BE462427A - - Google Patents

Info

Publication number
BE462427A
BE462427A BE462427DA BE462427A BE 462427 A BE462427 A BE 462427A BE 462427D A BE462427D A BE 462427DA BE 462427 A BE462427 A BE 462427A
Authority
BE
Belgium
Prior art keywords
mixture
organic
substance
inorganic
high molecular
Prior art date
Application number
Other languages
French (fr)
Publication of BE462427A publication Critical patent/BE462427A/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Soft Magnetic Materials (AREA)

Description

       

   <Desc/Clms Page number 1> 
 



    NOYAUX     MAGNETIQUES   A   PARTICULES   COMPRIMES 
L'invention concerne des perfectionnements apportés à la fabrication des noyaux magnétiques faits de particules comprimées, ces noyaux étant construits en soumettant à des hautes pressions un mélange renfermant des particules magnétiques, une matière iso lante, et une matière de liaison, de manière à   constitua r   une mas- se pratiquement homogène ayant la forme du corps ou noyau recherché, et offrant en son ensemble une résistance mécanique suffisante. 



   Différentes matières ont été jusqu'ici prop.osées comme iso- lant et comme agent de liaison. On a proposé d'employer une résine synthétique, comme par exemple une résine à base de formol et de phénol ou un   polystyrène;,   et on connaît l'emploi de matières orga- niques qui se désagrègent sous.l'action de la chaleur, comme cer-   @   
 EMI1.1 
 taines colles, savons, caséines, ,#natières couoidales azoteuses, 

 <Desc/Clms Page number 2> 

 sucres, sirops raffinés, amidons ou dextrines.

     Une/isolation,   qui donne des résultats satisfaisants, peut être obtenue avec ces ma- tières appliquées aux particules magnétiques, sous forme d'une sim- ple couche, mais les mélanges résultants sont plutôt visqueux et      difficiles à manipuler pendant le   procède   de séchage, tandis cue les noyaux résultants, aprèsle traitement à chaud, sont   parfois   mécaniquement faibles. 



   Les résultais les plus satisfaisants, à la fois mécanique- ment et électriquement, ont été obtenus en utilisant un isolant inorganique et une matière de liaison. Ainsi des résultats succes- sivement meilleurs étaient obtenus en employant d'abord du kaolin et de l'acide borique, puis de l'acide   chromicue,   du talc et un silicate, puis enfin de l'argile colloïdale, de   l'hydrozyde   de ma- gnésium, et du silicate de sodium. 



   On a trouvé que des résultats électriques encore meilleurs, et des pertes -glus particulièrement faibles, meuvent être assurés si on utilise une matière isolante et un agent de liaison consistant en un mélange non-réactif de substances inorganiques avec une sub- stance   organique   ayant un poids moléculaire élevé, le mélange con- tenant entre 1 à 10% de cette dernière matière. 



   Une proportion recommandable de la matière organiqueà poids moléculaire élevé est de 5% en poids par rapport au mélange de sub- stances isolantes et de liaison. Des exemples de matières organiques à poids moléculaire élevé sont des résines à base de formol et de phénol, des résines à base de formol et d'urée, des polystyrènes, ces laques, des fécules, des caséines, des gélatines, des dextrines et des colles. Il est à supposer que la matière organique accroît l'adhérence de la substance isolante inorganique avec les particu- les magnétiques dans les étapes de recouvrement et de pression, soit   \que   le noyau obtenu est ensuite traité à chaud à une température qui décompose les substances organiques, ou non.

   Il est   aussi,   à supposer que la matière organique agit comme une matière isolante additionnelle. 

