BE828521A - Procede de polymerisation de l'ethylene - Google Patents

Procede de polymerisation de l'ethylene

Info

Publication number
BE828521A
BE828521A BE155889A BE155889A BE828521A BE 828521 A BE828521 A BE 828521A BE 155889 A BE155889 A BE 155889A BE 155889 A BE155889 A BE 155889A BE 828521 A BE828521 A BE 828521A
Authority
BE
Belgium
Prior art keywords
aluminum
magnesium
compound
emi
catalyst
Prior art date
Application number
BE155889A
Other languages
English (en)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of BE828521A publication Critical patent/BE828521A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description


  "Procédé de polymérisation de l'éthylène."

  
La présente invention concerne un procédé pour la polymérisation de l'éthylène et pour la copolymérisation de l'éthylène avec

  
 <EMI ID=1.1> 

  
un procédé pour la polymérisation à basse-pression de l'éthylène en présence d'un nouveau catalyseur préparé en utilisant un complexe organique de l'aluminium et du magnésium.

  
Dans le domaine des procédés de production du polyéthylène en présence d'un catalyseur constitué d'un composé d'un métal de transition appartenant aux groupes IV-VI A de la classification périodique des éléments et d'un composé organométallique d'un métal appartenant aux groupes I-III de ladite classification périodique, on a mis au point et proposé de nombreux catalyseurs depuis l'invention du catalyseur de Ziegler. La plupart de ces systèmes catalytiques présentent cependant une activité défectueuse et, de plus, il est nécessaire de prévoir une étape d'enlèvement du catalyseur dans le polymère résultant, ce qui rend la mise en oeuvre du catalyseur plus coûteuse.

  
On a développé récemment, à grande échelle, des catalyseurs hautement actifs du point de vue de l'omission de l'étape d'enlèvement du catalyseur, de la simplification du procédé de fabrication et de la réduction du coût du catalyseur. 

  
Les systèmes catalytiques considérés comme des catalyseurs hautement actifs se répartissent, d'une manière générale en deux groupes : les catalyseurs dénommés "catalyseurs supportés" qui résultent de la synthèse d'un catalyseur Ziegler supporté sur une surface solide ; et les systèmes catalyseurs utilisant, en combinaison, un constituant solide obtenu en réduisant un composé de titane ou de vanadium avec un composé organométallique spécifique et un agent d'activation organométallique spécifique.

   En ce qui concerne le catalyseur supporté précité, on a trouvé que de nombreux systèmes utilisant comme support un halogénure, un hydroxyhalogénure, un alcoyloxyde ou un sel d'acide organique de magnésium présentaient une activité exceptionnellement élevée (voir par exemple les demandes de brevets japonais publiées ? 13.050/1968,
42.137/1972 et 42.039/1972, ainsi que le brevet japonais mis à l'inspection du public ? 5.941/1972).

  
En ce qui concerne les systèmes catalytiques utilisant,

  
en combinaison, un composé organométallique spécifique et un composé d'un métal de transition, les suivants ont été reconnus comme étant hautement actifs : un catalyseur utilisant un constituant solide préparé en faisant réagir un produit de réaction de

  
 <EMI ID=2.1> 

  
ou un composé RMg(OR'), avec un composé de métal de transition
(voir par exemple la demande de brevet japonais publiée N[deg.]40.959/
1972, le brevet britannique ? 1.299.862 et la demande de brevet allemand mise à l'inspection du public ? 2.209.874) ; un catalyseur utilisant un constituant solide obtenu en faisant réagir

  
un composé organique de l'aluminium spécifique et un composé du titane (demande de brevet japonais publiée ? 26.380/1972) ; un catalyseur utilisant un constituant solide contenant des composés du titane et du vanadium (par exemple demandas de brevets japonais publiées!!0 28.708/1972 et 28.709/1972) ; etc. Ces catalyseurs présentent chacun une activité satisfaisante par unité de métal

  
de transition, mais non une activité suffisamment élevée par unité de constituant solide.

  
Ainsi, dans le cas d'un procédé où l'étape d'enlèvement

  
du catalyseur est omise, divers problèmes, tels que la détérioration ou dégradation du polymère en raison de l'halogène restant

  
en lui, la corrosion de l'équipement de fabrication, etc, n'ont

  
pas été complètement résolus.

  
Les études intensives et extensives effectuées par la demanderesse sur les catalyseurs ayant une activité élevée par unité

  
de constituant solide ont permis de trouver qu'on pouvait obtenir un catalyseur ayant, d'une manière surprenante, une activité très élevée en utilisant, en combinaison, un constituant solide spécifique préparé en faisant réagir un complexe organique de l'alu-minium et du magnésium spécifique avec un composé de titane ou de vanadium, et un composé organique de l'aluminium.

  
Le procédé selon la présente invention implique la polymérisation de l'éthylène, ou de l'éthylène et d'une autre oléfine, en utilisant un catalyseur obtenu (1) en faisant réagir un complexe soluble dans les hydrocarbures et contenant de l'aluminium et du magnésium, lequel complexe est représenté par la formule générale :

  

 <EMI ID=3.1> 


  
dans laquelle R<1> et R<2>, identiques ou différents, représentent des radicaux hydrocarbure contenant chacun 1 à 10 atomes de carbone, n et m sont des nombres plus grand que zéro et m/n est un nombre

  
 <EMI ID=4.1> 

  
une sorte de composé choisi dans le groupe formé par les composés du titane et les composés du vanadium contenant tous deux au moins un atome d'halogène, et (2) en faisant réagir ensuite le produit

  
de réaction résultant (A), insoluble dans les hydrocarbures, avec un composé organique de l'aluminium (B) représenté par la formule générale :

  

 <EMI ID=5.1> 


  
dans laquelle est un radical hydrocarbure contenant 1 à 20 atomes de carbone, X est choisi dans le groupe formé par l'hydrogène, les halogènes, les alcoxy, les aryloxy et les siloxy, p est un nombre compris dans l'intervalle 2-3.

