AU777375B2 - Method and system for monitoring computer networks and equipment - Google Patents
Method and system for monitoring computer networks and equipment Download PDFInfo
- Publication number
- AU777375B2 AU777375B2 AU12395/01A AU1239501A AU777375B2 AU 777375 B2 AU777375 B2 AU 777375B2 AU 12395/01 A AU12395/01 A AU 12395/01A AU 1239501 A AU1239501 A AU 1239501A AU 777375 B2 AU777375 B2 AU 777375B2
- Authority
- AU
- Australia
- Prior art keywords
- sensor
- network
- instructions
- interface
- equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims description 97
- 238000012544 monitoring process Methods 0.000 title claims description 86
- 230000007613 environmental effect Effects 0.000 claims description 31
- 238000012545 processing Methods 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 14
- 238000003384 imaging method Methods 0.000 claims description 12
- 230000006854 communication Effects 0.000 claims description 10
- 238000004891 communication Methods 0.000 claims description 10
- 238000004378 air conditioning Methods 0.000 claims description 4
- 230000003068 static effect Effects 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 230000007175 bidirectional communication Effects 0.000 claims description 2
- 230000000977 initiatory effect Effects 0.000 claims description 2
- 230000005236 sound signal Effects 0.000 claims 1
- 230000004044 response Effects 0.000 description 19
- 239000003795 chemical substances by application Substances 0.000 description 16
- 230000008901 benefit Effects 0.000 description 13
- 239000000779 smoke Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000872 buffer Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000006386 memory function Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 102100035353 Cyclin-dependent kinase 2-associated protein 1 Human genes 0.000 description 1
- 241000005398 Figaro Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009439 industrial construction Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L12/2823—Reporting information sensed by appliance or service execution status of appliance services in a home automation network
- H04L12/2825—Reporting to a device located outside the home and the home network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/44—Star or tree networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0805—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
- H04L43/0817—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/12—Network monitoring probes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
- H04L67/025—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP] for remote control or remote monitoring of applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
- H04L69/322—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
- H04L69/329—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L2012/284—Home automation networks characterised by the type of medium used
- H04L2012/2841—Wireless
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L2012/284—Home automation networks characterised by the type of medium used
- H04L2012/2845—Telephone line
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/04—Processing captured monitoring data, e.g. for logfile generation
- H04L43/045—Processing captured monitoring data, e.g. for logfile generation for graphical visualisation of monitoring data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/06—Generation of reports
- H04L43/065—Generation of reports related to network devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/10—Active monitoring, e.g. heartbeat, ping or trace-route
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/16—Threshold monitoring
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Computer Security & Cryptography (AREA)
- Environmental & Geological Engineering (AREA)
- Computing Systems (AREA)
- Alarm Systems (AREA)
- Computer And Data Communications (AREA)
- Telephonic Communication Services (AREA)
Description
I I WO 01/31849 PCT/USOO/29689
DESCRIPTION
METHOD AND SYSTEM FOR MONITORING COMPUTER NETWORKS AND EQUIPMENT TECHNICAL FIELD OF THE INVENTION The present invention relates generally to computer network and equipment monitoring systems and methods and, more particularly, to computer network monitoring systems that can be accessed locally or remotely. Even more particularly, the present invention relates to a computer network and equipment monitoring system that can provide real-time status of environmental conditions, alarm functions, and real-time video imaging of a space or equipment being monitored over a global network, such as the internet.
BACKGROUND OF THE INVENTION Data traffic on networks, particularly on the internet, has increased dramatically over the past several years, and this trend will continue with the rapid growth of e-commerce and other services on the internet requiring greater bandwidth. With this increase in data traffic on networks, there has been a corresponding increase in the number of computer equipment rooms, known as "server rooms," used to house the equipment necessary to support data traffic routing. Furthermore, the increasing dependency of companies on their internet presence has created an urgency to keep the server rooms up and running at all times. Industry estimates show that there are over 400,000 such rooms currently in existence in the United States.
The growth in intermet traffic has prompted many businesses to construct a server room to allow their employees to access intermet information or enable e-commerce and store data. Once viewed as a goal, continuous server up time has become a necessity. Keeping track of numerous computers, along with associated bridges, routers, backup power supplies, etc., can be a formidable task. A large company with server rooms in more than one city might well be faced with spending thousands of dollars on software packages to keep their equipment running. Prices of $1,000 per computer are common. Dedicated technicians are also needed to monitor network equipment and issue work orders to repair failed units.
While reliable, modem computer systems cannot tolerate excess heat, dust or humidity. Heat can rapidly cause equipment deterioration. Failure of CPU cooling fans can reduce equipment lifetime to days or hours. A single high-speed LAN (local area network) failure can cause slow system response. These and other such failures within the equipment in a server room occur routinely and can cause great disruption to a business.
WO 01/31849 PCT/US00129689 2 Solutions do currently exist for monitoring computer networks and equipment to prevent such failures. However, these solutions are primarily targeted at high-end, very large systems such as those used by large corporations or institutions that have large budgets to support equipment monitoring. For example, Hewlett-Packard provides a high-end monitoring package with a starting price of around $250,000. In the middle tier, smaller monitoring solutions can be had for approximately $20,000. Some of these systems only permit inspection of devices on a local basis.
Others permit a technician to inspect geographically diverse installations from a central console.
However, all of these solutions are expensive to implement and complex and difficult to maintain and train personnel to use them.
As a result, small to medium companies having small to medium networks are left in the position of requiring a means to monitor and maintain their computer network equipment from failing while not having the resources to afford the high-priced solutions currently available. Many firms cannot afford a high-end solution or simply do not have the time and resources to train their IT personnel to learn and use complex systems. Instead, the common monitoring method in many such companies is user complains to the IT manager to indicate when a problem has occurred. The idea is that someone in the organization will notice a failure and call for repairs before damage can be done.
The reality, however, is that most IT managers have suffered some form of server room damage from excess heat or other physical phenomenon or simply just failure.
This is especially true for companies having multiple server rooms and that have concerns about routine access to each of these rooms. For example, most IT managers would like some form of remote access for determining the status of a server room. Additionally, concerns exist with current solutions regarding the manpower intensiveness of these solutions. Most network monitoring solutions can consume a full- or part-time employee. The financial justification for these systems is, therefore, difficult because network equipment typically fails yearly, or on a disaster basis, and the cost of recovery is seen as less than that of maintaining a full-time employee to routinely monitor the equipment.
Similar concerns exist for monitoring rack-mounted components such that individual components within a rack can be monitored remotely. Also, current monitoring solutions do not provide for video imaging of remote server locations over a network. Computer equipment is typically placed in server rooms for two reasons: security and environmental control. Remote video imaging of a server room over a network can provide for maintaining security of the equipment despite the lack of a physical presence on site.
A typical computer room can house hundreds of devices, ranging from expensive server grade computers to bridges, routers, uninterruptable power supplies and telephone equipment. A server room's environment requires monitoring because out of limit environmental variables can eventually affect the equipment in the room. For example, high temperatures, humidity (for example, from water leaks), or lack of air flow can detrimentally affect the equipment. Similarly, alarms, such as smoke and fire alarms, or the status of room openings, are important to determine. While the expense of replacing server room components if they fail is great, currently existing monitoring solutions are not cost effective for smaller-sized companies to implement despite the potential costs of such losses.
Therefore, a need exists for a method and system for monitoring computer networks and equipment that can fit into different levels of information technology management, from very large companies with large network operation centers and deployed worldwide networks, to small companies with one intemet server.
A further need exists for a computer network and equipment monitoring method and system that can be implemented in a small space, is simple to install, maintain and manage, and is reliable.
Such a system can be configured with no moving parts, such as the keyboard, disk drives or monitors of conventional computer systems.
An even further need exists for a computer network and equipment monitoring method and system that can provide access and control through a global network such as the internet and that are capable of processing HTTP, HTML, MIME, TeleNet, TCP/IP and SNMP, standards.
A still further need exists for a computer network and equipment monitoring method and system that can provide a video image of a room upon the occurrence ofa pre-set condition, such as a door opening.
Still further, a need exists for a computer network and equipment monitoring method and system that can perform continuous computer network monitoring, monitoring of the environmental S" conditions of a computer room, and an evaluation of individual components, and automatically S provide a report in the event of an out-of-limit condition. Such a system and method should be able to determine the power status of a device, use SNMP, Bios API, or Windows NT (or similar operating S systems) to determine accessory conditions, assemble a complete report, and send email or pager S messages on out-of-limit conditions.
00oo02 An even further need exists for a computer network and equipment monitoring method and system that can communicate to personnel monitoring the system via the internet through, for example, an Ethemrnet I 0-base-T Category 3 or Category 5 wire, or through an optional dial-up 0oo0 eg: telephone line for network down conditions.
A still further need exists for a computer network and equipment monitoring method and system that can measure the physical conditions of a server room, such as room temperature, humidity, and/or air flow, and detect whether a smoke alarm has gone off.
o• P ops scw12395-01 Sl spa do. 1/0804 -4- Furthermore, a need exists for a computer network and equipment monitoring method and system that can report equipment or environmental conditions via the internet through a Web page, email or through a pager or a telephone call.
A still further need exists for a computer network and equipment monitoring method and system that can provide a downloadable memory function to make adding or changing functionality simple. IT managers can thus modify or even invent tasks for the system. Administration can be via straightforward HTML tables requiring no training.
A further need exists for a computer network and equipment monitoring method and system that can provide a micro web-server powered through an Ethernet cable, thus eliminating the need for the micro web server to have a wall-supplied power source.
Moreover, a need exists for a computer network and equipment monitoring system and method with the ability to control an external, high-voltage load from either a remote or local location.
SUMMARY OF THE INVENTION According to a first aspect of the present invention, there is provided a system for monitoring a space external to the system, the system comprising: a microprocessor; a memory coupled to the microprocessor, the memory including instructions for
S
20 processing a sensor signal derived from at least one environmental parameter of the space external to the system and the memory including a web server application; S"a sensor configured to detect the at least one environmental parameter of the space external to the system and configured to generate the sensor signal derived from the at least one detected environmental parameter of the space, the sensor selected from a group consisting ofa temperature sensor, a relative humidity sensor, and an air flow sensor; and S.,o at least one port for communicating with a network, the at least one port responsive to the microprocessor, the web server application configured to provide a webpage associated with the sensor signal via the at least one port.
P op\tse12395-01 IM spa do-V8I/0$4 -4A- According to a second aspect of the present invention, there is provided an apparatus comprising: a sensor configured to measure ambient conditions with respect to monitored equipment, the sensor physically uncoupled and spaced apart from the monitored equipment and the sensor configured to measure the ambient conditions without use of a bi-directional communication link between the sensor and the monitored equipment, the sensor configured to generate a sensor signal associated with the measured ambient conditions, the sensor selected from a group consisting of a temperature sensor, a relative humidity sensor, and an air flow sensor; at least one microprocessor responsive to the sensor signal; video camera circuitry coupled to the at least one microprocessor, the video camera circuitry configured to acquire an image of the monitored equipment; memory coupled to the at least one microprocessor, the memory including instructions for processing the sensor signal, instructions for processing the image of the monitored equipment, and a web server application; and at least one network port responsive to the at least one microprocessor and configured for communicating the image of the monitored equipment and the measured ambient conditions in a web page provided by the web server application over a distributed computer network to a remote location for display.
According to a third aspect of the present invention, there is provided an apparatus comprising: a sensor configured to detect a physical environment parameter associated with a space, the sensor configured to generate a sensor signal associated with the physical environmental parameter, the sensor selected from a group consisting of a temperature sensor, a relative humidity sensor, and an air flow sensor; a standalone housing physically separate from monitored equipment and having the space between the housing and the monitored equipment, the housing including: at least one microprocessor responsive to the sensor and configured to process the S• 30 sensor signal; video imaging circuitry configured to capture an image of the space; P op s l2395O1 Ist spa do.IS/OS/I( 4B memory coupled to the at least one microprocessor, the memory including: instructions for processing the sensor signal; instructions for processing the image of the space; a web server application; instructions for generating a webpage including the processed sensor signal and the processed image of the space; a threshold value associated with the sensor signal; and instructions for initiating a notification signal when the sensor signal violates the threshold value; and at least one network port coupled to the at least one microprocessor and configured for communicating the webpage over a distributed computer network to a remote location for display.
According to a fourth aspect of the present invention, there is provided an apparatus comprising: at least one sensor configured to monitor environmental conditions ambient to rack mounted computer equipment, the at least one sensor selected from a group consisting of a temperature sensor and a humidity sensor; i a housing configured for mounting to an equipment rack, the housing including: 20 a processor responsive to the sensor; at least one network interface responsive to the processor and configured for o- communicating with a distributed computer network; a power control interface configured to access power management equipment; a web server configured to provide a web page associated with information derived S 25 from. the sensor; an email module configured to send notification of events associated with the sensor; a simple network management protocol module configured to communicate with computer equipment external to the housing; and S 30 a modem responsive to the processor and configured to access a telephone line.
Popae','\c23 9 -Ol I s padoC -13/08104 -4C- According to a fifth aspect of the present invention, there is provided an apparatus comprising: at least one sensor configured to monitor environmental conditions ambient to rack mounted computer equipment, the at least one sensor selected from a group consisting of a temperature sensor and a humidity sensor; a housing configured for mounting to an equipment rack, the housing including: a plurality of processors, at least one processor of the plurality of processors responsive to the sensor; at least one network interface responsive to at least one processor of the plurality of processors and configured for communication with a distributed computing network; a power control interface responsive to at least one processor of the plurality of processors and configured to access power management equipment; a web server responsive to at least one processor of the plurality of processors and configured to provide a web page associated with information derived from the sensor; an email module responsive to at least one processor of the plurality of processors and configured to send notification of events associated with the sensor; a simple network management protocol module responsive to at least one processor of the plurality of processors and configured to communicate with computer equipment external to the housing; and 20 a modem responsive to at least one processor of the plurality of processors and configured to access a telephone line.
omrsig o* According to a sixth aspect of the present invention, there is provided an apparatus comprising: at least one sensor configured to monitor environmental conditions ambient to monitored computer equipment, the at least one sensor selected from a group consisting of a temperature sensor and a humidity sensor; S..o a housing configured for mounting to an equipment rack, the housing including: a web server configured to provide a web page having information derived from the at least one sensor; an email module configured to send email; P.%O\lO cvA12395-01I lup doc-. 1S03/04 -4Da simple network management protocol module configured to communicate using a simple network management protocol; a modem configured to access a telephone line and configured to selectively send data to a pager; at least one network interface configured to access a distributed computer network; and an alarm module responsive to the at least one sensor and configured to send an alarm notification, the alarm notification communicated by at least one of the email module, the simple network management protocol module, and the modem.
In accordance with preferred embodiments of the present invention, a computer network and equipment monitoring method and system are provided that substantially eliminate or reduce disadvantages and problems associated with previously developed systems and methods for monitoring computer networks and equipment.
More specifically, embodiments of the present invention provide a method and system for monitoring a space and its contents over a network. The system can include an embedded microprocessor, such as Java microprocessor, to provide processing and network connectivity capability, and sensors to detect physical parameters associated with the space. The sensors can generate one or more sensor signals representative of the 20 detected physical parameters. An analog-to-digital converter can convert the sensor signals to a digital format and can provide corresponding digital signals to the Somicroprocessor.
The system further includes instructions for processing the sensor signals and corresponding digital signals. An alarm signal can be generated when any of the physical parameters exceeds a corresponding threshold value. The system of embodiments of the present invention can have at least one input/output port for communicating with the network and one or more memory modules for storing system data. The system of i embodiments of this invention can have a network-based interface for providing programming instructions to the microprocessor and for receiving monitoring status and alarm information from the system. The interface can be an HTML interface. A power source provides power to the system.
source provides power to the system.
P 'po\-,1239-01 lu spa doc-1/0ISO04 4E Preferred embodiments of the present invention provide a technical advantage of a computer network and equipment monitoring method and system that that can be implemented in a small space, is simple to install, maintain and manage, and is reliable.
A further technical advantage of embodiments of the present invention is their ability to provide access and control through a global network such as the internet and the capability to process HTTP, HTML, MIME, and SNMP standards.
*o P Opcs.AIM2395-OI I s l doC-I O0/04O An even further technical advantage of embodiments of the present invention is their ability to provide a video image of a room upon the occurrence of a pre-set condition, such as a door opening or whenever the website is addressed.
Still further, a technical advantage of embodiments of the present invention is their ability to perform continuous computer network monitoring, to monitor the environmental conditions of a computer room, and to evaluate individual network components and automatically provide a report in the event of an out-of-limit condition.
A still further technical advantage provided by embodiments of the present invention is their ability to communicate with personnel monitoring the system via the internet or an intranet.
An even further technical advantage of embodiments of the present invention is their ability to report equipment or environmental conditions via the internet through a Web page, email or through a pager or a telephone call.
A still further a technical advantage of embodiments of this invention is a downloadable memory function to make adding or changing functionality simple.
Still further, a technical advantage provided by embodiments of this invention is a micro web-server powered through an Ethernet cable, thus eliminating the need for the micro web server to have a wall-supplied power source.
Moreover, a technical advantage of embodiments of the present invention is a S 20 computer network and equipment monitoring system and method with the ability to control an external load from either a remote or local location.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.
BRIEF DESCRIPTION OF THE DRAWINGS For a more complete understanding of the present invention and the advantages S.thereof, reference is now made to the following description taken in conjunction with the accompanying drawings in which like reference numerals indicate like features and S30 wherein: eeeee P opa\sew1l2395.0 I I sp d-Ioc-IS /04 FIGURE 1 shows a typical server room layout that can be monitored using the method and system of the present invention; FIGURE 2 is a conceptual diagram showing a typical installation of an embodiment of the system of the present invention; FIGURE 3 illustrates the capabilities of one embodiment of the computer network and equipment monitoring system of the present invention; FIGURE 4 illustrates the capabilities of another embodiment of the method and system of the present invention;
'S
0o o**
S
f WO 01/31849 PCT/US00/29689 6 FIGURE 5 illustrates the capabilities of another embodiment of the method and system of the present invention; FIGURE 6 illustrates another embodiment of the computer network and equipment monitoring method and system of the present invention; FIGURE 7 is a conceptual block diagram of an embodiment of the computer network and equipment monitoring system of the present invention; FIGURE 8 is a simplified box diagram of the architecture of the embodiment of the present invention shown in FIGURE 6; FIGURE 9 is a circuit schematic of humidity sensor 52 of FIGURE 7; FIGURE 10 is a circuit diagram of air flow sensor 54 of FIGURE 7; FIGURE 11 shows the physical layout of various embodiments of the present invention; FIGUREs 12A, 12B, 12C, and 12D show various views of the sheet metal housing of an embodiment of the present invention; FIGURES 13A, 13B and 13C show front, top, and side views, respectively, of the sheet metal housing of an embodiment of the present invention; FIGURE 14 is a top level flow chart diagramming the operation of an embodiment of the computer network and equipment monitoring method of the present invention; FIGURE 14A represents a flow chart of the process alarm conditions of the present invention.
FIGURE 15 is a flow chart diagramming the initialization process of the monitoring method of this invention shown in FIGURE 14; FIGURE 16 is a flow chart diagramming the steps of the method of this invention for retrieving configuration settings; FIGURE 17 shows a typical HTML response to a status request as provided by the method and system of this invention; FIGURE 18 is a flow chart diagramming the response of the system and method of this invention to an HT-P request; FIGURE 19 is a block diagram illustrating the signal processing steps of the method of this invention; FIGURE 20 is a screen shot of a typical web page generated using the monitoring system and method of the present invention; FIGUREs 21A and 21B show a typical alarm email and scheduled report email generated using the method and system of the present invention; and FIGURE 22 represents a flow chart of the system operation of the present invention.
WO 01/31849 PCT/US00/29689 7 DETAILED DESCRIPTION OF THE INVENTION Preferred embodiments of the present invention are illustrated in the FIGUREs, like numerals being used to refer to like and corresponding parts of the various drawings.
The method and system of the present invention can provide a simple, reliable, easy to manage and low-cost means for monitoring a network and the physical environment housing the network. Various embodiments of the present invention can provide one or all of physicalenvironment monitoring, monitoring of individual component parts, video imaging of the physical space housing a server system, internet or Intranet connectivity and telephone-line notification. The method and system of the present invention can be implemented in data networks of very large companies with large network operation centers and deployed worldwide networks, to small companies with one internet server or a single computer room. In particular, the low cost, low maintenance, internet connectivity, and ease of use of the method and system of the present invention make it ideally suited for the currently under-served smaller network market.
