BE505827A - - Google Patents

Info

Publication number
BE505827A
BE505827A BE505827DA BE505827A BE 505827 A BE505827 A BE 505827A BE 505827D A BE505827D A BE 505827DA BE 505827 A BE505827 A BE 505827A
Authority
BE
Belgium
Prior art keywords
air
grain
drying
temperature
layers
Prior art date
Application number
Other languages
English (en)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of BE505827A publication Critical patent/BE505827A/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/12Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft
    • F26B17/14Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft the materials moving through a counter-current of gas
    • F26B17/1408Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft the materials moving through a counter-current of gas the gas being supplied and optionally extracted through ducts extending into the moving stack of material
    • F26B17/1416Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft the materials moving through a counter-current of gas the gas being supplied and optionally extracted through ducts extending into the moving stack of material the ducts being half open or perforated and arranged horizontally

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)

Description


   <Desc/Clms Page number 1> 
 



  PROCEDE ET APPAREILS POUR LE   SECHAGE-DU   GRAIN EN VRAC. 



   La présente invention concerne des perfectionnements au séchage du grain, des graines ou des matières analogues en vrac. 



   L'invention consiste à faire passer, à travers le grain, de l'air dont l'humidité relative a été abaissée à moins de   30 %   par enlève- ment d'eau de cet air ou d'une partie de cet air (désigné ci-après par l'ex- pression "air sec" ou flair séché"), à faire déplacer le grain de manière in- termittente ou continue dans une direction sensiblement parallèle à l'écou- lement d'air à travers le grain et à éviter toute augmentation notable de la température finale du grain au-dessus de sa température initiale sous 1' action du procédé de séchage. 



   Le trajet d'air à travers le grain peut être de l'ordre de 0,60 à 2,50 mètres et de préférence de l'ordre de 0,60 à 1,25 mètres. 



   La température finale du grain n'excède pas de préférence la. moyenne arithmétique de la température ambiante et de la température d'en- trée d'air et il est avantageux qu'elle ne dépasse pas la température   am-   biante de plus d'environ 5 C. 



   Ainsila présente invention consisteà utiliser de l'air ayant une humidité de 30% à zéro et cela présente, par rapport à l'emploi d'air plus humide, l'avantage important que, pour une vitesse donnée de séchage, de plus petits volumes d'air sont nécessaires avec ce résultat que l'énergie consommée pour faire passer l'air à travers le grain est réduite ou bien qu' un séchage plus rapide peut être réalisé par le même volume d'air de séchage. 



   Avant la présente invention, il semblait impraticable, pour un séchage du grain en vrac, d'utiliser de l'air ayant une humidité relative 

 <Desc/Clms Page number 2> 

 inférieure à 30% et l'utilisation d'un tel air sec aurait conduit à,un séchage excessif du'grain. 



   L'utilisation   d'air;,   dont l'humidité relative est moindre que 30%, est rendue praticable en partie par de courts trajets d'air à travers le grain, de préférence d'une longueur de l'ordre de 0,60 à 1,25 mètres, bien que des résultats satisfaisants puissent être obtenus avec des lon- gueurs de trajets de l'ordre de 0,60 à 2,50 mètres, et aussi en partie par un déplacement intermittent ou continu ou par une descente du grain dans la trémie, le réservoir ou la cuve   où.   il sèche et où on fait passer l'air sé- ché. La vitesse ou la fréquence de la descente du grain est déterminée, comme décrit ci-après, de telle façon que non seulement on évite un séchage excessif du grain au voisinage de l'entrée d'air mais encore que la vitesse globale de séchage soit maintenue à une valeur maximum. 



   Le mouvement de descente du grain peut être assuré par circula- tion du grain, c'est-à-dire par'prélèvement de grain du fond du réservoir et par son renvoi au sommet du réservoir, par exemple au moyen d'un éléva- teur à augets ou autre qui peut être disposé à l'intérieur ou à l'extérieur de la tour. La disposition et la construction du réservoir sont de préfé- rence telles que le grain se déplace régulièrement sans donner lieu à l'ef- fet de formation d'entonnoirs qui est souvent observé dans les réservoirs; par exemple, on peut utiliser un type convenable de dispositif anti-éboulis tels qu'un croisillon du type décrit dans le brevet anglais   140.837   déposé le 26 Septembre 1918 aux noms de J.W.COLLINS et H.A.J.

   RANG pour un disposi- tif de conditionnement du grain stocké dans les silos ou réservoirs, selon lequel le grain sort d'un réservoir ou d'un silo à peu près dans l'ordre dans lequel il est entré dans ce réservoir. 



   En variante et notamment dans le cas de grands réservoirs, par exemple d'une hauteur de l'ordre de 25 mètres avec étages de 2,50 en 2,50 mètres, on peut se dispenser de faire circuler le grain en établissant une zone de séchage vers le bas du réservoir et en prélevant le grain sec de la base du réservoir tout en ajoutant du grain humide au sommet de réservoir à une vitesse proportionnelle à la vitesse de séchage. Le grain peut être prélevé de la base du réservoir de manière continue ou intermittente. 