  
Parmi les complexes organiques d'aluminium et de magnésium

  
 <EMI ID=6.1> 

  
composé connu divulgué par la demande de brevet allemand 2.232.685 et dans ANNALEN DER CHEMIE, 605, 93-97, 1957. De plus, le procédé de polymérisation d'une oléfine et d'un diène utilisant un cataly-seur constitué dudit complexe et de tétrachlorure de titane  a été divulgué dans la demande précitée. Comme spécifié plus haut, 

  
ce catalyseur combiné ne peut pas assurer une activité suffisante

  
par unité de constituant solide de métal de transition pour présenter l'activité élevée indispensable du point de vue industriel. Comme illustré dans l'exemple de référence 1, le système catalytique utilisant ces deux constituants tels que définis dans la demande précitée présente une activité inférieure au dixième de

  
celle du catalyseur de la présente invention. Le complexe pour le-

  
 <EMI ID=7.1> 

  
nouveau complexe découvert par la demanderesse et qui donne diverses efficacités de nature supérieure par. comparaison avec le

  
 <EMI ID=8.1> 

  
Conformément à la présente invention, il est possible d'obtenir une activité élevée, d'une manière et à un degré inattendus, en faisant réagir ce complexe organique de l'aluminium et

  
du magnésium spécifique et un composé de titane et/ou de vanadium dans des conditions définies et ensuite en faisant réagir le constituant catalyseur solide spécifique résultant avec un composé organique de l'aluminium spécifique. Lorsque, à titre d'exemple,

  
on effectue la polymérisation de l'éthylène, l'activité du catalyseur peut dépasser 30.000 grammes par g de catalyseur solide,

  
 <EMI ID=9.1> 

  
à une valeur beaucoup plus élevée que toute valeur reportée antérieurement pour d'autres catalyseurs déjà connus.

  
Conformément aux brevets qui ont déjà divulgué des catalyseurs hautement actifs (par exemple les demandes de brevets japonais publiées 42.137/1972, 42.039/1972 et 40.959/1972), les valeurs d'activité correspondante sont seulement dans l'intervalle de
2.000 à 5.000 (excepté 10.000 pour un exemple); il apparaît par conséquent que le catalyseur selon la présente invention corres-pond à des performances tout à fait surprenantes et imprévisibles

  
par comparaison aux catalyseurs classiques. Dans le procédé de fabri-. cation qui utilise le catalyseur de la présente invention, il est facile de produire des polymères d'éthylène qui ont des poids moléculaires souhaitables du point de vue industriel, en utilisant des agents de réglage du poids moléculaire tels que l'hydrogène, etc.

  
On va maintenant décrire le complexe organique de l'aluminium et du magnésium précités {constituant (1) répondant à la

  
 <EMI ID=10.1> 

  
synthèse du catalyseur de la présente invention. Il s'agit d'un complexe inerte et soluble dans les hydrocarbures, qui est synthétisé en faisant réagir un composé organique de l'aluminium,

  
 <EMI ID=11.1> 

  
organique du magnésium représenté par la formule générale

  
2 2

  
 <EMI ID=12.1> 

  
mand publiée 2.232.685 et ANNALEN DER CHEMIE 605, 93 (1957). La structure de ce complexe n'est pas évidente, mais le composé est présumé être un complexe unique ou un mélange formé de constituants

  
 <EMI ID=13.1> 

  
insoluble dans les hydrocarbures tandis que ledit complexe est soluble dans ceux-ci. Comme résultat de confirmation des constituants de synthèse, le composé décrit plus haut peut être repré-

  
 <EMI ID=14.1> 

  
qu'une réaction d'échange se produit entre le (ou les) radical hydrocarbure et le (ou les) atome d'hydrogène liés à l'aluminium et le (ou les) radical hydrocarbure lié au magnésium. Le radical hydrocarbure contenant 1 à 10 atomes de carbone, représenté par

  
la formule générale R est un alcoyle et est de préférence un méthyle, éthyle, n-propyle, isopropyle, n-butyle, isobutyle, butyle secondaire, butyle tertiaire, amyle, hexyle, octyle ou decyle.

  
 <EMI ID=15.1>  té par la formule générale R<2>, est un alcoyle ou un aryle, un radical approprié étant le méthyle, éthyle, n-propyle, n-butyle, amyle, hexyle, octyle ou phényle. Des points de vue de la facilité de préparation du composé et de l'efficacité élevée du catalyseur, il est particulièrement préférable que le nombre d'atomes de carbone des hydrocarbures R<1> et R2 soit 2-6.

  
Le rapport m/n du magnésium à l'aluminium est particulièrement important pour l'obtention d'un constituant solide actif selon la présente invention. On en déduit qu'il est nécessaire

  
que le complexe participe à la réaction à l'état liquide dans les conditions de réaction définies ci-après afin d'obtenir le constituant solide actif de la présente invention. Ce fait semble en rapport avec la stabilité du complexe à l'état de solution. La présence d'une quantité appropriée de constituant à base d'aluminium est important pour lui. Il est difficile de synthétiser un complexe ayant une grande valeur de m/n. Même lorsqu'il est synthétisé, la stabilité du produit est faible et la reproductibilité de synthèse du constituant solide est mauvaise. Dans l'intervalle où m/n est faible, l'activité est fortement réduite.

