BE875277A - MOTOR MACHINE - Google Patents

MOTOR MACHINE

Info

Publication number
BE875277A
BE875277A BE9/2644A BE9002644A BE875277A BE 875277 A BE875277 A BE 875277A BE 9/2644 A BE9/2644 A BE 9/2644A BE 9002644 A BE9002644 A BE 9002644A BE 875277 A BE875277 A BE 875277A
Authority
BE
Belgium
Prior art keywords
emi
boiler
aggregate
heat
driving
Prior art date
Application number
BE9/2644A
Other languages
French (fr)
Original Assignee
Jourdain Leon J
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jourdain Leon J filed Critical Jourdain Leon J
Priority to BE9/2644A priority Critical patent/BE875277A/en
Publication of BE875277A publication Critical patent/BE875277A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/106Ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

       

  Brevet d'invention

  
Machine motrice

  
Le présent brevet a pour objet une machine motrice qui, conformément aux principes de la thermodynamique, travaille entre une source chaude et une source froide. Toutefois, étant accouplée à une machine frigorifique à absorption ou, mieux encore, à un frigo à diffusion dont l'évaporateur lui servira de source froide, cette machine motrice pourra,

  
en fait, être considérée comme une machine mono-source et convertir, en énergie mécanique,. les calories aux températures les plus basses.

  
Bien que le, frigo à diffusion soit connu depuis un siècle, il peut être utile de rappeler qu'il fonctionne sans apport d'énergie mécanique,mais simplement par la dégradation d'une source de chaleur qui peut être à basse température puisque les vapeurs d'amoniac, contenues dans une solution riche, sont libérées- de cette solution riche, même si la

  
 <EMI ID=1.1>  

  
 <EMI ID=2.1> 

  
n'est donnée qu'à titre exemptât if et non limitatif. Dans une conduite d'eau à basse température considérée comme

  
 <EMI ID=3.1> 

  
du frigo à diffusion. La solution riche, en provenance

  
 <EMI ID=4.1> 

  
sant l'eau de la source chaude .

  
Les vapeurs d'amoniac montent dans la colonne de rectification "Cr" où se condensent les vapeurs d'eau, ce qui provoque un premier dégagement de chaleur au sein de l'agré-

  
 <EMI ID=5.1> 

  
 <EMI ID=6.1> 

  
 <EMI ID=7.1> 

  
l'avaporateur "E" en prélevant une chaleur latente de vaporisation qui est pratiquement égale à celle qui est dégagée .par le condenseur.

  
Les vapeurs d'amoniac retournent enfin à l'absorbeur où elles sont dissoutes ce qui provoque en troisième dégagement de chal eur .

  
Il existe également, toujours au sein de l'agrégat, une quatrième source de chaleur qui est libérée par le retour

  
 <EMI ID=8.1> 

  
Il est essentiel de noter que la chaleur prélevée par le  bouilleur, au sein de la source chaude, est égale à la somme des calories dégagées par la colonne de rectification, par l'absorbeur et par le retour de la solution ..pauvre. Pour la facilité de l'exposé, nous appelerons "source de chaleur de l'agrégat" cet ensemble de calories dont le niveau thermique est compris entre celui de l'évaporateur et celui

  
de la source chaude. Les températures les plus hautes, que l'on trouve à la sortie du bouilleur étant, en fait, pratiquement les mêmes que celle de la source chaude. 

  
 <EMI ID=9.1> 

  
leur pratiquement égale à celle dégagée par le condenseur, et une source chaude que noua appelons "source de chaleur

  
 <EMI ID=10.1> 

  
 <EMI ID=11.1> 

  
L'on pourra donc faire travailler une machine motrice qui  suivant le deuxième principe de la Thermodynamique, sera située entre une source froide et une source chaude.

  
Cette machine motrice est représentée sur la figure 1 par une turbine "T". Différents fluide moteurs, qui vaporisent à.basse température, peuvent être utilisés, amoniac, fréons

  
 <EMI ID=12.1> 

  
Par unité de temps, la quantité de propane qui sera vaporisé sera égale, à la quantité de propane que l'évaporateur du' frigo pourra condenser.