   Quand on fait circuler le grain, la circulation peut être in- termittente ou continue. 



   Pour permettre de faire passer des volumes d'air relativement grands à travers le grain à une pression relativement faible   t   par consé- quent avec une dépense relativement faible d'énergie de ventilation, on a trouvé, selon l'invention, qu'il est avantageux de faire passer l'air sé- ché suivant de courts trajets dans le sens de la hauteur du réservoir et de répartir l'air plus ou moins uniformément dans toute la section trans- versale de ce réservoir. On peut obtenir ce résultat en divisant un réser- voir en une série de zones au moyen de croisillons ou autres systèmes de ventilation et en employant des croisillons ou dispositifs de ventilation alternés comme entrées et sorties d'air.

   Ainsi l'arrivée d'air à une entrée se trouve divisée et une partie de.cet air monte vers une sortie, tandis qu'une autre partie descend vers une autre sortie. De cette façon, chaque dispositif de ventilation de sortie'débite approximativement le même volume d'air qu'un dispositif de ventilation d'entrée, mais une partie-de ce volu- me d'air provient   'du   dispositif de ventilation situé au-dessus, tandis qu' une autre partie provient du dispositif de ventilation situé au-dessous. 



   L'invention consiste encore en un appareil perfectionné pour le séchage du grain, des graines ou des matières analogues en   vrac.,   dans lequel un réservoir est muni d'un ou de plusieurs dispositifs de ventilation d'en- trée et d'un ou de plusieurs dispositifs de ventilation de   sortie   à des ni- 

 <Desc/Clms Page number 3> 

 veaux différents dans ce réservoir, le ou les dispositifs de ventilation d'entrée étant alimentés en air séché provenant d'une installation de sé- chage   d'air.   



   L'invention consiste aussi en un appareil perfectionné pour le séchage du grain, des graines ou matières analogues en vrac, qui comprend un sécheur d'air de fonctionnement automatique ayant plusieurs couches sé- chantes mises en service successivement sous la commande d'une minuterie, telle qu'un commutateur à temps, actionnant des vannes communes à toutes les couches et disposées l'une au-dessus des couches et l'autre au-dessous tan- dis que, pour l'envoi d'un courant d'air chaud ou d'un mélange d'air chaud et de produits de combustion sélectivement à travers les couches à des pé- riodes successives, ces vannes coopèrent avec des tuyaux coudés supérieur et inférieur;

   déplaçables angulairement avec elles, une extrémité de chaque tuyau coudé communiquant avec un conduit ou passage fixe et l'autre extrémi- té communiquant avec les couches respectives à travers sa vanne selon son orientation angulaire. 



   Les couches séchant l'air peuvent être régénérées une par une successivement au moyen de produits de combustion provenant d'un brûleur d'huile à travers un lit de matières réfractaires, telles que des anneaux de contact,maintenu chauffé au rouge par la chaleur de la flamme ouà travers un filtre de fibres   minérales,   des dispositifs étant prévus pour diluer ces produits chauds de combustion avec l'air atmosphérique avant qu'ils atteig- nent la couche séchante à régénérer., 
On décrira ci-après l'invention plus en détails en référence aux dessins annexés, dans lesquels ; la figure 1 est un graphique montrant la relation entre le temps et la température du grain à des profondeurs ou des régions différentes dans une zone de grain au cours de son séchage par de l'air dont l'humidité a été abaissée;

   la figure 2 est une coupe verticale partielle de front montrant la disposition d'une simple installation de séchage pouvant être utilisée dans une ferme; la figure 3 est une coupe verticale partielle de   cote   correspon- dant à la figure 2; la figure 4 est une vue schématique d'un sécheur d'air automati- que, représenté en partie en coupe selon.l.a ligne IV-IV de la figure 7; les figures 5 et 6 montrent des éléments de vannes mobiles et fixes associés pour être utilisés dans le sécheur de la figure 4; 
La figure 7 est un schéma montrant la disposition des plans séchants de la figure 4 par rapport aux éléments de vannes; la figure 8 est une coupe schématique d'un grand réservoir de séchage à zones multiples utilisable dans un moulin. 



   Les réservoirs de'stockage du type utilisé dans les moulins à farine et malteries ont habituellement une hauteur de 25 mètres ou davantage et ces réservoirs peuvent comporter au moins 8 zones de séchage disposées verticalement les unes au-dessus des   autreso   Dans une installation simple telle qu'un réservoir de ferme cependant, où le réservoir peut avoir par exemple 3,50 ou 5,50 mètres de haut, ce réservoir peut être divisé simple- 'ment en 3 ou 4 zones de séchage, chacune 'de 0,90 à 1,80 mètre de haut. Qu' on utilise les zones simples ou les zones multiples, le principe du dépla- 

 <Desc/Clms Page number 4> 

 cement du grain est le même et l'indication des observations exposées ci- après le fera comprendre. 