   On présume qu'une telle réduction peut être due au fait que, dans le cas d'un rapport faible, la stabilité du complexe à l'état dissous devient faible et aussi que la participation du constituant à base d'aluminium devient plus grande. Par exemple, dans le cas d'un complexe synthétisé à partir de di-n-butylmagnésium et de triéthylaluminium, si le rapport m/n est inférieur à 1, la précipitation commence à se produire et, si le rapport est 0,5 ou moins, la précipitation devient particulièrement importante. Comme il apparaît à l'examen des exemples 8 à 13 et de l'exemple de compa-

  
 <EMI ID=16.1> 

  
férieur à 0,5, l'activité est fortement réduite. L'intervalle souhaitable pour le rapport précité est 0,5-10 et plus particu-librement 1-10.

  
Parmi les complexes précités, ceux contenant un hydrure

  
sont équivalents à ceux ne contenant pas d'hydrure, en ce qui concerne l'efficacité du catalyseur, mais du point de vue de la facilité de production du complexe, de l'uniformité des dimensions de particules du constituant solide synthétisé à partir de celui-ci,  et d'une meilleure possibilité de travail en polymérisation continue,  le complexe précité contenant un hydrure est préférable.

  
Comme composé précité de titane ou de vanadium [Constituant 

  
 <EMI ID=17.1> 

  
halogénures, les oxyhalogénures et les alcoxyhalogénures ou les mélanges dé ceux-ci, de titane ou de vanadium, tels que le tétrachlorure de titane, le tétrabromure de titane, le tétraiodure de titane, le tétrafluorure de titane, le trichlorure d'éthoxytitane,

  
le trichlorure de propoxytitane, le trichlorure de butoxytitane, le dichlorure de dibutoxytitane, le monochlorure de tributoxytitane, le tétrachlorure de vanadium, le trichlorure de vanadyle, le dichlorure de monobutoxyvanadyle,le monochlorure de dibutoxyvanadyle, ou analogue. Les halogénures contenant trois atomes d'halogène ou davantage sont plus particulièrement préférés.

  
La méthode de réaction entre ce complexe organique de l'aluminium et du magnésium et ce composé du titane et/ou du vanadium est importante pour l'obtention de l'efficacité de la présente invention. La réaction est effectuée à une température allant jusqu'à 100[deg.]C, de préférence à 20[deg.]C ou en-dessous de cette température, dans un milieu de réaction inerte, par exemple un hydrocarbure aliphatique tel que l'hexane ou l'heptane,un hydrocarbure aromatique tel que le benzène, le toluène ou le xylène ou un hydrocarbure alicyclique tel que le cyclohéxane ou le méthylcyclohexane. Pour assurer une activité plus élevée, il est recommandé que le rapport réactionnel des deux constituants du

  
 <EMI ID=18.1>  0,2-5 moles, de complexe organique de l'aluminium et du magnésium par mole, de quantité totale, de composé de titane et/ou

  
de vanadium. Pour le nombre de moles dudit complexe organique de l'aluminium et du magnésium, on utilise la somme molaire des constituants à base d'aluminium et de magnésium. Par exemple, pour

  
 <EMI ID=19.1> 

  
moléculaire de cette formule structurale, sont équivalents à 7 moles. Pour obtenir une activité particulièrement élevée du catalyseur, il est des plus souhaitable de mettre en oeuvre une méthode dans laquelle la réaction est effectuée tandis que l'on ajoute simultanément deux types de constituants de catalyseurs dans la zone de réaction (addition simultanée). Le produit de réaction résultant, insoluble dans les hydrocarbures, peut être utilisé tel quel,pourvu que la réaction soit terminée. Il est souhaitable, cependant, de la séparer du mélange réactionnel pour favoriser la reproductibilité de la polymérisation.

  
De plus, par l'utilisation d'un produit de réaction obtenu en faisant réagir ensuite le produit de réaction des constituants
(i) et(ii) obtenus plus haut avec un composé halogéné de l'aluminium, du silicium, de l'étain, du titane ou du vanadium , on peut préparer un catalyseur qui permette la production d'un polymère ayant des dimensions de particules plus uniformes et une plus grande densité apparente.

  
Comme pour le composé organique de l'aluminium qui est l'autre constituant du catalyseur de la présente invention, les composés organiques de l'aluminium représentés par la formule

  
 <EMI ID=20.1> 

  
hydrocarbure contenant 1 à 20 atomes de carbone, représenté par R<3> dans la formule ci-dessus, comprend les hydrocarbures aliphatiques, aromatiques et alicycliques. X représente l'hydrogène ou un atome d'halogène, un alcoxy, un aryloxy ou un siloxy ; 

  
 <EMI ID=21.1> 

  
comprennent par exemple, le triethylaluminium, le tri-n-propylaluminium, le triisobutylaluminium, le tri-n-butylaluminium, le triisobutylaluminium,le trihexylaluminium, le trioctylaluminium, le tridécylaluminium,, le tridodécylaluminium,le trihexadécylaluminium, l'hydrure de diéthylaluminium, l'hydrure de diisobutylaluminium, l'hydrure de dihexylaluminium, l'hydrure de dioctylaluminium, l'ethoxyde de diéthylaluminium,l'ethoxyde de diisobutylaluminium, le butoxyde de dioctylaluminium, l'oxyde de diisobutylaluminiumoctyle, le chlorure de diéthylaluminium, le chlorure de diisobutylaluminium, le diméthyl-

  
 <EMI ID=22.1> 

  
thyle, et les associations de ceux-ci.

