<EMI ID=1.1>
<EMI ID=2.1>
<EMI ID=3.1>
<EMI ID=4.1> <EMI ID=5.1>
<EMI ID=6.1>
<EMI ID=7.1>
<EMI ID=8.1>
<EMI ID=9.1>
<EMI ID=10.1>
met ensuite en contact avec l'oléfine désirée phase liquide
<EMI ID=11.1>
<EMI ID=12.1>
<EMI ID=13.1>
atomes de carbone par molécule) dans le milieu réactionnel
liquide en présence de l'oléfine. En présence d'un catalyseur
<EMI ID=14.1>
<EMI ID=15.1>
<EMI ID=16.1>
<EMI ID=17.1>
r? ..,� .3'_ <EMI ID=18.1> <EMI ID=19.1> <EMI ID=20.1>
liquide avec de l'oxygène moléculaire pour former l'acide p-alcoxy-carboxylique saturé correspondant (voir, par exemple,
<EMI ID=21.1>
acides et esters acryliques et méthacryliques) qui sont des produits intermédiaires utiles lors de la préparation de polymères utilisés dans une large variété de produits, par exemple,
<EMI ID=22.1>
<EMI ID=23.1>
aldéhydes non substitués à chaîne droite et à chaîna ramifiée
<EMI ID=24.1>
dans des récipients réactionnels contenant du titane en vue de <EMI ID=25.1>
<EMI ID=26.1>
<EMI ID=27.1>
qui représente une perte de produit utile et nécessite une récupération de l'alcool comme sous-produit majeur.
<EMI ID=28.1>
met des oléfines et des aldéhydes aliphatiques saturés et substitués en position 6 en phase liquide en contact avec de l'oxygène moléculaire en vue de former simultanément le dérivé
<EMI ID=29.1>
<EMI ID=30.1>
De façon étonnante,. on a trouvé que; grâce au procédé de la présente invention, on pouvait obtenir ces époxydes et ces acides carboxyliques substitués en position avec une formation relativement mineure de sous-produits.
Sous les aspects plus larges de la présente in-
<EMI ID=31.1>
non catalytique, en phase liquide et à basse température, d'une oléfine et d'un aldéhyde aliphatique saturé- et substitué en
<EMI ID=32.1>
correspondant) au moyen d'oxygène ou d'un. gaz oxygéné.
Les aldéhydes aliphatiques saturés p-substitués que l'on peut utiliser dans le procédé de la présente invention,
<EMI ID=33.1>
<EMI ID=34.1>
<EMI ID=35.1>
<EMI ID=36.1>
<EMI ID=37.1>
<EMI ID=38.1>
<EMI ID=39.1>
<EMI ID=40.1>
<EMI ID=41.1> <EMI ID=42.1>
aliphatiques saturés {3-substitués de loin préférés sont ceux
<EMI ID=43.1>
comprenant un atome d'hydrogène et un groupé alkyle contenant
<EMI ID=44.1>
parmi les groupes alcoxy contenant 1 à 4 atomes de carbone"
<EMI ID=45.1>
<EMI ID=46.1>
nant le p-méthoxyisobutyraldéhyde, le' p-méthoxypropionaldéhyde,
<EMI ID=47.1>
Bien entendu, la source de l'aldéhyde aliphatique
<EMI ID=48.1>
<EMI ID=49.1>
<EMI ID=50.1>
<EMI ID=51.1>
<EMI ID=52.1>
<EMI ID=53.1>
-invention (voir^ par exemple, les procédés décrits <EMI ID=54.1>
<EMI ID=55.1>
<EMI ID=56.1>
<EMI ID=57.1> <EMI ID=58.1>
<EMI ID=59.1>
<EMI ID=60.1> <EMI ID=61.1>
1 ' intervalle désiré.