   Au graphique représenté à la figure 1, on a porté en ordonnées les températures de l'atmosphère du grain en différentes régions d'une zone de grain de 1,80 mètre de haut, tandis qu'on a porté le temps en abscisses. 



  Les températures A sont en degrés centésimaux et les temps B en heures expri- mées en nombres décimaux. Les courbes W-X-Y-Z représentent les variations des températures en fonction du temps dans les régions I-II-III-IV   d'une.co-   lonne de grain à des distances respectives.de 0,30, 0,70, 1,10 et 1,50 mètre à partir de la région d'entrée d'air quand on fait passer de l'air sec à hu- midité nulle ou presque à une température de 32  à 35  C à travers le grain ayant une teneur initiale en humidité de 19% (c'est-à-dire à travers les ré- gions, I, II, III et IV dans cet ordre) à une vitesse d'environ 6 mètres par minute, la température ambiante étant de 15 , 6 C.

   L'élévation de la tempé- rature de l'air à l'entrée jusqu'à 32 -35  est obtenue par la condensation de la vapeur d'eau de l'air séché par passage sur du gel de silice ou de l'alumine activée. Si on considère maintenant la courbe W pour la région à une hauteur de 30 cm au-dessus du point d'entrée de l'air, on observe que, malgré la chaleur de l'air, la température du grain descend d'abord rapide- ment par suite du séchage intense. Ensuite, après avoir atteint un minimum en un point P, la température commence à s'élever et peut dépasser la tempé- rature ambiante mais, à moins que le séchage soit poussé à l'extrême, n'at- teint jamais la température d'entrée de l'air sec.

   De même, la courbe X, pour la région située à une hauteur de 70 cm au-dessus de l'entrée d'air, montre une baisse initiale de température suivie d'une remontée, mais la baisse est moins forte et la remontée plus tardive et l'élévation est plus lente, tandis que la température, au moins dans le temps représenté, n' excède pas la température ambiante. Les variations de température pour les autres régions, à 1,10 m et 1,50 m respectivement de l'entrée d'air, sont représentées par les courbes Y et Z. Ces courbes montrent encore une baisse de température suivie d'une remontée, mais les effets sont encore moins mar- qués et plus retardés. 



   Si on considère maintenant l'effet de séchage par l'air, on peut supposer, au début du séchage, que l'air sec enlève d'abord l'humidité du grain jusqu'à ce que son humidité relative corresponde à celle de l'atmos- phère du grain. Cet air, maintenant en équilibre avec le grain, traverse sans changement le reste du grain et s'échappe à la même température que le grain et à une humidité relative déterminée par la teneur en humidité du grain. La vitesse de séchage dépend en premier lieu de la température du grain et par suite de la température d'évacuation de l'air parce que, tandis que l'humidité relative est constante, l'humidité absolue varie beau- coup avec la température, en doublant approximativement pour chaque éléva- tion de température de 10 C.

   Comme le séchage progresse rapidement, la cha- leur sensible de l'air devient insuffisante pour compenser la chaleur la- tente d'évaporation et la température s'abaisse. Cela continue jusqu'à ce qu'un minimum soit atteint au point P de la courbe W. 



   Si on considère maintenant l'effet de ce refroidissement, il est évident que, tandis que l'humidité relative de l'air quittant les régions refroidies reste sensiblement constante, pour des vitesses d'air modérées, l'humidité absolue descend rapidement et qu'ainsi la vitesse de séchage di- minue. D'autre part, à mesure que le grain sèche, la vitesse de diffusion de l'humidité vers la surface du grain diminue aussi et peut être insuffisante pour maintenir la caractéristique d'humidité relative du grain humide.

   Pour ces raisons, la baisse de température est arrêtée et, après avoir atteint un minimum,la température du grain s'élève jusqu'à une vitesse de séchage constante ou jusqu'à équilibre entre la chaleur fournie et la chaleur ab- sorbée par   évaporation.   La température reste alors à peu près constante jus- qu'à ce que le grain soit très sec, ce qui donne lieu à une lente augmenta- 

 <Desc/Clms Page number 5> 

 tion et finalement la température atteindra celle de l'air qui entre, mais cette circonstance ne se présente pas dans le cas d'un séchage nor- mal. Cette explication est valable pour la région   I,   mais il est nécessaire d'examiner brièvement le comportement des autres régions et'aussi de déter- miner l'effet sur le séchage général qui dépend seulement de l'état de 1' air de sortie.

   L'air quittant la région I à tout moment avant le .point P est à une humidité relative constante, mais à une température décroissante. 



  Il prélèvera par conséquent à la fois de la chaleur et de l'humidité dans une faible mesure à la région II. Cela résulte, comme on l'a mentionné ci- dessus, du fait que, tandis que l'humidité relative reste constante, l'humi- dité absolue augmente avec la température et ainsi l'air froid peut sécher pour cette raison et prélever la chaleur d'évaporation de l'ambiance, c'est- à-dire dans ce cas du grain. Il en résulte une petite baisse de température dans cette région. Après le point P cependant, l'air quitte la région I à une température croissante et vraisemblablement à une humidité-relative dé- croissante.