  
En employant, en combinaison, ce composé d'alcoylaluminium et le solide précité insoluble dans les hydrocarbures, on obtient un catalyseur d'une activité élevée. Pour obtenir une activité maximale, il est particulièrement préférable d'utiliser le trialcoylaluminium ou l'hydrure de dialcoylaluminium. Lorsqu'un groupe électro-négatif est introduit dans le trialcoylaluminium ou l'hydrure de dialcoylaluminium, l'activité tend à diminuer, mais chaque produit montre son comportement caractéristique pendant la polymérisation. Ainsi, il est possible de produire des polymères utiles grâce à la haute activité du catalyseur. Par exemple, en combinant le groupe X, le contrôle ou régulation du poids moléculaire devient plus facile.

  
La réaction entre les constituants de catalyseur (A) et (B), selon l'invention, peut être effectuée en faisant progresser la polymérisation par addition de ces deux constituants de catalyseur au système de polymérisation- et dans les conditions de polymérisation, ou, autrement préalablement à la polymérisation. Le rapport réactionnel des constituants de catalyseur est de préférence de 1 à 3.000 millimoles de constituant (B) par gramme de cons-tituant (A).

  
De plus, en utilisant un catalyseur obtenu en faisant réagir un hydrocarbure halogéné en addition aux constituants (A) et (B)

  
de la présente invention, il est possible de produire un polymère présentant une distribution large du poids moléculaire qui est appropriée pour l'écoulement, le moulage en film ou en feuille.

  
Les hydrocarbures halogénés que l'on préfère sont ceux ayant un ou plusieurs atomes d'halogène dans une molécule, un rapport du nombre d'atomes d'halogène au nombre d'atomes de carbone égal à 2 ou moins, et un nombre d'atomes de carbone égal à 2 ou plus.

  
Comme tels hydrocarbures halogénés, on peut utiliser de préférence le 1, 2-dichloroéthane, le 1,2-dichloropropane, le 2,3-dichlorobutane, le 1,1,2-trichloroéthane, le 1,2-dibromoethane, le 1,2-dichlorohexane, le 1,1,2,2-tétrachloroéthane , etc.

  
L'efficacité du catalyseur de la présente invention, en d'autres termes, son activité extrêmement élevée et la large distribution du poids moléculaire, peut se présenter seulement en utilisant le solide, soluble dans les hydrocarbures, de la présente invention et ne peut pas être atteinte si d'autres méthodes que celle mentionnée ci-dessus sont employées. La quantité d'hydrocarbure halogéné utilisée est dans l'intervalle de 0,05 à 10 moles, de préférence 0,1 à 1 mole, par mole de constituant (B).

  
Pour la méthode de polymérisation, on peut utiliser les polymérisations usuelles en suspension, en solution, et en phase gazeuse. Dans les cas des polymérisations en suspension et en solution, le catalyseur est introduit dans un réacteur en même temps que le milieu de polymérisation, par exemple un hydrocarbure aliphatique tel que l'hexane ou l'heptane, un hydrocarbure aromatique

  
 <EMI ID=23.1> 

  
que le cyclohexane ou le méthylcyclohexane. Ensuite l'éthylène est ajouté sous une pression de 1 à 30 Kg/cm<2> dans une atmosphère inerte, à la suite de quoi on laisse la polymérisation s'effectuer à une température allant de la température ambiante à 150[deg.]C. Pour la polymérisation en phase gazeuse, il est possible d'effectuer la

  
 <EMI ID=24.1> 

  
température dans l'intervalle allant de la température ambiante à
120[deg.]C et en utilisant des moyens tels que lit fluidisé, un lit mobile ou en mélangeant avec un agitateur afin d'assurer un meilleur contact de l'éthylène avec le catalyseur.

  
Afin de régler le poids moléculaire du polymère, il est possible d'ajouter de l'hydrogène et un composé organométallique qui est susceptible de provoquer un transfert de chaîne. Il est aussi possible de polymériser l'éthylène en présence d'une monooléfine telle que le propylène, le butène-1, l'hexène-1, et aussi de polymériser le propylène, avec une bonne efficacité, en utilisant le catalyseur selon la présente invention.

  
Les exemples suivants concernent des modes de réalisation préférés qui illustrent encore le principe et la mise en pratique de la présente invention.

  
Le poids moléculaire (Pm) dans les exemples a été déterminé

  
 <EMI ID=25.1> 

  
exprimée sous forme de la quantité (en g) de polymère produite par grammme de constituant solide par heure et par Kg/cm<2>de pression d'éthylène.

  
EXEMPLE 1 -

  
Dans un ballon de 500 ml on introduit 13,8g de di-n-butylmagnésium et 1,9 g de triéthylaluminium en même temps que 200 ml de n-heptane. On fait ensuite réagir le mélange à 80[deg.]C pendant 2 heures. On synthétise ainsi un complexe organique de l'aluminium et du

  
 <EMI ID=26.1> 

  
300 ml équipé de deux entonnoirs de versement et d'un agitateur, duquel on a retiré l'humidité et l'oxygène par balayage avec de l'azote sec, on introduit 60 ml de n-heptane et l'on refroidit

  
le contenu du ballon à -20[deg.]C. Ensuite, une solution de 80 ml contenant 40 millimoles (5,4 g) de ce complexe dans le n-heptane et une solution de 80 ml contenant 40 millimoles de tétrachlorure de titane dans le n-heptane sont chacune pesées dans un entonnoir de versement et les deux constituants sont ajoutés en même temps, sous agitation, uniformément à -20[deg.]C pendant deux heures et laissés réagir à cette température pendant deux heures. Le solide résultant, insoluble dans les hydrocarbures, est isolé et lavé deux fois avec
40 ml de n-heptane et séché pour donner 10,6 g d'un solide gris.

