle générale, on peut utiliser

  
une quantité de 0,005 à 0,3 mole de gaz pour 100 g du mélange réactionnel. La densité de la mousse obtenue peut éventuellement être modifiée par surcompression, c'est-à-dire en trans-formant le mélange réactionnel en mousse dans un moule fermé  ayant un volume inférieur à celui qui serait occupé par la mousse formée si on laissait lever librement le mélange réac-  tionnel.

  
En règle générale, la composition du mélange réactionnel formateur de polyuréthane doit être conçue de telle sorte que le rapport entre les groupes isocyanate et les atomes d'hydrogène actifs se situe pratiquement dans l'intervalle de 0,9/1 à 1,2/1, cependant que l'on peut éventuellement adopter des rapports plus élevés.

  
Lors de la fabrication d'une mousse de polyuréthane, il est habituellement nécessaire de stabiliser ou de régler les cellules formées par addition d'un stabilisant de mousse ou d'un régulateur de cellules tel que des copolymères en

  
 <EMI ID=20.1> 

  
des liaisons directes carbone-silicium ou carbone-oxygènesilicium entre les motifs organiques et les motifs de polysiloxane. Lors de la fabrication de mousses de polyuréthanes à "haute résilience", des huiles de diméthyl-silicone ou leurs modifications de faible poids moléculaire sont satisfaisantes
(par exemple, le produit "silicone B8616" de "Theodore Goldschmidt AG").

  
On peut adopter des procédés directs, des procédés 

  
à prépolymères ou des procédés à quasi-prépolymères selon le  cas approprié pour le type particulier de polyuréthane devant être formé.

  
Les composants du mélange réactionnel formateur

  
de polyuréthane peuvent être mélangés ensemble de n'importe quelle manière appropriée, par exemple, en adoptant n'importe quel équipement de mélange décrit à cet effet dans la technique antérieure. Certains des composants individuels peuvent éventuellement être préalablement mélangés afin de réduire

  
le nombre de courants constitutifs devant être réunis lors de l'étape finale de mélange. Il est couvent approprié de prévoir un système à deux courants, l'un comprenant un polyisocyanate ou un prépolymère, tandis que le second comprend tous les autres composants du mélange réactionnel.

  
L'invention sera illustrée, mais nullement limitée par les exemples ci-après dans lesquels toutes les parties et tous les pourcentages sont en poids. Sauf indication contraire, on a utilisé des températures ambiantes pour les réactifs.

  
Les abréviations utilisées dans ces exemples pour les polyéthers ont les significations indiquées ci-après.

  
Polyéther A :

  
Polyéther d'oxyde de propylène formé au départ de

  
 <EMI ID=21.1> 

  
Polyéther B :

  
Polyéther d'oxyde de propylène formé à partir de triméthylol-propane et porté, avec de l'oxyde d'éthylène, à un indice hydroxyle de 34 et à une teneur en groupes hydroxy primaires d'environ 80%.

  
Polyéther C :

  
Polyéther d'oxyde de propylène formé à partir de glycérol et porté, avec de l'oxyde d'éthylène, à un indice hydroxyle de 47 et à une teneur en groupes hydroxy primaires inférieure à 5%.

  
Polyéther D :

  
Polypropylène-glycol linéaire ayant un indice hydroxyle de 56 et contenant des groupes hydroxy secondaires. 

  
 <EMI ID=22.1> 

  
à une température de 20[deg.]C dans des conditions de mélange à grande vitesse. Au cours d'une période de 5 secondes, on

  
 <EMI ID=23.1> 

  
produit une réaction rapide et la température du mélange s'élève de 20[deg.]C à 37[deg.]C au cours d'une période de 3 minutes à compter à partir du moment où. l'addition du catalyseur est achevée.