FIGURE 1 shows a typical server room layout that can be monitored using the method and system of the present invention. Server room 10 includes racks 12, which can hold different types of devices ranging from expensive server-grade computing units to bridges, routers, uninterruptable power supplies, and telephone equipment. Communications lines to connect to the internet and to a telephone system can connect into racks 12. Typically, a heating, ventilation and air conditioning system 14 provides recirculation of cooled air through server room 10 and can be controlled by thermostat 18. Server room 10 can also include a smoke alarm 16 to indicate the presence of a fire or smoking equipment. Different embodiments of the system of the present invention can be used to monitor server room 10 by being placed, for example, on wall 20 in a position to monitor the contents of server room FIGURE 2 is a conceptual diagram showing a typical installation of an embodiment of the system of the present invention. Climate bot 28, comprising one embodiment of the method and system of the present invention, can connect via a standard ethernet connection to bridge router 26.
Ethernet connection to bridge router 26 can be an RJ45 to category 5 network wiring connector.
Company web server 30 is connected to bridge router 26 and, through bridge router 26, can be connected to an internal client 24 on a company intranet or to an external client 22 via the intermet.
External client 22 can connect to climate bot 28 via a dial-up internet connection or other interet connection to obtain the status of server room 10 monitored parameters. In a similar manner, internal client 24 can access climate bot 28 VIA an internal company intranet connection through bridge router 26. FIGURE 2 illustrates the local and remote access capabilities of the method and system of the present invention implemented as climate bot 28.
Many modern computers and computer peripheral equipment have the capability to permit monitoring of various system parameters, such as the on/off status of fans, processor temperatures, WO 01/31849 PCT/US00/29689 8 various system voltages, and other system parameters. With the appropriate software and communications links, such systems can be queried for these various parameters. The method and system of the present invention can perform these monitoring functions. The system of the present invention can comprise a small, low-cost, self-contained, simple-to-install unit made from industrial construction materials. Various embodiments of the present invention can provide various levels of monitoring, notification, and video imaging. The embodiments of the present invention can be wallmounted within server room 10 of FIGURE 1 in a position to both monitor the environmental parameters of server room 10 and to connect to a company's computer network to monitor various parameters of the computer network.
The embodiments of the present invention can comprise a complete and self-contained "micro" web-server with its own URL and static IP address on the internet, and can connect to a company's network, and through that computer network to the internet, via a standard connector such as an Ethernet connector. A unit comprising the system of the present invention can have its own worldwide web address and deliver a web page to users accessing the unit. The various embodiments of the present invention can be HTML compliant, provide email and/or phone notification, and essentially comprise an internet site.
FIGURE 3 illustrates the capabilities of one embodiment of the computer network and equipment monitoring system of the present invention. Climate bot 30 of FIGURE 3 can provide continual monitoring of a server room 10's environmental parameters. For example, climate bot can provide continuous monitoring of temperature, humidity, air flow, and the presence of smoke within server room 10. Climate bot 30 can report the status of the parameters that it is monitoring via a web page, email, or paging. Internet connection 32 can connect climate bot 30 directly to the internet or to another computer network and through that computer network to the internet. A user can set alarm points for the parameters monitored by climate bot 30 using a simple HTML web page interface.
Climate bot 30 of FIGURE 3 can be configured as only an environmental monitoring system.
However, climate bot 30 can be upgraded to include agent functionality. Agents are software objects that can be used to investigate and query individual components of the computer network to determine their status and some physical parameters.
FIGURE 4 illustrates the capabilities of another embodiment of the computer network and equipment monitoring method and system of the present invention. Video climate bot 34 incorporates a video imaging system, such as a CMOS imager, to provide images of server room 10 Video climate bot 34 can be mounted on wall 20 so as to provide an unobstructed view of the entrance to server room 10, or any other portion of server room 10. Video climate bot 34 can have all of the same functionality of climate bot 30 of FIGURE 3. but can also provide video imaging circuitry and circuitry for sensing an external influence, such as the opening of door 36. A sensor 38 can monitor WO 01/31849 PCT/USOO/29689 9 door 36 and provide a signal to video climate bot 34 upon, for example, the opening of door 36.
Sensor 38 can be any type of sensor, such as a magnetic switch, that can provide a signal upon the occurrence of a preset condition. Sensor 38 can be connected to video climate bot 34 by hard wiring, or through a wireless interface.
In one embodiment of the present invention, video climate bot 34 can be set to receive an input signal from sensor 38 indicating that door 36 has been opened. Video climate bot 36 can be configured to wait a pre-set amount of time (for example, one second) following the opening of door 36 and take a video image of server room 10. The video image can be transmitted to a system administrator to indicate the presence of an external influence, such as a person, entering server room 10. Video climate bot 34 can thus be used as an additional security measure and record-keeping device to track personnel access into server room 10. Video climate bot 34 and sensor 38 can also be used to indicate the presence of other external influences beyond personnel access to server room Video climate bot 34 can be slightly larger than climate bot 30 of FIGURE 3 to accommodate a video imaging system. Each time that a web page maintained by video climate bot 34 is accessed, a new image can be captured and transmitted to the user. Video climate bot 34 can also provide streaming video or truce frame (still frame) over to the user.
Climate bot 30 of FIGURE 3 and video climate bot 34 of FIGURE 4 can both provide information relating to the various parameters they are monitoring through a simple HTML interface.
Both units can be accessed, configured, and maintained via the internet using standard HTML.
Unlike in prior art computer network monitoring systems, extensive personnel training is therefore not required. Video climate bot 34 can provide the administrator of a large network system with various geographically distinct server rooms 10 with the ability to tour the server rooms remotely, via the internet or an intranet, and be able to see an image of each of those server rooms. The system administrator can likewise monitor the environmental conditions in each of the server rooms quickly and efficiently, without having to physically visit each room.
FIGURE 5 illustrates the capabilities of another embodiment of the computer network and equipment monitoring method and system of the present invention. Net bot 40 can have the same functionality as video climate bot 34 of FIGURE 4 and can additionally provide the capability to detect a power failure or loss of an IP connection within a computer network, and the capability to provide dial-up telephone notification of the occurrence of these conditions. Net bot 40 can provide agents to monitor and continuously detect if an internet connection is active and if the main power grid serving the network is on. If an internet connection, or main power, is lost, net bot 40 can dial out via telephone connection 42 to inform a system administrator of the loss of power or loss of the internet protocol connection. Dial-up telephone notification via telephone connection 42 can serve as a failsafe in the event that net bot 40 cannot communicate with the system administrator via the internet through an email. As with climate bot 30 of FIGURE 3 and video climate bot 34 of WO 01/31849 PCT/US00/29689 FIGURE 4, net bot 40 of FIGURE 5 can be upgraded easily to provide agent functionality to monitor the various parameters of a computer network.
FIGURE 6 illustrates another embodiment of the computer network and equipment monitoring method and system of the present invention. Net bot 40 of FIGURE 6 can have SNMP, DMI and NT access for internal server monitoring. Like enterprise-class network monitors, net bot can periodically check for SNMP traps, Windows NT traps, and BIOS alerts, and can notify the system administrator of their occurrence. Common functions of net bot 40 can include checking the on/off status of both CPU fans and other system fans, CPU temperature checking, and checking of the conditions of various disk drives. Net bot 40 can support various protocols, including SNMP (simple network message protocol). Net bot 40 can launch software agents that can determine the operating condition of system routers, bridges, uninterruptable power supplies, etc. If the agents find a stuck disk, for example, on a server, they will log it as a fault. When a fault is detected, agents of net bot can return that condition to net bot 40 in java language, and net bot 40 can generate an email message reporting the malfunction. Net bot 40 can be configured to maintain an email list of all personnel the system administrator wants net bot 40 to notify. Net bot 40 can also be configured to, after waiting a certain amount of time following email notification, page the system administrator or other personnel.
Beyond receiving notification via email of a fault, a system administrator, or other user, can obtain real-time reports of environmental conditions and equipment conditions in a server room via an internet connection to net bot 40. Additionally, if, like video climate bot 34, the embodiment of the present invention being used by a system administrator provides video, a current video image of the monitored server room 10 can also be viewed via the internet. A system administrator can configure net bot 40, climate bot 30, or video climate bot 34 to provide only the information the system administrator is interested in receiving. In this way, the interface of the embodiments of this invention can be kept as simple or as complex as a system administrator requires. Any of the embodiments of the present invention can be upgraded via software that can be downloaded from the internet.
Another embodiment of the computer network and equipment monitoring method and system of the present invention can be mounted within a component rack, such as rack 12 of FIGURE 1.
This "rack bot" can provide the same functionality as climate bot 30, video climate both 34, or net bot 40, but in a smaller package that can be mounted internal to a rack 12. In this way, individual components within a rack 12 can be monitored and a web page provided for each component monitored by a rack bot. One use for a rack bot according to the teachings of this invention could be, for example, to monitor individual components of companies or individuals that lease out space within another company's rack for their own servers or other components. Using a rack bot, the individual or company renting space within someone else's rack could independently monitor their WO 01/31849 PCTIUS00/29689 11 equipment. Rack bots can be mounted inside of a rack using, for example, Velcro or some other attachment method.
Each of the embodiments of the computer network and equipment monitoring method and system of the present invention described above can be stand-alone units configured and maintained by a system administrator. However, they can also be easily incorporated into an existing monitoring system to complement or augment that system. This is possible because the embodiments of the present invention can be object properties and can be accessed as such.
The embodiments of the present invention shown in FIGUREs 5 and 6 illustrate the capability of this invention to launch agents or bots from a satellite platform. Typically, agents for monitoring a computer system's performance are resident on the system. These agents typically can be made to perform their function and then can be placed in a "sleep" mode. Prior art platforms thus typically invoke agents and receive information from agents on the platform itself. The embodiments of the present invention, in contrast, can invoke agents resident on a system, such as a computer network, from a remote satellite position. They can invoke the system's own agents remotely, receive information from the agents, and pass the information to a user. Furthermore, net bot 40 of the present invention and other embodiments of the present invention, can be upgraded with support for new agents to query new equipment that is added to the network. In this way, net bot 40 and the other embodiments of the present invention can be kept current and can be used to monitor equipment that is newly added to an existing computer network.
FIGURE 7 is a conceptual block diagram of an embodiment of the computer network and equipment monitoring system of the present invention. Circuit 50 contains video imager 52 for receiving and capturing images of the monitored server room or other space, temperature sensor for sensing temperature within the space, humidity sensor 62 for monitoring relative humidity, and air flow sensor 54 for monitoring the status of cooling air flow within the monitored space. This sensor circuitry also can process environmental information received to help eliminate noise and make the information more useful to microprocessor 72. Analog amplifier 58, image logic module 56, and image buffer 64 combine to receive, translate, process and forward the images captured by video imager 52 to the system web site. Analog-to-digital converter 66 converts the analog signals received from the various sensors to their digital equivalent for microprocessor 72.
Microprocessor 72 is the central circuit element with which all other circuit components interface. Microprocessor 72 can be a Dallas Semiconductor 80C390 microcontroller. Memory modules 68 and 70 are used to store both persistent and temporary information required by the system. Line interface 76 and internet interface 74 provide the interface between microprocessor 72, telephone module 80 and ethernet RJ45 connector 82. Analog-to-digital converter 66 converts the analog signals received from the various sensors to their digital equivalent for microprocessor 72.
WO 01/31849 PCT/US00/29689 12 Five-volt power supply 78 can receive and transform electrical power from a wall-mounted receptacle to power circuit 50. Humidity sensor 52 and air flow sensor 54 are described in more detail below.
FIGURE 8 is a simplified box diagram of the architecture of the embodiment of the present invention shown in FIGURE 6. Sensors 54, 60, 62, 84, and 86 interface to the analog-to-digital converter 66 which converts the signals for use by the microprocessor.
The solid state imager 52 is a VLSI Vision 5300 CMOS imager and incorporates-the autoimaging algorithms 56. The algorithms include gamma correction and anti-blooming and are included because any solid-state cameras do not incorporate these algorithms in hardware, so if there is a need to implement these in software if another camera is to be chosen. Buffer 64 and Parallel Interface 65 provide the necessary logic to interface directly to the CPU's data bus.
MHDY Clock 92 is a battery powered real-time clock that maintains a clock for the system that provides time in hours and minutes as well as months, days and years. The clock used is a Dallas Semiconductor DS1315.
The 5VDC power supply 78 is generated from a typical wall supply that converts 120V to a regulated 5V. The power fail detector 88 can be integrated as part of the power supply or detected from an external source such as an uninterruptable power supply. This sensor detects the failure of the supply from the utility company and provides a means of switching the device to battery power as well as notifying the CPU of the power failure.
The SNMP client 106 implements the common functions necessary to query the status of external devices such as routers, bridges, and uninterruptable power supplies. The necessary functions for SNMP clients is defined by the IETF.
The email generator 104 is a standard SMTP client that generates MIME compliant email.
Like SNMP, the standards for this type of program is documented in a number of documents issued by the IETF.
The alarm rules 102 are the set of conditions specified by the user of the device. When any of these conditions is true, the ClimateBot engine 100 will generate an email via the email generator 104. This email will be sent to a specified set of recipients.
The ClimateBot Engine 100 provides the integration of all the other parts of the device. It generates the HTML pages using information provided by sensors 54, 60, 62, 84, 86, the camera, and the SNMP client 106. It also monitors the alarm rules 102 for error conditions.
The ClimateBot engine communicates via one of two means. It can communicate using a standard 10BaseT ethernet 94 or it can communicate using a telephone lien interface 112. The choice of communications channel does not change how the ClimateBot engine communicates with the outside world. The device still routes its messages through a TCP/IP stack 96 which in turn routes the message either to the ethernet driver 94 or through the PPP driver 108, serial interface 100 and on to WO 01/31849 PCT/US00/29689 13 the telephone module 112. The PPP (point-to-point) driver 108 is a standard means of using a communicating over a serial link reliably. It is well documented in IETF standards.
The family of NetBotz, ClimateBots may be powered by using power existing on the ethernet cable either in the form of data or power on the cable. The data signals will be received and averaged to supply a continual source of voltage and current to the Netbot or ClimateBot device. Thus eliminating the need for external power supplies. The device shall receive the data and use an appropriate amount of power from ethernet data signal or power signal such as to not disturb the signaling capacity of the line only to use the excess capacity of the signal lines.
FIGURE 9 is a circuit schematic of humidity sensor 52 of FIGURE 7. Humidity sensor 52 is used to sense the relative humidity of the air within a space. Humidity sensor 52 includes relative humidity sensor chip 202, which can consist of a ceramic plate that shrinks or expands with changes in relative humidity. The shrinking and expanding generates an electrical signal proportional to relative humidity. Humidity sensor 52 operates under well-understood principles of electrical circuitry to provide an indication of relative humidity. A person of average skill in the art can understand and reproduce the functionality of humidity sensor 52.
Humidity sensor 52 is comprised of five parts: an oscillator, a lowpass filter, humidity sensor chip 52, and two peak detectors. The oscillator subcircuit can consist of resistors r3, r5, r7, and capacitor c6, and op-amp UIB. This subcircuit produces a square-wave with a nominal frequency of 1khz. The square-wave signal is lowpass filtered using a two-stage lowpass filter. The first stage consists of resistor rl6 and capacitor c4. This is a passive filter, so the output is slightly attenuated.
The second stage of the filter has some gain to make up for the attenuation of the first stage. The second stage of the lowpass filter consists of resistors rI0, rl7, capacitor c7, and op-amp U1A. This lowpass filter provides a waveform shaping function. The output of the lowpass filter approximates a sinusoidal waveform.
The output of the lowpass filter passes directly to humidity sensor chip 202 as well as to a first peak detector. Humidity sensor chip 202 can be a Figaro Engineering NH-2 humidity sensor.
Humidity sensor chip 202 attenuates the amplitude of the input sinusoid waveform based on the relative humidity. The output of humidity sensor chip 202 passes to the second peak detector.
The first peak detector, consisting of diode D2, capacitor C3, and resistor R19, provides an estimate of the amplitude of the humidity sensor input. Likewise, the second peak detector, consisting of diode DI, capacitor Cl, and resistor R1, estimates the amplitude of the humidity sensor output. The relative humidity is determined by computing the ratio of the output amplitude to the input amplitude.
FIGURE 10 is a circuit diagram illustrating the air flow sensor 54 of FIGURE 7. Air flow sensor 54 essentially acts as an air-on/air-off indicator. Air flow sensor 54 is comprised of a "hot wire" anemometer circuit and a differential amplifier.
WO 0/31849 PCTrus0/29689 14 The anemometer circuit can consist of resistors R6 and R9, potentiometer R8, and two thermistors 302 and 304. Thermistors 302 and 304 vary resistance with temperature. The anemometer components can be placed in a classic 'wheatstone bridge' configuration. Each leg of the bridge contains one of the resistors and one of the thermistors. One of the legs also includes potentiometer 306.
Thermistor 302 is mounted near the opening of, for example, net bot 40 and is exposed to the environment being monitored. Thermistor 304 should be mounted such that it is shielded from the air flow, such as within the outer casing of net bot When no air flow is present in the space being monitored, both legs of the bridge will have equal resistance except for a small difference due to component tolerances. Potentiometer 306 can be used to compensate for this difference. When air flow is present, thermistor 302 will change its resistance because the air flow changes the temperature at thermistor 302. Thermistor 304 will not change because no air flow reaches it.
The voltage across each of thermistors 302 and 304 passes to the inputs of the differential amplifier. The differential amplifier amplifies and filters any difference between the thermistor 302 and 304 voltages. The filter operation limits the effect of any fast changes in temperature that would not be due to air flow. The amplified differential voltage provides a signal indicative of air flow.
Air flow sensor 54 can be used to inform a system administrator if the air conditioner blowers have failed in a given space. Typically, air registers in a server room blow air across the ceiling and down the room walls, so the location of net bot 40 on a wall is a good location to determine whether air flow is on or off. Air flow sensor 54 need not be calibrated to indicate flow in any given units, but can be if desired. Neither air flow sensor 54 nor humidity sensor 52 need be recalibrated and hence are essentially maintenance-free components.
Returning now to FIGURE 7, temperature sensor 60 can be a standard off-the-shelf temperature detector and is typically accurate to within a degree. Smoke detector 84 can be a microphone with a notch filter. The notch filter of smoke detector 84 can be calibrated to detect only frequencies typically associated with smoke detector alarms in buildings. All other sound frequencies can be excluded, and smoke detector 84 will only generate an alarm condition signal if the frequencies associated with a smoke detector alarm are detected. Smoke detector 84's functionality is especially useful in applications where smoke detector alarms are self-contained, battery-operated units. Configuration of smoke detector 84 eliminates the need for running wiring between a smoke detector alarm and any embodiment of the computer network and equipment monitoring system of the present invention. Sensor 86 of FIGURE 8 can be an external sensor, such as a magnetic switch connected to a door leading into a server room, and can provide a signal when the door is opened.
FIGURE 11 shows some of the embodiments of the present invention as described above.
Climate bot 30 is shown with four LEDs 252. LEDs 252 can indicate, for example, that temperature WO 01/31849 PCT/US00129689 and humidity are within limits, or can be used as a "heartbeat" indicating that the unit has power and is operational. A front view of climate bot 34 is also shown with four LEDs 252 and video imager 254. One variation of net bot 40 is shown without LEDs 252, but having video imager 254. Rack bot 250 is shown with video imager 254. Although only a few cmbodiments of this invention are shown in FIGURE I1, various combinations that have not been described are possible. Features from one of the embodiments of the present invention can be combined with the features of another embodiment to form a new embodiment.
FIGUREs 12A, 12B, 12C, 12D show various views of the sheet metal housing of, for example, climate bot 30. Although particular dimensions and locations of slots, perforations, notches and indentations are shown, these are illustrative only and various other dimensions and combinations of such slots, perforations, notches and indentations are possible. FIGURE 12A is a front view of climate bot 30's housing, FIGURE 12B a top view, and FIGURE 12C a side view. FIGURE 12D shows a full frontal view of the housing with the accompanying lettering that can be placed on the surface of the housing. FIGURE 12D also shows the spaces on the housing that can be made available to record the URL address 260 for a given unit, as well as the email address 262 that can be programmed into the unit for email alerts.
FIGURES 13A, 1313 and 13C show front, top, and side views, respectively, of the sheet metal housing of, for example, video climate bot 34 of FIGURE 4. As in FIGURE 12, the views in FIGURE 13 are illustrative only, and the dimensions shown can be changed to fit different embodiments of the computer network and equipment monitoring system of the present invention.
FIGURES 13A shows video climate bot 34's sheet metal housing with opening 270 to accommodate video imager 254.
An embodiment of the computer netwvork and equipment monitoring method and system of the present invention incorporating micro web-server technology and video imaging technology as described above could be used, for example, in an on-line auction type environment. This could allow, for instance, the placing of goods for auction on a site such as eBay by creating a link to the web site of a micro-web server according to the teachings of the present invention. Someone visiting the auction site and wishing to bid on the offered goods could click on the link and get a real-time image of the goods offered for sale. This can eliminate the problems of prior art methods that required someone offering goods for auction on line to take a digital picture, or digitally scan a regular picture, store the resulting image on their home page or local site, and hot link to the stored image.