La seule restriction imposée aux températures
<EMI ID=62.1> être considérée comme un seuil' au-delà duquel il se produit.,
<EMI ID=63.1>
<EMI ID=64.1>
<EMI ID=65.1>
<EMI ID=66.1>
<EMI ID=67.1>
<EMI ID=68.1>
<EMI ID=69.1>
les concentrations des nitriles se situeront entre environ
<EMI ID=70.1>
<EMI ID=71.1>
- calculés sur la concentration de l'aldéhyde aliphatique saturé <EMI ID=72.1>
Parmi les nitriles - aliphatiques saturés,contenant
<EMI ID=73.1>
<EMI ID=74.1>
Différents moyens connus dans la technique peuvent�
<EMI ID=75.1>
<EMI ID=76.1>
<EMI ID=77.1>
<EMI ID=78.1>
types d'agitations du mélange réàctionnel. Une agitation vigoureuse du mélange réactionnel assure non seulement un contact
<EMI ID=79.1>
facilite également la dissipation de. la chaleur de la réaction
<EMI ID=80.1>
Le récipient réactionnel permettant d'effectuer cette co-oxydation peut être réalisé pratiquement avec n'importe quelle matière choisie parmi les matières céramiques, la porcelaine, le verre, la silice, différents métaux tels que les aciers <EMI ID=81.1>
<EMI ID=82.1>
nier.
Bien qu'il ne soit pas nécessaire d'ajouter un
<EMI ID=83.1>
utiliser les catalyseurs d'oxydation habituels dans la zone
<EMI ID=84.1>
<EMI ID=85.1>
sous forme métallique ou sous forme combinée, de préférence, sous forme d'oxydes ou de carbonates ou encore sous forme
<EMI ID=86.1>
<EMI ID=87.1>
port ou non ou encore sous forme de suspensions finement
divisées ou en solution dans le solvant utilisé.
'Bien qu'ils ne soient pas nécessaires, des initiateurs, des accélérateurs ou des promoteurs appropriés peuvent être ajoutés dans la zone réactionnelle afin de raccourcir ou:
<EMI ID=88.1>
<EMI ID=89.1>
ou accélérateur supplémentaire ne doit être ajouté. Parmi les
<EMI ID=90.1>
<EMI ID=91.1>
<EMI ID=92.1>
inorganiques (par exemple, l'hydrogène et les peroxydes de
<EMI ID=93.1>
<EMI ID=94.1>
fine et/ ou d'un aldéhyde avec un solvant* (avantageusement
<EMI ID=95.1>
gaz oxygéné peut être introduit progrès ou continuelle- ment dans le mélange oléfine/ aldéhyde et solvant. De même, on
<EMI ID=96.1>
peut introduire simultanément l'aldéhyde et le gaz oxygéné par
<EMI ID=97.1>
contenu dans un récipient réactionnel approprié. Dans une forme
<EMI ID=98.1>
déhyde et du gaz oxygéné dans le solvant et dans un réacteur
<EMI ID=99.1>
portions dans lesquelles est chargé l'oxygène ou le gaz oxygéné, dépendent largement des dimensions du réacteur et du rendement
<EMI ID=100.1>
Les produits d'oxydation peuvent être, retiras du
<EMI ID=101.1>
<EMI ID=102.1>
<EMI ID=103.1>
<EMI ID=104.1>
<EMI ID=105.1>
<EMI ID=106.1>
techniques classiques pour la séparation du produit désirée notamment une distillation, un fractionnement, une extraction,
<EMI ID=107.1> <EMI ID=108.1>
mentionnés ici à titre de référence.