  
Après refroidissement, la dispersion stable ainsi obtenue et ayant une teneur en solides de 10% a une viscosité

  
 <EMI ID=24.1> 

  
Ensuite, on ajoute 0,75 g de dilaurate d'étain-dibutyle et

  
on agite pendant 10 secondes, puis on ajoute 117 g d'un mélange

  
 <EMI ID=25.1> 

  
diisocyanate. Après une période complémentaire de 5 secondes, on verse le mélange dans une boite et on entame l'expansion. Après une période supplémentaire de 105 secondes commençant

  
à partir de la fin du mélange, on obtient une mousse irrétré-

  
 <EMI ID=26.1> 

  
Densité kg/m3 34

  
CLD g/cm2 (1) 28

  
Résilience (%)(2) 63 (1) Résistance à une compression avec une déviation de 40%.

  
(2) Rebondissement d'une balle (%).

Exemple 2

  
Dans un bêcher, on dépose 920 g du polyéther A porté à une température de 20[deg.]C puis, tout en agitant mécaniquement à la température ambiante, on ajoute 32,1 g de di éthanolamine portée à une température de 30[deg.]C. Au cours d'une période de secondes, dans Le tourbillon du mélange agité, on ajoute

  
 <EMI ID=27.1> 

  
nate et de 20% de 2,6-tolylène-diisocyanate. Il se forme une dispersion blanche et stable, tandis que, dans les 30 secondes qui suivent l'achèvement de l'addition de l'isocyanate, la température s'élève de 20[deg.]C à 37[deg.]C. Le produit de polyaddition contient l'isocyanate et l'alcanolamine dans le rapport molaire de 0,9 à 1, tandis que le produit final contient 8% du produit de polyaddition dans le polyéther-polyol en ayant une viscosité acceptable à la température ambiante.

  
On dépose 300 g du produit ci-dessus dans un bêcher,

  
 <EMI ID=28.1> 

  
22[deg.]C. Ensuite, on ajoute 0,75 g de dilaurate d'étain-dibutyle et on agite pendant 10 secondes, puis on ajoute 117 g d'un mélange constitué de 80% de 2,4-tolylène-diisocyanate et de
20% de 2,6-tolylène-diisocyanate. Après 5 secondes supplémentaires, on verse le mélange dans une boite et on entame

  
 <EMI ID=29.1> 

  
depuis la fin de l'opération de mélange, on obtient une mousse irrétrécissable à "haute résilience" ayant des propriétés analogues à celles mentionnées à l'exemple 1. 

Exemple 3

  
Exemple On forme une mousse conformément au procédé décrit  à l'exemple 2, avec cette exception que l'on remplace les 
300 g du produit de polyaddition dans le polyéther-polyol  par 300 g du polyéther-polyol (polyéther A), tandis que l'on utilise uniquement 100 g de l'isocyanate. L'expansion

  
 <EMI ID=30.1> 

  
t

  
cette exception que la mousse obtenue rétrécit, les propriétés ne pouvant être mesurées.

Exemple 4

  
On prépare le produit de polyaddition dans le polyéther-polyol en utilisant le polyéther A suivant l'exemple 2 et on le transforme en mousse également conformément à l'exemple 2, avec cette exception que l'on remplace la totalité du dilaurate d'étain-dibutyle par 0,6 g d'octoate stanneux.

  
On obtient une mousse irrétrécissable du type à haute résilience ayant des propriétés analogues à celles mentionnées

  
à l'exemple 1.

Exemple 5

  
On prépare un produit de polyaddition et on le transforme en mousse conformément à l'exemple 2, avec cette exception que l'on remplace le polyéther A par le polyéther B. 

  
La dispersion stable dans le polyéther-polyol a une teneur

  
en solides de 8% et une viscosité acceptable à la température ambiante. La mousse obtenue est irrétrécissable et possède des propriétés analogues à celles mentionnées à l'exemple 1.

Exemple 6

  
On prépare un produit de polyaddition dans le polyéther A conformément à l'exemple 2, avec cette exception que le rapport molaire entre l'isocyanate et l'alcanolamine est

  
 <EMI ID=31.1>  produit obtenu a une viscosité élevée de plus de 2.500 centipoises à 25[deg.]C, cette viscosité permettant néanmoins l'utilisation du produit obtenu. La transformation en mousse effectuée conformément à l'exemple 2 donne une mousse irrétrécissable

  
à haute résilience.