This embodiment of the present invention can be as simple as the self-contained micro web server described above with a digital camera and an ethernet connection to the internet. Real-time video images could thus be sent to on-line users to provide an image of goods offered for sale or that are to be monitored. In this way, a very small computer of limited memory can be used as a net-cam WO 01/31849 PCT/US00/29689 16 URL generator to provide essentially real-time images via creation of a unique web site that can be accessed remotely. This method requires the use of an embedding process for response generation, whereby a user clicking onto the web site causes a still image to be captured by the camera of this embodiment of the present invention and forwarded to him or her.
Returning now to FIGURE 7, microprocessor 72 of FIGURE 7 can be a TINI (tiny internet interface), a virtual machine developed and sold by Dallas Semiconductor as described above. Dallas Semiconductor's TINI is a compact circuit board or chip set that incorporates the latest in low-cost embedded java technology. Using TINI, it is possible to develop java applications quickly and easily to provide an internet or intranet interface for the system of the present invention. Combined with a simple web server application, microprocessor 72 can become a very small Java web server. In this way, the machinery and the network can be melded into a single entity. The system of the present invention can thus talk to a computer network by use of a specialized java data language and the improved processing capabilities provided by microprocessor 72 while maintaining low cost.
The high level of integration incorporated into microprocessor 72 allows software developers to write efficient, I/0-intensive Java applications. In typical applications, microprocessor 72 can control and monitor attached equipment and transfer collected control and status information over a computer network as described above. Microprocessor 72's three-chip set consists of a microcontroller, flash memory containing the firmware, and an ethernet controller. The microcontroller integrates serial, parallel I-wire, and controller area network (CAN) ports, with extra pins for controlling optional devices such as relays and indicator LEDs. Microprocessor 72 can address up to four megabytes of RAM and 512 kilobytes flash memory. An integrated real-time clock enables time stamping and time-dependent functionality. For security sensitive applications, a physically secured coprocessor with advanced cryptographic capabilities can be made available.
Microprocessor 72 of the present invention is optimized to accommodate the embedded java environment. The microcontroller supports 24-bit addressing and 8/32-bit CPU/ALU and high clock rates of approximately 60MHz and other java enhancements. Microprocessor 72's I/0 ports include Ethernet 10 base T interface, dual 1-wire net interface, a CAN interface, a dual serial port (one RS232 level and one +5V level), an I2C port, and an expansion bus allowing nearly unlimited parallel ports and miscellaneous digital and analog I/Os. The software platform on which microprocessor 72 runs is embedded Java implemented in firmware that is programmed in the flash memory and can be upgraded as necessary.
Microprocessor 72 includes a java virtual machine (VM/API), a multi-tasking, real-time operating system (RTOS), and a TCP/IP networking stack. The java virtual machine on microprocessor 72 conforms to Sun's Embedded Java M platform. Various Java packages can be embedded in microprocessor 72's flash memory. An additional advantage of using a java processor is WO 01/31849 PCT/US00129689 17 that the system of the present invention can eventually be migrated to cheaper processors as they become available, without having to re-write the core software.
A further advantage of the computer network and equipment monitoring method and system of the present invention is that it can be powered directly through an Ethernet connector as an alternative to wall-mounted transformer. Typically, an Ethemrnet cable carries a large voltage in order to move data between network components. The voltage generated to move data along an Ethernet cable is generally much greater than is necessary, and the excess generally resolves itself as heat in the network inductors. The computer network and equipment monitoring method and system of the present invention can use the excess voltage and current flowing through an Ethernet cable to power itself. For example, the excess current generated by the excess voltage in the ethernet cable can be used to charge a rechargeable battery on a wall-mounted unit. Additionally, microprocessor 72 can be placed into a stand-by mode to conserve power.
The present invention is fully programmable in an HTML format using HTML forms.
Programming can be performed locally or remotely through a web interface. The various monitored parameters can be configured through a web interface, as can the alarm setpoints. Unlike in current network management systems and methods, network management can be accomplished through a simple and easy-to-understand web interface.
The embodiments of the present invention can be configured to, locally or remotely, operate an external load through an internet or intranet interface in response to a preset condition or in response to a command from a system administrator. For example, auxiliary A/C units could be set to turn on when the room temperature reaches a pre-set limit. The present invention can include one or more binary (on-off) outputs connected to one or more relays that can control an external load or loads. The loads can be high voltage loads.
An RF (radio frequency) output, or other wireless output, can also be incorporated into any of the embodiments of the present invention to allow a wireless call to such an external load.
Furthermore, it is possible to load a 64-bit encoded chip onto the circuit board of any of the embodiments of the present invention to provide encryption and password security. Privacy protection in the form of a private key and a public key can be provided. The present invention can also include additional outputs to provide audible alarms or for interfacing to other proprietary monitoring systems.
The embodiments of the present invention can provide a low-cost, reliable, self-contained web server using industrial-grade embedded processes and commercial-grade semiconductors. The present invention can be manufactured with no moving parts, increasing its reliability. The present invention can also, using a central data collection java program, automatically scan and store multiple sites for an IT manager to allow the IT manager to avoid looking through emails from past condition reports or trend analysis.
WO 01/31849 PCT/US00129689 18 The present invention searches for equipment that is either on or off line and uses the static IP address, among other identifiers, to address and locate the device. The search can provide the IT manager with information, such as device availability, capacity, and inventory, as well as gathering information for the analysis and creation of trend lines. The trend lines may be used by the IT manager to perform maintenance or to schedule replacement of failing or suspect devices in an orderly and efficient manner.
It should be noted that the present invention is self-contained and does not need to be connected to or integrated with the users system or cpu. The present invention can be linked up with one or more of the users system via standalones, laptops or any other cpu to take advantage of any additional functionality that those systems might provide, although it is not necessary for the implementation and operation of the present invention.
The web interface of the computer network and equipment monitoring method and system of the present invention provides the ability to manage agents from any web browser, from across the room or across the globe. The self-contained web servers in each embodiment of the present invention can create their own web site. The embedded web server of this invention can thus be managed and configured from a standard web browser. End users therefore need not install new software on their systems or train their staff on how to use the system. A monitored space's condition can thus be quickly access via a web browser.
The various embodiments of the present invention can report static and dynamic systemcritical events logged by a system's files and can provide an integrated user interface that can be launched from IT enterprise management (ITEM) applications. Various embodiments can provide alert redirection to stations and management consoles of other monitoring systems, such as HP Open View. The present invention can also provide management of on-equipment display devices such as local LCD panels. The present invention can also be DMI compliant and support SNMP traps. The various embodiments of the present invention can also support LM75/78/79 and other health devices, devices on ISA, SM Bus and 12C Bus and can provide DMI event generation on status changes.
The present invention can comprise a device having an embedded processor connected to a temperature sensor, humidity sensor and air flow sensor that can be programmed to report the values of these physical parameters via an HTML interface. The present invention can be configured to generate email messages and paging notification events when one or more parameters exceeds a user configurable threshold value. The system of the present invention can be configured via an HTML interface. Furthermore, the present invention can include an image capture device, such as a CMOS imager, or other digital camera. Thus configured, the present invention can further provide real-time images of a monitored space.
The present invention can store an image from the video imager in response to a binary (on/off) input when the binary input is active. The binary input can be provided by an external sensor WO 01131849 PCT/US00/29689 19 such as a magnetic door switch. Furthermore, the present invention can be programmed to continuously investigate the internal condition of numerous network devices through SNMP, DMI, and SMBIOS interfaces. The present invention can determine the status of fans, CPUs and other relevant components and include Status information, along with the environmental parameters of the monitored space, to create a unified HTML or email report. A user can configure the system of the present invention via an HTML interface.
FIGUREs 14-19 are flow charts diagramming the operation of an embodiment of the method of the present invention. FIGURE 14 is a top level flow chart diagramming the operation of an embodiment of the computer network and equipment monitoring method and system of the present invention. At step 400, system initialization occurs. The initialization process can be run at powerup. The one-time setup of the processor, peripherals, and software can be performed at initialization.
The top-level of the program of the method of the present invention can consist of an infinite loop. Each time through the loop, the program can check for network messages. The program also contains a clock. This clock can be checked each time through the loop. When the clock reaches a certain time interval, such as a one-second interval shown in step 404 of FIGURE 14, the program can be configured to read the sensors, perform required calculations, and check for alarm conditions, as discussed below.
At step 402, the method of this invention continuously polls the Ethernet hardware to check for incoming network messages. When a network message arrives, the program can launch a new process and pass the received message to the new process. This new process can act on the message based on the message request.
At step 406, the method of this invention can read the temperature and all other channels of the analog-to-digital converter once per second, as determined at step 404. The program computes the temperature in degrees Fahrenheit, relative humidity in and air flow (on or off).
The method of the present invention can maintain a list of user-specified thresholds for each monitored quantity. At step 408, the method checks the sensor readings against the relevant thresholds to determine if an alarm condition exists. The method of this invention performs this check at a preset interval, as determined at step 404. The method of this invention can generate an email report when one of the sensors is outside its corresponding threshold value.
At step 408 the program checks for alarm conditions once per second, but can be set for other time periods, but only if the program hasn't recognized any alarm conditions in the past 5 minutes.
This limiting condition prevents the recipients of the email reports that get generated from being inundated with one email per second. The program could just check for alarm conditions once every minutes; but this would mean that up to 5 minutes could go by from the time an alarm condition occurs and the device actually recognizes the condition and tries to notify someone.
WO 01/31849 PCT/US00/29689 The program next checks the sensor readings against the stored threshold values. A temperature alarm occurs when the temperature reading is outside the range defined by the high and low temperature thresholds. Similarly, a humidity alarm occurs when the humidity readings is outside the range defined by the high and low humidity thresholds. An air flow alarm occurs when no air flow is detected for the specified period of time.
When an alarm condition occurs, the program then generates an email message consistent with the standards for email messages set forth by the IETF. An alarm message simply states the sensor causing the alarm and the current value of that sensor. The email message is then sent to the list of recipients that was specified in the administration form and stored in the configuration.
The program can also send the same email message to a digital pager or email-enabled cell phone. However, because the service providers of these communication devices often charge for each email message sent to the device, the program will only send a message to the designated pager address once per hour.
The device may also include software to check external devices such as routers, servers, or UPS's via the network. Such programs are referred to as 'crawlers' or 'bots'. If any of these bots have placed on the device; the program will periodically execute them. These programs will return the status of the external device and indicate if any component on the device has failed. If any component has failed, then an alarm email will be generated.
FIGURE 15 is a flow chart diagramming the minitialization process of the monitoring method of this invention shown in FIGURE 14. At step 410, a file containing user-defined settings for the various parameters of the system of this invention is accessed to determine the appropriate system variables. Those variables can be read and set at system power-on.
At step 412, hardware peripherals are configured to operate as desired. This typically must be performed at power-up. In particular, the Ethernet controller chip is configured to interface with the microprocessor in 8 bit mode. The analog-to-digital converter is set to provide 16-bit results with inputs in the range 0-5V. Other system variables can also be configured.
The techniques used by the method of this invention to compute humidity and air flow require some digital signal processing calculations. These calculations require a number of buffers to store intermediate values. At step 414, the contents of these buffers are initialized to O.
At step 416, the method of this invention creates a TCP socket on port 80. Software applications that interact with the worldwide web perform many of their transactions on TCP port Because the system of this invention can behave as a server 'on the web,' a TCP socket on port 80 is necessary in some instances. The system of this invention will not be visible 'on the web' until this socket is created.
The method of this invention can retrieve configuration settings as shown in FIGURE 16. At step 418, a configuration file is read to determine the values of certain system variables. In order to WO 01/31849 PCT/US00/29689 21 respond to network messages, the system of this invention needs to know a number of settings. At step 420, network variables are initialized as determined from the configuration file. For example, the system must know its IP address in order to receive messages. Similarly, the subnet mask and the gateway IP address of other devices are needed to properly route messages to them. To send email, the system of this invention must know the IP address of an SMTP (Simple Mail Transfer Protocol) server. An SMTP server is roughly the electronic equivalent of the US Postal Service's blue mailboxes. The other network related settings that the method and system of this invention can store are the network name of the system, the internet domain name in which the system is implemented, and the list of email addresses that will receive the alarm reports generated by the system.
Some of the information stored in the configuration file is only used as part of an HTML response to a request on TCP port 80. This information includes the system name, the physical location of the system, and the name of the person in charge of the system. A typical HTML response to a status request is shown in FIGURE 17.
Stored location 426 is shown in FIGURE 17. The remaining values are used in response to a request for administration data. These values include temperature 428, humidity 430, and air flow 432. Temperature can be provided in Celsius or Fahrenheit units. FIGURE 17 also includes email notification-addresses 434to which the report is sent.
Returning to FIGURE 16, at step 424 the method of this invention initializes the alarm thresholds for the monitored parameters. These user- specified thresholds can be maintained in the configuration file and can include high temperature, low temperature, high humidity, low humidity, and 'maximum air off time'. The 'maximum air off time' is the amount of time with no air flow the system will wait before the program declares a no air flow alarm.
FIGURE 18 is a flow chart diagramming the response of the system and method of this invention to an HITP request. At step 440, the system determines if a request has been sent to TCP port 80. HTTP requests are typically in the form of"Method Filename Version". The 'Method' tells the system what operation to perform on the 'Filename'. The 'Version' tells the program what version of HTTP the requesting browser is using. This is all part of the HTTP standard that was drafted by the internet Engineering Task Force (IETF), the organization that controls internet standards.
At step 442, the method of this invention first looks at the 'filename' part of the request. The method will respond to requests for filenames "status" or "admin." If no filename is given, the method assumes the request is for the status. Ifa filename is given that is not a "status" request, then at step 444 the method of this invention determines if the request is an "admin" request.
If the request is a status file request, then at step 446 an HTML file is generated similar to that shown in FIGURE 17. At step 460, the file is sent as output to the user requesting the file.
WO 01/31849 PCT/US00/29689 22 At step 448, if the request is for the administration file, the method checks to see if the request came from an authorized user. If the request did not come from an authorized user, an HTML response indicating an error will be generated at step 452. Similarly, an error request will be generated if at step 444 the request is not for the admin file.
If the user is an authorized user, then at step 450 the method of this invention determines if the request 'method' is either 'get' or 'post.' If the request 'method' is 'get,' then at step 454 an HTML form is generated that includes entry fields for all the configuration settings previously mentioned, as well as a "submit" button. The user requesting the administration information can change whatever information he or she chooses and submit the information to the system. When the submit button is pressed, the browser (Netscape Navigator or internet Explorer, for example) can generate an HTTP 'post' request for the administration page and include with the request the values placed in each of the entry fields.
When a post request is received for the administration page, then at step 456 information that represents the values placed in the entry fields of the form is parsed off. The values placed in the entry fields can be matched to the corresponding variables in the program. These variables are updated and the new configuration is stored.
Once the configuration is stored and the program variables successfully updated, at step 458 an HTML response can be generated that displays the new settings. This response can then be sent to the user at step 460.
The system of the present invention can use a Dallas Semiconductor DS 1820 temperature sensor. The temperature sensor provides microprocessor 72 with a number representing the temperature in 0.5C units. This number can be converted to both units of 'C and There are a number of other commercially available temperature sensors that can be used in the system of this invention.
The system of the present invention can include an analog-to-digital converter (ADC) 66, which can be a four-channel ADC. The circuitry for the humidity and air flow sensors is connected to the ADC 66. ADC 66 does not generate a conversion until it is directed to do so. The system of this invention can, for example, instruct ADC 66 to make a conversion once every second.
The circuitry comprising humidity sensor 62 can provide two signals to compute relative humidity. Two adjustments to these signals must be made before the humidity value can be computed. First, the signals are offset by 2.5 volts, so this value must be subtracted from both of the converted values. Second, the voltage drop lost across the diodes in the circuit must be added back to the converted values so that an accurate humidity value can be computed. The ratio of these two adjusted signals defines an index into a lookup table. The system determines the relative humidity by retrieving the value in the table at this index. This value represents the relative humidity as a percent.
WO 01/31849 PCTUSOO/29689 23 The monitoring system of this invention can derive the presence or absence of air flow from a signal provided by the anemometer circuit. This derivation can be implemented by a series of signal processing steps. A block diagram of the signal processing steps is shown in FIGURE 19. First, the signal is highpass filtered at step 470 to remove slow variations in the signal that might be caused by time degradation of circuit elements or temperature changes that occur on the order of hours. The absolute value of the highpass filtered signal is taken at step 472 to remove negative signal swings.
Circuit noise can cause a persistent signal to be present in the absolute value of the highpass filtered signal. This persistent signal can be negated by lowpass filtering at step 474, the absolute value of the highpass filtered signal and then subtracting the lowpass filtered signal from the absolute value signal at step 476. This resulting signal may falsely indicate air flow due to abrupt circuit disturbances or even humans walking past the device. To reduce the possibility of these false indications, the signal can be integrated at step 478. When the integrated signal exceeds a fixed threshold at step 486, the system can provide an indication that air flow is present.
The monitoring method and system of this invention can check for alarm conditions on a preset time interval. These checks can be set to occur only if an alarm condition has not occurred within a second preset time interval. This limiting condition can be used to prevent the recipients of the email reports that get generated by the system of this invention from being inundated with emails.
To determine if an alarm condition exists, the present invention can check the sensor readings against the stored threshold values. A temperature alarm can occur when the temperature reading is outside the range defined by the high and low temperature thresholds. Similarly, a humidity alarm can occur when the humidity readings is outside the range defined by the high and low humidity thresholds. An air flow alarm occurs when no air flow is detected for the specified period of time.
When an alarm condition occurs, the present invention can generate an email message consistent with the standards for email messages set forth by the IETF. An alarm message can simply state the sensor causing the alarm and the current value for that sensor. The email message can be sent to the list of recipients specified in the administration form and stored in the configuration.
The monitoring system of this invention can also send the same email message to a digital pager or email-enabled cell phone. However, because the service providers of these communication devices often charge for each email message sent to the device, the monitoring system of this invention can be configured to send a message to the designated pager address once per hour to limit expenses.
FIGURE 20 is a screen shot of a typical web page generated using the monitoring system and method of the present invention. Web page 400 from a typical web browser, such as Internet Explorer or Netscape Navigator, includes climate bot report 402, which can comprise table 404 listing the various measured parameters and their values, and table 406 listing the current alarm settings for those variables. Image 408 can be included using some embodiments of the present invention that WO 01/31849 PCT/US00/29689 24 incorporate a video image to display a real-time image of the space being monitored. Additionally, destinations for alarm emails can be listed on web page 400. A system administrator can also designate additional information to be displayed on web page 400 for any of the embodiments of the present invention.
FIGUREs 21A and 21B show a typical alarm email and scheduled report email that might be sent out by the computer network and equipment monitoring method and system of the present invention. The emails can include the date, location, the identity of the micro-web server sending the email, whether any of the parameters being monitored are in or out of limits, and the current limit settings. Additional information can be specified by a user for inclusion in the email reports.
FIGURE 22 is a schematic diagram of the flow of the The device opens a TCP connection to the external device. The specific port may be specified by the manufacturer of the device or the specific protocol (SNMP, DMI, being used to communicate.
Query the device. This may be a standard SNMP query as defined by IETF standard for SNMP or it may be DMI as defined by the DMTF (Distributed Management Task Force) or it may be proprietary to the device.
The device will respond to the query. If the query was SNMP, the response will be an SNMP response and must be translated for our use. Similarly, if the query was a DMI query, the response will be as specified by the DMI standard and need to be translated for our use.
If the response indicates that any element of the external device has failed or in danger of failing, the program will set the corresponding alarm condition for that device.
Listed below in Table I are some typical specifications for an embodiment of the computer network and equipment monitoring system of the present invention. These ranges and specifications are illustrative only and can include different values and/or different parameters.
Table 1 Specifications: Temperature: Range: -55°C to +125 0 C (-67 0 F to 257 0
F)
Sensor: solid state element.
Accuracy: 0 degree Celsius Relative Humidity: Sensor: porous ceramic, solid state.
Range: 30% to Accuracy: Response Time: 120 seconds Air Speed: Range: 0 to 10 cubic feet/minute, non-linear.
Accuracy: WO 01/31849 PCT/US00/29689 Sensor: hot-wire anemometer (thermistor bridge).
Housing: powder coated, 16 gauge aluminum.
Color: PMS 462 Light Blue, white lettering Connectors: Ethernet: RJ-45 to Cat 5 network wiring Series: RJ-11 to serial device (for installation setup), Power: 6mm barrel jack for 5 vdc power.
Data Speed: 10mHz, Ethernet Protocol: TCP/IP Web page Generation: Netscape 4.0 and IE 4.0 compatible E-mail format: MIME, limited to 200 characters Mounting: By 6-38 wood screws (supplied) or double-sided tape corer mount (supplied).
Indicator Lights: Power On, Temp out of limit, Humidity out-of-limit, Air Flow out-of-limit.