<EMI ID=109.1>
<EMI ID=110.1>
<EMI ID=111.1>
<EMI ID=112.1>
classique". On peut avantageusement faire passer l'effluent
du réacteur dans un récipient séparé dans lequel on le met
en contact avec de l'hydrogène de préférence, en .présence, de
<EMI ID=113.1> <EMI ID=114.1>
<EMI ID=115.1>
Les condition^ de température et de pression
<EMI ID=116.1>
à une hydrogénation, peuvent varier dans de larges limites, mais la température se situe généralement entre environ 0 et
<EMI ID=117.1>
sieurs atmosphères ou davantage encore. De préférence, on
<EMI ID=118.1>
<EMI ID=119.1> <EMI ID=120.1>
parmi le groupe comprenant les composés répondant ,la.' formule
<EMI ID=121.1>
<EMI ID=122.1> <EMI ID=123.1> <EMI ID=124.1>
<EMI ID=125.1>
<EMI ID=126.1> <EMI ID=127.1>
<EMI ID=128.1>
pression avec de l'azote pour- obtenir un rapport .molaire d'en-
<EMI ID=129.1>
de température est atteint, On constate que la pression auto-
<EMI ID=130.1>
<EMI ID=131.1>
<EMI ID=132.1>
<EMI ID=133.1>
quoi la pression interne commence à tomber presque immédiate-
<EMI ID=134.1>
l'oxygène sous pression selon les nécessités pour maintenir
<EMI ID=135.1>
<EMI ID=136.1>
- Ensuite, on refroidit l'autoclave et on analyse la phase gazeuse et la phase liquide afin d'en déterminer les teneurs en <EMI ID=137.1>
<EMI ID=138.1>
<EMI ID=139.1>
<EMI ID=140.1> <EMI ID=141.1> appropria). L'analyse de la phase gazeuse et- de la phase liquidé au terme de l'hydrogénation indiqué que le rendement en acide
<EMI ID=142.1>
<EMI ID=143.1>
que le pourcentage pondéral d'oxyde de, propylène contenu dans la phase liquide après l'hydrogénation est essentiellement
<EMI ID=144.1>
dans le liquide chargé pour la réaction d'hydrogénation. On
<EMI ID=145.1>
<EMI ID=146.1>
exception que l'on chauffe l'autoclave à environ '1)00 Cet qu'on laisse se dérouler la réaction pendant 24 minutes . L'analyse:,
<EMI ID=147.1>
<EMI ID=148.1> <EMI ID=149.1>
le procédé de l'exemple sur une fraction mélange liquide
<EMI ID=150.1>
<EMI ID=151.1>
<EMI ID=152.1>
<EMI ID=153.1>
cet oxyde de propylène dans le liquide chargé . dans : la réaction <EMI ID=154.1>
EXEMPLE 6
On répète le procédé de l'exemple 4." avec cette
<EMI ID=155.1>
<EMI ID=156.1>
L'analyse de la phase gazeuse et de la phase liquide indique
<EMI ID=157.1>
<EMI ID=158.1>
<EMI ID=159.1>
<EMI ID=160.1>
<EMI ID=161.1>
chauffe l'autoclave à une température de 60[deg.]C et qu'on laisse
<EMI ID=162.1>
phase gazeuse et de la phase liquide indique que l'oxyde de
<EMI ID=163.1>
propylène chargé, et que l'acide est formé <EMI ID=164.1>
<EMI ID=165.1>
<EMI ID=166.1>
<EMI ID=167.1>
<EMI ID=168.1>
EXEMPLE 8
<EMI ID=169.1> <EMI ID=170.1>
<EMI ID=171.1>
L'hydrogénation d'une portion du, mélange réac-
<EMI ID=172.1>
On constate que le pourcentage pondéral d'oxyde de propylène dans la phase liquide après 1 ' hydrogénation est essentiellement <EMI ID=173.1>
dans le liquide charge dans la réaction, d'hydrogénation. 'OR
<EMI ID=174.1> <EMI ID=175.1> <EMI ID=176.1>
<EMI ID=177.1>
<EMI ID=178.1>
le procédé de;: la présente invention peut encore être illustre par les 'exemples, supplémentaires ci-après.
<EMI ID=179.1>
<EMI ID=180.1> <EMI ID=181.1>
<EMI ID=182.1>
<EMI ID=183.1>
<EMI ID=184.1>
<EMI ID=185.1>
<EMI ID=186.1> <EMI ID=187.1> <EMI ID=188.1> . De plus, si l'on compare les résultats obtenus en utilisant <EMI ID=189.1> <EMI ID=190.1>
<EMI ID=191.1>
<EMI ID=192.1>
brevet canadien, tandis que la transformation d'aldéhyde suivant
<EMI ID=193.1>
<EMI ID=194.1>
<EMI ID=195.1>
<EMI ID=203.1>
<EMI ID=196.1>
<EMI ID=197.1>
Afin d'illustrer l'utilisation de chloroforme comme solvant, _dans un autoclave agité et scellé en acier
<EMI ID=198.1>
<EMI ID=199.1>
<EMI ID=200.1>
blissant ainsi un rapport molaire d'environ 2,2:1 entre le
<EMI ID=201.1>
<EMI ID=202.1>
réactionnel, on introduit ensuite de l'oxygène pour obtenir une
<EMI ID=204.1> <EMI ID=205.1>
<EMI ID=206.1>
<EMI ID=207.1>
Il est évident que diverses modifications peuvent être envisagées sans se départir de l'esprit et décadré de l'invention et, par conséquente il est entendu que toute la
<EMI ID=208.1>
d'illustration et sans aucun caractère limitatif.
