JPS5884477A - Planar-hall element - Google Patents

Planar-hall element

Info

Publication number
JPS5884477A
JPS5884477A JP56181964A JP18196481A JPS5884477A JP S5884477 A JPS5884477 A JP S5884477A JP 56181964 A JP56181964 A JP 56181964A JP 18196481 A JP18196481 A JP 18196481A JP S5884477 A JPS5884477 A JP S5884477A
Authority
JP
Japan
Prior art keywords
film
force
hall element
magnetic field
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56181964A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sato
和洋 佐藤
Katsuhiko Oguri
克彦 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Nippon Victor KK
Original Assignee
Victor Company of Japan Ltd
Nippon Victor KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd, Nippon Victor KK filed Critical Victor Company of Japan Ltd
Priority to JP56181964A priority Critical patent/JPS5884477A/en
Publication of JPS5884477A publication Critical patent/JPS5884477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To obtain desired magnetism sensing characteritics by applying force to the film of a ferromagnetic substance by coating an insulating substrate with the film while forming the planar-Hall element held and formed under a state that force is applied to the film. CONSTITUTION:The insulating substrate is coated with the film of an iron-nickel alloy as the ferromagnetic substance through vaccum deposition, etc. while the planar-Hall element is held and formed under the state that force is applied to the film, and the insulating substrate is obtained by coating a glass plate 1 with the film 2 of the iron-nickel alloy in approximately 0.1mum thickness through vacuum deposition. When a magnetic field is vertically applied to currents I in the surface of the film 2 under a state tha currents are flowed between terminals 3, 4, Hall voltage VH is generated between terminals 5, 6. Accordingly, it is considered that the change of the magnetism sensing characteristics through the application of force to the film of the ferromagnetic substance depends upon the degree of arrangement of magnetization in the film of the ferromagnetic substance.

Description

【発明の詳細な説明】 この発明は、磁気を検出する種々の応用が可能なホール
素子に関するものであシ、感磁特性の改善をはかり、検
出磁場範囲を拡大およびあるいはホール電圧の出力を大
きくすることを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Hall element that can be used in a variety of applications to detect magnetism. The purpose is to

剛性の絶縁基板上に強磁性体の被膜を被着させたプレー
ナ・ホール素子の感磁特性は、その被膜の被着手段の一
つである蒸着時の条件で決まり、通常は小さな磁場範囲
の検出しかできがいものとなる。オな、大きな交番磁場
においては、倍周波成分を多く含んだ歪の多い出力とな
シ易い問題があった。
The magnetic sensitivity of a planar Hall element with a ferromagnetic film deposited on a rigid insulating substrate is determined by the deposition conditions, which is one of the means of depositing the film. Only detection becomes difficult. E. In a large alternating magnetic field, there was a problem in that the output was easily distorted and contained many double frequency components.

この発明は、このような問題を解決したプレーナ・ホー
ル素子を揚供するものであり、以下、図面とともにその
実施例を説明する。
The present invention provides a planar Hall element that solves these problems, and embodiments thereof will be described below with reference to the drawings.

先ず、このプレーナ・ホール素子と従来一般のホール素
子との相違の櫃略について説明する。
First, the differences between this planar Hall element and a conventional general Hall element will be explained.

第1図は従来一般のホール素子の斜?U e+で、電流
端子3,4間に電流■を流し、とわと直角方向に磁界H
を加えnば、電圧端子5,6間にホール電圧VHが生じ
るものである。
Figure 1 shows the oblique angle of a conventional general Hall element. At U e+, a current ■ is passed between current terminals 3 and 4, and a magnetic field H is generated in a direction perpendicular to the wire.
If n is added, a Hall voltage VH is generated between the voltage terminals 5 and 6.

第2図はプレーナ・ホール素子における電流I、磁界H
、ホール電圧v!I  の方向を示したもので、磁界H
の方向θは、電流■とホール電圧VHの面内であって、
この発明の場合はθがθ。
Figure 2 shows the current I and magnetic field H in a planar Hall element.
, Hall voltage v! It shows the direction of magnetic field H
The direction θ is in the plane of the current ■ and the Hall voltage VH,
In the case of this invention, θ is θ.

、180° の場合と、9(10,270”  の場合
がある。
, 180° and 9 (10,270").