Web Page Fields Accepted by Form: Field 1: "Room or company name" Field 2: "Contact" Field 3: "URL address" Field 4: "IP address" Field 5: "Primary e-mail address" Field 6: "Secondary e-mail address" Field 7: "Temperature High Limit Setting:" Field 8: "Temperature Low Setting:" Field 9: "Humidity High setting:" Field 10: "Air Flow High setting:" Field 11: "Air Flow Low Setting:" Field 12: "Time between routing e-mail reports:" Web Page Fields Generated at access: Field 1: Temperature (C) Field 2: Temperature Field 3: Humidity: Field 4: Air Flow Field 5: Current High Temp Limit Field 6: "Room or company name" Although the present invention has been described in detail herein with reference to the illustrative embodiments, it should be understood that the description is by way of example only and is not to be construed in a limiting sense. It is to be further understood, therefore, that numerous changes in the details of the embodiments of this invention and additional embodiments of this invention will be apparent to, and may be made by, persons of ordinary skill in the art having reference to this description. It is contemplated that all such changes and additional embodiments are within the spirit and true scope of this invention as claimed below.
P 'oAper\rr 12395-01 I p I doc-I '0!04 Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
6* a* a o* g o
Claims (91)
1. A system for monitoring a space external to the system, the system comprising: a microprocessor; a memory coupled to the microprocessor, the memory including instructions for processing a sensor signal derived from at least one environmental parameter of the space external to the system and the memory including a web server application; a sensor configured to detect the at least one environmental parameter of the space external to the system and configured to generate the sensor signal derived from the at least one detected environmental parameter of the space, the sensor selected from a group consisting of a temperature sensor, a relative humidity sensor, and an air flow sensor; and at least one port for communicating with a network, the at least one port responsive to the microprocessor, the web server application configured to provide a webpage associated with the sensor signal via the at least one port.
2. The system of claim 1, wherein the network comprises a global computer network.
3. The system of claim 1, wherein the network comprises an intranet. 20 4. The system of claim 1, wherein the network comprises a wireless network.
5. The system of claim 1, further comprising one or more connectors to interface with external devices.
6. The system of claim 1, the system further comprising a power source. .o 7. The system of claim 6, wherein the power source is the excess voltage provided by *an Ethernet cable coupled to an Ethernet connector. 30 8. The system of claim 1, wherein the network is accessed via a telephone line. P 'p astll12395.OI Ia spadoc-II'O04 -27-
9. The system of claim 1, wherein the network is accessed via an Ethernet interface, and wherein the Ethernet interface has compliant TCP/IP stacks. The system of claim 1, further comprising a radio frequency interface operable to communicate wirelessly within the network.
11. The system of claim 1, further comprising a radio frequency interface operable to communicate with a device external to the network.
12. The system of claim 1, wherein the microprocessor is an embedded Java microprocessor.
13. The system of claim 1, wherein the microprocessor is a tiny internet interface microprocessor.
14. The system of claim 1, wherein the microprocessor operates with an embedded Java software platform.
15. The system of claim 1, wherein the sensor comprises an air flow sensor comprising 20 a hot-wire anemometer circuit.
16. The system of claim 15, wherein air flow is calculated.
17. The system of claim 1, further comprising a microphone.
18. The system of claim 17, wherein the system generates a signal upon detecting an audible alarm.
19. The system of claim 1, wherein the instructions for processing can be updated via the web server application. P 'opQXcw"1239-I ISpA doc-lIO'04 -28- The system of claim 1, wherein programming instructions are provided to the web server application via HTTP.
21. The system of claim 20, wherein the programming instructions comprise parameter threshold values.
22. The system of claim 1, wherein the instructions for processing operably generate an alarm signal in the event that the sensor signal exceeds a parameter threshold value.
23. The system of claim 1, further comprising instructions for generating and forwarding an email status report to at least one user.
24. The system of claim 23, wherein the status report indicates that the at least one environmental parameter has exceeded a corresponding threshold value. The system of claim 1, further comprising instructions for generating and forwarding an email alarm report to one or more users when the at least one environmental parameter exceeds a corresponding threshold value. oo e 20 26. The system of claim 1, further comprising instructions for generating and forwarding a status report via electronic paging.
27. The system of claim 1, further comprising instructions for dialing via a telephone connection to inform a system administrator of a loss of power or loss of internet protocol S 25 connection. o
28. The system of claim 1, wherein the web server application provides an HTML go•• Sinterface. S 30 29. The system of claim 28, wherein the HTML interface comprises an image display area, a monitored parameter display area, an alarm threshold display area, and a system P' pcr\i1239-01 Il 5p.doc-19/08104 -29- user information display area. The system of claim 29, wherein the system user information display area can be configured by a user to display customized information.
31. The system of claim 1, further comprising: a power source; and a rechargeable backup power source to provide power upon loss of the power source.
32. The system of claim 31, further comprising a sensor configured to detect the failure of a power supply and notify the microprocessor of the power failure.
33. The system of claim 1, further comprising a video imager to provide a digital image of the space.
34. The system of claim 33, wherein the video imager is a CMOS imager. The system of claim 33, further comprising a binary input to activate the video 20 imager to capture an image of the space. i 36. The system of claim 35, further comprising an external sensor, wherein the external sensor provides the binary input upon the occurrence of a preset condition. 25 37. The system of claim 36, wherein the external sensor is a magnetic switch for sensing the opening of a door to the space, and wherein the preset condition is the opening of the door.
38. The system of claim 37, further comprising a record data file to track personnel access into a room. P.'opaM239i"OI u I.pdoc-ZS'O5/04
39. The system of claim 1, further comprising instructions for software agents operable to investigate an internal condition of a network component, the network component accessible via the at least one port.
40. The system of claim 39, wherein the software agents investigate the internal condition of compatible network components through communication in accordance with an interface, the interface being an SNMP, DMI, or SMBIOS interface.
41. The system of claim 1, further comprising one or more binary outputs connected to one or more relays to control one or more external loads, and instructions for controlling the one or more binary outputs.
42. The system of claim 41, wherein the external load is an air conditioning unit.
43. The system of claim 1, wherein the space external to the system is located within a server room.
44. The system of claim 1, wherein the system is mountable on a wall in a position to monitor the contents of a server room.
45. The system of claim 1, wherein the system is configured to be mounted in an equipment rack. *oo
46. The system of claim 1, further comprising a unique universal resource locator and 25 static internet protocol address. °o
47. The system of claim 1, further comprising an internet site. "48. The system of claim 1, further comprising an email list of personnel to notify.
49. The system of claim 1, wherein a third-party may access the webpage to monitor P.pc' $w 2395-01 I st l do. I AO8/04 -31- equipment in a leased space. The system of claim 1, wherein the relatively humidity sensor comprises a ceramic plate that shrinks or expands with changes in relative humidity.
51. The system of claim 1, wherein the webpage is accessible by clicking on a link at an online auction site.
52. The system of claim 1, wherein the system is self-contained and is remote from an end user computer.
53. The system of claim 1, further comprising an event log.
54. The system of claim 1, further comprising a list of user-specified thresholds for each monitored environmental parameter. An apparatus comprising: a sensor configured to measure ambient conditions with respect to monitored i: equipment, the sensor physically uncoupled and spaced apart from the monitored 20 equipment and the sensor configured to measure the ambient conditions without use of a .bi-directional communication link between the sensor and the monitored equipment, the sensor configured to generate a sensor signal associated with the measured ambient conditions, the sensor selected from a group consisting of a temperature sensor, a relative humidity sensor, and an air flow sensor; at least one microprocessor responsive to the sensor signal; video camera circuitry coupled to the at least one microprocessor, the video camera ,circuitry configured to acquire an image of the monitored equipment; memory coupled to the at least one microprocessor, the memory including instructions for processing the sensor signal, instructions for processing the image of the monitored equipment, and a web server application; and at least one network port responsive to the at least one microprocessor and P'opr.c1l.239-01 In Ivfdoc-LIIOS'O4 -32- configured for communicating the image of the monitored equipment and the measured ambient conditions in a web page provided by the web server application over a distributed computer network to a remote location for display.
56. The apparatus of claim 55, wherein the distributed computer network comprises a global computer network.
57. The apparatus of claim 55, wherein the distributed computer network comprises an intranet.
58. The apparatus of claim 55, wherein the distributed computer network comprises a wireless network.
59. The apparatus of claim 55, further comprising one or more connectors to interface with external devices. The apparatus of claim 55, wherein the distributed computer network is accessed via an Ethernet interface, and wherein the Ethernet interface has compliant TCP/IP stacks. 20 61. The apparatus of claim 55, further comprising a radio frequency interface operable *o to communicate wirelessly within the distributed computer network. "I 62. The apparatus of claim 55, further comprising a radio frequency interface operable to communicate with a device external to the distributed computer network.
63. The apparatus of claim 55, wherein the sensor comprises an air flow sensor comprising a hot-wire anemometer circuit.
64. The apparatus of claim 55, further comprising a microphone. The apparatus of claim 64, further comprising an audible dectro that generates a P "m 2395-0 51 S)ps dec- I 9OOd 33 signal upon detecting an audible alarm.
66. The apparatus of claim 55, wherein the instructions for processing can be updated via the web server application.
67. The apparatus of claim 66, wherein the instructions for processing comprise parameter threshold values.
68. The apparatus of claim 55, wherein the instructions for processing operably generate an alarm signal in the event that the sensor signal exceeds a parameter threshold value.
69. The apparatus of claim 55, further comprising instructions for generating and forwarding an email status report to at least one user at the remote location. The apparatus of claim 69, wherein the status report indicates that the sensor signal has exceeded a corresponding threshold value. "71. The apparatus of claim 55, further comprising instructions for generating and 20 forwarding an email alarm report to one or more users when the sensor signal exceeds a corresponding threshold value.
72. The apparatus of claim 55, further comprising instructions for generating and forwarding a status report via electronic paging.
73. The apparatus of claim 72, wherein the webpage comprises an image display area, S. a monitored parameter displayed area, an alarm threshold display area, and an apparatus ••go user information display area. S 30 74. The apparatus of claim 73, wherein the apparatus user information display area can be configured by a user to display customized information. P.opse=]\M 2395-1 It Sp doc-]/OI/04 -34- The apparatus of claim 55, further comprising: a power source; and a rechargeable backup battery to provide power upon loss of the power source.
76. The apparatus of claim 75, further comprising a binary input to activate the video camera circuitry to capture an image of the space.
77. The apparatus of claim 76, further comprising an external sensor, wherein the external sensor provides the binary input upon the occurrence of a preset condition.
78. The apparatus of claim 77, wherein the external sensor is a magnetic switch for sensing the opening of a door to the space, and wherein the preset condition is the opening of the door.
79. The apparatus of claim 55, further comprising instructions for software agents operable to investigate an internal condition of a network component, the network component accessible via the at least one port. 20 80. The apparatus of claim 79, wherein the software agents investigate the internal condition of compatible network components through communication in accordance with an interface, the interface being an SNMP, DMI, or SMBIOS interface.
81. The apparatus of claim 55, further comprising one or more binary outputs 25 connected to one or more relays to control one or more external loads, and instructions for controlling the one or more binary outputs.
82. The apparatus of claim 81, wherein the external load is an air conditioning unit. 30 83. An apparatus comprising: a sensor configured to detect a physical environment parameter associated with a P 'opUV'w.U239.-01 IS spa doC- IS/08104 space, the sensor configured to generate a sensor signal associated with the physical environmental parameter, the sensor selected from a group consisting of a temperature sensor, a relative humidity sensor, and an air flow sensor; a standalone housing physically separate from monitored equipment and having the space between the housing and the monitored equipment, the housing including: at least one microprocessor responsive to the sensor and configured to process the sensor signal; video imaging circuitry configured to capture an image of the space; memory coupled to the at least one microprocessor, the memory including: instructions for processing the sensor signal; instructions for processing the image of the space; a web server application; instructions for generating a webpage including the processed sensor signal and the processed image of the space; a threshold value associated with the sensor signal; and instructions for initiating a notification signal when the sensor signal violates the threshold value; and at least one network port coupled to the at least one microprocessor and configured for communicating the webpage over a distributed computer network to a remote location 20 for display.
84. The apparatus of claim 83, wherein the distributed computer network comprises a global computer network. 25 85. The apparatus of claim 83, wherein the distributed computer network comprises an intranet. oooo :000 86. The apparatus of claim 83, wherein the distributed computer network comprises a •wireless network. 90690:
87. The apparatus of claim 83, further comprising one or more connectors to interface P op\sca12395-.OI Isl spldoc-IJOf/04 -36- with external devices.
88. The apparatus of claim 83, wherein the distributed computer network is accessed via an Ethernet interface, and wherein the Ethernet interface has compliant TCP/IP stacks.
89. The apparatus of claim 83, further comprising a radio frequency interface operable to communicate wirelessly within the distributed computer network. The apparatus of claim 83, further comprising a radio frequency interface operable to communicate with a device external to the distributed computer network.
91. The apparatus of claim 83, wherein the sensor comprises an air flow sensor comprising a hot-wire anemometer circuit.
92. The apparatus of claim 83, further comprising a microphone.
93. The apparatus of claim 92, further comprising an audio element that generates a signal upon detecting an audible alarm. 0. 0 0 20 94. The apparatus of claim 83, wherein the instructions for processing can be updated via the web server application. 0*
95. The apparatus of claim 94, wherein the instructions for processing comprise parameter threshold values.
96. The apparatus of claim 83, wherein the instructions for processing operably Cp generate an alarm signal in the event that the sensor signal exceeds a parameter threshold value. 30 97. The apparatus of claim 83, further comprising instructions for generating and forwarding an email status report to at least one user. P a \s 1 23 9 -01 1 IIA d-It$01/04l -37-
98. The apparatus of claim 97, wherein the status report indicates that the sensor signal has exceeded a corresponding threshold value.
99. The apparatus of claim 98, further comprising instructions for generating and forwarding an email alarm report to one or more users when the sensor signal exceeds a corresponding threshold value.
100. The apparatus of claim 83, further comprising instructions for generating and forwarding a status report via electronic paging.
101. The apparatus of claim 83, wherein the webpage comprises an image display area, a monitored parameter display area, an alarm threshold display area, and an apparatus user information display area.
102. The apparatus of claim 101, wherein the apparatus user information display area can be configured by a user to display customized information.
103. The apparatus of claim 83, further comprising: o* S 20 a power source; and a rechargeable backup battery to provide power upon loss of the power source.
104. The apparatus of claim 83, further comprising a binary input to activate the video imaging circuitry to capture an image of the space. 2
105. The apparatus of claim 104, further comprising an external sensor, wherein the Sexternal sensor provides the binary input upon the occurrence of a preset condition.
106. The apparatus of claim 105, wherein the external sensor is a magnetic switch for 30 sensing the opening of a door to the space, and wherein the preset condition is the opening of the door. P c\sciS23 9 5 01 Iltsp d ,I-1/0V04 -38-
107. The apparatus of claim 83, further comprising instructions for software agents operable to investigate an internal condition of a network component, the network component accessible via the at least one port.
108. The apparatus of claim 107, wherein the software agents investigate the internal condition of compatible network components through communication in accordance with an interface, the interface being an SNMP, DMI, or SMBIOS interface.
109. The apparatus of claim 83, further comprising one or more binary outputs connected to one or more relays to control one or more external loads, and instructions for controlling the one or more binary outputs.
110. The apparatus of claim 109, wherein the external load is an air conditioning unit.
111. An apparatus comprising: at least one sensor configured to monitor environmental conditions ambient to rack mounted computer equipment, the at least one sensor selected from a group consisting of a temperature sensor and a humidity sensor; a housing configured for mounting to an equipment rack, the housing including: S.a processor responsive to the sensor; at least one network interface responsive to the processor and configured for communicating with a distributed computer network; a power control interface configured to access power management equipment; 25 a web server configured to provide a web page associated with information derived from the sensor; an email module configured to send notification of events associated with the sensor; S: a simple network management protocol module configured to communicate with 30 computer equipment external to the housing; and a modem responsive to the processor and configured to access a telephone line. P 'opaMscu 239Ol-01 1 lp doc.I S/08104 -39-
112. The apparatus of claim 111, further comprising audio circuitry configured to monitor auditory conditions and provide an audio signal.
113. The apparatus of claim 111, further comprising a back-up power source configured to provide back-up power to the processor.
114. An apparatus comprising: at least one sensor configured to monitor environmental conditions ambient to rack mounted computer equipment, the at least one sensor selected from a group consisting of a temperature sensor and a humidity sensor; a housing configured for mounting to an equipment rack, the housing including: a plurality of processors, at least one processor of the plurality of processors responsive to the sensor; at least one network interface responsive to at least one processor of the plurality of processors and configured for communication with a distributed computing network; a power control interface responsive to at least one processor of the plurality of processors and configured to access power management equipment; a web server responsive to at least one processor of the plurality of processors and configured to provide a web page associated with information derived from the sensor; S•an email module responsive to at least one processor of the plurality of processors S• and configured to send notification of events associated with the sensor; a simple network management protocol module responsive to at least one processor of the plurality of processors and configured to communicate with computer equipment 25 external to the housing; and a modem responsive to at least one processor of the plurality of processors and configured to access a telephone line. o
115. An apparatus comprising: 30 at least one sensor configured to monitor environmental conditions ambient to monitored computer equipment, the at least one sensor selected from a group consisting of P p\-rw12395-01 l Ipadoc-I0S/OiO4 a temperature sensor and a humidity sensor; a housing configured for mounting to an equipment rack, the housing including: a web server configured to provide a web page having information derived from the at least one sensor; an email module configured to send email; a simple network management protocol module configured to communicate using a simple network management protocol; a modem configured to access a telephone line and configured to selectively send data to a pager; at least one network interface configured to access a distributed computer network; and an alarm module responsive to the at least one sensor and configured to send an alarm notification, the alarm notification communicated by at least one of the email module, the simple network management protocol module, and the modem.
116. The apparatus of claim 115, wherein the web server is configured to incorporate camera image data into the web page.
117. The apparatus of claim 115, wherein the alarm notification is communicated by at S. 20 least one of the email module, the simple network management protocol module, and the modem during a common time period. S
118. The apparatus of claim 115, wherein the alarm notification is communicated by at S least one of the email module, the simple network management protocol module, and the modem substantially simultaneously.