  
 <EMI ID=13.1> 

  
quantité de chaleur sensible pour porter sa température à 

  
 <EMI ID=14.1> 

  
sation dont il a besoin pour changer détat. 

  
Cette quantité de chaleur, le propane, ou le butane, pourra

  
 <EMI ID=15.1> 

  
seur, à lui seul fournit déjà autant. de calories que n'en

  
 <EMI ID=16.1> 

  
Quant à la chaleur sensible qui est nécessaire pour porter le butane à- son point débullition, deux solutions sont possibles comme le montrant les deux figures en annexe.

  
La première solution consiste à prélever les calories nécessaires au sein de la source chaude, en aval du bouilleur ce qui aura l'avantage de refroidir encore davantage la source chaude. 

  
 <EMI ID=17.1> 

  
 <EMI ID=18.1> 

  
 <EMI ID=19.1> 

  
 <EMI ID=20.1> 

  
retendre dans la turbine. 

  
On. aura ainsi refroidi une seconde fois la source

  
chaude - et on aura diminué la quantité de calories à prélever aux quatre sources.de chaleur le l'agrégat pour qu'il puisse fonctionner. Le solde des calories dégagées par l'agrégat pourra être absorbé par un troisième échangeur de chaleur situé en aval de celui qui aura préchauffé le butane.

  
Une deuxième solution consiste à ne prélever les calories nécessaires au butane, qu'au sein de l'agrégat. Dans ce cas.,. on y aura prélevé la chaleur sensible, la chaleur latente de vaporisation et la chaleur de surchauffe du butane. La quantité de chaleur que l'on devra faire "sortir" de l'agégat, pour le faire fonctionner, sera donc très nettement inférieure à la quantité de chaleur que le bouilleur aura prélevée à la source chaude. Grâce à un échangeur de chaleur approprié, situé en aval du bouilleur, la source chaude aura donc été refroidie suffisamment pour pourvoir servir de source froide et absorber les calories de l'agré-

  
 <EMI ID=21.1> 

  
Ce transfert de calories s'opérera d'autant plus facilement que toutes les calories de l'agrégat, qui devront être éliminées, seront à une température supérieure à la température de la source chaude en aval du bouilleur.

  
Il n'est pas possible de prévoir toutes les formes de réalisation possible d'une telle machine et ce compte tenu du fait que chaque installation sera fonction de la température de la source chaude, de son importance quantitative, du fluide moteur que l'on aura intérêt à utiliser, du système binaire (eua-amoniac, glycol-fréon, eau-bromure de lithium, etc) qui conviendra le mieux. 

  
Dans certains cas, on pourra avoir^. intérêt à utiliser une

  
 <EMI ID=22.1>  température ou pour améliiorer le rendement de la machine .

  
On pourra également concevoir au moins deux machines .travail-

  
 <EMI ID=23.1> 

  
tèmes binaires différents. 

  
Il est utile de noter que, au rendement près de la turbine et

  
 <EMI ID=24.1> 

  
la source chaude auront été converties en énergie mécanique.

  
Ce rendement est d'autant plus important que, même si l'on ne dispose comme source chaude que d'eau à zéro degré, on pourra encore faire fonctionner cette machine motrice en prélevant à l'eau une partie de sa chaleur de solidification. 

  
 <EMI ID=25.1> 



  Patent

  
Driving machine

  
The present patent relates to a prime mover which, in accordance with the principles of thermodynamics, works between a hot source and a cold source. However, being coupled to an absorption refrigeration machine or, better still, to a diffusion refrigerator whose evaporator will serve as a cold source, this driving machine can,

  
in fact, to be considered as a single-source machine and to convert, into mechanical energy ,. calories at the lowest temperatures.