<EMI ID=209.1>
<EMI ID=210.1>
<EMI ID=211.1>
<EMI ID=212.1> <EMI ID=213.1>
<EMI ID=214.1>
milieu fluide.
<EMI ID = 1.1>
<EMI ID = 2.1>
<EMI ID = 3.1>
<EMI ID = 4.1> <EMI ID = 5.1>
<EMI ID = 6.1>
<EMI ID = 7.1>
<EMI ID = 8.1>
<EMI ID = 9.1>
<EMI ID = 10.1>
then puts in contact with the desired olefin liquid phase
<EMI ID = 11.1>
<EMI ID = 12.1>
<EMI ID = 13.1>
carbon atoms per molecule) in the reaction medium
liquid in the presence of the olefin. In the presence of a catalyst
<EMI ID = 14.1>
<EMI ID = 15.1>
<EMI ID = 16.1>
<EMI ID = 17.1>
r? .., � .3'_ <EMI ID = 18.1> <EMI ID = 19.1> <EMI ID = 20.1>
liquid with molecular oxygen to form the corresponding saturated p-alkoxy-carboxylic acid (see, for example,
<EMI ID = 21.1>
acrylic and methacrylic acids and esters) which are useful intermediates in the preparation of polymers used in a wide variety of products, for example,
<EMI ID = 22.1>
<EMI ID = 23.1>
straight chain and branched chain unsubstituted aldehydes
<EMI ID = 24.1>
in reaction vessels containing titanium for <EMI ID = 25.1>
<EMI ID = 26.1>
<EMI ID = 27.1>
which represents a loss of useful product and requires recovery of alcohol as a major by-product.
<EMI ID = 28.1>
puts saturated and substituted aliphatic olefins and aliphates substituted in position 6 in the liquid phase in contact with molecular oxygen in order to simultaneously form the derivative
<EMI ID = 29.1>
<EMI ID = 30.1>
Surprisingly ,. we found that; by the process of the present invention, these epoxides and these position-substituted carboxylic acids could be obtained with relatively minor formation of by-products.
Under the broader aspects of this in-
<EMI ID = 31.1>
non-catalytic, in liquid phase and at low temperature, of an olefin and of a saturated aliphatic aldehyde- and substituted in
<EMI ID = 32.1>
corresponding) using oxygen or a. oxygenated gas.
The p-substituted saturated aliphatic aldehydes which can be used in the process of the present invention,
<EMI ID = 33.1>
<EMI ID = 34.1>
<EMI ID = 35.1>
<EMI ID = 36.1>
<EMI ID = 37.1>
<EMI ID = 38.1>
<EMI ID = 39.1>
<EMI ID = 40.1>
<EMI ID = 41.1> <EMI ID = 42.1>
far preferred {3-substituted saturated aliphatics are those
<EMI ID = 43.1>
comprising a hydrogen atom and an alkyl group containing
<EMI ID = 44.1>
from alkoxy groups containing 1 to 4 carbon atoms "
<EMI ID = 45.1>
<EMI ID = 46.1>
nant p-methoxyisobutyraldehyde, 'p-methoxypropionaldehyde,
<EMI ID = 47.1>
Of course, the source of the aliphatic aldehyde
<EMI ID = 48.1>
<EMI ID = 49.1>
<EMI ID = 50.1>
<EMI ID = 51.1>
<EMI ID = 52.1>
<EMI ID = 53.1>
-invention (see ^ for example, the methods described <EMI ID = 54.1>
<EMI ID = 55.1>
<EMI ID = 56.1>
<EMI ID = 57.1> <EMI ID = 58.1>
<EMI ID = 59.1>
<EMI ID = 60.1> <EMI ID = 61.1>
1 desired interval.