  
Dans un autoclave de 5 litres dont l'atmosphère a été évacuée sous vide et remplacée par de l'azote, on introduit 5 mg dudit produit de réaction solide pur insoluble dans les hydrocarbures

  
et 1,5 millimoles de triisobutylaluminium en même temps que 3 litres de n-heptane préalablement deshydratés et dégazés. Tout en maintenant la température intérieure de l'autoclave à 85[deg.]C, on ajoute de l'hydrogène jusqu'à une pression relative de 2,0 Kg/cm&#65533; On ajoute ensuite de l'éthylène jusqu'à une pression relative totale de 6,0 Kg/cm. Tout en maintenant la pression relative totale

  
à 6,0 Kg/cm<2> par addition d'éthylène additionnel, on effectue la polymérisation pendant une heure. Le rendement en polymère est de
620 g et le poids moléculaire est de 78.000. L'efficacité catalytique est de 31.000 grammes par grammme de constituant solide par heure et par Kg/cm<2> de pression d'éthylène.

  
Le rapport Pm/Nm du poids moléculaire moyen (Pm) au nombre moyen de poids moléculaire (Nm), comme mesuré selon la méthode chromatographique par perméation de gel est de 7,8. Ce rapport est employé comme mesure de la distribution du poids moléculaire, et plus sa valeur est élevée, plus large est cette distribution.

  
 <EMI ID=27.1>  On introduit dans un autoclave de 5 litres, 2,5 millimoles d'un complexe organique de l'aluminium et du magnésium de formule

  
 <EMI ID=28.1> 

  
ple 1 et 1 litre d'heptane, et l'on chauffe à 30[deg.]C. On ajoute ensuite 1,0 millimole de tétrachlorure de titane et on agite le mélange résultant. On ajoute encore par la suite 2 litres d'heptane , et l'on chauffe alors à 85[deg.]C. La polymérisation est effectuée de la même manière que dans l'exemple 1 en utilisant le catalyseur ainsi obtenu, pour obtenir 720 grammes de polymère. L'efficacité du

  
 <EMI ID=29.1> 

  
Kg/cm<2>de pression d'éthylène.

  
EXEMPLES 2 à 7 -

  
On effectue la polymérisation dans les mêmes conditions de polymérisation que dans l'Exemple 1, en utilisant comme catalyseur des solides insolubles dans les hydrocarbures, préparés en utilisant les constituants et les conditions de préparation de catalyseur énumérés dans le Tableau 1, et les composés organiques de l'aluminium comme l'un des constituants énumérés aussi dans le Tableau 1, pour-donner le résultat indiqué dans ce Tableau. Le complexe organique de l'aluminium et du magnésium qui est utilisé est préparé en faisant réagir le di-n-butylmagnésium et le triéthylaluminium de la même manière que dans l'Exemple 1. Dans les exemples 6 et 7, le réacteur était particulièrement propre après la polymérisation. 

  

 <EMI ID=30.1> 


  

 <EMI ID=31.1> 
 

  
Exemples 8 à 13 et Exemple de Comparaison N[deg.]1

  
Les complexes organiques de l'aluminium et du magnésium indiqués dans le Tableau 2 ont été préparés à partir du triéthylalu-

  
 <EMI ID=32.1> 

  
la même manière que dans l'Exemple 1.

  
Les complexes résultants ont été mis à réagir avec le tétrachlorure de titane, dans un rapport molaire de 1:1, à -10[deg.]C et pendant quatre heures, de la même manière que dans l'Exemple 1 pour donner des solides insolubles dans les hydrocarbures. La polymérisation a été effectuée dans les mêmes conditions de polymérisation que dans l'Exemple 1, en utilisant 5 mg du constituant solide résultant et 2,4 millimoles de trioctylaluminium, pour donner les résultats indiqués dans le Tableau 2. 

  

 <EMI ID=33.1> 


  

 <EMI ID=34.1> 
 

  
EXEMPLE 14 -

  
On synthétise, comme dans l'Exemple 1, par réaction du triisobutylaluminium et du di-n-butylmagnésium, un complexe organique de l'aluminium et du magnésium de formule AlMg2(i-C4H9)3
(n-C4H9)3. On fait réagir 40 millimoles de ce complexe et 40 millimoles de tétrachlorure de vanadium, comme dans l'Exemple 1,

  
à 0[deg.]C pendant quatre heures, pour isoler 1,2 gramme de solide insoluble dans les hydrocarbures. On utilise 5 mg de ce solide et 1,5 millimole de triisobutylaluminium comme catalyseur pour effectuer la polymérisation dans les mêmes conditions que dans l'Exemple 1, ce qui donne 512 grammmes de polymère ayant un poids moléculaire de 112.000 avec une efficacité du catalyseur de 25.600.

  
EXEMPLE 15 -

  
On synthétise par réaction de diamylmagnésium et de triméthylaluminium, comme dans l'Exemple 1, un complexe organique de l'aluminium et du magnésium de formule AlMg3(CH3)3(C5H11)6. On fait réagir 30 millimoles de ce complexe et 40 millimoles de trichlorure

  
 <EMI ID=35.1> 

  
ple 1, ce qui donne 9,6 grammes de solide insoluble dans les hydrocarbures.

  
On effectue la polymérisation en utilisant 5 mg de ce solide et 3,0 millimoles de tridécylaluminium dans les mêmes conditions que dans l'Exemple 14, ce qui donne 544 g de polymère ayant un poids moléculaire de 74.000 avec un efficacité du catalyseur de 27.200.

  
EXEMPLE 16 -

  
On synthétise par réaction de triisobutylaluminium et de décylmagnésium, un complexe organique de l'aluminium et du magnésium ayant comme formule AlMg2(i-C4H9)3(C10H21)4' On fait réagir
40 millimoles de ce complexe avec 40 millimoles de tétrachlorure de titane, à -10[deg.]C, pendant quatre heures, de la même manière que dans l'Exemple 1,ce qui donne 11,2 g de solide insoluble dans les hydrocarbures.