Exemple 7

  
On prépare un produit de polyaddition dans le polyéther A conformément à l'exemple 2, avec cette exception que

  
 <EMI ID=32.1> 

  
de 0,45 à i et que la teneur totale en solides est de 8%.

  
La transformation en mousse effectuée conformément à l'exemple 2 donne une mousse rétrécissable. Les propriétés de cette mousse ne peuvent être mesurées.

Exemple 8

  
On prépare un produit de polyaddition en prenant

  
920 g du polyéther A porté à une température de 20[deg.]C et en mélangeant avec 24,5 g de diéthanolamine à une température

  
 <EMI ID=33.1> 

  
vigoureusement. On obtient un produit de polyaddition dans un polyéther-polyol avec une teneur en solides de 8% et une viscosité élevée supérieure à 3.000 centipoises à 25[deg.]C, cette viscosité permettant néanmoins d'utiliser le produit.

  
On transforme ce produit conformément à l'exemple 2 pour obtenir une mousse irrétrécissable du type à haute résilience.

Exemple 9

  
On prépare une dispersion stable dans le polyéther C à une température de 20[deg.]C en prenant 800 g du polyéther C et en ajoutant 80,24 g de diéthanolamine portée à une température

  
 <EMI ID=34.1> 

  
dition de 119,75 g d'un mélange de 80% de 2,4-tolylène-diiso- <EMI ID=35.1> 

  
ayant lieu au cours d'une période d'une minute. On observe une élévation de température de 29[deg.]C et, après refroidissement, le produit a une viscosité acceptable à la température ambiante et une teneur en solides de 20%.

Exemple 10

  
On prépare une dispersion stable conformément à l'exemple 9, avec cette exception que l'on remplace le polyéther C par le polyéther D. Le composé de polyaddition obtenu dans le polyéther D a une teneur en solides de 20% et une viscosité acceptable à la température ambiante.

  
Les dispersions stables obtenues conformément aux exemples 1, 2, 5-10 ci-dessus sont d'une nature non ionique. En d'autres mots, les dispersions contiennent des substances polymères covalentes exemptes de groupes ioniques. De plus, on n'utilise pratiquement pas d'eau ni un autre milieu ionique lors de la préparation des dispersions (ces dispersions ne contiennent pas non plus de l'eau ni un autre milieu ionique). A cet égard, la présence de traces d'eau telles que celles ayant tendance à apparaître dans des polyols disponibles dans le commerce et d'autres matières de départ, peut être acceptable encore que, en règle générale, la présence d'eau soit inopportune et doit être maintenue à une valeur aussi faible que possible.

   De préférence, la teneur en eau ne doit pas dépasser 1% en poids et, mieux encore, cette teneur est très nettement inférieure à cette valeur (par exemple, en

  
 <EMI ID=36.1> 

  
cas, le procédé de l'invention puisse être effectué à des teneurs en eau supérieures à 1%. 

  
 <EMI ID=37.1> 

  
de l'invention peuvent être du type des triols contenant principalement des groupes hydroxy primaires dans la mesure où ces polyols sont utilisés, en particulier, comme matières de départ pour la formation des mousses de polyuréthanes. Toutefois., étant donné que la préparation de polyols modifiés par des polymères conformément au procédé de la présente invention et, en particulier, la préparation de dispersions du type décrit dans les exemples ci-dessus, impliquent la réaction de l'isocyanate entièrement ou principalement avec l'olamine, le polyol agissant entièrement ou principalement comme support n'ayant pas réagi, on comprendra que l'on peut utiliser n'importe quel polyol approprié choisi, en particulier,

   suivant les conditions requises pour une réaction ultérieure de formation de polyuréthanes dans laquelle doit être utilisé le polyol modifié par un polymère. C'est ainsi que, par exemple, on peut utiliser des polyols qui sont des triols et/ou des diols et qui comportent des groupes hydroxy primaires et/ou secondaires ou n'importe quelle autre structure appropriée. 

REVENDICATIONS

  
 <EMI ID=38.1> 

  
polyol, caractérisé en ce que la matière de départ est une

  
olamine, laquelle réagit au moins principalement de manière polyfonctionnelle avec l'isocyanate.