 <Desc/Clms Page number 3> 

 



   Comme les meilleurs résultats ont été obtenus   jusqu'à   présent avec l'emploi d'argiles colloïdales, d'hydroxyde de ma- gnésium et de silicate de sodium,ainsi   ue cela   a été établi ci -dessus, l'exemple donné ci-après utilise ce mélange comme cons- tituant inorganique des matières isolantes et de liaison, mais l'application de l'invention à d'antres   matières   inorganiques con- duit à des résultats perfectionnés, comparés à c,eux obtenus aveo l'emploi de matières inorganiques particulières seules. On doit ce- pendant noter que la matière isolante et la matière de liaison doi -vent ne pas réagir, et si les constituants inorganiques compren- nent de l'acide ohromique, qui est un agent oxydant puissant, le constituant organique doit être inerte et ne peut comprendre ar exemple des fécules. 



   A titre d'exemple de réalisation de l'invention, le poids du mélange des matières isolante et de liaison peut être compris entre 1% et 1.25% du poids 'des particules magnétiques. La partie inorganique du mélange oonsiste en 53% de talc, 42% de kaolin, 22% de silicate de sodium, 3% d'hydroxyde de magnésium , et la matière isolante et de liaison consiste en 95% de ce mélange et 5% d'une matière organique quelconque mentionnée ci-dessus. 



   La matière magnétique est réduite à de très fines particu- les par un procédé oonvenable quelconque, puis mélangée avec du tala. Les particules sont al ors recuites, et forment après cette opération une masse qui est,réduite en poudre d'une finesse con- venable par broyage et grenage ou par laminage et tamisage. Les particules recuites sont alors mélangées séchées avec du kaolin par malaxage. Les'matières organiques peuvent avoir la. forme d'une poudre fine et sont aussi ajoutées à   du kaolin,puis   mélangées, Le silicate de sodium et l'hydroxyde-de' manganèse en solution et en suspension respectivement dans   100   ce. d'eau pour 1000 grammes de particules magnétiques, sont ajoutés. Le mélange est bien tra- vaillé, puis évaporé pour le sécher pendant   qu'il   est encore -remué. 



  Le mélange est ensuite comprimé   en   des corps ou noyaux ayant la forme voulue. 

 <Desc/Clms Page number 4> 

 



   Dans le cas d'une matière organique, telle que la gélatine, qui n'est pas facilement réduite en une poudre très   fire ,   la matière est plongée dans de   l'eau   froide, puis chauffée jusqu'à dissolution, et la solution est ajoutée à une solution de silicate de sodium et d'hydroxyde de magnésium en suspension. 



   Les moyaux obtenus de formes voulues sont ensuite traités à chaud, si cela est nécessaire. Par exemple dans le cas d'un al- liage contenant   78%   à   82%   de nickel, 16% à 19% de fer, et jusqu'à 4% de molybdène, deux traitements à chaud particuliers peuvent avoir lieu. Les noyaux devant avoir une perméabilité de   110 @   10, sont traités à chaud à l'air entre 450 et 500  centigrades, tandisque les noyaux devant avoir une perméabilité d'au moins 125 sont traites à chaud dans une atmosphère réductrice ou inerte à   6300   centigrades. 



   On a trouvé que dans l'un ou l'autre cas, les pertes du noyau ont été réduites d'une manière appréciable comparativement aux pertes   observées  dans les noyaux produits par un mélange du même genre de particules   magnétiques   et d'une matière isolante et de liaison, qui est la même que   cel-.e   utilisée précédemment, excepté en ce qui concerne la présence des matières organiques   spécifiées,   même si la matière isolante et de liaison a été appliquée en diffé- rentes couches, comme cela a été trouvé jusqu'ici recommandable. 



   Dans le cas où les particules magnétiques ne doivent pas subir un traitement à chaud pour obtenir la perméabilité requise, il est   suffisant   de chauffer le noyau fini de 1100 à 130    centigra-   des pour enlever l'eau, le noyau ou corps fini recevant alors un fini' de surface qui limite l'absorption d'humidité résultante.



   <Desc / Clms Page number 1>
 



    MAGNETIC CORES WITH COMPRESSED PARTICLES
The invention relates to improvements in the manufacture of magnetic cores made of compressed particles, said cores being constructed by subjecting to high pressures a mixture comprising magnetic particles, an insulating material, and a binding material, so as to constitute a r a practically homogeneous mass having the shape of the desired body or core, and offering as a whole sufficient mechanical strength.