  
En utilisant 5 mg de ce solide et 1,5 millimole de triisobutylaluminium, on effectue la polymérisation dans les mêmes conditions que dans l'Exemple 15, pour obtenir 330 grammes de polymère ayant un poids moléculaire de 76.000 avec une efficacité du catalyseur de 16.500.

  
EXEMPLE 17 -

  
On effectue la polymérisation en utilisant le même catalyseur et en adoptant les mêmes conditions de polymérisation que dans l'Exemple 1, excepté qu'on utilise un mélange gazeux éthylène-propy-

  
 <EMI ID=36.1> 

  
l'éthylène seul, et l'on obtient 746 g de polymère ayant un poids moléculaire de 38.000, l'efficacité du catalyseur étant de 37.300.

  
EXEMPLE 18 -

  
On effectue la polymérisation en utilisant le même catalyseur et en adoptant les mêmes conditions de polymérisation que dans l'Exemple 1, excepté qu'on utilise un mélange gazeux éthylènebutène-1 contenant 2% en volume de butène-1, au lieu d'utiliser de l'éthylène seul, et l'on obtient 715 g de polymère ayant un poids moléculaire de 28.000, l'efficacité du catalyseur étant de
35.800.

  
EXEMPLE 19 à 23 -

  
On effectue la polymérisation dans les mêmes conditions de polymérisation que dans l'Exemple 1, en utilisant comme catalyseur, 5 mg de solide insoluble dans les hydrocarbures préparé en utilisant les constituants et les conditions de la préparation de catalyseur énumérés dans le Tableau 3 et les composés organiques de l'aluminium en tant que constituants également énumérés dans le Tableau 3, ce qui donne les résultats indiqués dans ledit Tableau 3.

  
Les complexes organiques de l'aluminium et du magnésium utilisés ici ont été préparés de la même manière que dans l'Exemple 1.

  

 <EMI ID=37.1> 


  

 <EMI ID=38.1> 
 

  
EXEMPLES 24 - 33 -

  
On effectue la polymérisation dans les mêmes conditions de polymérisation que dans l'Exemple 1, en utilisant comme catalyseur 5 mg de solides insolubles dans les hydrocarbures préparés

  
en utilisant les constituants et les conditions de préparation

  
de catalyseur énumérés dans le Tableau 4 et les composés organiques de l'aluminium en tant que constituants énumérés dans le Tableau 4 pour obtenir les résultats donnés dans ledit Tableau 4.

  
Les complexes organiques de l'aluminium et du magnésium utilisés ici ont été préparés à partir d'un hydrure de dialcoylaluminium

  
et d'un dialcoylmagnésium, de la même manière que dans l'Exemple 1. 

  

 <EMI ID=39.1> 


  

 <EMI ID=40.1> 
 

  

 <EMI ID=41.1> 


  

 <EMI ID=42.1> 
 

  
 <EMI ID=43.1> 

  
On effectue des polymérisations dans les mêmes conditions que dans l'Exemple 1, excepté que l'on emploie les hydrocarbures halogénés donnés dans le Tableau 5. Les résultats sont exprimés dans ce Tableau. Il est clair que des polymères ayant des rapports Pm/Nm plus élevés et aussi des distributions du poids moléculaire plus étendues que ceux de l'Exemple 1 pourraient être obtenus.

  
TABLEAU 5

  

 <EMI ID=44.1> 


  
EXEMPLE 38 -

  
On introduit dans un ballon de 100cc, en même temps que 30 ml d'heptane, deux grammes de solide insoluble dans les hydrocarbures synthétisé dans l'Exemple 1 à la suite de quoi on ajoute

  
20 ml de tétrachlorure de titane. La réaction est effectuée à 100[deg.]C pendant deux heures, à la suite de quoi on isole le constituant solide résultant et on lave avec de l'heptane.

  
La polymérisation est effectuée en totalité de la même manière que dans l'Exemple 1, excepté que l'on utilise 5 mg du solide résultant, ce qui donne 575 g de polymère. L'efficacité du catalyseur et le poids moléculaire sont respectivement égaux à
28.000 et 71.000.

  
La poudre de polymère résultante est en quantité plus faible dans la substance en masse et plus uniforme que dans le cas de l'Exemple 1.

  
EXEMPLE 39 -

  
On effectue la polymérisation dans les mêmes conditions que dans l'Exemple 24 et en utilisant le même constituant solide que dans l'Exemple 24, excepté qu'on utilise, en tant que constituant
(B), un composé organique de l'aluminium ayant comme formule <EMI ID=45.1>  ficacité du catalyseur et le poids moléculaire sont respectivement égaux à 27.400 et 65.000.

  
EXEMPLE 40 -

  
On effectue la polymérisation dans les mêmes conditions que dans l'Exemple 24 et en utilisant le même constituant solide que dans l'Exemple 24, excepté que l'on utilise, en tant que constituant (B), un composé organique de l'aluminium de formule

  
 <EMI ID=46.1> 

  
lymère. L'efficacité du catalyseur et le poids moléculaire sont respectivement égaux à 28.800 et 61.000.