第3し1はこの発明のプレーナ・ホール素子の平面図1
で、絶縁基板に強磁性体と12で鉄・ニッケル合金の被
膜を真空蒸着などにょシ被着させるとともに、これらの
被膜にカを加えた状態に保持させて構成したものであシ
、絶縁基板としてガラス板1上に、鉄・ニッケル會金の
被膜2を真空蒸着によって厚さ0.1μm(注:1μm
=]XIOfi)程度に被着させたものである。
3rd item 1 is a plan view 1 of the planar Hall element of the present invention.
The insulating substrate is constructed by depositing a ferromagnetic material and an iron/nickel alloy coating by vacuum evaporation or other means on an insulating substrate, and holding these coatings in a state where force is applied. A film 2 of iron/nickel metal was deposited on the glass plate 1 to a thickness of 0.1 μm (Note: 1 μm) by vacuum deposition.
=]XIOfi).

そして、電流端子3,4間に電流を流した。状態で、被
膜2の面内で、電流■に垂直に磁界を加えると、電圧端
子5,6間にホール電圧vHが発生し、その磁界の強さ
Hとホール電圧VBとの関係は、第4図の特性Aで示す
ように々る。
Then, a current was passed between current terminals 3 and 4. When a magnetic field is applied perpendicularly to the current (2) in the plane of the coating 2, a Hall voltage vH is generated between the voltage terminals 5 and 6, and the relationship between the strength H of the magnetic field and the Hall voltage VB is as follows. As shown by characteristic A in Figure 4.

ととろで、ガラス板1を僅かに曲げることによって被膜
2に力を加えると、磁界の強さHとホール電圧VHとの
関係は特性Bで示すように変化し、さらにカを大きくす
ると特性Cに示すように変化する。
When force is applied to the coating 2 by slightly bending the glass plate 1, the relationship between the magnetic field strength H and the Hall voltage VH changes as shown by characteristic B, and when the force is further increased, it changes to characteristic C. Change as shown.

このように強磁性体の被膜にカが加えられるξとによる
感磁特性の変化は、強磁性体の被膜内の磁化の整列度に
よると考えらj、る。すなゎち、力に起因する強磁性体
の被膜の歪(strain)は、磁化に変化を与え、例
えばニッケル(N1)を主成分として、とjに5%〜2
0Xの鉄(Fe)を加えたNj Fe合金の多結晶膜で
は、磁歪係数が負で上記膜に与えた張力と垂直な方向に
磁化は整列し、その整列度が高まる結果、ホール電圧V
B  は大きくなるが、同時に歪に序って磁区移動が困
難となり、上記膜の磁化に必要に磁場は大きくなって、
第4図1に示すような感磁特性の変化を示すことになる
It is thought that the change in the magnetic sensitivity characteristics caused by the force ξ applied to the ferromagnetic film is due to the degree of alignment of the magnetization within the ferromagnetic film. In other words, the strain of the ferromagnetic film caused by force changes the magnetization, and for example, when nickel (N1) is the main component,
In a polycrystalline film of Nj Fe alloy containing 0x iron (Fe), the magnetostriction coefficient is negative and the magnetization is aligned in the direction perpendicular to the tension applied to the film, and as a result of the increased degree of alignment, the Hall voltage V
B increases, but at the same time, magnetic domain movement becomes difficult due to strain, and the magnetic field necessary for magnetizing the film increases,
This results in changes in magnetic sensitivity characteristics as shown in FIG. 1.

また、従来一般のホール素子では固体中のキャリアが直
接受けるローレンツ力によって明確に説明できるが、プ
レーナ・ホール素子の場合には、キャリアである4g 
 %子(こn?′i固体全体に広が°つて、所属原子を
特定できない)と3d電子(こVは固体中で局在的で、
ある特定の原子に所属することが多く、強磁性の起源で
あり、ご場の影響をうける)の相互作用によってボール
電圧が発生すると考えらnる。
In addition, in conventional Hall elements, this can be clearly explained by the Lorentz force directly applied to carriers in a solid, but in the case of planar Hall elements, the carrier 4g
% electrons (this is spread throughout the solid and the atoms to which it belongs cannot be identified) and 3d electrons (this is localized in the solid,
Ball voltage is thought to be generated by the interaction of ferromagnetism, which often belongs to a specific atom, is the origin of ferromagnetism, and is influenced by the magnetic field.

グレーナeホール素子は交番硼界の検出にも用いられる
が、その際、ホール電圧出力が歪の少ない応答を示すの
は、被膜2に力が加えらjる前ではH^ の小さな磁界
の範囲であるのに対し、力が加えらjだ特性Bの場合に
はHa  の磁界の範囲に拡大され、さらに特性Cの場
合にはHe  の磁界の範囲に拡大される。
Grainer e-Hall elements are also used to detect alternating fields, but in this case, the Hall voltage output shows a response with little distortion only in the small magnetic field range of H^ before a force is applied to the coating 2. On the other hand, in the case of characteristic B in which no force is applied, it is expanded to the range of the magnetic field of Ha, and in the case of characteristic C, it is further expanded to the range of the magnetic field of He.

