BE653434A - - Google Patents

Info

Publication number
BE653434A
BE653434A BE653434DA BE653434A BE 653434 A BE653434 A BE 653434A BE 653434D A BE653434D A BE 653434DA BE 653434 A BE653434 A BE 653434A
Authority
BE
Belgium
Prior art keywords
substrate
film
thin
subjected
stress
Prior art date
Application number
Other languages
French (fr)
Publication of BE653434A publication Critical patent/BE653434A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)

Description

       

   <Desc/Clms Page number 1> 
 



  Procédé de fabrication de minces films ferromagnétiques 
L'invention concerne un procédé de fabrication de minces films à anisotropie uniaxiale, en particulier pour des dispositifs de mémoire magnétiques. 



   Les films de matériau magnétique peuvent être utilisés   comme   éléments de mémoire dans des mémoires pour machines calcula. trices. Afin que, dans ces mémoires, les films puissent fonction- ner à-des vitesses élevées, ils sont généralement   trs   minces. De plus, il est désirable que la couche formant le film présente deux états d'aimantation stables, de façon que l'information puisse être accumulée suivant la méthode "oui" ou "non".

   De minces films peuvent 

 <Desc/Clms Page number 2> 

 
 EMI2.1 
 être obtenus par vaporisation., par pulvêr1sat16d5Jto1e électrochimique et chacun de ces procès permet de régler l'épais- seur de la couche de matériau magnétique appliqué (essentiellement en modifiai dans des conditions   contrôlées,   la durée   de'l'appli-     cation)..   L'introduction des deux états stables est   généralement   obtenue en appliquant un champ magnétique pendant l'application du film. De ces films à deux états stables on dit qu'ils présentent. une "anisotropie   uniaxiale"   et que ?l'anisotropie   uniaxiale"   est "induite"dans le film par le champ magnétique appliqué pendant   Inapplication   de la couche formant le film. 



     L'Invention   fournit un procédé de fabrication de minces films à anisotropie uniaxiale sans l'intervention d'un champ   magnétique.   



   Suivant l'invention, le substrat, sur lequel on   appli-   que par la suite la mince couche formant le film est soumis dans un sens à une charge suffisante pour provoquer une déformation ' élastique de substrat mais ne dépassant pas la valeur maximale pour laquelle   il   se produit uniquement une déformation élastique u substrat, puis on   ap@@ique   le mince film et ensuite on supprime charge dû substrat. De que la charge est supprimée, le substrat ren   @  forme initiale et   @  mince film est soumis à une solli- . citation ou contrainte , lui se traduit par de l'aniso- trople uniaxiale. 



   Dans une forme   @éalisation   l'invention, le substrat est fixé par un bord tandis qu'au brd opposé est exercée ..une force dans le plan du substrat qui comprime au étend le substrat. Après 1'application du mince film sur 1 surface de substrat., la force de compression ou d'extension du :substrat est supprimée, de sorte que le mince film est soumis à une con- trainte de traction   ou   de compression se traduisant par de l'ani-   sotropie   uniaxiale. 



   Dans une forme de réalisation particulière de l'inven- tion,le substrat est déformé de façon à acquérir une incurvation 

 <Desc/Clms Page number 3> 

 cylindrique$ le mince film est appliqué sur la surface concave ou convexe du substrat après quoi on supprime la force exercée sur le substrat. Le mince film est ainsi soumis à une contrainte de traction ou de compression et présente de l'anisotropie uniaxiale. 



   Il importe cependant que le substrat ne soit pas soumis à une contrainte telle que la limite élastique soit dépassée. 



   L'invention sera expliquée à l'aide de l'exemple sui- vant. 



   Un corps de verre est encastré à une extrémité et l'autre extrémité est soumise à une traction de sorte que le verre est soumis à une contrainte do traction. Pendant que la contrainte      de traction existe dans le verre, on applique par vaporisation   - sur   la surface de verre une mince couche   d'une   épaisseur d'environ      1000 Angström   d'un   alliage de 82% de nickel et de 18% de fer. 