The only restriction on temperatures
<EMI ID = 62.1> be considered as a threshold 'beyond which it occurs.,
<EMI ID = 63.1>
<EMI ID = 64.1>
<EMI ID = 65.1>
<EMI ID = 66.1>
<EMI ID = 67.1>
<EMI ID = 68.1>
<EMI ID = 69.1>
nitrile concentrations will be between about
<EMI ID = 70.1>
<EMI ID = 71.1>
- calculated on the concentration of saturated aliphatic aldehyde <EMI ID = 72.1>
Among the nitriles - saturated aliphatics, containing
<EMI ID = 73.1>
<EMI ID = 74.1>
Various means known in the art can �
<EMI ID = 75.1>
<EMI ID = 76.1>
<EMI ID = 77.1>
<EMI ID = 78.1>
types of agitation of the reaction mixture. Vigorous stirring of the reaction mixture not only ensures contact
<EMI ID = 79.1>
also facilitates the dissipation of. the heat of the reaction
<EMI ID = 80.1>
The reaction vessel enabling this co-oxidation to be carried out can be carried out with practically any material chosen from ceramic materials, porcelain, glass, silica, various metals such as steels <EMI ID = 81.1>
<EMI ID = 82.1>
deny.
Although it is not necessary to add a
<EMI ID = 83.1>
use the usual oxidation catalysts in the area
<EMI ID = 84.1>
<EMI ID = 85.1>
in metallic form or in combined form, preferably in the form of oxides or carbonates or alternatively in the form
<EMI ID = 86.1>
<EMI ID = 87.1>
wearing or not or in the form of suspensions finely
divided or dissolved in the solvent used.
'' Although not necessary, appropriate initiators, accelerators or promoters can be added to the reaction zone to shorten or:
<EMI ID = 88.1>
<EMI ID = 89.1>
or additional accelerator should only be added. From
<EMI ID = 90.1>
<EMI ID = 91.1>
<EMI ID = 92.1>
inorganic (for example, hydrogen and peroxides of
<EMI ID = 93.1>
<EMI ID = 94.1>
fine and / or an aldehyde with a solvent * (advantageously
<EMI ID = 95.1>
oxygenated gas can be introduced progressively or continuously into the olefin / aldehyde and solvent mixture. Likewise, we
<EMI ID = 96.1>
can simultaneously introduce aldehyde and oxygenated gas through
<EMI ID = 97.1>
contained in a suitable reaction container. In a form
<EMI ID = 98.1>
dehyde and oxygenated gas in the solvent and in a reactor
<EMI ID = 99.1>
portions in which oxygen or oxygenated gas is charged, largely depend on the dimensions of the reactor and on the yield
<EMI ID = 100.1>
Oxidation products can be removed from
<EMI ID = 101.1>
<EMI ID = 102.1>
<EMI ID = 103.1>
<EMI ID = 104.1>
<EMI ID = 105.1>
<EMI ID = 106.1>
conventional techniques for the separation of the desired product, in particular distillation, fractionation, extraction,
<EMI ID = 107.1> <EMI ID = 108.1>
mentioned here for reference.
<EMI ID = 109.1>
<EMI ID = 110.1>
<EMI ID = 111.1>
<EMI ID = 112.1>
classical ". It is advantageous to pass the effluent
from the reactor in a separate container in which we put it
in contact with hydrogen preferably, in the presence, of
<EMI ID = 113.1> <EMI ID = 114.1>
<EMI ID = 115.1>
Temperature and pressure conditions
<EMI ID = 116.1>
at hydrogenation, can vary within wide limits, but the temperature is generally between about 0 and
<EMI ID = 117.1>
several atmospheres or more. Preferably, we
<EMI ID = 118.1>
<EMI ID = 119.1> <EMI ID = 120.1>
from the group comprising the responding compounds,. formula
<EMI ID = 121.1>
<EMI ID = 122.1> <EMI ID = 123.1> <EMI ID = 124.1>
<EMI ID = 125.1>
<EMI ID = 126.1> <EMI ID = 127.1>
<EMI ID = 128.1>
pressure with nitrogen to obtain a molar ratio of