このプレーナΦホール素子の特性変化は、磁歪係数が負
であるニッケルを主成分とする多くの合金では、その被
膜に引張力を加えるか、圧縮力を加えるかで大きく異な
り、第4図に示す特性は、第3図に示すようなプレーナ
・ホール素子において、電流端子3,4間に電流を流し
た状態で被膜2の面内で電流Iに垂直に磁界Hを加え、
電流方向すなわち電流端子3,4方向に圧縮力を加えた
場合であり、また、引張力を加えた場合には、磁界の方
向が電流と平行な方向において第2図に示すような特性
変化が得らnる。
For many alloys whose main component is nickel, which has a negative magnetostriction coefficient, the characteristics of this planar Φ Hall element vary greatly depending on whether tensile or compressive force is applied to the coating, as shown in Figure 4. The characteristics are as follows: In a planar Hall element as shown in Fig. 3, a magnetic field H is applied perpendicular to the current I within the plane of the coating 2 while a current is flowing between the current terminals 3 and 4.
This is the case when a compressive force is applied in the current direction, that is, the direction of the current terminals 3 and 4. Also, when a tensile force is applied, the characteristics change as shown in Figure 2 when the direction of the magnetic field is parallel to the current. Get it.

まだ、被膜2に力を加える方法は、絶縁基板であるガラ
ス板1に被膜2を被着させた後にガラス板jを彎曲させ
てもよいし、または被膜2の被着時に予めガラス板lを
弾性に抗して彎曲させておいて被着後に彎曲を解放させ
るようにしてもよい。
However, as a method of applying force to the coating 2, the glass plate j may be bent after the coating 2 is applied to the glass plate 1, which is an insulating substrate, or the glass plate l may be bent in advance when the coating 2 is applied. It may be curved against elasticity and then released from the curve after being applied.

また、この実施例では、検出磁界の範囲を拡大させるこ
とを目的としたが、検出磁界の範囲を小さくして、単位
磁界当りのホール電圧の出力を大きくすることもできる
ので、検出磁界の大きさによって特性を調整することが
できる。
Furthermore, although the purpose of this embodiment was to expand the range of the detected magnetic field, it is also possible to reduce the range of the detected magnetic field and increase the Hall voltage output per unit magnetic field. The characteristics can be adjusted depending on the

この発明は、以上説明したように、絶縁基板に強磁性体
の被膜を被着させるとともに、この被膜に力を加えた状
態に保持させて構成したプレーナ・ホール素子を提供し
たので、従来のように、感磁特性が被膜の被着時の条件
で決まってしまうということがなく、被膜の被着後に絶
縁基板を彎曲させるか、あるいは絶縁基板を予め弾性に
抗して彎曲させた状態で被膜を被着してその後にその彎
曲を解放することによって、被膜に力を加えて所望の感
磁特性を得ることができる。
As explained above, the present invention provides a planar Hall element constructed by depositing a ferromagnetic film on an insulating substrate and maintaining the film under force. In addition, the magnetic sensitivity characteristics are not determined by the conditions when the coating is applied, and the insulating substrate is curved after the coating is applied, or the insulating substrate is bent in advance against elasticity before the coating is applied. By depositing and subsequently releasing the curvature, forces can be applied to the coating to obtain the desired magnetosensitive properties.

また、絶縁基板に強磁性体の被膜を被着させたブレーナ
・ホール素子は、従来の半導体ホール素子に比べて製造
工程がきわめて簡単である。
Furthermore, the Brehner-Hall element, in which a ferromagnetic film is applied to an insulating substrate, has a much simpler manufacturing process than conventional semiconductor Hall elements.

また、この発明のブレーナ・ホール素子を磁気ヘッドな
どとして用いた場合には、ダイナミックレンジを広くす
ることができ、まだ、従来の磁気抵抗効果ヘッド(MR
ヘッド)に比べて、バイアス磁界が不要であるので、磁
気記録再生装置の構成が簡略化される。
Furthermore, when the Brehner-Hall element of the present invention is used as a magnetic head, etc., the dynamic range can be widened, and it is still possible to widen the dynamic range.
Since a bias magnetic field is not required compared to the head), the configuration of the magnetic recording/reproducing device is simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来一般のホール素子の斜視図、第2図はブレ
ーナ・ホール素子における電流、磁界、およびホール電
圧の方向関係を示す図、第3図はこの発明のブレーナ・
ホール素子の平面図、第4 [k+はこのブレーナ・ホ
ール素子を説明する特悔図である。 ]・・・絶縁基板であるガラス板、2・・・強磁性体の
被膜、3,4・・・電流端子、5,6・・・電圧端子。 H・・・磁界の強さ、VH・・・ホール電圧、A、B。 C・・・特性、H^、 HB 、 He・・・磁界の範
囲。 111図 112図 IEB図 w4図
FIG. 1 is a perspective view of a conventional general Hall element, FIG. 2 is a diagram showing the directional relationship of current, magnetic field, and Hall voltage in a Brehner-Hall element, and FIG.
Plan view of Hall element, No. 4 [k+ is a regrettable diagram explaining this Brehner-Hall element. ]... Glass plate serving as an insulating substrate, 2... Ferromagnetic coating, 3, 4... Current terminal, 5, 6... Voltage terminal. H...Magnetic field strength, VH...Hall voltage, A, B. C...Characteristics, H^, HB, He...Magnetic field range. 111 figure 112 figure IEB figure w4 figure