119. An apparatus substantially as hereinbefore described with reference to the accompanying drawings. °°ee P M 239SOI 194 Sp dm-1&OS'O4 -41
120. A system substantially as hereinbefore described with reference to the accompanying drawings. DATED this 18 day of August, 2004 Netbotz, Inc. by DAVIES COLLISON CAVE Patent Attorneys for the Applicant 5 S S 9 9*SO @9 S. p 9 S S. S. S S Is S S S @0 S.. S
555. 9- *PS@t
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/429504 | 1999-10-27 | ||
US09/429,504 US6714977B1 (en) | 1999-10-27 | 1999-10-27 | Method and system for monitoring computer networks and equipment |
PCT/US2000/029689 WO2001031849A1 (en) | 1999-10-27 | 2000-10-26 | Method and system for monitoring computer networks and equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
AU1239501A AU1239501A (en) | 2001-05-08 |
AU777375B2 true AU777375B2 (en) | 2004-10-14 |
Family
ID=23703540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU12395/01A Ceased AU777375B2 (en) | 1999-10-27 | 2000-10-26 | Method and system for monitoring computer networks and equipment |
Country Status (5)
Country | Link |
---|---|
US (4) | US6714977B1 (en) |
EP (1) | EP1096724A1 (en) |
AU (1) | AU777375B2 (en) |
CA (1) | CA2395450C (en) |
WO (1) | WO2001031849A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8005944B2 (en) | 1999-10-27 | 2011-08-23 | American Power Conversion Corporation | Method and system for monitoring computer networks and equipment |
US8224953B2 (en) | 1999-10-27 | 2012-07-17 | American Power Conversion Corporation | Method and apparatus for replay of historical data |
US8271626B2 (en) | 2001-01-26 | 2012-09-18 | American Power Conversion Corporation | Methods for displaying physical network topology and environmental status by location, organization, or responsible party |
US9952103B2 (en) | 2011-12-22 | 2018-04-24 | Schneider Electric It Corporation | Analysis of effect of transient events on temperature in a data center |
US11503744B2 (en) | 2007-05-15 | 2022-11-15 | Schneider Electric It Corporation | Methods and systems for managing facility power and cooling |
Families Citing this family (343)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7761910B2 (en) * | 1994-12-30 | 2010-07-20 | Power Measurement Ltd. | System and method for assigning an identity to an intelligent electronic device |
US7216043B2 (en) * | 1997-02-12 | 2007-05-08 | Power Measurement Ltd. | Push communications architecture for intelligent electronic devices |
US6338150B1 (en) | 1997-05-13 | 2002-01-08 | Micron Technology, Inc. | Diagnostic and managing distributed processor system |
US7167892B2 (en) * | 1998-03-19 | 2007-01-23 | Isochron, Inc. | System, method and apparatus for vending machine wireless audit and cashless transaction transport |
US20060161473A1 (en) * | 1998-03-19 | 2006-07-20 | Defosse Erin M | Remote data acquisition, transmission and analysis system including handheld wireless equipment |
US20070050465A1 (en) * | 1998-03-19 | 2007-03-01 | Canter James M | Packet capture agent for use in field assets employing shared bus architecture |
US7181501B2 (en) * | 1998-03-19 | 2007-02-20 | Isochron, Inc. | Remote data acquisition, transmission and analysis system including handheld wireless equipment |
US7020680B2 (en) * | 1998-03-19 | 2006-03-28 | Isochron, Llc | System and method for monitoring and control of beverage dispensing equipment |
US8631093B2 (en) | 1998-03-19 | 2014-01-14 | Crane Merchandising Systems, Inc. | Remote data acquisition, transmission and analysis system including handheld wireless equipment |
US6801223B1 (en) | 1998-12-18 | 2004-10-05 | Tangis Corporation | Managing interactions between computer users' context models |
US6513046B1 (en) | 1999-12-15 | 2003-01-28 | Tangis Corporation | Storing and recalling information to augment human memories |
US6968333B2 (en) * | 2000-04-02 | 2005-11-22 | Tangis Corporation | Soliciting information based on a computer user's context |
US7107539B2 (en) * | 1998-12-18 | 2006-09-12 | Tangis Corporation | Thematic response to a computer user's context, such as by a wearable personal computer |
US7231439B1 (en) | 2000-04-02 | 2007-06-12 | Tangis Corporation | Dynamically swapping modules for determining a computer user's context |
US9183306B2 (en) | 1998-12-18 | 2015-11-10 | Microsoft Technology Licensing, Llc | Automated selection of appropriate information based on a computer user's context |
US7779015B2 (en) | 1998-12-18 | 2010-08-17 | Microsoft Corporation | Logging and analyzing context attributes |
US6842877B2 (en) | 1998-12-18 | 2005-01-11 | Tangis Corporation | Contextual responses based on automated learning techniques |
US7225229B1 (en) | 1998-12-18 | 2007-05-29 | Tangis Corporation | Automated pushing of computer user's context data to clients |
US6920616B1 (en) | 1998-12-18 | 2005-07-19 | Tangis Corporation | Interface for exchanging context data |
US8225214B2 (en) | 1998-12-18 | 2012-07-17 | Microsoft Corporation | Supplying enhanced computer user's context data |
US7046263B1 (en) * | 1998-12-18 | 2006-05-16 | Tangis Corporation | Requesting computer user's context data |
US8181113B2 (en) * | 1998-12-18 | 2012-05-15 | Microsoft Corporation | Mediating conflicts in computer users context data |
US6791580B1 (en) | 1998-12-18 | 2004-09-14 | Tangis Corporation | Supplying notifications related to supply and consumption of user context data |
US6654914B1 (en) * | 1999-05-28 | 2003-11-25 | Teradyne, Inc. | Network fault isolation |
EP1247374A1 (en) * | 1999-10-22 | 2002-10-09 | Roke Manor Research Limited | A fully integrated web activated control and monitoring device |
US7159022B2 (en) * | 2001-01-26 | 2007-01-02 | American Power Conversion Corporation | Method and system for a set of network appliances which can be connected to provide enhanced collaboration, scalability, and reliability |
US7392309B2 (en) * | 1999-10-27 | 2008-06-24 | American Power Conversion Corporation | Network appliance management |
JP4146592B2 (en) * | 1999-11-12 | 2008-09-10 | 株式会社日立製作所 | Adaptive communication method and equipment constituting distributed system |
JP4178697B2 (en) * | 1999-11-18 | 2008-11-12 | ソニー株式会社 | Portable information processing terminal, information input / output system, and information input / output method |
US20010044840A1 (en) * | 1999-12-13 | 2001-11-22 | Live Networking, Inc. | Method and system for real-tme monitoring and administration of computer networks |
EP1118949A1 (en) * | 2000-01-21 | 2001-07-25 | Hewlett-Packard Company, A Delaware Corporation | Process and apparatus for allowing transaction between a user and a remote server |
US20020045956A1 (en) * | 2000-02-18 | 2002-04-18 | Kapitan Brian A. | Network distributed motion control system |
JP4290309B2 (en) * | 2000-03-13 | 2009-07-01 | シャープ株式会社 | Information communication apparatus, information communication method, and remote management system |
US7464153B1 (en) * | 2000-04-02 | 2008-12-09 | Microsoft Corporation | Generating and supplying user context data |
US6973589B2 (en) * | 2000-04-19 | 2005-12-06 | Cooper Industries, Inc. | Electronic communications in intelligent electronic devices |
AU2001255627A1 (en) * | 2000-04-24 | 2001-11-07 | Spectrum Controls, Inc. | Method, system, and apparatus for providing data regarding the operation and monitoring of a control system |
US7013337B2 (en) * | 2000-05-12 | 2006-03-14 | Isochron, Llc | Method and system for the optimal formatting, reduction and compression of DEX/UCS data |
US7143153B1 (en) * | 2000-11-09 | 2006-11-28 | Ciena Corporation | Internal network device dynamic health monitoring |
US7010594B2 (en) * | 2000-05-26 | 2006-03-07 | Isochron, Llc | System using environmental sensor and intelligent management and control transceiver for monitoring and controlling remote computing resources |
US7181517B1 (en) * | 2000-06-02 | 2007-02-20 | Astec International Limited | Browser-enabled remote user interface for telecommunications power system |
WO2002005489A1 (en) * | 2000-07-10 | 2002-01-17 | Fujitsu Limited | Integrated network management system |
US6690940B1 (en) | 2000-09-22 | 2004-02-10 | James W. Brown | System for selective prevention of non-emergency use of an electronic device |
US7058826B2 (en) * | 2000-09-27 | 2006-06-06 | Amphus, Inc. | System, architecture, and method for logical server and other network devices in a dynamically configurable multi-server network environment |
US7822967B2 (en) | 2000-09-27 | 2010-10-26 | Huron Ip Llc | Apparatus, architecture, and method for integrated modular server system providing dynamically power-managed and work-load managed network devices |
USRE40866E1 (en) | 2000-09-27 | 2009-08-04 | Huron Ip Llc | System, method, and architecture for dynamic server power management and dynamic workload management for multiserver environment |
US7032119B2 (en) * | 2000-09-27 | 2006-04-18 | Amphus, Inc. | Dynamic power and workload management for multi-server system |
US20070245165A1 (en) * | 2000-09-27 | 2007-10-18 | Amphus, Inc. | System and method for activity or event based dynamic energy conserving server reconfiguration |
US8392552B2 (en) | 2000-09-28 | 2013-03-05 | Vig Acquisitions Ltd., L.L.C. | System and method for providing configurable security monitoring utilizing an integrated information system |
US7627665B2 (en) * | 2000-09-28 | 2009-12-01 | Barker Geoffrey T | System and method for providing configurable security monitoring utilizing an integrated information system |
EP1323014A2 (en) * | 2000-09-28 | 2003-07-02 | Vigilos, Inc. | Method and process for configuring a premises for monitoring |
WO2002027704A1 (en) * | 2000-09-28 | 2002-04-04 | Vigilos, Inc. | System and method for dynamic interaction with remote devices |
US20020054130A1 (en) * | 2000-10-16 | 2002-05-09 | Abbott Kenneth H. | Dynamically displaying current status of tasks |
GB2386724A (en) * | 2000-10-16 | 2003-09-24 | Tangis Corp | Dynamically determining appropriate computer interfaces |
US7349987B2 (en) * | 2000-11-13 | 2008-03-25 | Digital Doors, Inc. | Data security system and method with parsing and dispersion techniques |
US7191252B2 (en) | 2000-11-13 | 2007-03-13 | Digital Doors, Inc. | Data security system and method adjunct to e-mail, browser or telecom program |
US9311499B2 (en) * | 2000-11-13 | 2016-04-12 | Ron M. Redlich | Data security system and with territorial, geographic and triggering event protocol |
US7146644B2 (en) * | 2000-11-13 | 2006-12-05 | Digital Doors, Inc. | Data security system and method responsive to electronic attacks |
US7140044B2 (en) | 2000-11-13 | 2006-11-21 | Digital Doors, Inc. | Data security system and method for separation of user communities |
US7322047B2 (en) | 2000-11-13 | 2008-01-22 | Digital Doors, Inc. | Data security system and method associated with data mining |
US7103915B2 (en) | 2000-11-13 | 2006-09-05 | Digital Doors, Inc. | Data security system and method |
US7313825B2 (en) | 2000-11-13 | 2007-12-25 | Digital Doors, Inc. | Data security system and method for portable device |
US7669051B2 (en) * | 2000-11-13 | 2010-02-23 | DigitalDoors, Inc. | Data security system and method with multiple independent levels of security |
US7546334B2 (en) | 2000-11-13 | 2009-06-09 | Digital Doors, Inc. | Data security system and method with adaptive filter |
US8176563B2 (en) * | 2000-11-13 | 2012-05-08 | DigitalDoors, Inc. | Data security system and method with editor |
US8677505B2 (en) * | 2000-11-13 | 2014-03-18 | Digital Doors, Inc. | Security system with extraction, reconstruction and secure recovery and storage of data |
JP2002158732A (en) * | 2000-11-17 | 2002-05-31 | Toshiba Corp | Changeover control system and changeover control method for communication unit |
JP2002189699A (en) * | 2000-12-19 | 2002-07-05 | Hitachi Ltd | Information processor, log integration control device, content distribution control device and contents distributing system using the same |
US6738930B1 (en) | 2000-12-22 | 2004-05-18 | Crystal Group Inc. | Method and system for extending the functionality of an environmental monitor for an industrial personal computer |
US20020091815A1 (en) * | 2001-01-10 | 2002-07-11 | Center 7, Inc. | Methods for enterprise management from a central location using intermediate systems |
EP1237329B1 (en) * | 2001-01-17 | 2007-08-29 | Canon Kabushiki Kaisha | Method and device for network device status notification |
US20020143889A1 (en) * | 2001-01-22 | 2002-10-03 | Lester Samuel M. | Utilization of equipment displays for communication of information unrelated to operation of the equipment |
US7085824B2 (en) * | 2001-02-23 | 2006-08-01 | Power Measurement Ltd. | Systems for in the field configuration of intelligent electronic devices |
US7447762B2 (en) * | 2001-04-02 | 2008-11-04 | Curray Timothy G | Ethernet communications for power monitoring system |
US20030196126A1 (en) * | 2002-04-11 | 2003-10-16 | Fung Henry T. | System, method, and architecture for dynamic server power management and dynamic workload management for multi-server environment |
US7299256B2 (en) * | 2001-04-17 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Creating a virtual link between a physical location and its web representation |
US8065358B2 (en) * | 2001-04-20 | 2011-11-22 | Rockwell Automation Technologies, Inc. | Proxied web access for control devices on industrial control systems |
US7747764B2 (en) * | 2001-04-20 | 2010-06-29 | Rockwell Automation Technologies, Inc. | Web access for non-TCP/IP control devices of an industrial control system |
US7366882B2 (en) * | 2001-05-10 | 2008-04-29 | Zohair Sahraoui | Address calculation unit for an object oriented processor having differentiation circuitry for selectively operating micro-instructions |
US20060248360A1 (en) * | 2001-05-18 | 2006-11-02 | Fung Henry T | Multi-server and multi-CPU power management system and method |
KR20020093516A (en) * | 2001-06-09 | 2002-12-16 | 주식회사 엘지이아이 | apparatus and method of home networking communication using internet |
US8700781B2 (en) * | 2001-06-12 | 2014-04-15 | Verizon Business Global Llc | Automated processing of service requests using structured messaging protocols |
US20020188688A1 (en) * | 2001-06-12 | 2002-12-12 | Bice Richard S. | Automated message handling system and process |
US20020198990A1 (en) * | 2001-06-25 | 2002-12-26 | Bradfield William T. | System and method for remotely monitoring and controlling devices |
US7164884B2 (en) * | 2001-06-29 | 2007-01-16 | Isochron, Llc | Method and system for interfacing a machine controller and a wireless network |
US7778600B2 (en) * | 2001-06-29 | 2010-08-17 | Crane Merchandising Systems, Inc. | Apparatus and method to provide multiple wireless communication paths to and from remotely located equipment |
JP2003015793A (en) * | 2001-07-03 | 2003-01-17 | Matsushita Electric Works Ltd | Method and system for dynamically changing and displaying information to be monitored on network on monitor screen and user interface player program for realizing the same system |
US6925335B2 (en) * | 2001-07-05 | 2005-08-02 | Isochron, Llc | Real-time alert mechanism for monitoring and controlling field assets via wireless and internet technologies |
JP2003108448A (en) * | 2001-07-16 | 2003-04-11 | Canon Inc | Device, method, and program for controlling network device |
JP4294912B2 (en) * | 2001-08-13 | 2009-07-15 | ブラザー工業株式会社 | Terminal information notification system, terminal information notification method, and network terminal device |
JP2003058437A (en) * | 2001-08-21 | 2003-02-28 | Allied Tereshisu Kk | Network monitoring device, network monitoring program and network monitoring method |
JP2005502143A (en) * | 2001-08-29 | 2005-01-20 | 東京エレクトロン株式会社 | Facility monitor |
US20030046339A1 (en) * | 2001-09-05 | 2003-03-06 | Ip Johnny Chong Ching | System and method for determining location and status of computer system server |
US20030061382A1 (en) * | 2001-09-21 | 2003-03-27 | Dell Products L.P. | System and method for naming hosts in a distributed data processing system |
US20030065751A1 (en) * | 2001-09-28 | 2003-04-03 | Autor Jeffrey S. | Method for interrogating and proliferating a rack name in a rack of servers |
US6963948B1 (en) * | 2001-11-01 | 2005-11-08 | Advanced Micro Devices, Inc. | Microcomputer bridge architecture with an embedded microcontroller |
US20030088631A1 (en) * | 2001-11-02 | 2003-05-08 | Hixson Roy L. | Onboard communications |
US8660537B2 (en) | 2001-11-16 | 2014-02-25 | At&T Mobility Ii Llc | System for the storage and retrieval of messages |
US7793334B2 (en) * | 2001-11-16 | 2010-09-07 | At&T Mobility Ii Llc | System and method for password protecting a distribution list |
US7454195B2 (en) | 2001-11-16 | 2008-11-18 | At&T Mobility Ii, Llc | System for the centralized storage of wireless customer information |
US7523182B2 (en) * | 2001-11-27 | 2009-04-21 | Isochron, Inc. | Method and system for predicting the services needs of remote point of sale devices |
US20030101262A1 (en) * | 2001-11-27 | 2003-05-29 | Isochron Data Corporation | Method and system for scheduling the maintenance of remotely monitored devices |
US7197558B1 (en) * | 2001-12-17 | 2007-03-27 | Bellsouth Intellectual Property Corp. | Methods and systems for network element fault information processing |
US7480715B1 (en) * | 2002-01-25 | 2009-01-20 | Vig Acquisitions Ltd., L.L.C. | System and method for performing a predictive threat assessment based on risk factors |
US20030158935A1 (en) * | 2002-02-15 | 2003-08-21 | Chaucer Chiu | Real-time situation report system and method |
US20030163561A1 (en) * | 2002-02-22 | 2003-08-28 | D-Link Corporation | Environment monitoring system for monitoring environment for installing community ethernet switch |
US20030167335A1 (en) * | 2002-03-04 | 2003-09-04 | Vigilos, Inc. | System and method for network-based communication |
US20030206172A1 (en) * | 2002-03-05 | 2003-11-06 | Vigilos, Inc. | System and method for the asynchronous collection and management of video data |
US7035773B2 (en) * | 2002-03-06 | 2006-04-25 | Fisher-Rosemount Systems, Inc. | Appendable system and devices for data acquisition, analysis and control |
US20030204391A1 (en) * | 2002-04-30 | 2003-10-30 | Isochron Data Corporation | Method and system for interpreting information communicated in disparate dialects |
US7779026B2 (en) * | 2002-05-03 | 2010-08-17 | American Power Conversion Corporation | Method and apparatus for collecting and displaying network device information |
JP2003333584A (en) * | 2002-05-16 | 2003-11-21 | Fujitsu Ltd | Supervisory system |
EP1376502A1 (en) * | 2002-06-10 | 2004-01-02 | Siemens Building Technologies AG | Surveillance system |
US20080117068A1 (en) * | 2006-11-16 | 2008-05-22 | Mark Henrik Sandstrom | Intelligent Network Alarm Status Monitoring |
US9917883B2 (en) | 2002-06-13 | 2018-03-13 | Throughputer, Inc. | Direct binary file transfer based network management system free of messaging, commands and data format conversions |
US7290080B2 (en) * | 2002-06-27 | 2007-10-30 | Nazomi Communications Inc. | Application processors and memory architecture for wireless applications |
US7415503B2 (en) * | 2002-07-12 | 2008-08-19 | Honeywell International Inc. | Control interface agent system and method |
US7009510B1 (en) | 2002-08-12 | 2006-03-07 | Phonetics, Inc. | Environmental and security monitoring system with flexible alarm notification and status capability |
US20040059903A1 (en) * | 2002-09-25 | 2004-03-25 | Smith John V. | Control system and method for rack mounted computer units |
US6683553B1 (en) * | 2002-09-26 | 2004-01-27 | Sun Microsystems, Inc. | Mechanism for transmitting from a sensor assembly to an acquisition system a message that includes self-describing information |
US7068164B1 (en) * | 2002-11-21 | 2006-06-27 | Global Networks Security, Inc. | Facilities management system with server-independent enclosures |
US7222256B2 (en) * | 2002-12-31 | 2007-05-22 | Honeywell International Inc. | System and method for controlling redundant communication links in networked safety systems |
US20040158627A1 (en) * | 2003-02-11 | 2004-08-12 | Thornton Barry W. | Computer condition detection system |
US8533840B2 (en) * | 2003-03-25 | 2013-09-10 | DigitalDoors, Inc. | Method and system of quantifying risk |
US8566292B2 (en) | 2003-04-14 | 2013-10-22 | Schneider Electric It Corporation | Method and system for journaling and accessing sensor and configuration data |
WO2004090679A2 (en) | 2003-04-14 | 2004-10-21 | Netbotz, Inc. | Environmental monitoring device |
