BE462427A - - Google Patents
Info
- Publication number
- BE462427A BE462427A BE462427DA BE462427A BE 462427 A BE462427 A BE 462427A BE 462427D A BE462427D A BE 462427DA BE 462427 A BE462427 A BE 462427A
- Authority
- BE
- Belgium
- Prior art keywords
- mixture
- organic
- substance
- inorganic
- high molecular
- Prior art date
Links
- 239000000203 mixture Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 5
- 239000000696 magnetic material Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000011368 organic material Substances 0.000 description 9
- 239000006249 magnetic particle Substances 0.000 description 7
- 239000004115 Sodium Silicate Substances 0.000 description 5
- NTHWMYGWWRZVTN-UHFFFAOYSA-N Sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 229910052911 sodium silicate Inorganic materials 0.000 description 5
- PZZYQPZGQPZBDN-UHFFFAOYSA-N Aluminium silicate Chemical compound O=[Al]O[Si](=O)O[Al]=O PZZYQPZGQPZBDN-UHFFFAOYSA-N 0.000 description 4
- 239000005995 Aluminium silicate Substances 0.000 description 4
- 235000012211 aluminium silicate Nutrition 0.000 description 4
- VTHJTEIRLNZDEV-UHFFFAOYSA-L Magnesium hydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000000347 magnesium hydroxide Substances 0.000 description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229940021722 Caseins Drugs 0.000 description 2
- 102000011632 Caseins Human genes 0.000 description 2
- 108010076119 Caseins Proteins 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L Chromic acid Chemical compound O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 210000004940 Nucleus Anatomy 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N Boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- IPJKJLXEVHOKSE-UHFFFAOYSA-L manganese(2+);dihydroxide Chemical compound [OH-].[OH-].[Mn+2] IPJKJLXEVHOKSE-UHFFFAOYSA-L 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N silicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/24—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/24—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
- H01F1/26—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Soft Magnetic Materials (AREA)
Description
<Desc/Clms Page number 1>
NOYAUX MAGNETIQUES A PARTICULES COMPRIMES
L'invention concerne des perfectionnements apportés à la fabrication des noyaux magnétiques faits de particules comprimées, ces noyaux étant construits en soumettant à des hautes pressions un mélange renfermant des particules magnétiques, une matière iso lante, et une matière de liaison, de manière à constitua r une mas- se pratiquement homogène ayant la forme du corps ou noyau recherché, et offrant en son ensemble une résistance mécanique suffisante.
Différentes matières ont été jusqu'ici prop.osées comme iso- lant et comme agent de liaison. On a proposé d'employer une résine synthétique, comme par exemple une résine à base de formol et de phénol ou un polystyrène;, et on connaît l'emploi de matières orga- niques qui se désagrègent sous.l'action de la chaleur, comme cer- @
EMI1.1
taines colles, savons, caséines, ,#natières couoidales azoteuses,
<Desc/Clms Page number 2>
sucres, sirops raffinés, amidons ou dextrines.
Une/isolation, qui donne des résultats satisfaisants, peut être obtenue avec ces ma- tières appliquées aux particules magnétiques, sous forme d'une sim- ple couche, mais les mélanges résultants sont plutôt visqueux et difficiles à manipuler pendant le procède de séchage, tandis cue les noyaux résultants, aprèsle traitement à chaud, sont parfois mécaniquement faibles.
Les résultais les plus satisfaisants, à la fois mécanique- ment et électriquement, ont été obtenus en utilisant un isolant inorganique et une matière de liaison. Ainsi des résultats succes- sivement meilleurs étaient obtenus en employant d'abord du kaolin et de l'acide borique, puis de l'acide chromicue, du talc et un silicate, puis enfin de l'argile colloïdale, de l'hydrozyde de ma- gnésium, et du silicate de sodium.
On a trouvé que des résultats électriques encore meilleurs, et des pertes -glus particulièrement faibles, meuvent être assurés si on utilise une matière isolante et un agent de liaison consistant en un mélange non-réactif de substances inorganiques avec une sub- stance organique ayant un poids moléculaire élevé, le mélange con- tenant entre 1 à 10% de cette dernière matière.