  
Exemple de Référence ? 2 -

  
Une solution dans le n-heptane d'un complexe organique de

  
 <EMI ID=47.1> 

  
(la concentration du complexe dans le n-heptane étant de une mole par litre) a été préparée à partir de di-n-butylmagnésium et de triéthylaluminium, de la même manière que dans l'Exemple 1. On a introduit 40 ml de la solution résultante dans un ballon d'une capacité de 300 ml muni de deux entonnoirs de versement et d'un agitateur, et on a maintenu l'ensemble à 80[deg.]C. On a ajouté, par l'un des entonnoirs de versement, 40 ml d'une solution dans le n-heptane de chlorure de diéthylaluminium (concentration :

  
0,14 mole/1), et on a chauffé pendant une heure. En même temps que l'addition de chlorure de diethylaluminium, une précipitation s'est produite, ce qui a donné une bouillie. Après addition d'une quantité complémentaire de 60 ml de n-heptane, on a refroidi le ballon à
-10[deg.]C. On a versé, pendant deux heures par l'autre entonnoir de versement, 80 ml d'une solution de 40 millimoles de tétrachlorure de titane dans le n-heptane, et ensuite, la réaction a été effectuée à cette température pendant deux heures. Le solide insoluble dans les hydrocarbures résultant a été isolé, lavé deux fois avec
40 ml de n-heptane et séché, ce qui a donné 9,6 g d'un solide brun.

  
La polymérisation a été effectuée comme dans l'Exemple 1, excepté que 5 mg du solide ainsi obtenu et 2,0 millimoles de trihexylaluminium ont été utilisés. On a ainsi obtenu 128 grammes de polymère. L'efficacité du catalyseur et le poids moléculaire étaient respectivement égaux à 6.400 et 105.000.

  
Bien entendu la présente invention n'est nullement limitée aux modes d'exécution décrits qui n'ont été donnés qu'à titre d'exemple. En particulier, elle comprend tous les moyens constituant des équivalents techniques des moyens décrits ainsi que

  
leurs combinaisons, si celles-ci sont exécutées suivant son esprit et mises en oeuvre dans le cadre des revendications qui suivent. 

REVENDICATIONS

  
1.- Procédé de polymérisation de l'éthylène ou d'un mélange d'éthylène et d'une autre oléfine, caractérisé en ce qu'il consiste à effectuer ladite polymérisation au moyen d'un catalyseur obtenu en faisant réagir (A) un produit de réaction insoluble dans les hydrocarbures et formé en faisant réagir (i) un complexe soluble dans les hydrocarbures et contenant de l'aluminium et du magnésium, répondant à la formule générale :

  

 <EMI ID=48.1> 


  
 <EMI ID=49.1> 

  
caux hydrocarbure ayant 1 à 10 atomes de carbone, n et m sont des nombres chacun supérieur à zéro, le rapport m/n est compris

  
dans l'intervalle de 0,5-10 et 0{ est un nombre égal à 0 ou 1, avec
(ii) un ou plusieurs composés choisis parmi les composés du titane et les composés du vanadium contenant chacun au moins un atome d'halogène, avec (B) un composé organique de l'aluminium ayant la

  
 <EMI ID=50.1> 

  
bure ayant 1 à 20 atomes de carbone, X est choisi dans le groupe formé par l'atome d'hydrogène, un atome d'halogène, les radicaux alcoxy, aryloxy et siloxy, p. étant un nombre compris dans l'intervalle allant de 2 à 3 inclus.

Claims (1)

  1. 2.- Procédé selon la revendication 1, caractérisé en ce
    que ledit complexe organique de l'aluminium et du magnésium présente un rapport m/n compris dans l'intervalle allant de 1 à 10.
    3.- Procédé selon la revendication 1, caractérisé en ce
    que ledit complexe organique de l'aluminium et du magnésium possède une valeur et. égale à 1.
    4.- Procédé se^on la revendication 1, caractérisé en ce que ledit complexe organique de l'aluminium et du magnésium possède une <EMI ID=51.1> lant de 1 à 10, et de préférence dans l'intervalle allant de 2
    à 8.
    5.- Procédé selon la revendication 1, caractérisé en ce que les nombres respectifs des atomes de carbone dudit complexe organique de l'aluminium et du magnésium sont tous deux dans l'intervalle allant de 2 à 6.
    6.- Procédé selon la revendication 1, caractérisé en ce que le composé de titane ou vanadium est choisi dans le groupe formé par le tétrachlorure de titane, le trichlorure de monoéthoxytitane, le trichlorure de monopropoxytitane, le trichlorure de monobutoxytitane, le tétrachlorure de vanadium, le trichlorure de vanadyle, et les mélanges de ceux-ci.
    7.- Procédé selon la revendication 1, caractérisé en ce que la réaction dudit complexe organique de l'aluminium et du magnésium avec le composé de titane ou de vanadium est effectuée
    <EMI ID=52.1>
    8.- Procédé selon la revendication 1, caractérisé en ce que la réaction du complexe organique de l'aluminium et du magnésium avec le composé de titane ou de vanadium est effectuée en ajoutant simultanément les réactants dans une zone de réaction.
    9.- Procédé selon la revendication 1, caractérisé en ce qu'on fait réagir 0,2 à 5 moles dudit complexe organique de l'aluminium et du magnésium avec une mole du composé de titane ou de vanadium.
    10.- Procédé selon la revendication 1, caractérisé en ce que ledit composé organique de l'aluminium est un trialcoylaluminium ou un hydrure de dialcoylaluminium.
    11.- Procédé selon la revendication 1, caractérisé en ce qu' on utilise 1 à 3.000 millimoles dudit composé organique de l'aluminium par gramme dudit complexe organique de l'aluminium et du
    magnésium (i).
    AI 12.- Procédé selon la revendication 1, caractérisé en ce
    qu'on ajoute un hydrocarbure halogéné au produit de réaction entre les composés (A) et (B).
    13.- Procédé selon la revendication 1, caractérisé en ce
    que, avant de faire réagir le produit de réaction (A) avec le
    composé (B), on fait réagir ledit produit (A) avec (iii) un composé halogéné de l'aluminium, du silicium, de l'étain, du titane ou du vanadium, le produit ainsi obtenu étant ensuite mis à réagir avec
    le composé (B).
    14.- Catalyseur de polymérisation utile pour la polymérisation ou la copolymérisation de l'éthylène, caractérisé en ce qu'il est obtenu par le procédé selon l'une quelconque des revendications
    1 à 13.
    15.- Homopolymère ou copolymère de l'éthylène, caractérisé en ce qu'il est obtenu par le procédé selon l'une quelconque des revendications 1 à 13.
    16.- Procédé de polymérisation en substance comme décrit
    dans la présente description.
    17.- Catalyseur de polymérisation en substance comme décrit dans la présente description.
    18.- Homopolymère ou copolymère de l'éthylène en substance comme décrit dans la présente description.
BE155889A 1974-04-30 1975-04-29 Procede de polymerisation de l'ethylene BE828521A (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49047512A JPS5236788B2 (fr) 1974-04-30 1974-04-30