  Après l'application de la couche formant le film , la traction . sur le verre est supprimée, de sorte que la couche appliquée est soumise à une compression. Le film obtenu présente maintenant de l'anisotropie   uniaxiale.   Le film de métal s'avère présenter une direction   d'aimantation   préférée. 



   Au lieu d'un corps de verre on peut utiliser un corps céramique ou un corps   métallique.   



   L'invention n'est pas limitée à la formation de minces films magnétiques. On peut appliquer tout matériau cristallin et y produire de l'anisotropie uniaxiale en appliquant le matériau cristallin,par exemple par vaporisation, par pulvérisation ou par voie galvanuique. sur un substrat porté à une contrainte préa- lable et   pouvant   reprendre son état non contraint, ce qui transfère la contrainte à la couche appliquée.



   <Desc / Clms Page number 1>
 



  Manufacturing process for thin ferromagnetic films
The invention relates to a method of manufacturing thin films with uniaxial anisotropy, in particular for magnetic memory devices.



   Films of magnetic material can be used as memory elements in memories for computing machines. trices. In order that the films in these memories can operate at high speeds, they are generally very thin. In addition, it is desirable that the film forming layer has two stable magnetization states, so that the information can be accumulated by the "yes" or "no" method.

   Thin films can

 <Desc / Clms Page number 2>

 
 EMI2.1
 be obtained by vaporization., by electrochemical spraying and each of these processes makes it possible to regulate the thickness of the layer of magnetic material applied (essentially by modified under controlled conditions, the duration of the application). The introduction of the two stable states is generally obtained by applying a magnetic field during the application of the film. Of these films with two stable states we say that they present. a "uniaxial anisotropy" and that "uniaxial anisotropy" is "induced" in the film by the magnetic field applied during the application of the film forming layer.



     The invention provides a method of manufacturing thin films with uniaxial anisotropy without the intervention of a magnetic field.



   According to the invention, the substrate, on which the thin film forming layer is subsequently applied, is subjected in one direction to a load sufficient to cause an elastic deformation of the substrate but not exceeding the maximum value for which it. Only elastic deformation of the substrate occurs, then the thin film is applied and then the load from the substrate is removed. As soon as the load is removed, the substrate is initially reformed and thin film is subjected to stress. citation or constraint, it translates into uniaxial anisotrople.



   In one embodiment of the invention, the substrate is secured by an edge while at the opposite bridle is exerted a force in the plane of the substrate which compresses or extends the substrate. After applying the thin film to the substrate surface, the compressive or stretching force of the substrate is removed, so that the thin film is subjected to tensile or compressive stress resulting in stress. uniaxial anisotropy.



   In a particular embodiment of the invention, the substrate is deformed so as to acquire a curvature.

 <Desc / Clms Page number 3>

 Cylindrical - the thin film is applied to the concave or convex surface of the substrate after which the force exerted on the substrate is removed. The thin film is thus subjected to tensile or compressive stress and exhibits uniaxial anisotropy.



   However, it is important that the substrate is not subjected to such stress that the elastic limit is exceeded.



   The invention will be explained with the aid of the following example.



   A glass body is recessed at one end and the other end is subjected to tension so that the glass is subjected to tensile stress. While the tensile stress exists in the glass, a thin layer of approximately 1000 Angstrom thickness of an alloy of 82% nickel and 18% iron is sprayed onto the glass surface.



  After application of the film forming layer, traction. on the glass is removed, so that the applied layer is subjected to compression. The resulting film now exhibits uniaxial anisotropy. The metal film is found to have a preferred direction of magnetization.



   Instead of a glass body, a ceramic body or a metal body can be used.



   The invention is not limited to the formation of thin magnetic films. Any crystalline material can be applied and uniaxial anisotropy can be produced therein by applying the crystalline material, for example by spraying, spraying or electroplating. on a substrate brought to a prior stress and able to return to its unstressed state, which transfers the stress to the applied layer.