Une proportion recommandable de la matière organiqueà poids moléculaire élevé est de 5% en poids par rapport au mélange de sub- stances isolantes et de liaison. Des exemples de matières organiques à poids moléculaire élevé sont des résines à base de formol et de phénol, des résines à base de formol et d'urée, des polystyrènes, ces laques, des fécules, des caséines, des gélatines, des dextrines et des colles. Il est à supposer que la matière organique accroît l'adhérence de la substance isolante inorganique avec les particu- les magnétiques dans les étapes de recouvrement et de pression, soit \que le noyau obtenu est ensuite traité à chaud à une température qui décompose les substances organiques, ou non.
Il est aussi, à supposer que la matière organique agit comme une matière isolante additionnelle.
<Desc/Clms Page number 3>
Comme les meilleurs résultats ont été obtenus jusqu'à présent avec l'emploi d'argiles colloïdales, d'hydroxyde de ma- gnésium et de silicate de sodium,ainsi ue cela a été établi ci -dessus, l'exemple donné ci-après utilise ce mélange comme cons- tituant inorganique des matières isolantes et de liaison, mais l'application de l'invention à d'antres matières inorganiques con- duit à des résultats perfectionnés, comparés à c,eux obtenus aveo l'emploi de matières inorganiques particulières seules. On doit ce- pendant noter que la matière isolante et la matière de liaison doi -vent ne pas réagir, et si les constituants inorganiques compren- nent de l'acide ohromique, qui est un agent oxydant puissant, le constituant organique doit être inerte et ne peut comprendre ar exemple des fécules.
A titre d'exemple de réalisation de l'invention, le poids du mélange des matières isolante et de liaison peut être compris entre 1% et 1.25% du poids 'des particules magnétiques. La partie inorganique du mélange oonsiste en 53% de talc, 42% de kaolin, 22% de silicate de sodium, 3% d'hydroxyde de magnésium , et la matière isolante et de liaison consiste en 95% de ce mélange et 5% d'une matière organique quelconque mentionnée ci-dessus.
La matière magnétique est réduite à de très fines particu- les par un procédé oonvenable quelconque, puis mélangée avec du tala. Les particules sont al ors recuites, et forment après cette opération une masse qui est,réduite en poudre d'une finesse con- venable par broyage et grenage ou par laminage et tamisage. Les particules recuites sont alors mélangées séchées avec du kaolin par malaxage. Les'matières organiques peuvent avoir la. forme d'une poudre fine et sont aussi ajoutées à du kaolin,puis mélangées, Le silicate de sodium et l'hydroxyde-de' manganèse en solution et en suspension respectivement dans 100 ce. d'eau pour 1000 grammes de particules magnétiques, sont ajoutés. Le mélange est bien tra- vaillé, puis évaporé pour le sécher pendant qu'il est encore -remué.
Le mélange est ensuite comprimé en des corps ou noyaux ayant la forme voulue.
<Desc/Clms Page number 4>
Dans le cas d'une matière organique, telle que la gélatine, qui n'est pas facilement réduite en une poudre très fire , la matière est plongée dans de l'eau froide, puis chauffée jusqu'à dissolution, et la solution est ajoutée à une solution de silicate de sodium et d'hydroxyde de magnésium en suspension.
Les moyaux obtenus de formes voulues sont ensuite traités à chaud, si cela est nécessaire. Par exemple dans le cas d'un al- liage contenant 78% à 82% de nickel, 16% à 19% de fer, et jusqu'à 4% de molybdène, deux traitements à chaud particuliers peuvent avoir lieu. Les noyaux devant avoir une perméabilité de 110 @ 10, sont traités à chaud à l'air entre 450 et 500 centigrades, tandisque les noyaux devant avoir une perméabilité d'au moins 125 sont traites à chaud dans une atmosphère réductrice ou inerte à 6300 centigrades.