Publications (1)

Publication Number Publication Date
BE828521A true BE828521A (fr) 1975-08-18

Family

ID=12777150

Family Applications (1)

Application Number Title Priority Date Filing Date
BE155889A BE828521A (fr) 1974-04-30 1975-04-29 Procede de polymerisation de l'ethylene

Country Status (2)

Country Link
JP (1) JPS5236788B2 (fr)
BE (1) BE828521A (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812887B2 (ja) * 1976-04-19 1983-03-10 旭化成株式会社 オレフイン重合用触媒
JPS5358495A (en) * 1976-11-09 1978-05-26 Asahi Chem Ind Co Ltd Olefin polymerization catalyst
JPS5952643B2 (ja) * 1977-01-27 1984-12-20 三井化学株式会社 エチレン共重合体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA977766A (en) * 1971-07-13 1975-11-11 Dennis B. Malpass Organoaluminum-organomagnesium complexes

Also Published As

Publication number Publication date
JPS50139885A (fr) 1975-11-08
JPS5236788B2 (fr) 1977-09-17

Similar Documents

Publication Publication Date Title
US4004071A (en) Process for the polymerization of ethylene
FR2569410A1 (fr) Constituant de catalyseur pour la polymerisation d&#39;olefines et catalyseur le contenant
FR2500457A1 (fr) Nouveau catalyseur a base d&#39;un alkylmagnesium, d&#39;un organosilane et d&#39;un compose de titane, son procede de production et son application a la polymerisation d&#39;olefines
FR2628110A1 (fr) Catalyseur de polymerisation d&#39;olefines de type ziegler-natta, supporte sur des particules spheriques de chlorure de magnesium, et procede de preparation
EP0127530A1 (fr) Procédé de préparation d&#39;une composante de métal de transition pour un système catalytique de polymérisation d&#39;oléfines
FR2660314A1 (fr) Catalyseur de type ziegler-natta adapte a la polymerisation et copolymerisation de l&#39;ethylene en phase gazeuse, et procede de preparation.
EP0765881B1 (fr) Alcoxysilacycloalcanes, leur procédé de préparation et leur utilisation pour la polymérisation des oléfines
FR2503715A1 (fr) Catalyseur de polymerisation d&#39;olefines, son procede de production et son utilisation
EP0703247A1 (fr) Procédé de polymérisation d&#39;oléfines
EP0615524B1 (fr) Catalyseurs et procede de preparation de catalyseurs utilisables pour la polymerisation de l&#39;ethylene
EP0478031A1 (fr) Composition cocatalytique utilisable pour la polymérisation des alpha-oléfines
BE1005792A3 (fr) Systeme catalytique utilisable pour la polymerisation stereospecifique des alpha-olefines, procede pour cette polymerisation et polymeres obtenus.
BE828521A (fr) Procede de polymerisation de l&#39;ethylene
EP0206893B1 (fr) Procédé de préparation d&#39;une composante de métal de transition pour un système catalytique de polymérisation d&#39;oléfines
EP0574067B1 (fr) Procédé de fabrication d&#39;un solide catalytique, solide catalytique et procédé de (co)polymérisation d&#39;oléfines au moyen de ce solide catalytique
EP0168317B1 (fr) Procédé de préparation d&#39;une nouvelle composante de métal de transition sur support polymère pour un système catalytique de polymérisation d&#39;oléfines
FR2462452A1 (fr) Procede de copolymerisation sequencee d&#39;ethylene et de propylene et produit obtenu
EP0771821B1 (fr) Prépolymère pour la polymérisation des oléfines, associant plusieurs composantes catalytiques solides
EP1264847A1 (fr) Procédé pour la polymérisation des alpha-oléfines
EP0559885B1 (fr) Catalyseurs et procede de preparation de catalyseurs utilisables pour la polymerisation de l&#39;ethylene
BE829416A (fr) Procede de polymerisation d&#39;ethylene
FR2597486A1 (fr) Catalyseur et procede pour la production de polymeres et de copolymeres de 1-alcenes.
EP0351266A1 (fr) Procédé de préparation d&#39;un catalyseur pour la polymérisation des oléfines
EP0322938A2 (fr) Procédé pour la polymérisation des alpha-oléfines, complexes catalytiques solides utilisables pour cette polymérisation et procédé pour leur préparation
FR2467858A1 (fr) Procede de polymerisation d&#39;olefines mettant en oeuvre un catalyseur a base de magnesium et de titane

Legal Events

Date Code Title Description
RE20 Patent expired

Owner name: ASAHI KASEI KOGYO K.K.

Effective date: 19950429