   Various materials have heretofore been proposed as an insulator and as a binding agent. It has been proposed to use a synthetic resin, such as for example a resin based on formalin and phenol or a polystyrene ;, and the use of organic materials which break down under the action of heat is known. like cer- @
 EMI1.1
 some glues, soaps, caseins, # nitrogenous couoidal natières,

 <Desc / Clms Page number 2>

 sugars, refined syrups, starches or dextrins.

     Insulation, which gives satisfactory results, can be obtained with these materials applied to the magnetic particles, in the form of a single layer, but the resulting mixtures are rather viscous and difficult to handle during the drying process. while the resulting nuclei, after heat treatment, are sometimes mechanically weak.



   The most satisfactory results, both mechanically and electrically, have been obtained using an inorganic insulator and bonding material. Thus successively better results were obtained by first employing kaolin and boric acid, then chromic acid, talc and a silicate, then finally colloidal clay, mahydrozyde. - gnesium, and sodium silicate.



   It has been found that still better electrical results, and particularly low losses, can be obtained if an insulating material and a binding agent consisting of a non-reactive mixture of inorganic substances with an organic substance having a properties are used. high molecular weight, the mixture containing from 1 to 10% of the latter material.



   A recommendable proportion of the high molecular weight organic material is 5% by weight based on the mixture of insulating and binding materials. Examples of high molecular weight organic materials are formalin and phenol resins, formalin and urea resins, polystyrenes, these lakes, starches, caseins, gelatins, dextrins and glues. It is assumed that the organic material increases the adhesion of the inorganic insulating substance with the magnetic particles in the recovery and pressing steps, or that the resulting core is then heat treated at a temperature which decomposes the substances. organic, or not.

   It is also, assuming that the organic material acts as an additional insulating material.

 <Desc / Clms Page number 3>

 



   As the best results have so far been obtained with the use of colloidal clays, magnesium hydroxide and sodium silicate, as has been established above, the example given below uses this mixture as an inorganic component of the insulating and bonding materials, but the application of the invention to other inorganic materials leads to improved results compared to those obtained with the use of inorganic materials. particular only. It should be noted, however, that the insulating material and the binding material must not react, and if the inorganic components include ohromic acid, which is a strong oxidizing agent, the organic component must be inert and cannot include starches, for example.



   As an exemplary embodiment of the invention, the weight of the mixture of insulating and binding materials may be between 1% and 1.25% of the weight of the magnetic particles. The inorganic part of the mixture consists of 53% talc, 42% kaolin, 22% sodium silicate, 3% magnesium hydroxide, and the insulating and binding material consists of 95% of this mixture and 5% of any organic material mentioned above.



   The magnetic material is reduced to very fine particles by any suitable method and then mixed with tala. The particles are then annealed, and after this operation form a mass which is reduced to a powder of a suitable fineness by grinding and graining or by rolling and sieving. The annealed particles are then mixed and dried with kaolin by kneading. Organic materials can have the. form a fine powder and are also added to kaolin, then mixed, sodium silicate and manganese hydroxide in solution and in suspension respectively in 100 cc. of water per 1000 grams of magnetic particles are added. The mixture is worked well, then evaporated to dry while still stirring.



  The mixture is then compressed into bodies or cores of the desired shape.

 <Desc / Clms Page number 4>

 



   In the case of an organic material, such as gelatin, which is not easily reduced to a very fire powder, the material is immersed in cold water, then heated until dissolved, and the solution is added. to a solution of sodium silicate and magnesium hydroxide in suspension.



   The obtained means of desired shapes are then heat treated, if necessary. For example in the case of an alloy containing 78% to 82% nickel, 16% to 19% iron, and up to 4% molybdenum, two particular heat treatments can take place. Cores to have a permeability of 110 @ 10 are heat treated in air between 450 and 500 centigrade, while cores to have a permeability of at least 125 are heat treated in a reducing or inert atmosphere at 6300 centigrade. .