    

Claims (1)

RESUME. ABSTRACT. 1.- Procédé de fabrication des minces films à anisotro- pie uniaxiale se trouvant sur un substrat, caractérisé en ce qu'on soumet dans un seul sens le substrat sur lequel une mince couche formant un film sera appliquée par la suite à une sollicita*- tion suffisante pour provoquer la déformation élastique du substrat <Desc/Clms Page number 4> mais ne dépassant pas la charge maximale pour laquelle le substrat subit encore uniquement une déformation élastique, on applique la mince coucha formant le film et on supprime ensuite la charge du substrat, ce procédé pouvant présenter en outre la particulari- té que le mince film appliqué sur le substrat est constitué par du matériau aimantable. 1.- A method of manufacturing thin films with uniaxial anisotropy lying on a substrate, characterized in that the substrate on which a thin layer forming a film will be applied subsequently to a stress is subjected in a single direction. - tion sufficient to cause elastic deformation of the substrate <Desc / Clms Page number 4> but not exceeding the maximum load for which the substrate still undergoes only an elastic deformation, the thin layer forming the film is applied and the load on the substrate is then removed, this process being able to present in addition the particularity that the thin film applied on the substrate is made of magnetizable material. 2.- Objet obtenu suivant le procédé spécifié ci- dessus. 2.- Object obtained by the process specified above.
BE653434D BE653434A (en)

Publications (1)

Publication Number Publication Date
BE653434A true BE653434A (en)

Family

ID=206286

Family Applications (1)

Application Number Title Priority Date Filing Date
BE653434D BE653434A (en)

Country Status (1)

Country Link
BE (1) BE653434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2471273A1 (en) * 1979-12-06 1981-06-19 Balzers Hochvakuum METHOD FOR COVERING THE SURFACE OF AN ELASTIC BODY OF A LAYER OF A SINGLE TENANT

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2471273A1 (en) * 1979-12-06 1981-06-19 Balzers Hochvakuum METHOD FOR COVERING THE SURFACE OF AN ELASTIC BODY OF A LAYER OF A SINGLE TENANT

Similar Documents

Publication Publication Date Title
WO2007000271A1 (en) Reinforced micromechanical part
Chang Reversed magnetic anisotropy in deformed (100) Cu/Ni/Cu structures
Hindmarch et al. Interface induced uniaxial magnetic anisotropy in amorphous CoFeB films on AlGaAs (001)
US7598596B2 (en) Methods and apparatus for a dual-metal magnetic shield structure
BE653434A (en)
Wulfhekel et al. Magnetic anisotropy of Co on Cu (1 1 17)
DE102005051332B4 (en) Semiconductor substrate, semiconductor chip, semiconductor device and method for manufacturing a semiconductor device
Wun-Fogle et al. Magnetostriction and magnetization of common high strength steels
Schatz et al. Magnetic properties of giant magnetostrictive TbDyFe films
Atulasimha et al. Effect of stoichiometry on sensing behavior of iron-gallium
FR2828001A1 (en) Magnetic random access memory magnetic switching command having electrode planes/ferromagnetic layer thickness lower than first and electrode thickness allowing magnetic coupling.
Wedler et al. Magnetoelastic coupling of compressively stressed Fe/GaAs (001)
US7410888B2 (en) Method for manufacturing strained silicon
JP4919310B2 (en) Method for manufacturing giant magnetostrictive thin film element
EP1385171A2 (en) Method for recording in a nonvolatile solid-state magnetic memory
Lee et al. The effect of annealing temperature on the microstructure of nanoindented Au/Cr/Si thin films
JPS5884477A (en) Planar-hall element
KR950008825B1 (en) Strain detector
EP2597655A1 (en) Manufacturing process for a device including several magnetic units magnetised along different directions
JP4771398B2 (en) Giant magnetostrictive thin film element and manufacturing method thereof
Ding et al. Magnetoelastic Coupling for Fe-Ga Thin Films Epitaxially Grown on Different Substrates
Duc et al. Structural, magnetic, Mössbauer and magnetostrictive studies of amorphous Tb (Fe0. 55Co0. 45) 1.5 films
Angot et al. Hydrogen-induced semimetal-semiconductor transition of two-dimensional ErSi2 detected by electron energy loss spectroscopy
Oepts et al. Enhanced anisotropy of permalloy layers sputter deposited on V-grooved substrates and tilted surfaces
Baco Soft magnetostrictive and mechanical properties of thin Fe-Co-Cr films