   Il en résulte que la vitesse de séchage augmente dans la région II en abaissant ainsi la température et que la deuxième région se comporte à peu près de la même façon que la région I si ce n'est que, comme elle dé- pend de la région   I,   l'effet est retardé et moins prononcé. Les effets dans les deux autres régions III et IV sont analogues pour les mêmes raisons, mais de moins en moins prononcés, de sorte qu'à la sortie, la chute de tempéra- ture n'est que de quelques degrés.

   Cette chute continue à peu près jusqu'à la moitié de l'opération de séchage, par exemple pendant 8 heu- res (non représenté à la figure 1), la température s'élevant ensuite lente- ment et dépassant légèrement la température ambiante, tandis qu'en même temps l'humidité relative s'abaisse mais la vitesse de séchage est peu mo- difiée car l'augmentation de température est compensée par celle de l'humi- dité absolue. 



   Tandis que les-observations et explications qui précèdent con- cernent un simple réservoir à zoné de séchage unique avec passage d'air ascendant, les mêmes circonstances se présentent exactement dans des réser- voirs à zones multiples mais on se rappellera que le séchage intense   se.pré-   sente à la fois au-dessus et au-dessous des entrées d'air, de sorte que le séchage doit être considéré dans le sens de la circulation de l'air qui peut être vers le haut ou vers le bas. D'autre part, comme on l'a exposé, la ré- gion de séchage intense qui se présente au-dessus et au-dessous de l'en- trée d'air est ainsi deux fois plus haute que dans le cas d'une installation simple. 



   Ayant maintenant examiné complètement les phénomènes du séchage avec de l'air très sec ou complètement sec, il est évident que dans les conditions décrites, il y aura séchage excessif dans la ou les régions de sé- chage intense et qu'un petit séchage sera effectué dans les régions de sor- tie. L'invention a pour but de surmonter cette difficulté en déplaçant le grain par intermittence en quantités contrôlées ou en la déplaçant de fa- çon continue à une vitesse déterminée. 



   Si on considère d'abord le déplacement par intermittence, l'étu- de des phénomènes observés montre que, si après environ une demi-heure de séchage par exemple, le grain est prélevé de la région I de séchage intense, par exemple au point P, et placé au sommet de la colonne de grain, qui est au-dessus de la région IV, l'air quittant la région IV et traversant le grain froid sera refroidi. Cela réduira son humidité absolue et diminuera la vites- se de séchage et peut même aboutir à la saturation de l'air en provoquant le dépôt sur le grain voisin de la sortie de l'eau prélevée du grain infé- fieur dans le réservoir. Le déplacement à ce moment n'est pas souhaitable. 



  Si le déplacement est différé, par exemple jusqu'à une heure un quart après le début du séchage, le grain dans la région I, comme le montre la figure 1, aura retrouvé sa température initiale et le déplacement de la région de 

 <Desc/Clms Page number 6> 

 base à une position au-dessus du sommet ne provoquera pas la baisse de tem- pérature et de la vitesse de séchage résultant du déplacement effectué plus tôt. Cependant, à ce moment, la région II est au voisinage du minimum du point Q et si on déplace une quantité de grain supérieure à celle qui corres- pond à une hauteur de 30 cm dans le réservoir, il en résultera que le grain froid de la région II apparaîtra à la sortie avec des résultats analogues à ceux du mouvement effectué plus tôt. Il n'est donc pas encore souhaitable d'effectuer le déplacement.

   Cependant, après environ 1 heure   1/4,   la tem- pérature du grain dans la région I commence à s'élever au-dessus de la tem- pérature ambiante, comme le montre la courbe W à la figure 1 et la tempéra- ture dans la région II, comme le montre la courbe X, s'élève aussi et, si le déplacement est fait après un temps compris entre 1 heure et demie et 2 heures, il est évident que le grain déplacé du fond et placé au sommet ne sera pas froid même si on déplace plus que la hauteur de la région I. C'est donc le moment optimum pour le déplacement car, s'il est différé plus que 2 heures, le grain de la région I peut être séché tellement qu'il puisse être humidifié par l'air provenant de régions plus humides malgré la haute température qui tend au début à s'opposer à cela.

   Dans les conditions de l'exemple, il serait par conséquent suffisant de déplacer le grain à des intervalles de 1 heure et demie à deux heures et de déplacer une quantité correspondante à une hauteur de, par exemple, 30 à 60 cm. En pratique, il est très simple de déterminer le temps et la quantité sans avoir recours à une disposition compliquée de thermomètres car, si l'élévateur est mis en fonctionnement et qu'un petit échantillon est prélevé et sa température me- surée, on peut décider de faire circuler chaque fois que la température s' élève à la hauteur ambiante et avant que la température ne dépasse par exem- ple de 5  la valeur ambiante. D'après la capacité de l'élévateur et la di- mension du réservoir, un simple calcul donnera le temps nécessaire pour dé- placer par exemple un minimum d'une hauteur de 30 cm de grain.