  
Although the diffusion refrigerator has been known for a century, it may be useful to remember that it operates without input of mechanical energy, but simply by the degradation of a heat source which can be at low temperature since the vapors of ammonia, contained in a rich solution, are released from this rich solution, even if the

  
 <EMI ID = 1.1>

  
 <EMI ID = 2.1>

  
is given only as an exemption and not limitative. In a low temperature water pipe considered to be

  
 <EMI ID = 3.1>

  
from the diffusion fridge. The rich solution, from

  
 <EMI ID = 4.1>

  
sant hot spring water.

  
The ammonia vapors rise in the rectification column "Cr" where the water vapors condense, which causes a first release of heat within the approval.

  
 <EMI ID = 5.1>

  
 <EMI ID = 6.1>

  
 <EMI ID = 7.1>

  
the evaporator "E" by taking a latent heat of vaporization which is practically equal to that which is given off by the condenser.

  
The ammonia vapors finally return to the absorber where they are dissolved, which causes the third release of heat.

  
There is also, always within the aggregate, a fourth heat source which is released by the return

  
 <EMI ID = 8.1>

  
It is essential to note that the heat taken by the boiler, within the hot source, is equal to the sum of the calories released by the rectification column, by the absorber and by the return of the poor solution. For ease of explanation, we will call "aggregate heat source" this set of calories whose thermal level is between that of the evaporator and that

  
from the hot spring. The highest temperatures, which are found at the outlet of the boiler being, in fact, practically the same as that of the hot spring.

  
 <EMI ID = 9.1>

  
their practically equal to that released by the condenser, and a hot source that we call "heat source

  
 <EMI ID = 10.1>

  
 <EMI ID = 11.1>

  
We can therefore make work a motor machine which according to the second principle of Thermodynamics, will be located between a cold source and a hot source.

  
This prime mover is represented in FIG. 1 by a turbine "T". Different motor fluids, which vaporize at low temperature, can be used, ammonia, freons

  
 <EMI ID = 12.1>

  
Per unit of time, the amount of propane that will be vaporized will be equal to the amount of propane that the evaporator in the fridge can condense.

  
 <EMI ID = 13.1>

  
amount of sensible heat to bring its temperature to

  
 <EMI ID = 14.1>

  
station he needs to change state.

  
This amount of heat, propane, or butane, can

  
 <EMI ID = 15.1>

  
sister alone already provides so much. calories than

  
 <EMI ID = 16.1>

  
As to the sensible heat which is necessary to bring the butane to its boiling point, two solutions are possible, as shown in the two figures in the appendix.

  
The first solution consists in taking the necessary calories within the hot source, downstream of the boiler, which will have the advantage of further cooling the hot source.

  
 <EMI ID = 17.1>

  
 <EMI ID = 18.1>

  
 <EMI ID = 19.1>

  
 <EMI ID = 20.1>

  
retension in the turbine.

  
We. will thus have cooled the source a second time

  
heat - and we will have reduced the amount of calories to be taken from the four heat sources of the aggregate for it to function. The balance of the calories released by the aggregate can be absorbed by a third heat exchanger located downstream of the one which has preheated the butane.

  
A second solution consists in taking the necessary calories from the butane only within the aggregate. In that case.,. the sensible heat, the latent heat of vaporization and the superheating heat of the butane will have been taken there. The quantity of heat that we will have to "get out" of the aggregate, to make it work, will therefore be very much less than the quantity of heat that the boiler will have taken from the hot source. Thanks to an appropriate heat exchanger, located downstream of the boiler, the hot source will therefore have been cooled sufficiently to be able to serve as a cold source and absorb the calories of the heater.

  
 <EMI ID = 21.1>

  
This transfer of calories will take place all the more easily as all the calories in the aggregate, which will have to be eliminated, will be at a temperature higher than the temperature of the hot source downstream of the boiler.

  
It is not possible to provide all the possible embodiments of such a machine, taking into account the fact that each installation will be a function of the temperature of the hot source, of its quantitative importance, of the motor fluid that is used. It will be in your interest to use the binary system (eua-ammonia, glycol-freon, lithium water-bromide, etc.) which will be most suitable.