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基板に強磁性体の被膜を被着させるとともに
、この被膜に力を加えた状態に保持させて構成したプレ
ーナeホール素子。
(1) A planar e-Hall element constructed by depositing a ferromagnetic film on an insulating substrate and maintaining the film under force.
(2)被膜には、電流と磁界が直交する場合には圧縮力
を、電流と磁界が平行な場合には引張力を顧えるように
した特許請求の範囲第1項にiF[のプレーナ・ホール
2子。
(2) The planar coating of iF [Claim 1] is such that the coating can be applied with compressive force when the current and magnetic field are perpendicular to each other, and with tensile force when the current and magnetic field are parallel. Hall 2 children.
JP56181964A 1981-11-13 1981-11-13 Planar-hall element Pending JPS5884477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56181964A JPS5884477A (en) 1981-11-13 1981-11-13 Planar-hall element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56181964A JPS5884477A (en) 1981-11-13 1981-11-13 Planar-hall element

Publications (1)

Publication Number Publication Date
JPS5884477A true JPS5884477A (en) 1983-05-20

Family

ID=16109942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56181964A Pending JPS5884477A (en) 1981-11-13 1981-11-13 Planar-hall element

Country Status (1)

Country Link
JP (1) JPS5884477A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782705A (en) * 1985-01-23 1988-11-08 Alcatel N.V. Strain gauge
CN100349308C (en) * 2005-12-08 2007-11-14 南开大学 Hall unit with nano crystal iron-germanium granule magneto sensitive material active layer
US20140247043A1 (en) * 2013-03-03 2014-09-04 Bar Ilan University High resolution planar hall effect sensors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782705A (en) * 1985-01-23 1988-11-08 Alcatel N.V. Strain gauge
CN100349308C (en) * 2005-12-08 2007-11-14 南开大学 Hall unit with nano crystal iron-germanium granule magneto sensitive material active layer
US20140247043A1 (en) * 2013-03-03 2014-09-04 Bar Ilan University High resolution planar hall effect sensors
US9606195B2 (en) * 2013-03-03 2017-03-28 Bar Ilan University High resolution planar hall effect sensors having plural orientations and method of operating the same to measure plural magnetic field components

Similar Documents

Publication Publication Date Title
EP0744076A1 (en) Magnetoresistive structure with alloy layer
JP2011159988A (en) Measurement assembly with magnetoresistive magnetic field sensor and electronic processing circuit
US5600297A (en) Magnetic field sensor
US20060268455A1 (en) Magnetic thin film sensor based on the extraordinary Hall effect
JPS59168383A (en) Small-sized magnetic field sensing device
TW201530109A (en) Pressure sensor, acceleration sensor, and method for manufacturing pressure sensor
JPS5884477A (en) Planar-hall element
JPH0870149A (en) Magnetoresistance element
JPS6331116B2 (en)
Zhou et al. Tunneling magnetoresistance (TMR) materials and devices for magnetic sensors
JPS5923219A (en) Rotation angle detecting meter
JP2002094140A (en) Magnetic impedance effect element
JPH07244142A (en) Magnetic sensor
JPS5970978A (en) Magnetic sensor and phase/displacement detector
JPS6357741B2 (en)
JPS634359B2 (en)
JPH03180756A (en) Method for measuring electric resistance of magnetoresistive element on wafer
JPS622362B2 (en)
KR0180590B1 (en) Granular magnetroresistane element and its manufacture
JPS63184377A (en) Ferromagnetic magnetoresistance element
JP3028585B2 (en) Magnetoresistive element
JPS60200935A (en) Magneto-resistance effect alloy film and its production
JPS5895882A (en) Magneto-resistance effect element
JPS6396974A (en) Ferromagnetic magnetoresistance element
CN116381579A (en) Planar Hall sensor based on magnetic film on periodic corrugated substrate