   On peut dé- placer plus de grain, mais il n'y a pas davantage à en déplacer beaucoup plus et un déplacement inutile est indésirable, de sorte que le déplacement ne doit pas en général dépasser une quantité correspondant à une hauteur de 60 cm. 



   Les figures 2 et 3 montrent schématiquement l'installation d'un simple système de séchage de ferme qui comprend deux réservoirs 11, tels que des réservoirs en éléments de béton de section circulaire, chacun com- portant deux entrées de ventilation 12-13 et une sortie de ventilation 14 entre les deux entrées. Le haut ouvert de chaque réservoir et une trémie ven- tilée 15 à la base de chaque réservoir établissent les sorties d'air complé- mentaires. De l'air séché est fourni aux dispositifs de ventilation 12-13 par un conduit 16 partant d'un sécheur d'air automatique 22. Un élévateur 21 peut être prévu pour effectuer tout déplacement du grain désiré, continu ou intermittent.

   Les dispositifs de ventilation peuvent être en simple croix ou présenter plusieurs bras 23, s'étendant latéralement à partir de collec- teurs 12-13-14, comme représenté à la figure 2 ou de toute autre forme pro- duisant le même résultat. L'élévateur peut être de tout type convenable, de préférence mécanique plutôt que pneumatique pour éviter la détérioration du grain et réduire la dépense d'énergie. 



   La disposition des dispositifs de ventilation d'entrée   12-13   et du dispositif de ventilation de sortie   14,   comme le montre la figure 2, éta- bli quatre zones de séchage   17,     18,   19 et 20. 



   Avec un réservoir d'une hauteur de 3,50 à 6 mètres par exemple, les zones auront de 0,90 à 1,50 mètre de'haut et l'air de séchage est ré- parti par conséquent sur une surface quatre fois plus grande que celle de la base du réservoir, tandis qu'en même temps la hauteur de grain traver- sée par l'air est réduite au quart de la hauteur totale du réservoir, en permettant ainsi une réduction de la vitesse initiale de l'air et une dimi- nution de la puissance requise pour la ventilation, en même temps qu'un sé- 

 <Desc/Clms Page number 7> 

 chage plus régulier, car le grain en déplacement passe à travers toutes les zones de séchage. 



   Toute forme convenable de sécheur d'air peut être utilisée pour l'application de l'invention. Par exemple, le sécheur d'air peut être du simple type à deux cuves contenant du gel de silice ou de l'alumine.   ,On   doit cependant surveiller de tels sécheurs d'air de temps à autre pour le changement des couches séchantes et l'un des buts de la présente invention est de réduire les manutentions exigées par de tels sécheurs d'air, Dans beaucoup d'applications de l'invention, il peut être avantageux d'employer un type automatique de sécheur d'air, tel qu'on l'a représenté.schématique- ment à la figure 3, qui ne nécessite qu'une surveillance réduite ou nulle et peut tourner en sécurité sans surveillance toute la nuit si on le désire. 



   Des sécheurs d'air automatiques sont communément utilisés pour le conditionnement de l'air dans les climats chauds et à bord des navires mais, comme on demande habituellement à ces machines d'enlever la chaleur d'adsorption et de pouvoir avoir un fonctionnement   isothermique,   elles sont compliquées, coûteuses et ne conviennent pas pour un usage à la   ferme.   



   Le sécheur d'air automatique 22 représenté aux figures 3 à 6, a été conçu pourl'application de la présente invention et est relativement simple et peu coûteux tout en étant capable de fournir de l'air à très fai- ble humidité. 



   Le sécheur automatique comporte quatre séries' de couches de sé- chage 26-29-30-31 de matière absorbante solide, telle que du gel de silice ou de l'alumine, occupant les quatre quarts du bottier du sécheur. Le bottier est équipé d'une vanne inférieure et d'une vanne supérieure à disques rota- tifs, chacune comportant un élément mobile 25, comme représenté à la figure 5, et un élément fixe   28,   comme représenté à la figure 56. Chaque élément mobile est en contact contre un élément fixe. Les éléments mobiles sont mon- tés sur un arbre central. 38 qui tourne périodiquement d'un quart de tour sous la commande d'un commutateur à temps ou de toute autre minuterie conve- nable. La minuterie peut être réglée pour faire tourner les vannes d'un quart de tour toutes les   demi-heures.   



   Un ventilateur 23, représenté à la figure 4, est destiné à aspirer l'air vers le bas à travers les couches, tandis qu'un deuxième ven- tilateur, monté sur le même arbre que le ventilateur 23, est destiné à as- pirer l'air chaud vers le haut à travers les couches pour leur régénération. 



   La disposition des vannes est telle qu'à un moment quelconque le ventilateur 23 aspire l'air vers le bas de deux des couches à la fois, par exemple des couches 26 et   29,   tandis que l'autre ventilateur aspire un mélange d'air chaud et de produits de combustion d'un brûleur 32 vers le haut à travers une troisième couche, par exemple la couche 30. En même temps une quatrième couche, par exemple la couche 31, est refroidie par un écoulement restreint d'air aspiré vers le bas à travers cette couche par le ventilateur 23 à travers les vannes   25-28.   