   It was found that in either case the core losses were reduced appreciably compared to the losses observed in the nuclei produced by a mixture of the same kind of magnetic particles and an insulating material and bond, which is the same as that used previously, except for the presence of the specified organic materials, even if the insulating and bonding material has been applied in different layers, as has been found so far. 'recommendable here.



   In the event that the magnetic particles do not have to undergo heat treatment to obtain the required permeability, it is sufficient to heat the finished core from 1100 to 130 centigra- des to remove the water, the core or finished body then receiving a surface finish which limits the resulting moisture absorption.


    

Claims (1)

RESUME L'invention se rapporte à la fabrication de noyaux ou corps magnétiques faits de particules comprimées et dans lesquels la ma- tière d'isolement et de liaison consiste en un mélange non-réactif d'une substance inorganique et d'une substance organique à poids moléculaire élevé, le mélange pouvant contenir 1 à 10% de cette dernière substance. <Desc/Clms Page number 5> ABSTRACT The invention relates to the manufacture of cores or magnetic bodies made of compressed particles and in which the isolating and binding material consists of a non-reactive mixture of an inorganic substance and an organic substance by weight. high molecular, the mixture may contain 1 to 10% of the latter substance. <Desc / Clms Page number 5> L a méthode. de fabrication des rite peut consister en un mélange d'une matière magnétique finement divisée avec une matière d'isolement et de liaison refermant entre 99 à 90% d'une substance' inorganique, et entre'1 et 10%.d'une substance organique à poids moléculaire élevé, ce mélange étant ensuite comprime sous forme de noyau. The method. The rites may consist of a mixture of a finely divided magnetic material with an isolating and bonding material containing between 99 to 90% of an inorganic substance, and between 1 and 10% of an inorganic substance. organic high molecular weight, this mixture then being compressed into a core form.
BE462427D BE462427A (en)

Publications (1)

Publication Number Publication Date
BE462427A true BE462427A (en)

Family

ID=114832

Family Applications (1)

Application Number Title Priority Date Filing Date
BE462427D BE462427A (en)

Country Status (1)

Country Link
BE (1) BE462427A (en)

Similar Documents

Publication Publication Date Title
US4621024A (en) Metal-coated hollow microspheres
CA1208940A (en) Silicon carbide whisker composites
US5897943A (en) Metal matrix composite including homogeneously distributed fly ash, binder, and metal
JP7187919B2 (en) Thermally conductive composite material and manufacturing method thereof
EP3265507B1 (en) Thermoset foams, and method for manufacturing same from reducing sugars and amines
CN111184913B (en) Artificial bone composite material based on polyether-ether-ketone and preparation method thereof
BE462427A (en)
CN114016286B (en) Method for modifying carbon fiber by functionalized graphene oxide electrophoretic deposition and carbon fiber composite material thereof
CH267517A (en) Magnetic powder core and method of making this core.
US3014825A (en) Magnetic cores and methods of making the same
DE2135444C3 (en) Process for the production of porous, lightweight molded bodies based on light metal
DE2038682A1 (en) Composite material and process for its manufacture
KR20000028802A (en) high-density ferrite member and ferrite beads composition therefor
EP0752396B1 (en) Inorganic foamed material suitable for fireproofing and insulation and a method of producing the same
KR20060098034A (en) Composite type of silica gel-graphite and preparation method for the same
CH671215A5 (en)
JPS5846250B2 (en) Continuous production method of phenolic resin foam
HU192077B (en) Process for preparing evaporation agent in order to form silicon monoxide layers by evaporation in vacuum
CH338180A (en) Carbonyl iron powder, usable for ring formation
JP2024036003A (en) Sintered phosphor and manufacturing method therefor
CN117089194A (en) Method for improving migration resistance of propellant lining
JPH01219107A (en) Production of aluminum alloy member
FR2688420A1 (en) FINELY DIVIDED OXIDE POWDER.
FR2561654A1 (en) METHOD FOR MANUFACTURING MOLDINGS OF A THERMOSETTING MATERIAL COMPRISING AN IMPROVED FINISHING LAYER
BE537211A (en)