  
In some cases, we may have ^. interest in using a

  
 <EMI ID = 22.1> temperature or to improve the efficiency of the machine.

  
It is also possible to design at least two .working machines.

  
 <EMI ID = 23.1>

  
different binary temes.

  
It is useful to note that at the output near the turbine and

  
 <EMI ID = 24.1>

  
the hot spring will have been converted into mechanical energy.

  
This efficiency is all the more important since, even if one only has zero degree water as a hot source, it will still be possible to operate this driving machine by taking part of its solidification heat from water.

  
 <EMI ID = 25.1>


    

Claims (1)

<EMI ID=26.1> <EMI ID = 26.1> <EMI ID=27.1> <EMI ID = 27.1> <EMI ID=28.1> <EMI ID = 28.1> par l'agrégat servant à assurer la vaporisation et/ou la surchauffe du fluide moteur de ladite machine motrice. by the aggregate serving to ensure the vaporization and / or the superheating of the driving fluid of said driving machine. <EMI ID=29.1> <EMI ID = 29.1> cédentes, caractérisée en ce que l'évaporateur de la machine frigorifique condensera, directement ou indirectement, les vapeurs détendues du fluide moteur de la machine motrice. cédentes, characterized in that the evaporator of the refrigerating machine will condense, directly or indirectly, the expanded vapors of the driving fluid of the driving machine. <EMI ID=30.1> <EMI ID = 30.1> cédentes, caractérisée en ce que la source chaude qui alimente le bouilleur de la machine frigorifique est constituée par la circulation d'un fluide qui, une fois refroidi par ledit bouilleur, pourra, directement ou indirectement, refroidir les différentes parties de l'agrégat telles que la colonne de rectification, le condenseur, l'absorbeur et/ ou la solution pauvr e. cédentes, characterized in that the hot source which supplies the boiler of the refrigeration machine is constituted by the circulation of a fluid which, once cooled by said boiler, can, directly or indirectly, cool the various parts of the aggregate such as than the rectification column, condenser, absorber and / or poor solution. 5[deg.] Machine motrice suivant au moins une des revendications 5 [deg.] Driving machine according to at least one of the claims précédentes, caractérisée en ce que le fluide moteur prélève tout ou partie des calories nécessaires pour atteindre son point d'ébullition à la source chaude, après . que celle-ci ait été refroidie par le bouilleur, et/ou à au moins 'une des sources de chaleur de l'agrégat citées à la revendication précédente. preceding, characterized in that the motive fluid takes all or part of the calories necessary to reach its boiling point at the hot source, afterwards. that it has been cooled by the boiler, and / or at least 'one of the heat sources of the aggregate mentioned in the preceding claim. 6[deg.] Machine motrice suivant au moins une des revendications précédentes, caractérisée en,\ce qu'un pompe à chaleur auxiliaire permet d'accroître les écarts de température. <EMI ID=31.1> 6 [deg.] Driving machine according to at least one of the preceding claims, characterized in, that an auxiliary heat pump makes it possible to increase the temperature differences. <EMI ID = 31.1> précédentes, caractérisée en ce qu'elle convertit en énergie mécanique tout ou partie de la chaleur latente de solidification d'un corps. above, characterized in that it converts all or part of the latent heat of solidification of a body into mechanical energy.
BE9/2644A 1979-04-02 1979-04-02 MOTOR MACHINE BE875277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BE9/2644A BE875277A (en) 1979-04-02 1979-04-02 MOTOR MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE875277 1979-04-02
BE9/2644A BE875277A (en) 1979-04-02 1979-04-02 MOTOR MACHINE

Publications (1)

Publication Number Publication Date
BE875277A true BE875277A (en) 1979-10-02

Family

ID=25658829

Family Applications (1)

Application Number Title Priority Date Filing Date
BE9/2644A BE875277A (en) 1979-04-02 1979-04-02 MOTOR MACHINE

Country Status (1)