   La figure 7 montre schématiquement les dispositions relatives des quatre couches 26-29-30-31 et la vanne supérieure 25 qui, dans la posi- tion représentée, établit les ouvertures de passage 24a-24b permettant à l'air atmosphérique d'être aspiré à travers les couches 26-29 où il est séché pour être envoyé par le ventilateur 23 à travers le conduit 39 vers les réservoirs 11. En même temps, l'air chaud et les produits de combustion sont aspirés par le deuxième ventilateur du brûleur d'huile 32 à travers les tuyaux coudés articulés   3435   et à travers un conduit   40   pour la régéné- ration de la couche 30. Cet autre ventilateur refoule par le conduit 41. 

 <Desc/Clms Page number 8> 

 



   Les tuyaux coudés articulés   34-35   sont destinés à tourner avec les disques mobiles des vannes 25-28 respectivement sous l'action de la mi- nuterie. 



   L'air chaud pour la régénération peut contenir des particules de combustible non brûlées et, pour que la matière absorbante des couches de séchage 26-29-30-31 ne soit pas altérée par les produits de combustion, on fait passer ceux-ci à travers un lit de matière réfractaire, telle que des anneaux de contact, qui est maintenu chauffé au rouge par la chaleur de la flamme de brûleur ou bien on les fait passer à travers un filtre de fibres minérales. Avant d'atteindre la couche séchante, les produits de combustion sont refroidis à une température de sécurité par dilution avec de l'air at- mosphérique avant leur entrée dans le tuyau coudé 34. 



   Si les vannes sont déplacées d'un quart de tour toutes les de- mi-heures, chaque couche de séchage fonctionnera pendant une heure de suite et, comme deux couches de séchage fonctionnent ensemble, l'air sec sera un mélange provenant de deux-couches à différents degrés d'épuisement, ce qui réduit la variation d'humidité de l'air séché par suite de l'épuisement progressif des couches en fonctionnement. 



   L'air utilisé pour refroidir la couche régénérée sera mélangé avec l'air séché mais la disposition des vannes est telle qu'un étrangle- ment (non représenté) peut être inséré automatiquement dans le passage de vanne, de sorte que la vitesse d'écoulement de l'air à travers la couche en refroidissement est faible et qu'ainsi la température et l'humidité de l'air séché aspiré par le ventilateur 23 n'en seront pas grandement modifiéeso 
De plus, au début d'un cycle de refroidissement, la couche chau- de ne sèche par l'air mais augmente seulement sa température.

   Ainsi, la pe- tite quantité de cet air de refroidissement tend d'abord à augmenter légè- rement la température de l'air sec et aussi à diminuer son humidité absolue, tandis que vers la fin du cycle de refroidissement l'air quittant la couche en refroidissement est séché et cela tend à abaisser l'humidité absolue de l'air séché, de sorte qu'en général le mélange d'air de refroidissement a pour effet d'assurer une certaine régularisation du fonctionnement du sé- cheur   d'air.   



   Si le séchage est effectue en hiver, comme cela peut être le cas si l'appareil est utilisé par des négociants plutôt que par les fermiers, le sécheur d'air peut être muni d'une dérivation entre le conduit d'alimen- tation chaud provenant du four et l'envoi d'air séché des couches vers le ventilateur   23,   de sorte que la température de l'air séché peut être augmen- tée, ce qui compense la plus faible élévation de température dans le sécheur qui est habituelle en hiver par suite de la faible humidité absolue de l'air. 



   La figure 8 montre schématiquement un grand réservoir à zones multiples dans lequel un seul passage du grain dans le réservoir peut souvent suffire à assurer un séchage convenableo Le réservoir   46   qui est de section transversale rectangulaire ou carrée et est muni de dispositifs de ventila- tion à entrée d'air tels que   47-48-49   et de dispositifs de ventilation à sortie d'air   50-51-52   qui, avec le haut ouvert 53 du réservoir et la trémie ventilée 54, établissent plusieurs zones de séchage telles que 55-56-57-58- 59-60-61-62. Les zones de séchage ont une hauteur de l'ordre de 0,60 à 2,50 mètres, de préférence de 0,60 à 1,25 m et le nombre de zones dépendra en par- tie de la hauteur du réservoir. 



   L'air séché est fourni aux dispositifs de ventilation à entrée d'air à travers un conduit 63 par tous moyens convenables. On peut réaliser une économie dans le séchage en extrayant l'air qui quitte les zones infé- rieures, contenant par conséquent le grain le plus sec, et en l'utilisant pour sécher dans les zones supérieures qui contiennent le grain le plus hu- 

 <Desc/Clms Page number 9> 

 mide et où il peut encore accomplir un séchage initial'utile.. Ainsi, dans la disposition représentée à la figure 8, le dispositif de ventilation à sortie d'air 50 est relié par le conduit 64 à l'admission d'un ventilateur 65 et de là aux dispositifs supérieurs de ventilation à entrée d'air 49 par le conduit 66.