Claims (1)

  1. 2. Procédé suivant la revendication 1, caractérisé
    en ce que l'olamine est une alcanolamine.
    3. Procédé suivant la revendication 2, caractérisé
    en ce qu'on mélange l'alcano lamine et l'isocyanate dans un
    rapport molaire d'environ 1/0,5 à 1/1,5 en présence d'un polyéther-polyol ayant un poids moléculaire se situant dans l'intervalle compris entre 200 et 10.000, l'alcanolamine <EMI ID=39.1>
    1 à 35%, calculés sur le poids du polyol.
    4. Procédé suivant la revendication 3, caractérisé
    <EMI ID=40.1>
    un rapport molaire de 1/0,8 à 1/1,1.
    <EMI ID=41.1>
    en ce qu'on fait réagir l'alcanolamine et l'isocyanate dans
    un rapport molaire supérieur à 1/1,6 en présence d'un agent
    de protection de chaîne,
    6. Procédé suivant l'une quelconque des revendications 3 et 4, caractérisé en ce que le poids total de l'alcanolamine et du polyisocyanate est supérieur à 10%, calculés
    sur le poids du polyol tandis que, après polymérisation de l'alcanolamine avec l'isocyanate, on ajoute une quantité supplémentaire de polyol pour diluer le polyol modifié par
    le polymère. 7. Procédé suivant l'une quelconque des revendica-
    <EMI ID=42.1>
    triéthanolamine.
    8, Procédé suivant l'une quelconque des revendications 2 à 7, caractérisé en ce qu'on mélange un catalyseur avec l'alcanolamine et le polyisocyanate afin de catalyser la réaction de polymérisation entre eux.
    9, Procédé suivant la revendication 8, caractérisé en ce que le catalyseur est choisi parmi des composés organométalliques et des amines.
    10. Procédé suivant l'une quelconque des revendications 2 à 9, caractérisé en ce qu'on mélange des additifs avec l'alcanolamine et le polyisocyanate afin de modifier la réaction de polymérisation entre eux.
    11. Procédé suivant la revendication 10, caractérisé en ce que les additifs modifiant la réaction sont choisis parmi les isocyanates monofonctionnels, les amines monofonctionnelles et les diakylalcanolamines.
    12. Polyol modifié par un polymère, caractérisé
    en ce qu'il est préparé par le procédé suivant l'une quelconque des revendications 1 à 11.
    13. Polyol modifié par un polymère, ce polyol comprenant un polyol et un produit de polyaddition, caractérisé en ce que le produit de polyaddition résulte de la réaction d'une olamine au moins principalement de manière polyfonctionnelle avec un polyisocyanate organique.
    14. Polyol modifié par un polymère suivant l'une quelconque des revendications 12 et 13, caractérisé en ce qu'il e3t sous forme d'une dispersion stable. 15. Procédé de formation d'un polyuréthane, procédé dans lequel on fait réagir un isocyanate avec un polyol, caractérisé en ce que ce polyol est un polyol modifié par un polymère préformé suivant l'une quelconque des revendications 12 à 14.
    <EMI ID=43.1>
    en ce que l'isocyanate réagissant avec le polyol est le même que celui utilisé pour former le polyol modifié par un polymère.
    17. Procédé suivant l'une quelconque des revendications 15 et 16, caractérisé en ce que la réaction de formation d'un polyuréthane entre l'isocyanate et le polyol est effectuée en présence d'additifs choisis parmi des agents gonflants, des catalyseurs, des stabilisants, des agents de réticulation, des agents ignifuges, des pigments et des charges.
    18. Polyuréthane, caractérisé en ce qu'il est forme par le procédé suivant l'une quelconque des revendications
    15 à 17.
BE0/203790A 1980-02-14 1981-02-13 Poyols modifies par des polymeres et utiles dans la fabrication des polyurethanes BE887514A (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8005111 1980-02-14

Publications (1)

Publication Number Publication Date
BE887514A true BE887514A (fr) 1981-06-01

Family

ID=10511375

Family Applications (1)