<EMI ID = 129.1>
temperature is reached, We see that the auto pressure
<EMI ID = 130.1>
<EMI ID = 131.1>
<EMI ID = 132.1>
<EMI ID = 133.1>
which the internal pressure begins to fall almost immediately-
<EMI ID = 134.1>
oxygen under pressure as necessary to maintain
<EMI ID = 135.1>
<EMI ID = 136.1>
- Then, the autoclave is cooled and the gas phase and the liquid phase are analyzed in order to determine the contents of <EMI ID = 137.1>
<EMI ID = 138.1>
<EMI ID = 139.1>
<EMI ID = 140.1> <EMI ID = 141.1> appropriate). Analysis of the gas phase and of the liquid phase at the end of the hydrogenation indicated that the acid yield
<EMI ID = 142.1>
<EMI ID = 143.1>
that the percentage by weight of propylene oxide contained in the liquid phase after the hydrogenation is essentially
<EMI ID = 144.1>
in the liquid charged for the hydrogenation reaction. We
<EMI ID = 145.1>
<EMI ID = 146.1>
except that the autoclave is heated to approximately '1) 00 This is allowed to proceed for 24 minutes. Analysis :,
<EMI ID = 147.1>
<EMI ID = 148.1> <EMI ID = 149.1>
the method of the example on a liquid mixture fraction
<EMI ID = 150.1>
<EMI ID = 151.1>
<EMI ID = 152.1>
<EMI ID = 153.1>
this propylene oxide in the charged liquid. in: the reaction <EMI ID = 154.1>
EXAMPLE 6
We repeat the process of example 4. "with this
<EMI ID = 155.1>
<EMI ID = 156.1>
Analysis of the gas phase and the liquid phase indicates
<EMI ID = 157.1>
<EMI ID = 158.1>
<EMI ID = 159.1>
<EMI ID = 160.1>
<EMI ID = 161.1>
heat the autoclave to a temperature of 60 [deg.] C and leave it
<EMI ID = 162.1>
gas phase and the liquid phase indicates that the oxide of
<EMI ID = 163.1>
charged propylene, and that the acid is formed <EMI ID = 164.1>
<EMI ID = 165.1>
<EMI ID = 166.1>
<EMI ID = 167.1>
<EMI ID = 168.1>
EXAMPLE 8
<EMI ID = 169.1> <EMI ID = 170.1>
<EMI ID = 171.1>
The hydrogenation of a portion of the reaction mixture
<EMI ID = 172.1>
It is found that the percentage by weight of propylene oxide in the liquid phase after the hydrogenation is essentially <EMI ID = 173.1>
in the liquid charged in the reaction, hydrogenation. 'GOLD
<EMI ID = 174.1> <EMI ID = 175.1> <EMI ID = 176.1>
<EMI ID = 177.1>
<EMI ID = 178.1>
the method of ;: the present invention can be further illustrated by the 'additional examples below.
<EMI ID = 179.1>
<EMI ID = 180.1> <EMI ID = 181.1>
<EMI ID = 182.1>
<EMI ID = 183.1>
<EMI ID = 184.1>
<EMI ID = 185.1>
<EMI ID = 186.1> <EMI ID = 187.1> <EMI ID = 188.1>. Furthermore, if we compare the results obtained using <EMI ID = 189.1> <EMI ID = 190.1>
<EMI ID = 191.1>
<EMI ID = 192.1>
Canadian patent, while the next aldehyde transformation
<EMI ID = 193.1>
<EMI ID = 194.1>
<EMI ID = 195.1>
<EMI ID = 203.1>
<EMI ID = 196.1>
<EMI ID = 197.1>
To illustrate the use of chloroform as a solvent, _in a stirred, sealed steel autoclave
<EMI ID = 198.1>
<EMI ID = 199.1>
<EMI ID = 200.1>
thus reducing a molar ratio of approximately 2.2: 1 between the
<EMI ID = 201.1>
<EMI ID = 202.1>
oxygen is then introduced to obtain a
<EMI ID = 204.1> <EMI ID = 205.1>
<EMI ID = 206.1>
<EMI ID = 207.1>
It is obvious that various modifications can be envisaged without departing from the spirit and framed of the invention and, consequently, it is understood that all of the
<EMI ID = 208.1>
illustration and without any limiting character.
<EMI ID = 209.1>
<EMI ID = 210.1>
<EMI ID = 211.1>
<EMI ID = 212.1> <EMI ID = 213.1>
<EMI ID = 214.1>
fluid medium.