WO2004092909A2 (en) * | 2003-04-14 | 2004-10-28 | Netbotz, Inc. | Method and system for journaling and accessing sensor and configuration data |
US7095321B2 (en) * | 2003-04-14 | 2006-08-22 | American Power Conversion Corporation | Extensible sensor monitoring, alert processing and notification system and method |
US8587452B2 (en) * | 2003-05-12 | 2013-11-19 | Power Measurement Ltd. | Time coordinated energy monitoring system utilizing communications links |
US7246156B2 (en) * | 2003-06-09 | 2007-07-17 | Industrial Defender, Inc. | Method and computer program product for monitoring an industrial network |
US8060589B1 (en) * | 2003-06-10 | 2011-11-15 | Logiclink Corporation | System and method for monitoring equipment over a network |
US20040268420A1 (en) * | 2003-06-20 | 2004-12-30 | N2 Broadband, Inc. | Systems and methods for activating a host in a cable system |
US7958505B2 (en) * | 2003-06-20 | 2011-06-07 | Ericsson Television, Inc | Systems and methods for distributing software for a host device in a cable system |
US7194756B2 (en) * | 2003-06-20 | 2007-03-20 | N2 Broadband, Inc. | Systems and methods for provisioning a host device for enhanced services in a cable system |
US7627868B2 (en) * | 2003-06-20 | 2009-12-01 | N2 Broadband, Inc. | Systems and methods for distributing software for a host device in a cable system |
US20040261092A1 (en) * | 2003-06-20 | 2004-12-23 | N2 Broadband, Inc. | Systems and methods for selling a consumer electronics host device and enhanced services associated with a cable system |
US7757261B2 (en) * | 2003-06-20 | 2010-07-13 | N2 Broadband, Inc. | Systems and methods for providing flexible provisioning architectures for a host in a cable system |
US7152168B2 (en) * | 2003-08-06 | 2006-12-19 | Cisco Technology, Inc. | Recharging power storage devices with power over a network |
ES2268615T3 (en) * | 2003-08-11 | 2007-03-16 | Vlaamse Instelling Voor Technologisch Onderzoek (Vito) | NETWORK MEASUREMENT SYSTEM WITH SENSORS AND A BRIDGE. |
US20050050182A1 (en) * | 2003-08-26 | 2005-03-03 | Xerox Corporation | Peripheral device diagnostic method and architecture |
US7205891B1 (en) * | 2003-09-19 | 2007-04-17 | Purdue Research Foundation | Real-time wireless video exposure monitoring system |
JP2005130033A (en) * | 2003-10-21 | 2005-05-19 | Ipsquare Inc | Monitoring system, control device, and imaging apparatus |
US7627651B2 (en) | 2003-10-27 | 2009-12-01 | American Power Conversion Corporation | System and method for network device communication |
US20050114505A1 (en) | 2003-11-26 | 2005-05-26 | Destefano Jason M. | Method and apparatus for retrieving and combining summarized log data in a distributed log data processing system |
US8234256B2 (en) * | 2003-11-26 | 2012-07-31 | Loglogic, Inc. | System and method for parsing, summarizing and reporting log data |
US20050114707A1 (en) * | 2003-11-26 | 2005-05-26 | Destefano Jason Michael | Method for processing log data from local and remote log-producing devices |
US7599939B2 (en) * | 2003-11-26 | 2009-10-06 | Loglogic, Inc. | System and method for storing raw log data |
US20050114321A1 (en) * | 2003-11-26 | 2005-05-26 | Destefano Jason M. | Method and apparatus for storing and reporting summarized log data |
US7747732B2 (en) * | 2003-12-09 | 2010-06-29 | International Business Machines Corporation | Household internet connection monitoring and troubleshooting through voice based telephony devices |
GB2423594A (en) * | 2003-12-10 | 2006-08-30 | Alex Mashinsky | Exchange of centralized control data |
SE0303534L (en) * | 2003-12-22 | 2005-06-23 | Abb Research Ltd | Method for retrieving data for an equipment, plant or process |
US20050204190A1 (en) * | 2003-12-30 | 2005-09-15 | International Business Machines Corporation | Apparatus, system and method for transitioning networked computing devices to a lower power state |
US7006949B2 (en) * | 2004-01-27 | 2006-02-28 | Hewlett-Packard Development Company, L.P. | Method and system for collecting temperature data |
US7399411B2 (en) * | 2004-01-29 | 2008-07-15 | International Business Machines Corporation | Retainer assembly including buoyant retainer attached to remediation material and anchor |
US7183899B2 (en) * | 2004-03-15 | 2007-02-27 | Global Gate Technologies, Inc. | Remotely monitored and controlled building automation system |
US20050265423A1 (en) * | 2004-05-26 | 2005-12-01 | Mahowald Peter H | Monitoring system for cooking station |
US7142107B2 (en) | 2004-05-27 | 2006-11-28 | Lawrence Kates | Wireless sensor unit |
US7623028B2 (en) | 2004-05-27 | 2009-11-24 | Lawrence Kates | System and method for high-sensitivity sensor |
US7218237B2 (en) * | 2004-05-27 | 2007-05-15 | Lawrence Kates | Method and apparatus for detecting water leaks |
US7561057B2 (en) * | 2004-05-27 | 2009-07-14 | Lawrence Kates | Method and apparatus for detecting severity of water leaks |
US7186462B2 (en) * | 2004-06-25 | 2007-03-06 | Xerox Corporation | T-type amino functional release agent for fuser members |
US7173538B2 (en) * | 2004-06-25 | 2007-02-06 | Rm2, Inc. | Apparatus, system and method for monitoring a drying procedure |
US7668941B1 (en) * | 2004-06-29 | 2010-02-23 | American Megatrends, Inc. | Systems and methods for implementing a TCP/IP stack and web interface within a management module |
US7339490B2 (en) * | 2004-06-29 | 2008-03-04 | Hewlett-Packard Development Company, L.P. | Modular sensor assembly |
US7707282B1 (en) | 2004-06-29 | 2010-04-27 | American Megatrends, Inc. | Integrated network and management controller |
US7603131B2 (en) * | 2005-08-12 | 2009-10-13 | Sellerbid, Inc. | System and method for providing locally applicable internet content with secure action requests and item condition alerts |
US20060031476A1 (en) * | 2004-08-05 | 2006-02-09 | Mathes Marvin L | Apparatus and method for remotely monitoring a computer network |
US20060047466A1 (en) * | 2004-08-27 | 2006-03-02 | White Gene H | System and method for monitoring rack equipment |
US7388248B2 (en) * | 2004-09-01 | 2008-06-17 | Micron Technology, Inc. | Dielectric relaxation memory |
US7228726B2 (en) * | 2004-09-23 | 2007-06-12 | Lawrence Kates | System and method for utility metering and leak detection |
US7516480B2 (en) * | 2004-10-22 | 2009-04-07 | Microsoft Corporation | Secure remote configuration of targeted devices using a standard message transport protocol |
JP4745347B2 (en) * | 2004-11-18 | 2011-08-10 | パンドウィット・コーポレーション | Ethernet vs. analog controller |
US8145748B2 (en) | 2004-12-13 | 2012-03-27 | American Power Conversion Corporation | Remote monitoring system |
US7711814B1 (en) | 2004-12-13 | 2010-05-04 | American Power Conversion Corporation | Method and system for remote monitoring of a power supply device with user registration capability |
US7522036B1 (en) | 2004-12-29 | 2009-04-21 | Geist Manufacturing, Inc. | Integrated power and environmental monitoring electrical distribution system |
US20060164245A1 (en) * | 2005-01-15 | 2006-07-27 | The Aerospace Corporation | Equipment configuration visualization tools, systems and methods |
US8587825B2 (en) * | 2005-01-20 | 2013-11-19 | Zih Corp | Ethernet and USB powered printers and methods for supplying ethernet and USB power to a printer |
AU2006210412A1 (en) * | 2005-02-04 | 2006-08-10 | Jr Edmonds H. Chandler | Method and apparatus for a merged power-communication cable in door security environment |
US7944469B2 (en) * | 2005-02-14 | 2011-05-17 | Vigilos, Llc | System and method for using self-learning rules to enable adaptive security monitoring |
US20060190960A1 (en) * | 2005-02-14 | 2006-08-24 | Barker Geoffrey T | System and method for incorporating video analytics in a monitoring network |
US7596476B2 (en) * | 2005-05-02 | 2009-09-29 | American Power Conversion Corporation | Methods and systems for managing facility power and cooling |
US7885795B2 (en) | 2005-05-02 | 2011-02-08 | American Power Conversion Corporation | Methods and systems for managing facility power and cooling |
US7881910B2 (en) * | 2005-05-02 | 2011-02-01 | American Power Conversion Corporation | Methods and systems for managing facility power and cooling |
US20060294224A1 (en) * | 2005-06-27 | 2006-12-28 | Square D Company | Electrical power management system |
WO2007005947A1 (en) | 2005-07-01 | 2007-01-11 | Terahop Networks, Inc. | Nondeterministic and deterministic network routing |
US20070025238A1 (en) * | 2005-07-01 | 2007-02-01 | Sbc Knowledge Ventures Lp | Maintaining services of a network element |
US8155118B2 (en) * | 2005-08-19 | 2012-04-10 | Hewlett-Packard Development Company, L.P. | Mirroring of a random subset of network traffic |
US8024054B2 (en) * | 2005-08-22 | 2011-09-20 | Trane International, Inc. | Building automation system facilitating user customization |
US7904186B2 (en) * | 2005-08-22 | 2011-03-08 | Trane International, Inc. | Building automation system facilitating user customization |
US8050801B2 (en) | 2005-08-22 | 2011-11-01 | Trane International Inc. | Dynamically extensible and automatically configurable building automation system and architecture |
US8055386B2 (en) * | 2005-08-22 | 2011-11-08 | Trane International Inc. | Building automation system data management |
US8055387B2 (en) * | 2005-08-22 | 2011-11-08 | Trane International Inc. | Building automation system data management |
US8099178B2 (en) * | 2005-08-22 | 2012-01-17 | Trane International Inc. | Building automation system facilitating user customization |
US7870090B2 (en) * | 2005-08-22 | 2011-01-11 | Trane International Inc. | Building automation system date management |
US7917232B2 (en) | 2005-08-22 | 2011-03-29 | Trane International Inc. | Building automation system data management |
US8050185B2 (en) * | 2005-08-24 | 2011-11-01 | Hewlett-Packard Development Company, L.P. | Sampling of network traffic based on CAM lookup |
US20070053519A1 (en) * | 2005-08-30 | 2007-03-08 | Godwin Bryan W | Wireless adapter for data exchange and method |
US7230528B2 (en) * | 2005-09-20 | 2007-06-12 | Lawrence Kates | Programmed wireless sensor system |
US7142123B1 (en) * | 2005-09-23 | 2006-11-28 | Lawrence Kates | Method and apparatus for detecting moisture in building materials |
US20070090920A1 (en) * | 2005-10-22 | 2007-04-26 | Canter James M | Apparatus and Method for Controlling Access to Remotely Located Equipment |
US20070130148A1 (en) * | 2005-12-05 | 2007-06-07 | Chao-Hung Wu | Real-time overall monitor system |
US7685238B2 (en) * | 2005-12-12 | 2010-03-23 | Nokia Corporation | Privacy protection on application sharing and data projector connectivity |
US8484068B2 (en) | 2005-12-14 | 2013-07-09 | Crane Merchandising Systems, Inc. | Method and system for evaluating consumer demand for multiple products and services at remotely located equipment |
WO2007082351A1 (en) * | 2006-01-23 | 2007-07-26 | Datatainer Pty Ltd | Data processing apparatus |
US20070185065A1 (en) * | 2006-02-03 | 2007-08-09 | Vikramjit Chhokar | Combination therapy for coronary artery disease |
AU2007215267B2 (en) * | 2006-02-10 | 2011-02-10 | American Power Conversion Corporation | Storage rack management system and method |
US20070195490A1 (en) * | 2006-02-13 | 2007-08-23 | Howell Sean V | Apparatus And Method For Attaching An Electronic Module To A Lock Assembly |
US8317509B2 (en) | 2006-02-21 | 2012-11-27 | Mgs Mfg. Group, Inc. | Two-shot, four station injection mold |
US8185618B2 (en) * | 2006-06-06 | 2012-05-22 | Cisco Technology, Inc. | Dynamically responding to non-network events at a network device in a computer network |
US8322155B2 (en) | 2006-08-15 | 2012-12-04 | American Power Conversion Corporation | Method and apparatus for cooling |
US8327656B2 (en) | 2006-08-15 | 2012-12-11 | American Power Conversion Corporation | Method and apparatus for cooling |
US9568206B2 (en) | 2006-08-15 | 2017-02-14 | Schneider Electric It Corporation | Method and apparatus for cooling |
US20080058996A1 (en) * | 2006-08-25 | 2008-03-06 | Sukam Power Systems Limited | UPS monitoring and controlling software embedded into a DSP-based online UPS equipment |
US20080052345A1 (en) * | 2006-08-28 | 2008-02-28 | Eidson John C | Data displays utilizing peer-to-peer communications in a measurement system |
US7997484B2 (en) * | 2006-09-13 | 2011-08-16 | Crane Merchandising Systems, Inc. | Rich content management and display for use in remote field assets |
US7459961B2 (en) * | 2006-10-31 | 2008-12-02 | Avago Technologies Wireless Ip (Singapore) Pte. Ltd. | Voltage supply insensitive bias circuits |
US7681404B2 (en) | 2006-12-18 | 2010-03-23 | American Power Conversion Corporation | Modular ice storage for uninterruptible chilled water |
JP4761155B2 (en) * | 2006-12-20 | 2011-08-31 | 独立行政法人 日本原子力研究開発機構 | Network communication system and power supply device for network hub |
TWM327001U (en) * | 2006-12-28 | 2008-02-11 | Pin Life Co Ltd | Apparatus of creating atmosphere |
US8655939B2 (en) * | 2007-01-05 | 2014-02-18 | Digital Doors, Inc. | Electromagnetic pulse (EMP) hardened information infrastructure with extractor, cloud dispersal, secure storage, content analysis and classification and method therefor |
US8468244B2 (en) | 2007-01-05 | 2013-06-18 | Digital Doors, Inc. | Digital information infrastructure and method for security designated data and with granular data stores |
US9015301B2 (en) | 2007-01-05 | 2015-04-21 | Digital Doors, Inc. | Information infrastructure management tools with extractor, secure storage, content analysis and classification and method therefor |
US8425287B2 (en) | 2007-01-23 | 2013-04-23 | Schneider Electric It Corporation | In-row air containment and cooling system and method |
JP5479112B2 (en) * | 2007-01-24 | 2014-04-23 | シュナイダー エレクトリック アイティー コーポレーション | System and method for evaluating cooling performance of equipment racks |
US7857214B2 (en) * | 2007-04-26 | 2010-12-28 | Liebert Corporation | Intelligent track system for mounting electronic equipment |
US20080284909A1 (en) * | 2007-05-16 | 2008-11-20 | Keohane Michael F | Remote Multimedia Monitoring with Embedded Metrics |
US20090077156A1 (en) * | 2007-09-14 | 2009-03-19 | Srinivas Raghav Kashyap | Efficient constraint monitoring using adaptive thresholds |
US8959028B2 (en) * | 2007-07-02 | 2015-02-17 | Crane Merchandising Systems, Inc. | Apparatus and method for monitoring and control of remotely located equipment |
US20090079560A1 (en) * | 2007-09-26 | 2009-03-26 | General Electric Company | Remotely monitoring railroad equipment using network protocols |
US20090099696A1 (en) * | 2007-10-16 | 2009-04-16 | Dell Products, Lp | System and method of reporting and managing real-time airflow within an information handling system |
US8533315B2 (en) * | 2007-10-25 | 2013-09-10 | Crane Merchandising Systems, Inc. | Systems and methods for monitoring performance of field assets |
EP2248044A4 (en) | 2007-12-28 | 2013-12-11 | Server Tech Inc | Power distribution, management, and monitoring systems and methods |
US20090271049A1 (en) * | 2008-04-25 | 2009-10-29 | Sun Microsystems, Inc. | Assuring stability of the speed of a cooling fan in a computer system |
WO2009151877A2 (en) | 2008-05-16 | 2009-12-17 | Terahop Networks, Inc. | Systems and apparatus for securing a container |
TW201006175A (en) * | 2008-07-31 | 2010-02-01 | Ibm | Method, apparatus, and computer program product for testing a network system |
US8473265B2 (en) * | 2008-10-27 | 2013-06-25 | Schneider Electric It Corporation | Method for designing raised floor and dropped ceiling in computing facilities |
US8209056B2 (en) * | 2008-11-25 | 2012-06-26 | American Power Conversion Corporation | System and method for assessing and managing data center airflow and energy usage |
JP2010128985A (en) * | 2008-11-28 | 2010-06-10 | Hitachi Ltd | Storage management server and storage configuration relocating method |
US20100198903A1 (en) * | 2009-01-31 | 2010-08-05 | Brady Corey E | Network-supported experiment data collection in an instructional setting |
US8560677B2 (en) * | 2009-02-13 | 2013-10-15 | Schneider Electric It Corporation | Data center control |
US9519517B2 (en) | 2009-02-13 | 2016-12-13 | Schneider Electtic It Corporation | Data center control |
US9778718B2 (en) * | 2009-02-13 | 2017-10-03 | Schneider Electric It Corporation | Power supply and data center control |
US8180824B2 (en) * | 2009-02-23 | 2012-05-15 | Trane International, Inc. | Log collection data harvester for use in a building automation system |
WO2010102150A1 (en) * | 2009-03-04 | 2010-09-10 | Server Technology, Inc. | Monitoring power-related parameters in a power distribution unit |
US8321057B2 (en) * | 2009-03-12 | 2012-11-27 | Red Hat, Inc. | Infrastructure for adaptive environmental control for equipment in a bounded area |
US9904331B2 (en) * | 2009-04-01 | 2018-02-27 | Schneider Electric It Corporation | Method for computing cooling redundancy at the rack level |
US8355890B2 (en) * | 2009-05-08 | 2013-01-15 | American Power Conversion Corporation | System and method for predicting maximum cooler and rack capacities in a data center |
US8219362B2 (en) * | 2009-05-08 | 2012-07-10 | American Power Conversion Corporation | System and method for arranging equipment in a data center |
NZ596948A (en) * | 2009-05-08 | 2014-05-30 | Obdedge Llc | Systems, methods, and devices for policy-based control and monitoring of use of mobile devices by vehicle operators |
US8249825B2 (en) | 2009-05-08 | 2012-08-21 | American Power Conversion Corporation | System and method for predicting cooling performance of arrangements of equipment in a data center |
AU2010265883B2 (en) | 2009-06-25 | 2016-02-11 | Server Technology, Inc. | Power distribution apparatus with input and output power sensing and method of use |
WO2011011544A1 (en) | 2009-07-21 | 2011-01-27 | Scott Ferrill Tibbitts | Method and system for controlling a mobile communication device in a moving vehicle |
US9615213B2 (en) | 2009-07-21 | 2017-04-04 | Katasi Llc | Method and system for controlling and modifying driving behaviors |
US8397088B1 (en) | 2009-07-21 | 2013-03-12 | The Research Foundation Of State University Of New York | Apparatus and method for efficient estimation of the energy dissipation of processor based systems |
US9386447B2 (en) | 2009-07-21 | 2016-07-05 | Scott Ferrill Tibbitts | Method and system for controlling a mobile communication device |
EP2494734B1 (en) | 2009-10-29 | 2019-09-18 | Hewlett-Packard Enterprise Development LP | Network switch connected to a sensor |
US9258201B2 (en) * | 2010-02-23 | 2016-02-09 | Trane International Inc. | Active device management for use in a building automation system |
US8219660B2 (en) * | 2010-02-26 | 2012-07-10 | Trane International Inc. | Simultaneous connectivity and management across multiple building automation system networks |
US8793022B2 (en) * | 2010-02-26 | 2014-07-29 | Trane International, Inc. | Automated air source and VAV box association |
US8644960B2 (en) | 2010-10-22 | 2014-02-04 | Gecko Alliance Group Inc. | Method and system for providing ambiance settings in a bathing system |
US9058323B2 (en) | 2010-12-30 | 2015-06-16 | Ss8 Networks, Inc. | System for accessing a set of communication and transaction data associated with a user of interest sourced from multiple different network carriers and for enabling multiple analysts to independently and confidentially access the set of communication and transaction data |
US8688413B2 (en) | 2010-12-30 | 2014-04-01 | Christopher M. Healey | System and method for sequential placement of cooling resources within data center layouts |
US8938534B2 (en) | 2010-12-30 | 2015-01-20 | Ss8 Networks, Inc. | Automatic provisioning of new users of interest for capture on a communication network |
US8639459B1 (en) | 2011-03-30 | 2014-01-28 | Amazon Technologies, Inc. | System and method for monitoring power distribution units |
US8972612B2 (en) | 2011-04-05 | 2015-03-03 | SSB Networks, Inc. | Collecting asymmetric data and proxy data on a communication network |
US20120271461A1 (en) * | 2011-04-20 | 2012-10-25 | Spata Gregory P | Capturing environmental information |
EP2705649A2 (en) * | 2011-05-04 | 2014-03-12 | Paksense, Inc. | Sensing and derived information conveyance |
US8990536B2 (en) | 2011-06-01 | 2015-03-24 | Schneider Electric It Corporation | Systems and methods for journaling and executing device control instructions |
CN102820641A (en) * | 2011-06-07 | 2012-12-12 | 硕天科技股份有限公司 | Method for establishing virtual environment sensor on power distribution unit |
