BE370111A - - Google Patents

Info

Publication number
BE370111A
BE370111A BE370111DA BE370111A BE 370111 A BE370111 A BE 370111A BE 370111D A BE370111D A BE 370111DA BE 370111 A BE370111 A BE 370111A
Authority
BE
Belgium
Prior art keywords
emi
vulcanization
weight
accelerators
parts
Prior art date
Application number
Other languages
French (fr)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Publication of BE370111A publication Critical patent/BE370111A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

       

  "Procédé pour la vulcanisation de masses artificielles du

  
 <EMI ID=1.1>  

  
vulcanisats de masses artificielles du genre du caoutchouc, comme on les obtient en particulier à partir de butadiène par polymérisation et vulcanisation ultérieure en'présence d'accélérateurs de vulcanisation, peuvent être influencées de façon extrêmement favorable lorsque les accélérateurs de vulcanisation sont utilisés dans des dissolvants ou des agents de liquéfaction. L'amélioration concerne en particulier la résistance et l'allongement de rupture. Il y a ici une différence fondamentale avec le caoutchouc naturel, chez lequel un résultat même approximativement analogue ne peut être observé par l'emploi d'accélérateurs dans des agents de dissolution ou de liquéfaction. L'effet se produit souvent déjà pour des quantités

  
 <EMI ID=2.1> 

  
niser=- L'effet est particulièrement grand avec les accélérateurs solides, mais il a été observé également avec les accélérateurs liquides. Comme dissolvants on peut employer par exemple l'eau, des alcools, des hydrocarbures, des hydrocarbures chlorés, des esters,des acides faibles, des bases liquides ou des mélanges de bases, etc. Comme agent de liquéfaction,on peut citer par exemple l'acide stéarique.

  
&#65533; &#65533;xemi&#65533;3és:_ .. 

  
100 parties en poids d'une masse du genre du

  
 <EMI ID=3.1> 

  
sont/vulcanisées avec addition de 100 parties en poids de matière de charge comme le noir de fumée, l'oxyde de zinc,

  
 <EMI ID=4.1> 

  
tie en poids d'aldéhyde d'ammoniaque, comme accélérateur.

  
 <EMI ID=5.1> 

  
dissolvant, et à une autre partie du mélange dissous dans 3 parties d'eau. L'augmentation de la résistance et de l'allongement de rupture est indiquée au tableau ci-dessous sous 1).

  
Dans un autre essai comparatif, on a employé à la place d'aldéhyde d'ammoniaque du mercaptobenzothiazol,. sans dissolvant et dissous dans 1 partie en poids de picoline (tableau sous 2).

  
La comparaison indiquée au tableau sous 3)

  
a été faite avec le même mélange moyennant l'emploi de
1.5 % de soufre avec le bisulfure éthylcyclohexylthiuramique symétrique, une fois sans dissolvant et l'autre fois dissous dans 3 parties en poids de toluol.

  
Dans la comparaison indiquée sous 4), faite avec le même mélange de vulcanisation, le sel d'éthylhexahydroaniline de l'acide dithiocarbamique de l'éthylhexahydroaniline, employé comme accélérateur, a été ajouté

  
une fois sans dissolvant et l'autre fois sous une forme liquéfiée avec 2 parties en poids d'acide stéarique.



  "Process for the vulcanization of artificial masses of

  
 <EMI ID = 1.1>

  
Vulcanizates of man-made rubber-like masses, as obtained in particular from butadiene by polymerization and subsequent vulcanization in the presence of vulcanization accelerators, can be influenced extremely favorably when vulcanization accelerators are used in solvents. or liquefying agents. The improvement relates in particular to the strength and elongation at break. There is a fundamental difference here from natural rubber, in which even an approximately analogous result cannot be observed by the use of accelerators in dissolving or liquefying agents. The effect often already occurs for quantities

  
 <EMI ID = 2.1>

  
niser = - The effect is particularly great with solid accelerators, but it has also been observed with liquid accelerators. As solvents, for example, water, alcohols, hydrocarbons, chlorinated hydrocarbons, esters, weak acids, liquid bases or mixtures of bases, etc. can be employed. Mention may be made, for example, as liquefying agent, of stearic acid.

  
&#65533; &#65533; xemi &#65533; 3rd: _ ..