Country Link
BE (1) BE875277A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0021302A1 (en) * 1979-07-03 1981-01-07 Giunio Guido Santi Thermal-power plant fed by a geothermal heat source
EP0018795A3 (en) * 1979-04-26 1981-01-07 Ortho Pharmaceutical Corporation Monoclonal-antibody-producing hybrid cell line, antibody and method of preparing it, therapeutic composition containing it and its diagnostic and therapeutic uses
EP0061721A1 (en) * 1981-03-24 1982-10-06 Georg Prof. Dr. Alefeld Multi-stage apparatus with circulation circuits for working fluids and for absorbing media, and method to operate such an apparatus
EP1723313A4 (en) * 2004-02-13 2008-06-25 Res Sciences Llc Power generation methods and systems
US7735325B2 (en) 2002-04-16 2010-06-15 Research Sciences, Llc Power generation methods and systems

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0018795A3 (en) * 1979-04-26 1981-01-07 Ortho Pharmaceutical Corporation Monoclonal-antibody-producing hybrid cell line, antibody and method of preparing it, therapeutic composition containing it and its diagnostic and therapeutic uses
EP0021302A1 (en) * 1979-07-03 1981-01-07 Giunio Guido Santi Thermal-power plant fed by a geothermal heat source
EP0061721A1 (en) * 1981-03-24 1982-10-06 Georg Prof. Dr. Alefeld Multi-stage apparatus with circulation circuits for working fluids and for absorbing media, and method to operate such an apparatus
WO1982003448A1 (en) * 1981-03-24 1982-10-14 Georg Alefeld Installation with a plurality of stages comprising circuits of fluids and absorption agents,and method for operating such installation
EP0597822A3 (en) * 1981-03-24 1995-02-08 Alefeld Georg Multi-stage apparatus with circulation circuits for working fluids and for absorbing media, and method of operating such an apparatus.
US7735325B2 (en) 2002-04-16 2010-06-15 Research Sciences, Llc Power generation methods and systems
EP1723313A4 (en) * 2004-02-13 2008-06-25 Res Sciences Llc Power generation methods and systems

Similar Documents

Publication Publication Date Title
US4744224A (en) Intermittent solar ammonia absorption cycle refrigerator
US4358929A (en) Solar power system
BE875277A (en) MOTOR MACHINE
WO2010067359A2 (en) Closed loop solar energy system with a push-pull electric generator
Li et al. Effect of regenerator on the direct steam generation solar power system characterized by prolonged thermal storage and stable power conversion
Omiddezyani et al. Design and optimization of an integrated novel desalination system based on the temperature difference between the sea and mountain
Pathak et al. Solar heat pipe ETC integrated with solar still system for water treatment and hot water production: novel hybrid experimental approach
FR2694077A1 (en) Indirect cold production device for refrigeration machine.
WO2011010173A2 (en) Three wall vacuum tube solar collector located in the focus of a non moving semicylindrical parabolic reflector used for production of steam to get electric and thermal energy
CN102844274A (en) Device for distilling various kinds of water by using solar heat, and distillation method
FR2485706A1 (en) HEATING DEVICE PROVIDED WITH A THERMAL PUMP
RU2164578C1 (en) Plant for producing water from snow and/or ice
RU2339845C1 (en) Space power generator
EP0110763A1 (en) Heating plant equipped with an absorption heat pump
JPH0322696Y2 (en)
EP3044521B1 (en) Solar energy system for domestic hot water production and cooling
JPS59110872A (en) Compound generation device which utilizes sea temperature difference and solar heat
JPH0253633B2 (en)
Tleimat et al. Solar-assisted still with vapor-compression option
Mthembu et al. Numerical Analysis of Evacuated Tube Solar Collector with Heat Pipe Containing an I-section Insert
EP4350129A1 (en) Integrated organic rankine cycle and absorption cycle power generation system
BE895148A (en) Mirrored solar heat collector - has superheated vapour in closed circuit conducting heat from collector
WO2023222971A1 (en) System for generating cold and for supplying electrical power from seawater and the sun
WO2023135417A1 (en) Energy harnessing system and associated method
JPS59170664A (en) Solar heat driving diffusion absorption type refrigerator