On a trouvé que dans l'un ou l'autre cas, les pertes du noyau ont été réduites d'une manière appréciable comparativement aux pertes observées dans les noyaux produits par un mélange du même genre de particules magnétiques et d'une matière isolante et de liaison, qui est la même que cel-.e utilisée précédemment, excepté en ce qui concerne la présence des matières organiques spécifiées, même si la matière isolante et de liaison a été appliquée en diffé- rentes couches, comme cela a été trouvé jusqu'ici recommandable.
Dans le cas où les particules magnétiques ne doivent pas subir un traitement à chaud pour obtenir la perméabilité requise, il est suffisant de chauffer le noyau fini de 1100 à 130 centigra- des pour enlever l'eau, le noyau ou corps fini recevant alors un fini' de surface qui limite l'absorption d'humidité résultante.
<Desc / Clms Page number 1>
MAGNETIC CORES WITH COMPRESSED PARTICLES
The invention relates to improvements in the manufacture of magnetic cores made of compressed particles, said cores being constructed by subjecting to high pressures a mixture comprising magnetic particles, an insulating material, and a binding material, so as to constitute a r a practically homogeneous mass having the shape of the desired body or core, and offering as a whole sufficient mechanical strength.
Various materials have heretofore been proposed as an insulator and as a binding agent. It has been proposed to use a synthetic resin, such as for example a resin based on formalin and phenol or a polystyrene ;, and the use of organic materials which break down under the action of heat is known. like cer- @
EMI1.1
some glues, soaps, caseins, # nitrogenous couoidal natières,
<Desc / Clms Page number 2>
sugars, refined syrups, starches or dextrins.
Insulation, which gives satisfactory results, can be obtained with these materials applied to the magnetic particles, in the form of a single layer, but the resulting mixtures are rather viscous and difficult to handle during the drying process. while the resulting nuclei, after heat treatment, are sometimes mechanically weak.
The most satisfactory results, both mechanically and electrically, have been obtained using an inorganic insulator and bonding material. Thus successively better results were obtained by first employing kaolin and boric acid, then chromic acid, talc and a silicate, then finally colloidal clay, mahydrozyde. - gnesium, and sodium silicate.
It has been found that still better electrical results, and particularly low losses, can be obtained if an insulating material and a binding agent consisting of a non-reactive mixture of inorganic substances with an organic substance having a properties are used. high molecular weight, the mixture containing from 1 to 10% of the latter material.
A recommendable proportion of the high molecular weight organic material is 5% by weight based on the mixture of insulating and binding materials. Examples of high molecular weight organic materials are formalin and phenol resins, formalin and urea resins, polystyrenes, these lakes, starches, caseins, gelatins, dextrins and glues. It is assumed that the organic material increases the adhesion of the inorganic insulating substance with the magnetic particles in the recovery and pressing steps, or that the resulting core is then heat treated at a temperature which decomposes the substances. organic, or not.
It is also, assuming that the organic material acts as an additional insulating material.
<Desc / Clms Page number 3>
As the best results have so far been obtained with the use of colloidal clays, magnesium hydroxide and sodium silicate, as has been established above, the example given below uses this mixture as an inorganic component of the insulating and bonding materials, but the application of the invention to other inorganic materials leads to improved results compared to those obtained with the use of inorganic materials. particular only. It should be noted, however, that the insulating material and the binding material must not react, and if the inorganic components include ohromic acid, which is a strong oxidizing agent, the organic component must be inert and cannot include starches, for example.
As an exemplary embodiment of the invention, the weight of the mixture of insulating and binding materials may be between 1% and 1.25% of the weight of the magnetic particles. The inorganic part of the mixture consists of 53% talc, 42% kaolin, 22% sodium silicate, 3% magnesium hydroxide, and the insulating and binding material consists of 95% of this mixture and 5% of any organic material mentioned above.