  
100 parts by weight of such a mass

  
 <EMI ID = 3.1>

  
are / vulcanized with the addition of 100 parts by weight of filler such as carbon black, zinc oxide,

  
 <EMI ID = 4.1>

  
tie by weight of ammonia aldehyde as an accelerator.

  
 <EMI ID = 5.1>

  
solvent, and to another part of the mixture dissolved in 3 parts of water. The increase in strength and elongation at break is shown in the table below under 1).

  
In another comparative test, instead of ammonium aldehyde, mercaptobenzothiazol was used. without solvent and dissolved in 1 part by weight of picoline (table under 2).

  
The comparison shown in the table under 3)

  
was made with the same mixture by using
1.5% sulfur with symmetrical ethylcyclohexylthiuramic disulphide, once without solvent and the other time dissolved in 3 parts by weight of toluol.

  
In the comparison indicated under 4), made with the same vulcanization mixture, the ethylhexahydroaniline salt of the dithiocarbamic acid of ethylhexahydroaniline, used as an accelerator, was added

  
once without solvent and the other time in a liquefied form with 2 parts by weight of stearic acid.


    

Claims (1)

<EMI ID=6.1> <EMI ID = 6.1> Résumé summary 1) Procédé pour la vulcanisation de masses artificielles du genre du caoutchouc, telles que celles <EMI ID=7.1> 1) Process for the vulcanization of artificial rubber-like masses, such as <EMI ID = 7.1> caractérisé en ce qu 'on emploie les accélérateurs de vulcanisation dans des agents de dissolution ou de liquéfaction. characterized in that the vulcanization accelerators are employed in dissolving or liquefying agents. 2) Les masses artificielles vulcanisées suivant le procédé d'après 1). 2) The artificial masses vulcanized according to the process according to 1).
BE370111D 1929-05-08 BE370111A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE695269X 1929-05-08

Publications (1)

Publication Number Publication Date
BE370111A true BE370111A (en)

Family

ID=6607422

Family Applications (1)

Application Number Title Priority Date Filing Date
BE370111D BE370111A (en) 1929-05-08

Country Status (3)

Country Link
BE (1) BE370111A (en)
FR (1) FR695269A (en)
NL (1) NL27228C (en)

Also Published As

Publication number Publication date
NL27228C (en)
FR695269A (en) 1930-12-13

Similar Documents

Publication Publication Date Title
DE1271387B (en) Process for the production of stable, concentrated latexes from synthetic rubbers
US2296427A (en) Process of producing aqueous dispersions of polyisobutylene
DE1770733C3 (en) Molding compositions which can be hardened to give elastomers and are based on essentially amorphous bicycloheptene polymers
BE370111A (en)
DE2026925C3 (en) Anti-ionic agents for chloroprene polymers
US1872161A (en) Preservation of latex
DE593399C (en)
DE1070815B (en) Accelerating the vulcanization of rubber
US1808893A (en) Leon c
DE3436006A1 (en) METHOD FOR PRODUCING FIBER-REINFORCED RUBBER-LIKE POLYMERS
US2304678A (en) Rubber cement and method of making the same
DE1470920C3 (en) Process for mixing polymers which have been prepared by solution polymerization of conjugated dienes with customary rubber additives
DE582286C (en) Process for the vulcanization of synthetic rubber-like products with little plasticity
DE862368C (en) Process for the preparation of solutions of acrylonitrile polymers
DE1283537B (en) Production of latices from solutions of hydrocarbon polymers
DE2038311C3 (en) Stabilization of 2-chlorobutadiene (13) against the popcorn polymers
US881827A (en) Celluloid substitute and process of making the same.
DE875720C (en) Dissolving, swelling, gelatinizing and plasticizing agents
US2200705A (en) Interpolymerization products of butadiene and a vinyl ethinyl carbinol
US1376172A (en) Vulcanized-oil product
US1908482A (en) Production of vulcanized rubber
DE1961742A1 (en) Cyclic hydrocarbon polymers
DE1569358C3 (en) Enlargement of the particle size of aqueous dispersions of solid organic macromolecular polymerization products
DE1270273B (en) Process for the production of homogeneous mixtures from synthetic elastomers and fillers customary for rubber processing
AT242359B (en) Process for the treatment of aqueous dispersions