US8644999B2 (en) * | 2011-06-15 | 2014-02-04 | General Electric Company | Keep alive method for RFD devices |
US8996323B1 (en) | 2011-06-30 | 2015-03-31 | Amazon Technologies, Inc. | System and method for assessing power distribution systems |
US9965564B2 (en) | 2011-07-26 | 2018-05-08 | Schneider Electric It Corporation | Apparatus and method of displaying hardware status using augmented reality |
US20130046410A1 (en) * | 2011-08-18 | 2013-02-21 | Cyber Power Systems Inc. | Method for creating virtual environmental sensor on a power distribution unit |
US20130063592A1 (en) * | 2011-09-08 | 2013-03-14 | Scott Michael Kingsley | Method and system for associating devices with a coverage area for a camera |
US9225944B2 (en) | 2011-09-08 | 2015-12-29 | Schneider Electric It Corporation | Method and system for displaying a coverage area of a camera in a data center |
CN103999563B (en) * | 2011-12-20 | 2017-02-15 | 施耐德电气It公司 | Intelligent rack enclosure |
CN104137660B (en) | 2011-12-22 | 2017-11-24 | 施耐德电气It公司 | System and method for the predicting temperature values in electronic system |
US9041250B1 (en) | 2012-03-15 | 2015-05-26 | Amazon Technologies, Inc. | System and method for maintaining power to electrical systems |
US9182795B1 (en) | 2012-03-20 | 2015-11-10 | Amazon Technologies, Inc. | Power distribution system discovery |
US9363304B2 (en) * | 2012-06-06 | 2016-06-07 | Google Inc. | Synchronizing action execution across networked nodes using relative time |
US9583936B1 (en) | 2012-07-23 | 2017-02-28 | Amazon Technologies, Inc. | Limiting the effects of faults in a data center |
US9875001B2 (en) * | 2012-08-26 | 2018-01-23 | Avaya Inc. | Network device management and visualization |
CN104797990B (en) | 2012-09-21 | 2017-10-24 | 施耐德电气It公司 | Method and instrument for characterizing hot mapping |
US9350762B2 (en) | 2012-09-25 | 2016-05-24 | Ss8 Networks, Inc. | Intelligent feedback loop to iteratively reduce incoming network data for analysis |
WO2014051456A1 (en) * | 2012-09-27 | 2014-04-03 | Emc Corporation | Environmental alert for computer systems |
BR102012025940A2 (en) * | 2012-10-10 | 2016-05-31 | Alessandro Fontoura Dos Santos | interactive sports training system and process |
US9329654B2 (en) | 2012-10-19 | 2016-05-03 | Dell Products, Lp | System and method for one-line power mapping of information handling systems in a datacenter |
US9644787B2 (en) * | 2013-03-13 | 2017-05-09 | Zeller Digital Innovations, Inc. | Videoconferencing equipment assembly and related methods |
US8930576B1 (en) | 2013-07-25 | 2015-01-06 | KE2 Therm Solutions, Inc. | Secure communication network |
KR102194782B1 (en) * | 2014-01-24 | 2020-12-23 | 삼성전자주식회사 | Apparatus and method for aralm service using user status recognition information in electronics device |
US9699933B2 (en) | 2014-03-06 | 2017-07-04 | Dell Products, Lp | System and method for providing AC jumper management and identifying AC jumper topology |
US10122585B2 (en) | 2014-03-06 | 2018-11-06 | Dell Products, Lp | System and method for providing U-space aligned intelligent VLAN and port mapping |
US9423854B2 (en) | 2014-03-06 | 2016-08-23 | Dell Products, Lp | System and method for server rack power management |
US20150256393A1 (en) | 2014-03-06 | 2015-09-10 | Dell Products, Lp | System and Method for Providing a Tile Management Controller |
US9923766B2 (en) | 2014-03-06 | 2018-03-20 | Dell Products, Lp | System and method for providing a data center management controller |
US10250447B2 (en) | 2014-03-06 | 2019-04-02 | Dell Products, Lp | System and method for providing a U-space aligned KVM/Ethernet management switch/serial aggregator controller |
US9958178B2 (en) | 2014-03-06 | 2018-05-01 | Dell Products, Lp | System and method for providing a server rack management controller |
US9964935B2 (en) | 2014-03-06 | 2018-05-08 | Dell Products, Lp | System and method for data reporting in a tile management controller |
US9430010B2 (en) | 2014-03-06 | 2016-08-30 | Dell Products, Lp | System and method for server rack power mapping |
US9830593B2 (en) | 2014-04-26 | 2017-11-28 | Ss8 Networks, Inc. | Cryptographic currency user directory data and enhanced peer-verification ledger synthesis through multi-modal cryptographic key-address mapping |
US10225158B1 (en) * | 2014-12-22 | 2019-03-05 | EMC IP Holding Company LLC | Policy based system management |
CN104615112B (en) * | 2015-01-22 | 2017-06-13 | 成都朝越科技有限公司 | Resource and environmental monitoring early warning system under network environment |
US9913399B2 (en) | 2015-02-09 | 2018-03-06 | Dell Products, Lp | System and method for wireless rack management controller communication |
US9961074B2 (en) | 2015-02-10 | 2018-05-01 | Dell Products, Lp | System and method for providing an authentication certificate for a wireless handheld device a data center environment |
US9578510B2 (en) | 2015-02-10 | 2017-02-21 | Dells Products, Lp | System and method for wireless handheld device security in a data center environment |
US9853911B2 (en) | 2015-02-19 | 2017-12-26 | Dell Products, Lp | System and method for management network activity in a data center environment |
CA2979571A1 (en) * | 2015-03-11 | 2016-09-15 | Rave Systems, Inc. | Monitoring system for a central vacuum assembly |
US11567962B2 (en) * | 2015-07-11 | 2023-01-31 | Taascom Inc. | Computer network controlled data orchestration system and method for data aggregation, normalization, for presentation, analysis and action/decision making |
US10235447B2 (en) * | 2015-07-30 | 2019-03-19 | Honeywell International Inc. | Method and system for co-operative intelligent HMIs for effective process operations |
US10476298B1 (en) | 2015-09-02 | 2019-11-12 | Amazon Technologies, Inc. | Elevated automatic transfer switch cabinet |
US10159624B2 (en) | 2015-09-11 | 2018-12-25 | Gecko Alliance Group Inc. | Method for facilitating control of a bathing unit system and control panel implementing same |
US9678552B2 (en) | 2015-10-30 | 2017-06-13 | Dell Products, Lp | System and method for powering a wireless end point in a server rack of a data center |
US10009766B2 (en) | 2015-11-09 | 2018-06-26 | Dell Products, Lp | System and method for providing a wireless device connection in a server rack of a data center |
US10229082B2 (en) | 2015-11-09 | 2019-03-12 | Dell Products, Lp | System and method for providing wireless communications to a boxed server |
US10712792B2 (en) | 2015-11-09 | 2020-07-14 | Dell Products, L.P. | System and method for provisioning a powered off server in a data center |
US20170132380A1 (en) * | 2015-11-09 | 2017-05-11 | International Business Machines Corporation | Service monitoring and evaluation system, method and program product |
US9929901B2 (en) | 2015-11-10 | 2018-03-27 | Dell Products, Lp | System and method for providing proxied virtual wireless end points in a server rack of a data center |
US9942935B2 (en) | 2015-11-17 | 2018-04-10 | Dell Products, Lp | System and method for providing a wireless failover of a management connection in a server rack of a data center |
US10216681B2 (en) | 2015-12-01 | 2019-02-26 | Dell Products, Lp | System and method for managing workloads and hot-swapping a co-processor of an information handling system |
US10241555B2 (en) | 2015-12-04 | 2019-03-26 | Dell Products, Lp | System and method for monitoring a battery status in a server in a data center |
US9930771B2 (en) | 2015-12-16 | 2018-03-27 | Dell Products, Lp | Aperiodic routing to mitigate floquet mode resonances |
US10298460B2 (en) | 2015-12-21 | 2019-05-21 | Dell Products, Lp | System and method for aggregating communication and control of wireless end-points in a data center |
US10152877B2 (en) | 2016-01-15 | 2018-12-11 | Schneider Electric It Corporation | Systems and methods for adaptive detection of audio alarms |
US10116744B2 (en) | 2016-02-04 | 2018-10-30 | Dell Products, Lp | System and method for providing management network communication and control in a data center |
US9965841B2 (en) | 2016-02-29 | 2018-05-08 | Schneider Electric USA, Inc. | Monitoring system based on image analysis of photos |
US10373283B2 (en) | 2016-03-14 | 2019-08-06 | Dell Products, Lp | System and method for normalization of GPU workloads based on real-time GPU data |
US11162702B2 (en) | 2016-04-28 | 2021-11-02 | Trane International Inc. | Method of associating a diagnostic module to HVAC system components |
US10783397B2 (en) * | 2016-06-29 | 2020-09-22 | Intel Corporation | Network edge device with image thresholding |
US10269235B2 (en) | 2016-08-26 | 2019-04-23 | Trane International Inc. | System and method to assist building automation system end user based on alarm parameters |
US10795055B2 (en) * | 2017-01-19 | 2020-10-06 | Fjord Weather Systems, Llc | Distributed weather monitoring system |
RU185710U1 (en) * | 2017-11-24 | 2018-12-14 | Акционерное Общество "Приборный Завод "Тензор" (Ао "Тензор") | ANALOGUE CONTROL MODULE |
US11222081B2 (en) | 2017-11-27 | 2022-01-11 | Evoqua Water Technologies Llc | Off-line electronic documentation solutions |
US11116692B2 (en) | 2018-06-07 | 2021-09-14 | Gecko Alliance Group Inc. | Method, system, computer program product and device for facilitating centralized control and monitoring over a network of a set of remote bathing unit systems |
US10841623B1 (en) * | 2018-07-26 | 2020-11-17 | CSC Holdings, LLC | System and method for real-time distributed MPEG transport stream analysis |
CN109034754A (en) * | 2018-09-29 | 2018-12-18 | 重庆盾琪科技有限公司 | Major project Dispatch and Command Center |
US10721135B1 (en) * | 2019-06-17 | 2020-07-21 | Bank Of America Corporation | Edge computing system for monitoring and maintaining data center operations |
US11748674B2 (en) | 2019-07-23 | 2023-09-05 | Core Scientific Operating Company | System and method for health reporting in a data center |
US11178021B2 (en) | 2019-07-23 | 2021-11-16 | Core Scientific, Inc. | System and method for visually managing computing devices in a data center |
CN110737264B (en) * | 2019-09-11 | 2022-09-06 | 北京戴纳实验科技有限公司 | Laboratory remote monitering system |
US11512861B2 (en) | 2020-07-01 | 2022-11-29 | International Business Machines Corporation | Anomaly detection based on airflow measurement |
US11585557B2 (en) | 2020-07-01 | 2023-02-21 | International Business Machines Corporation | Anomaly detection based on airflow alerters |
CN112115927B (en) * | 2020-11-19 | 2021-03-19 | 北京蒙帕信创科技有限公司 | Intelligent machine room equipment identification method and system based on deep learning |
US12085616B2 (en) * | 2021-12-16 | 2024-09-10 | Vibrosystm Inc. | System and method for managing monitoring equipment of a large electric machine |
US11790744B1 (en) | 2022-04-26 | 2023-10-17 | International Business Machines Corporation | Intrusion movement prediction |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5955946A (en) * | 1998-02-06 | 1999-09-21 | Beheshti; Ali | Alarm/facility management unit |
Family Cites Families (247)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3810138A (en) | 1972-01-10 | 1974-05-07 | Westinghouse Electric Corp | Interpolative sensor output visual map display system |
GB2043371B (en) | 1979-02-21 | 1983-05-25 | South Eastern Elec Board | Load shedding |
US4568934A (en) | 1981-06-09 | 1986-02-04 | Adec, Inc. | Computer controlled energy monitoring system |
US4551009A (en) | 1981-12-21 | 1985-11-05 | Mita Industrial Co., Ltd. | Electrostatic copying apparatus |
JPS5938897A (en) | 1982-08-27 | 1984-03-02 | ニツタン株式会社 | Abnormality monitor |
US4521645A (en) * | 1983-06-16 | 1985-06-04 | Carroll Robert A | Fire alarm system |
US4747041A (en) * | 1983-06-27 | 1988-05-24 | Unisys Corporation | Automatic power control system which automatically activates and deactivates power to selected peripheral devices based upon system requirement |
US4637020A (en) | 1983-08-01 | 1987-01-13 | Fairchild Semiconductor Corporation | Method and apparatus for monitoring automated testing of electronic circuits |
US4535598A (en) * | 1984-05-14 | 1985-08-20 | Carrier Corporation | Method and control system for verifying sensor operation in a refrigeration system |
FR2566576B1 (en) | 1984-06-20 | 1987-01-16 | Cit Alcatel | DEVICE FOR CONTROLLING THE CONNECTION OF AN ELECTRICAL CIRCUIT TO A NETWORK |
US4568652A (en) * | 1984-10-15 | 1986-02-04 | The United States Of America As Represented By The Secretary Of The Interior | Soluble additives to improve high temperature properties of alumina refractories |
US4718025A (en) | 1985-04-15 | 1988-01-05 | Centec Corporation | Computer management control system |
US4816208A (en) | 1986-02-14 | 1989-03-28 | Westinghouse Electric Corp. | Alarm management system |
US4751648A (en) | 1986-03-31 | 1988-06-14 | Halliburton Company | Local area network data transfer system |
US4686450A (en) * | 1986-04-04 | 1987-08-11 | General Signal Corporation | Fluid flow sensor |
CN1003681B (en) | 1987-01-23 | 1989-03-22 | 北京工业学院 | Automatic centralized remote monitoring system |
US4964065A (en) | 1987-03-12 | 1990-10-16 | Decibel Products, Inc. | Computer-controlled electronic system monitor |
US4823290A (en) | 1987-07-21 | 1989-04-18 | Honeywell Bull Inc. | Method and apparatus for monitoring the operating environment of a computer system |
US5309146A (en) | 1988-05-03 | 1994-05-03 | Electronic Environmental Controls Inc. | Room occupancy indicator means and method |
DE68906894T2 (en) | 1988-08-23 | 1993-12-16 | Derek Robert Marsden | DETERMINATION OF CONSUMPTION VALUES. |
US5086385A (en) * | 1989-01-31 | 1992-02-04 | Custom Command Systems | Expandable home automation system |
JPH07105949B2 (en) | 1989-03-20 | 1995-11-13 | 松下電器産業株式会社 | Image motion vector detection device and shake correction device |
US5400246A (en) * | 1989-05-09 | 1995-03-21 | Ansan Industries, Ltd. | Peripheral data acquisition, monitor, and adaptive control system via personal computer |
US5220522A (en) * | 1989-05-09 | 1993-06-15 | Ansan Industries, Ltd. | Peripheral data acquisition, monitor, and control device for a personal computer |
US5043807A (en) | 1989-05-23 | 1991-08-27 | Zenith Electronics Corporation | Three dimensional composite video motion detection |
US5189394A (en) * | 1989-12-22 | 1993-02-23 | Grinell Asia Pacific Pty. Limited | Fire alarm display |
FR2659155B1 (en) | 1990-03-01 | 1992-05-29 | Renault | DEVICE FOR CONTROLLING THE ELECTRICAL SUPPLY OF A PLURALITY OF ELECTRONIC MODULES. |
US5061916A (en) | 1990-05-29 | 1991-10-29 | Barber-Colman Company | Event driven remote graphical reporting of building automation system parameters |
US5225997A (en) * | 1990-06-05 | 1993-07-06 | Sygnus Controls Inc. | Automatic monitoring and remote reporting device |
US5216623A (en) * | 1990-06-06 | 1993-06-01 | M. T. Mcbrian, Inc. | System and method for monitoring and analyzing energy characteristics |
US5109278A (en) * | 1990-07-06 | 1992-04-28 | Commonwealth Edison Company | Auto freeze frame display for intrusion monitoring system |
US6105061A (en) | 1990-07-26 | 2000-08-15 | Nec Corporation | Hierarchically distributed network management system using open system interconnection (OSI) protocols |
JP3222456B2 (en) * | 1990-07-30 | 2001-10-29 | 株式会社東芝 | Video monitoring system, transmitting device, receiving device, and video monitoring method |
US5153837A (en) | 1990-10-09 | 1992-10-06 | Sleuth Inc. | Utility consumption monitoring and control system |
US5097328A (en) * | 1990-10-16 | 1992-03-17 | Boyette Robert B | Apparatus and a method for sensing events from a remote location |
EP0497586A3 (en) | 1991-01-31 | 1994-05-18 | Sony Corp | Motion detection circuit |
US5168171A (en) * | 1991-03-04 | 1992-12-01 | Tracewell Larry L | Enclosure for circuit modules |
US5589764A (en) | 1991-03-05 | 1996-12-31 | Lee; Graham S. | Meter for measuring accumulated power consumption of an electrical appliance during operation of the appliance |
JP3099398B2 (en) | 1991-04-05 | 2000-10-16 | 株式会社日立製作所 | Constant current circuit |
US5382943A (en) | 1991-07-31 | 1995-01-17 | Tanaka; Mutuo | Remote monitoring unit |
CA2071804A1 (en) * | 1991-06-24 | 1992-12-25 | Ronald G. Ward | Computer system manager |
US5289275A (en) * | 1991-07-12 | 1994-02-22 | Hochiki Kabushiki Kaisha | Surveillance monitor system using image processing for monitoring fires and thefts |
US5262758A (en) * | 1991-09-19 | 1993-11-16 | Nam Young K | System and method for monitoring temperature |
FR2685526B1 (en) | 1991-12-20 | 1994-02-04 | Alcatel Nv | CONNECTION NETWORK WITH MONITORING SENSORS AND DIAGNOSTIC SYSTEM, AND METHOD OF ESTABLISHING DIAGNOSTICS FOR SUCH A NETWORK. |
US6400996B1 (en) * | 1999-02-01 | 2002-06-04 | Steven M. Hoffberg | Adaptive pattern recognition based control system and method |
KR940011881B1 (en) | 1991-12-23 | 1994-12-27 | 주식회사 금성사 | Apparatus for detecting moving picture |
JPH05181970A (en) | 1991-12-27 | 1993-07-23 | Toshiba Corp | Moving image processor |
US5301122A (en) | 1992-02-12 | 1994-04-05 | Measuring And Monitoring, Inc. | Measuring and monitoring system |
US5566339A (en) | 1992-10-23 | 1996-10-15 | Fox Network Systems, Inc. | System and method for monitoring computer environment and operation |
EP0609980B1 (en) | 1993-01-11 | 1999-07-14 | Canon Kabushiki Kaisha | Motion detection method and apparatus |
US5588067A (en) | 1993-02-19 | 1996-12-24 | Peterson; Fred M. | Motion detection and image acquisition apparatus and method of detecting the motion of and acquiring an image of an object |
HU9300145V0 (en) | 1993-05-21 | 1993-08-30 | Kiss Jozsef | Remote monitoring system for monitoring electronically controlled equipment by means of remote link |
US5805458A (en) | 1993-08-11 | 1998-09-08 | First Pacific Networks | System for utility demand monitoring and control |
US5818725A (en) | 1993-08-11 | 1998-10-06 | First Pacific Networks | System for utility demand monitoring and control |
US5528507A (en) | 1993-08-11 | 1996-06-18 | First Pacific Networks | System for utility demand monitoring and control using a distribution network |
FI98559C (en) * | 1993-11-09 | 1997-07-10 | Aga Ab | Method and apparatus for regulating the atmosphere in a substantially enclosed animal shelter or equivalent space |
US5491511A (en) | 1994-02-04 | 1996-02-13 | Odle; James A. | Multimedia capture and audit system for a video surveillance network |
US5621662A (en) * | 1994-02-15 | 1997-04-15 | Intellinet, Inc. | Home automation system |
US5395042A (en) | 1994-02-17 | 1995-03-07 | Smart Systems International | Apparatus and method for automatic climate control |
US5963457A (en) | 1994-03-18 | 1999-10-05 | Hitachi, Ltd. | Electrical power distribution monitoring system and method |
US5517251A (en) * | 1994-04-28 | 1996-05-14 | The Regents Of The University Of California | Acquisition of video images simultaneously with analog signals |
US5659470A (en) | 1994-05-10 | 1997-08-19 | Atlas Copco Wagner, Inc. | Computerized monitoring management system for load carrying vehicle |
US5572195A (en) | 1994-08-01 | 1996-11-05 | Precision Tracking Fm, Inc. | Sensory and control system for local area networks |
JPH0865681A (en) | 1994-08-25 | 1996-03-08 | Sony Corp | Motion vector detector and motion compensating prediction encoding system using the detector |
US5978594A (en) | 1994-09-30 | 1999-11-02 | Bmc Software, Inc. | System for managing computer resources across a distributed computing environment by first reading discovery information about how to determine system resources presence |
IT1275336B (en) | 1994-11-14 | 1997-08-05 | Emmepi Telematica E Sicurezza | DEVICE FOR REMOTE CONTROL OF A REMOTE EQUIPMENT |
KR960028217A (en) | 1994-12-22 | 1996-07-22 | 엘리 웨이스 | Motion Detection Camera System and Method |
US6072396A (en) * | 1994-12-30 | 2000-06-06 | Advanced Business Sciences | Apparatus and method for continuous electronic monitoring and tracking of individuals |
DE19503327A1 (en) * | 1995-02-02 | 1996-08-08 | Basf Ag | Process for the preparation of 5-oxo-6-heptenoic acid alkyl esters and new intermediates for their preparation |
US5553609A (en) * | 1995-02-09 | 1996-09-10 | Visiting Nurse Service, Inc. | Intelligent remote visual monitoring system for home health care service |
DE19512959A1 (en) | 1995-04-10 | 1996-10-17 | Sel Alcatel Ag | Remote monitoring device |
US5581478A (en) | 1995-04-13 | 1996-12-03 | Cruse; Michael | Facility environmental control system |
US5664202A (en) | 1995-04-20 | 1997-09-02 | C & C Tech Ets | Intelligent power consumption monitoring and control system |
US5742762A (en) * | 1995-05-19 | 1998-04-21 | Telogy Networks, Inc. | Network management gateway |