   Cette disposition peut aider à permettre à du grain relati- vement humide d'être suffisamment séché par un seul passage à travers le   ré=   servoir mais, bien entendu, on peut faire repasser le grain à travers le ré- servoir si c'est nécessaire ou désirable. 



   Si on examine encore le déplacement du grain quand le réservoir contient de multiples zones de séchage disposées, comme on l'a décrit,les unes au-dessus des autres, les zones de séchage intense ont une hauteur dou- ble et le déplacement doit être calculé pour ne pas déplacer plus de grain que la quantité correspondant à la hauteur d'une zone, car autrement le grain serait amené à une position dans la zone suivante qui ne serait pas équiva- lente à la position du grain chaud voisin de la sortie. En pratique,   o'est   aussi très simple.

   Dans un petit réservoir où le grain circule, la tempé- rature du grain élevé peut être utilisée comme.dans le cas simple ou bien, dans le cas d'un grand réservoir, où le grain est sec après un seul passage tandis qu'on ajoute du grain humide au sommet, on peut utiliser un thermo- mètre placé dans la sortie du grain. Quand le grain est séché en un seul pas- sage avec mouvement intermittent, le grain est d'abord déplacé jusqu'à ce que cette température du grain de sortie présente une augmentation et, comme précédemment, l'augmentation doit être limitée à 5 .

   On notera aussi qu'en pratique l'intervalle entre les déplacements varie avec la vitesse de l'air de séchage et ses variations d'humidité et de température peuvent être plus grandes ou moindres que dans l'exemple indiqué, mais le principe demeure le même, et, si le déplacement est contrôlé par la température comme décrit, on est assuré d'obtenir un séchage aussi régulier et uniforme que possible. 



   Si on considère maintenant la réalisation du procédé avec mou- vement lent et continu, il n'est pas habituellement possible ou désirable d'assurer une circulation assez rapide pour qu'il n'y ait pas de variations de température bien que cela soit théoriquement possible de sorte que, com- me pour le déplacement intermittent, la vitesse doit être déterminée de fa- çon que le grain quittant une région de séchage intense n'atteigne pas une région de sortie avant d'avoir repris la température ambiante ou de préfé- rence avant de l'avoir dépassé d'une différence qui n'excède pas 5 . Au dé- part du séchage dans un réservoir autre qu'un grand réservoir disposé pour sécher par un seul passage, il est préférable de permettre au séchage de s'effectuer pendant la période habituelle de 1 heure et demie à 2 heures a- vant de commencer la circulation.

Claims (1)

  1. RESUME.
    L'invention a pour objet un procédé perfectionné pour le sécha- ge du grain, des graines ou des matières analogues en vrac, consistant à fai- re passer, à travers le grain, de l'air dont l'humidité relative a été abais- sée à moins de 30% par enlèvement d'eau de cet air ou d'une partie de cet air, à déplacer le grain d'une manière intermittente ou continue dans une direction sensiblement parallèle à l'écoulement d'air à travers le grain et à éviter toute augmentation notable de la température finale du grain au- dessus de sa température initiale sous l'action du procédé de séchage.
    Le procédé peut présenter en outre les caractéristiques ci-après, séparément ou en combinaison 1) l'air passe à travers une hauteur de grain de l'ordre de 0,60 à 2,50 mètres et, de préférence, de l'ordre de 0,60 à 1,25 mètre ; <Desc/Clms Page number 10> 2) la température finale du grain ne dépasse pas la moyenne arithmétique de la température ambiante et de la température d'entrée d'air; 3) la température finale du grain ne dépasse pas la température ambiante de plus de 5 C environ;
    4) on introduit de l'air sec dans une colonne de grain en plu- sieurs points et on extrait l'air du grain en plusieurs points intermé- diaires entre les niveaux d'entrée en établissant ainsi plusieurs zones de séchage entre les entrées et sorties d'air et on déplace le grain dans un sens de telle façon que l'air sec traverse le grain dans des zones succes- sives dans le sens général du déplacement du grain et dans le sens opposé; 5) on déplace le grain de manière intermittente suffisamment pour amener le grain d'une région d'une zone de séchage dans'une région dif- férente de la même zone de séchage ou d'une autre zone; 6) on réintroduit dans le grain, au point d'entrée d'air le plus élevé, de l'air extrait du'point de sortie.d'air le plus bas.
    L'invention a aussi pour objet un appareil pour l'application du procédé ci-dessus avec un ou plusieurs dispositifs de ventilation à en- trée d'air et un ou plusieurs dispositifs de ventilation à sortie d'air à des niveaux différents,les dispositifs de ventilation à entrée d'air étant alimentés en air séché provenant d'une installation de séchage d'air.
    L'appareil peut présenter en outre les caractéristiques ci-après, séparément ou en combinaison : 1) le sécheur d'air est à fonctionnement automatique et comporte plusieurs couches séchantes mises en service successivement sous la comman- de d'une minuterie actionnant des vannes communes à toutes les couches et disposées, l'une au-dessus des couches et l'autre au-dessous, tandis que, pour l'envoi d'un courant d'air chaud ou d'un mélange d'air chaud et de produits de combustion sélectivement à travers les couches à des périodes suc- cessives, ces vannes coopèrent avec des tuyaux coudés supérieur et inférieur, déplaçables angulairement avec elles,
    une extrémité de chaque tuyau coudé communiquant avec un conduit ou passage fixe et l'autre extrémité communi- quant avec les couches respectives à travers sa vanne selon son orientation angulaire; 2) les produits de combustion pour régénérer les couches sé- chantes selon 1) sont alimentées par un brûleur d'huile à travers un lit de matière réfractaire, telle que des anneaux de contact, maintenu chauffé au rouge par la chaleur de la flamme ou à travers un filtre de fibres minérales, un dispositif étant prévu pour diluer ces produits chauds de combustion avec l'air atmosphérique avant qu'ils atteignent la couche séchante à régénérer.
BE505827D 1951-03-10 1951-09-14 BE505827A (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB5820/51A GB716182A (en) 1951-03-10 1951-03-10 New or improved process and apparatus for the drying of grain, seed or the like in bulk
FR1038626T 1951-03-16