Application Number Title Priority Date Filing Date
BE0/203790A BE887514A (fr) 1980-02-14 1981-02-13 Poyols modifies par des polymeres et utiles dans la fabrication des polyurethanes

Country Status (3)

Country Link
JP (1) JPS56127621A (fr)
BE (1) BE887514A (fr)
ZA (1) ZA81709B (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE051672T2 (hu) * 2013-09-13 2021-03-29 Dow Global Technologies Llc Pipa-alapú, égés-módosított poliuretán hab
BR112016005362B1 (pt) * 2013-09-13 2021-03-09 Dow Global Technologies Llc método de produção de uma espuma viscoelástica

Also Published As

Publication number Publication date
ZA81709B (en) 1982-02-24
JPH0148288B2 (fr) 1989-10-18
JPS56127621A (en) 1981-10-06

Similar Documents

Publication Publication Date Title
FR2476101A1 (fr) Polyol modifie par un polymere, son procede de preparation et son application a la production d&#39;un polyurethanne
US4374209A (en) Polymer-modified polyols useful in polyurethane manufacture
GB2072204A (en) Polymer-modified polyols useful in polyurethane manufacture
FR2569705A1 (fr) Mousses de polyurethanne et leur procede de production
JP4215649B2 (ja) シリコーン含有フォーム材料
FR2601682A1 (fr) Procede pour la production de mousse de polyurethane melangee a de l&#39;asphalte
FR2601024A1 (fr) Melange de polyol stable au stockage, procede pour sa preparation, procede de preparation d&#39;un polyurethane utilisant ce melange et produit d&#39;addition de polyol utile pour cette preparation
EP2563830B1 (fr) Composition pour les mousses polyuréthane à un composant
EP2668219A1 (fr) Composition pour des mousses polyuréthane à un composant ayant une faible teneur en mdi monomère libre
CA1133165A (fr) Organopolysiloxanes modifies par des polycarbodiimides
CN101790555A (zh) 含有机硅的泡沫
EP0219399A1 (fr) Procédé de préparation d&#39;une composition d&#39;émulsion aqueuse de bitume-polyuréthanne
EP0013112A1 (fr) Compositions émulsifiables et émulsions aqueuses d&#39;isocyanates organiques et procédé les utilisant comme liants pour la fabrication de feuilles de lignocellulose
EP0156665B2 (fr) Procédé pour améliorer la résistance à l&#39;hydrolyse des élastomères d&#39;uréthanne saturés, compositions pour la mise en oeuvre de ce procédé et produits obtenus
FR2467229A1 (fr) Mousse de polyurethane rigidifiee a alveoles ouvertes, compositions et procedes pour preparer cette mousse
EP2247635A1 (fr) Nouveaux allongeurs de chaines pour formulations d&#39;elastomeres de polyurethanes
BE887514A (fr) Poyols modifies par des polymeres et utiles dans la fabrication des polyurethanes
EP2892939B1 (fr) Composition d&#39;allophanate et de resine hydrophobe
Zalewski et al. Rheokinetic studies on the curing process of energetic systems containing RDX, HTPB with high content of 1, 2-vinyl groups and hydantoin-based bonding agent
FR2459807A1 (fr) Mousse rigide de polyurethanne a groupements isocyanurate
FR2492834A1 (fr) Procede de preparation d&#39;adhesifs prepolymeres au polyurethane et adhesifs ainsi obtenus
LU83709A1 (fr) Polyurethane durcissable,a une partie
CH430191A (fr) Procédé de fabrication de mousses de polyuréthane
EP0027401A1 (fr) Procédé de fabrication de mousses souples de polyuréthanne à l&#39;aide de polypentaérythritols triorganosilyles
FR2511381A1 (fr) Procede de fabrication d&#39;elastomeres moules par injection a reaction en utilisant un systeme catalytique contenant un constituant polymere et systeme catalytique utilise

Legal Events

Date Code Title Description
RE20 Patent expired

Owner name: INTERCHEM INTERNATIONAL S.A.

Effective date: 20010213