The magnetic material is reduced to very fine particles by any suitable method and then mixed with tala. The particles are then annealed, and after this operation form a mass which is reduced to a powder of a suitable fineness by grinding and graining or by rolling and sieving. The annealed particles are then mixed and dried with kaolin by kneading. Organic materials can have the. form a fine powder and are also added to kaolin, then mixed, sodium silicate and manganese hydroxide in solution and in suspension respectively in 100 cc. of water per 1000 grams of magnetic particles are added. The mixture is worked well, then evaporated to dry while still stirring.
The mixture is then compressed into bodies or cores of the desired shape.
<Desc / Clms Page number 4>
In the case of an organic material, such as gelatin, which is not easily reduced to a very fire powder, the material is immersed in cold water, then heated until dissolved, and the solution is added. to a solution of sodium silicate and magnesium hydroxide in suspension.
The obtained means of desired shapes are then heat treated, if necessary. For example in the case of an alloy containing 78% to 82% nickel, 16% to 19% iron, and up to 4% molybdenum, two particular heat treatments can take place. Cores to have a permeability of 110 @ 10 are heat treated in air between 450 and 500 centigrade, while cores to have a permeability of at least 125 are heat treated in a reducing or inert atmosphere at 6300 centigrade. .
It was found that in either case the core losses were reduced appreciably compared to the losses observed in the nuclei produced by a mixture of the same kind of magnetic particles and an insulating material and bond, which is the same as that used previously, except for the presence of the specified organic materials, even if the insulating and bonding material has been applied in different layers, as has been found so far. 'recommendable here.
In the event that the magnetic particles do not have to undergo heat treatment to obtain the required permeability, it is sufficient to heat the finished core from 1100 to 130 centigra- des to remove the water, the core or finished body then receiving a surface finish which limits the resulting moisture absorption.
Claims (1)
Publications (1)
Publication Number | Publication Date |
---|---|
BE462427A true BE462427A (en) |
Family
ID=114832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BE462427D BE462427A (en) |
Country Status (1)
Country | Link |
---|---|
BE (1) | BE462427A (en) |
-
0
- BE BE462427D patent/BE462427A/fr unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4621024A (en) | Metal-coated hollow microspheres | |
CA1208940A (en) | Silicon carbide whisker composites | |
US5897943A (en) | Metal matrix composite including homogeneously distributed fly ash, binder, and metal | |
JP7187919B2 (en) | Thermally conductive composite material and manufacturing method thereof | |
EP3265507B1 (en) | Thermoset foams, and method for manufacturing same from reducing sugars and amines | |
CN111184913B (en) | Artificial bone composite material based on polyether-ether-ketone and preparation method thereof | |
BE462427A (en) | ||
CN114016286B (en) | Method for modifying carbon fiber by functionalized graphene oxide electrophoretic deposition and carbon fiber composite material thereof | |
CH267517A (en) | Magnetic powder core and method of making this core. | |
US3014825A (en) | Magnetic cores and methods of making the same | |
DE2135444C3 (en) | Process for the production of porous, lightweight molded bodies based on light metal | |
DE2038682A1 (en) | Composite material and process for its manufacture | |
KR20000028802A (en) | high-density ferrite member and ferrite beads composition therefor | |
EP0752396B1 (en) | Inorganic foamed material suitable for fireproofing and insulation and a method of producing the same | |
KR20060098034A (en) | Composite type of silica gel-graphite and preparation method for the same | |
CH671215A5 (en) | ||
JPS5846250B2 (en) | Continuous production method of phenolic resin foam | |
HU192077B (en) | Process for preparing evaporation agent in order to form silicon monoxide layers by evaporation in vacuum | |
CH338180A (en) | Carbonyl iron powder, usable for ring formation | |
JP2024036003A (en) | Sintered phosphor and manufacturing method therefor | |
CN117089194A (en) | Method for improving migration resistance of propellant lining | |
JPH01219107A (en) | Production of aluminum alloy member | |
FR2688420A1 (en) | FINELY DIVIDED OXIDE POWDER. | |
FR2561654A1 (en) | METHOD FOR MANUFACTURING MOLDINGS OF A THERMOSETTING MATERIAL COMPRISING AN IMPROVED FINISHING LAYER | |
BE537211A (en) |