Publications (1)

Publication Number Publication Date
BE505827A true BE505827A (fr) 1951-09-29

Family

ID=46023850

Family Applications (1)

Application Number Title Priority Date Filing Date
BE505827D BE505827A (fr) 1951-03-10 1951-09-14

Country Status (3)

Country Link
BE (1) BE505827A (fr)
FR (1) FR1038626A (fr)
GB (1) GB716182A (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2121939A (en) * 1982-06-23 1984-01-04 Nat Res Dev Apparatus for reducing the moisture content of grain or other particulate material
FI82139C (fi) * 1989-03-15 1991-01-10 Mepu Oy Saedestork.
CN101907391A (zh) * 2010-09-06 2010-12-08 威海华泰分子筛有限公司 一种立式热处理炉

Also Published As

Publication number Publication date
FR1038626A (fr) 1953-09-30
GB716182A (en) 1954-09-29

Similar Documents

Publication Publication Date Title
EP1532411B1 (fr) Dispositif de sechage de produits tels que notamment des boues de stations d epuration
BE1009557A5 (fr) Methode et appareillage de prerefroidissement d&#39;air avec dispositif de refrigeration a contact indirect.
Mohanraj et al. Performance of a solar drier with and without heat storage material for copra drying
CA2785495C (fr) Procede et installation de sechage de matieres pateuses, en particulier de boues de stations d&#39;epuration, avec generation d&#39;energie thermique
Misha et al. Performance of a solar-assisted solid desiccant dryer for oil palm fronds drying
FR2474662A1 (fr) Procede et appareil pour commander la temperature d&#39;une source thermique en utilisant des radiations solaires comme source d&#39;energie principale
FR2563618A1 (fr) Procede de sechage utilisant le cycle de refrigeration, et appareil pour mettre en oeuvre ce procede
EP3177884A1 (fr) Procédé et installation de séchage thermique de produits pâteux
FR2520199A1 (fr) Appareil et procede pour faire lever la pate
CA2655649A1 (fr) Generateur de gaz chaud et installation de sechage ou deshydratation mettant en oeuvre un tel generateur
CA2667333A1 (fr) Procede de traitement thermique d&#39;un materiau et unite de traitement thermique mettant en oeuvre un tel procede
BE505827A (fr)
FR3040774A1 (fr) Sechoir solaire pour produits agricoles ou marins.
EP2775245B1 (fr) Dispositif de stockage d&#39;énergie thermique
FR2475200A1 (fr) Procede et moyens de mise en oeuvre pour le sechage de produits et de materiaux poreux, fibreux, hygroscopiques, et plus particulierement des bois
EP1132704A1 (fr) Procédé de sechage de bois et dispositif pour sa mise en oeuvre
EP3674646B1 (fr) Système de stockage/libération thermochimique d&#39;énergie à air humide à température thermodynamique de déshydratation abaissée par un dispositif de deshumidification
EP1644679B1 (fr) Dispositif de traitement d&#39;un dechet humide
CN204346032U (zh) 太阳能光伏发电热能烘干机
FR2542160A1 (fr) Procede de sechage de matieres d&#39;origine vegetale et appareil pour la mise en oeuvre de ce procede
EP0233826B1 (fr) Procédé et dispositif permettant de récupérer la chaleur sur des installations rejetant de l&#39;air chaud chargé de vapeur et d&#39;accroître la productivité de ces installations
FR2846405A1 (fr) Machine de traitement thermodynamique d&#39;air, procede de traitement de produits en vrac par de l&#39;air traite par une telle machine et sechoir automatique mettant en oeuvre un tel procede
WO2023144064A1 (fr) Appareil de séchage en continu de particules comprenant une boucle de régulation
WO2013121138A1 (fr) Procédé et dispositif de régulation de la température et de l&#39;humidité relative dans un bâtiment
FR2999204A1 (fr) Batiment basse consommation ou passif