US5634002A (en) * | 1995-05-31 | 1997-05-27 | Sun Microsystems, Inc. | Method and system for testing graphical user interface programs |
US6112235A (en) | 1995-06-07 | 2000-08-29 | Spofford; Jason J. | Method and apparatus for remotely managing a network hardware device having an embedded server with a client computer across a network |
US6311214B1 (en) * | 1995-07-27 | 2001-10-30 | Digimarc Corporation | Linking of computers based on optical sensing of digital data |
US5926210A (en) * | 1995-07-28 | 1999-07-20 | Kalatel, Inc. | Mobile, ground-based platform security system which transmits images that were taken prior to the generation of an input signal |
JP3347591B2 (en) | 1995-07-31 | 2002-11-20 | キヤノン株式会社 | Image processing method and apparatus |
US6001065A (en) * | 1995-08-02 | 1999-12-14 | Ibva Technologies, Inc. | Method and apparatus for measuring and analyzing physiological signals for active or passive control of physical and virtual spaces and the contents therein |
US5715160A (en) | 1995-08-21 | 1998-02-03 | Plotke; Robert Jay | Motion control evaluation employing a Fourier transform |
AUPN727195A0 (en) | 1995-12-21 | 1996-01-18 | Canon Kabushiki Kaisha | Motion detection method and apparatus |
JP3809661B2 (en) | 1995-12-28 | 2006-08-16 | ソニー株式会社 | Motion detection apparatus and motion detection method |
US5732074A (en) * | 1996-01-16 | 1998-03-24 | Cellport Labs, Inc. | Mobile portable wireless communication system |
US6195018B1 (en) | 1996-02-07 | 2001-02-27 | Cellnet Data Systems, Inc. | Metering system |
US5874237A (en) * | 1996-02-12 | 1999-02-23 | Hull; Bryan Patrick | Method and apparatus for collecting airborne biological particles |
US5968116A (en) | 1996-03-27 | 1999-10-19 | Intel Corporation | Method and apparatus for facilitating the management of networked devices |
US5812055A (en) | 1996-05-31 | 1998-09-22 | Eskom | Monitoring of a system |
US6081606A (en) | 1996-06-17 | 2000-06-27 | Sarnoff Corporation | Apparatus and a method for detecting motion within an image sequence |
US6050940A (en) * | 1996-06-17 | 2000-04-18 | Cybernet Systems Corporation | General-purpose medical instrumentation |
US5892440A (en) | 1997-05-14 | 1999-04-06 | Combustion Engineering Inc. | Alarm significance mapping |
US6008805A (en) | 1996-07-19 | 1999-12-28 | Cisco Technology, Inc. | Method and apparatus for providing multiple management interfaces to a network device |
US5949974A (en) | 1996-07-23 | 1999-09-07 | Ewing; Carrell W. | System for reading the status and for controlling the power supplies of appliances connected to computer networks |
US5872931A (en) * | 1996-08-13 | 1999-02-16 | Veritas Software, Corp. | Management agent automatically executes corrective scripts in accordance with occurrences of specified events regardless of conditions of management interface and management engine |
US6138078A (en) | 1996-08-22 | 2000-10-24 | Csi Technology, Inc. | Machine monitor with tethered sensors |
US6104755A (en) | 1996-09-13 | 2000-08-15 | Texas Instruments Incorporated | Motion detection using field-difference measurements |
US6182157B1 (en) * | 1996-09-19 | 2001-01-30 | Compaq Computer Corporation | Flexible SNMP trap mechanism |
US5956487A (en) * | 1996-10-25 | 1999-09-21 | Hewlett-Packard Company | Embedding web access mechanism in an appliance for user interface functions including a web server and web browser |
US7051096B1 (en) | 1999-09-02 | 2006-05-23 | Citicorp Development Center, Inc. | System and method for providing global self-service financial transaction terminals with worldwide web content, centralized management, and local and remote administration |
US6002982A (en) | 1996-11-01 | 1999-12-14 | Fry; William R. | Sports computer with GPS receiver and performance tracking capabilities |
US5731832A (en) | 1996-11-05 | 1998-03-24 | Prescient Systems | Apparatus and method for detecting motion in a video signal |
US5905867A (en) * | 1996-11-12 | 1999-05-18 | The United States Of America As Represented By The Secretary Of The Navy | Apparatus for monitoring environmental parameters at network sites |
US5829130A (en) * | 1996-11-19 | 1998-11-03 | Symex, Inc. | Method of installing an integrated data, voice, and video communication network |
US5822302A (en) * | 1996-11-25 | 1998-10-13 | Mci Communications Corporation | LAN early warning system |
US6112237A (en) * | 1996-11-26 | 2000-08-29 | Global Maintech, Inc. | Electronic monitoring system and method for externally monitoring processes in a computer system |
US6139177A (en) * | 1996-12-03 | 2000-10-31 | Hewlett Packard Company | Device access and control using embedded web access functionality |
US6108782A (en) | 1996-12-13 | 2000-08-22 | 3Com Corporation | Distributed remote monitoring (dRMON) for networks |
US6085243A (en) | 1996-12-13 | 2000-07-04 | 3Com Corporation | Distributed remote management (dRMON) for networks |
US5974237A (en) | 1996-12-18 | 1999-10-26 | Northern Telecom Limited | Communications network monitoring |
US5937092A (en) | 1996-12-23 | 1999-08-10 | Esco Electronics | Rejection of light intrusion false alarms in a video security system |
US6078253A (en) * | 1997-02-04 | 2000-06-20 | Mytech Corporation | Occupancy sensor and method of operating same |
US7216043B2 (en) | 1997-02-12 | 2007-05-08 | Power Measurement Ltd. | Push communications architecture for intelligent electronic devices |
US6108492A (en) | 1997-02-14 | 2000-08-22 | Toshiba America Information Systems | Remote monitoring system |
US5978912A (en) | 1997-03-20 | 1999-11-02 | Phoenix Technologies Limited | Network enhanced BIOS enabling remote management of a computer without a functioning operating system |
US5870698A (en) * | 1997-05-03 | 1999-02-09 | Atrix International, Inc. | Multi-purpose machine metering/monitoring apparatus |
US6266721B1 (en) | 1997-05-13 | 2001-07-24 | Micron Electronics, Inc. | System architecture for remote access and control of environmental management |
JPH10322705A (en) | 1997-05-21 | 1998-12-04 | Sony Corp | Motion detection and motion compensation prediction circuit |
US5994998A (en) * | 1997-05-29 | 1999-11-30 | 3Com Corporation | Power transfer apparatus for concurrently transmitting data and power over data wires |
US6094676A (en) * | 1997-05-30 | 2000-07-25 | Hilgraeve Incorporated | Method and apparatus for peer-to-peer communication |
US5991885A (en) * | 1997-06-11 | 1999-11-23 | Clarinet Systems, Inc. | Method and apparatus for detecting the presence of a remote device and providing power thereto |
US5987614A (en) | 1997-06-17 | 1999-11-16 | Vadem | Distributed power management system and method for computer |
EP1439664B1 (en) * | 1997-06-25 | 2007-09-12 | Samsung Electronics Co., Ltd. | Method and apparatus for controlling devices in a home network |
US6389464B1 (en) * | 1997-06-27 | 2002-05-14 | Cornet Technology, Inc. | Device management system for managing standards-compliant and non-compliant network elements using standard management protocols and a universal site server which is configurable from remote locations via internet browser technology |
ATE360909T1 (en) | 1997-07-03 | 2007-05-15 | R V Holdings Corp In Trust | DEVICE AND METHOD FOR MANAGING A BATTERY BACKUP POWER SUPPLY DEVICE |
US6329792B1 (en) | 1997-07-04 | 2001-12-11 | Estco Energy Inc. | Device and system for management of battery back up power source |
JP3306651B2 (en) | 1997-07-07 | 2002-07-24 | 吉田 富貴子 | Remote power switching equipment |
US6006171A (en) * | 1997-07-28 | 1999-12-21 | Vines; Caroline J. | Dynamic maintenance management system |
US6130620A (en) | 1997-08-11 | 2000-10-10 | Electronic Monitoring Systems, Inc. | Remote monitoring system |
US6219628B1 (en) | 1997-08-18 | 2001-04-17 | National Instruments Corporation | System and method for configuring an instrument to perform measurement functions utilizing conversion of graphical programs into hardware implementations |
JPH1173258A (en) * | 1997-08-28 | 1999-03-16 | Toshiba Corp | Low power consumption bus structure and method for controlling the same and system for synthesizing low power consumption bus structure and method therefor and portable information equipment |
US6470386B1 (en) | 1997-09-26 | 2002-10-22 | Worldcom, Inc. | Integrated proxy interface for web based telecommunications management tools |
US6088816A (en) | 1997-10-01 | 2000-07-11 | Micron Electronics, Inc. | Method of displaying system status |
US6236332B1 (en) | 1997-10-22 | 2001-05-22 | Profile Systems, Llc | Control and monitoring system |
US5924486A (en) | 1997-10-29 | 1999-07-20 | Tecom, Inc. | Environmental condition control and energy management system and method |
US6055480A (en) * | 1997-11-12 | 2000-04-25 | Albert Einstein Healthcare Network | Environmental monitoring system |
EP0917034B1 (en) | 1997-11-14 | 2002-03-06 | Engel Maschinenbau Gesellschaft Mbh | Method for remote monitoring and/or remote servicing of an injection moulding machine |
US6175866B1 (en) * | 1997-11-24 | 2001-01-16 | International Business Machines Corporation | Method and system for generating unsupported network monitoring objects |
WO1999027456A1 (en) | 1997-11-26 | 1999-06-03 | Acuity Imaging, Llc | Apparent network interface for and between embedded and host processors |
US6058434A (en) | 1997-11-26 | 2000-05-02 | Acuity Imaging, Llc | Apparent network interface for and between embedded and host processors |
TW454124B (en) | 1997-11-28 | 2001-09-11 | Accton Technology Corp | Network stack with automatic switch device for the switch |
US6138249A (en) * | 1997-12-11 | 2000-10-24 | Emc Corporation | Method and apparatus for monitoring computer systems during manufacturing, testing and in the field |
US6175934B1 (en) | 1997-12-15 | 2001-01-16 | General Electric Company | Method and apparatus for enhanced service quality through remote diagnostics |
US6122639A (en) | 1997-12-23 | 2000-09-19 | Cisco Technology, Inc. | Network device information collection and change detection |
US6173323B1 (en) | 1997-12-24 | 2001-01-09 | Lucent Technologies Inc. | Adaptive polling rate algorithm for SNMP-based network monitoring |
US6052750A (en) | 1998-01-06 | 2000-04-18 | Sony Corporation Of Japan | Home audio/video network for generating default control parameters for devices coupled to the network, and replacing updated control parameters therewith |
EP0939387B1 (en) * | 1998-02-28 | 2003-09-17 | Siemens Building Technologies AG | Room supervision device |
US6922558B2 (en) | 1998-03-06 | 2005-07-26 | Don Delp | Integrated building control and information system with wireless networking |
GB9805556D0 (en) | 1998-03-17 | 1998-05-13 | Crimewatch Scotland Limited | Alarm systems |
US6115468A (en) * | 1998-03-26 | 2000-09-05 | Cisco Technology, Inc. | Power feed for Ethernet telephones via Ethernet link |
US6208345B1 (en) | 1998-04-15 | 2001-03-27 | Adc Telecommunications, Inc. | Visual data integration system and method |
US6167406A (en) | 1998-05-08 | 2000-12-26 | Allen-Bradley Company, Llc | System, method and article of manufacture for building an enterprise-wide data model |
US6229429B1 (en) | 1998-05-15 | 2001-05-08 | Daniel J. Horon | Fire protection and security monitoring system |
US6298144B1 (en) | 1998-05-20 | 2001-10-02 | The United States Of America As Represented By The National Security Agency | Device for and method of detecting motion in an image |
US6311105B1 (en) | 1998-05-29 | 2001-10-30 | Powerweb, Inc. | Multi-utility energy control system |
US6054987A (en) * | 1998-05-29 | 2000-04-25 | Hewlett-Packard Company | Method of dynamically creating nodal views of a managed network |
US6122603A (en) | 1998-05-29 | 2000-09-19 | Powerweb, Inc. | Multi-utility energy control system with dashboard |
US6363421B2 (en) | 1998-05-31 | 2002-03-26 | Lucent Technologies, Inc. | Method for computer internet remote management of a telecommunication network element |
US6343320B1 (en) * | 1998-06-09 | 2002-01-29 | Compaq Information Technologies Group, L.P. | Automatic state consolidation for network participating devices |
US6889095B1 (en) | 1998-06-11 | 2005-05-03 | Agilent Technologies, Inc. | Computer network adapted for industrial environments |
US6057834A (en) * | 1998-06-12 | 2000-05-02 | International Business Machines Corporation | Iconic subscription schedule controller for a graphic user interface |
US6363422B1 (en) * | 1998-06-24 | 2002-03-26 | Robert R. Hunter | Multi-capability facilities monitoring and control intranet for facilities management system |
US6360255B1 (en) * | 1998-06-25 | 2002-03-19 | Cisco Technology, Inc. | Automatically integrating an external network with a network management system |
US6282546B1 (en) | 1998-06-30 | 2001-08-28 | Cisco Technology, Inc. | System and method for real-time insertion of data into a multi-dimensional database for network intrusion detection and vulnerability assessment |
KR100316647B1 (en) | 1998-07-30 | 2002-01-15 | 윤종용 | Power control method and apparatus therefor in computer system using wake on LAN signal |
DE69815339T2 (en) | 1998-08-06 | 2004-04-29 | Elonex I.P. Holdings Ltd. | Standby system for computer screen with low energy consumption |
US6160926A (en) * | 1998-08-07 | 2000-12-12 | Hewlett-Packard Company | Appliance and method for menu navigation |
US6496862B1 (en) | 1998-08-25 | 2002-12-17 | Mitsubishi Electric Research Laboratories, Inc. | Remote monitoring and control of devices connected to an IEEE 1394 bus via a gateway device |
US6611866B1 (en) * | 1998-08-27 | 2003-08-26 | Intel Corporation | Management object for aggregated network device status |
US6338094B1 (en) | 1998-09-08 | 2002-01-08 | Webtv Networks, Inc. | Method, device and system for playing a video file in response to selecting a web page link |
JP2000092092A (en) | 1998-09-10 | 2000-03-31 | Mitsubishi Electric Corp | Power source controller and power source control system |
US6202149B1 (en) | 1998-09-30 | 2001-03-13 | Ncr Corporation | Automated application fail-over for coordinating applications with DBMS availability |
US6175927B1 (en) | 1998-10-06 | 2001-01-16 | International Business Machine Corporation | Alert mechanism for service interruption from power loss |
JP2000134606A (en) | 1998-10-29 | 2000-05-12 | Sekyurion Nijuyon Kk | Remote monitoring system, remote image reproducing method and recording medium |
US6157943A (en) * | 1998-11-12 | 2000-12-05 | Johnson Controls Technology Company | Internet access to a facility management system |
US6177884B1 (en) | 1998-11-12 | 2001-01-23 | Hunt Technologies, Inc. | Integrated power line metering and communication method and apparatus |
JP2000151606A (en) | 1998-11-16 | 2000-05-30 | Nec Corp | Network monitoring system, network monitoring method, network management device, network device to be managed and recording medium |
US6078957A (en) * | 1998-11-20 | 2000-06-20 | Network Alchemy, Inc. | Method and apparatus for a TCP/IP load balancing and failover process in an internet protocol (IP) network clustering system |
US6374296B1 (en) * | 1998-11-25 | 2002-04-16 | Adc Technologies International Pte Ltd | Method and system for providing cross-platform remote control and monitoring of facility access controller |
GB2344718B (en) | 1998-12-07 | 2001-01-17 | Telspec Europ Ltd | Remote management system for electronic equipment |
EP1009130A1 (en) | 1998-12-11 | 2000-06-14 | International Business Machines Corporation | Distributed directory services for locating network resources in a very large packet switching network |
US6621823B1 (en) | 1998-12-21 | 2003-09-16 | Hewlett-Packard Development Company, L.P. | Network appliance combining asychronous notification with interactive network transfer protocol server |
US6529936B1 (en) * | 1998-12-23 | 2003-03-04 | Hewlett-Packard Company | Object-oriented web server architecture suitable for various types of devices |
US6553418B1 (en) * | 1999-01-02 | 2003-04-22 | Daniel J. Collins | Energy information and control system |
US6259956B1 (en) * | 1999-01-14 | 2001-07-10 | Rawl & Winstead, Inc. | Method and apparatus for site management |
US6505256B1 (en) * | 1999-01-15 | 2003-01-07 | Compaq Information Technologies Group, L.P. | Automatic synchronization of state colors across a web-based system |
JP2000209204A (en) | 1999-01-18 | 2000-07-28 | Nec Eng Ltd | Remote monitor control method and its system |
US6404348B1 (en) | 1999-02-11 | 2002-06-11 | Power Quality Consultants, Inc. | Modular power quality monitoring device |
US6304900B1 (en) * | 1999-02-18 | 2001-10-16 | International Business Machines Corporation | Data processing system and method for permitting a server computer system to remotely modify operation of a client system's network hardware |
JP2002539590A (en) | 1999-03-11 | 2002-11-19 | パワー・サーキット・イノベーションズ・インコーポレーテッド | Networkable power controller |
US6215404B1 (en) | 1999-03-24 | 2001-04-10 | Fernando Morales | Network audio-link fire alarm monitoring system and method |
JP2000278267A (en) | 1999-03-26 | 2000-10-06 | Nec Corp | System and method for monitoring network |
JP4017282B2 (en) | 1999-03-29 | 2007-12-05 | 日立造船株式会社 | Operation monitoring device and remote monitoring system |
MXPA01010270A (en) * | 1999-04-09 | 2002-10-23 | Henry B Steen Iii | Remote data access and system control. |
US6449745B1 (en) * | 1999-04-22 | 2002-09-10 | Synopsys, Inc. | Method and apparatus for random stimulus generation |
US6591279B1 (en) * | 1999-04-23 | 2003-07-08 | International Business Machines Corporation | System and method for computer-based notifications of real-world events using digital images |
US6220518B1 (en) * | 1999-05-13 | 2001-04-24 | Acutherm L.P. | Process and apparatus for individual adjustment of the temperature set points of a plurality of VAV devices |
AU5289100A (en) | 1999-05-24 | 2000-12-12 | Heat Timer Corporation | Electronic message delivery system utilizable in the monitoring oe remote equipment and method of same |
US6788980B1 (en) | 1999-06-11 | 2004-09-07 | Invensys Systems, Inc. | Methods and apparatus for control using control devices that provide a virtual machine environment and that communicate via an IP network |
US6553336B1 (en) * | 1999-06-25 | 2003-04-22 | Telemonitor, Inc. | Smart remote monitoring system and method |
IT1308779B1 (en) | 1999-07-02 | 2002-01-10 | Elasis Sistema Ricerca Fiat | DEVICE FOR ADJUSTING THE DELIVERY PRESSURE OF A PUMP, SUITABLE FOR FUEL SUPPLY TO A COMBUSTION ENGINE |
JP2001024638A (en) | 1999-07-08 | 2001-01-26 | Fujitsu Ltd | Network controller and storage medium |
US6343617B1 (en) | 1999-07-09 | 2002-02-05 | Millipore Corporation | System and method of operation of a digital mass flow controller |
US6690411B2 (en) * | 1999-07-20 | 2004-02-10 | @Security Broadband Corp. | Security system |
US6718364B2 (en) * | 1999-08-10 | 2004-04-06 | Sun Microsystems, Inc. | Method and apparatus for expedited file downloads in an applet environment |
US6529230B1 (en) * | 1999-08-30 | 2003-03-04 | Safe-T-Net Systems Pte Ltd | Security and fire control system |
US6281790B1 (en) * | 1999-09-01 | 2001-08-28 | Net Talon Security Systems, Inc. | Method and apparatus for remotely monitoring a site |
US20070008099A1 (en) | 1999-09-01 | 2007-01-11 | Nettalon Security Systems, Inc. | Method and apparatus for remotely monitoring a site |
US6405216B1 (en) | 1999-09-17 | 2002-06-11 | International Business Machines Corporation | Internet-based application program interface (API) documentation interface |
AU3884601A (en) * | 1999-09-21 | 2001-04-24 | Hommed, Llc | In-home patient monitoring system |
GB2355163A (en) | 1999-10-05 | 2001-04-11 | Inventec Corp | A modem having embedded network transmission protocols |
US6477667B1 (en) * | 1999-10-07 | 2002-11-05 | Critical Devices, Inc. | Method and system for remote device monitoring |
US6658595B1 (en) | 1999-10-19 | 2003-12-02 | Cisco Technology, Inc. | Method and system for asymmetrically maintaining system operability |
US7330886B2 (en) | 1999-10-27 | 2008-02-12 | American Power Conversion Corporation | Network appliance management |
US7392309B2 (en) * | 1999-10-27 | 2008-06-24 | American Power Conversion Corporation | Network appliance management |
US7159022B2 (en) * | 2001-01-26 | 2007-01-02 | American Power Conversion Corporation | Method and system for a set of network appliances which can be connected to provide enhanced collaboration, scalability, and reliability |
US6714977B1 (en) | 1999-10-27 | 2004-03-30 | Netbotz, Inc. | Method and system for monitoring computer networks and equipment |
CN1153151C (en) | 1999-11-01 | 2004-06-09 | 贵州以太科技信息产业有限责任公司 | Intelligent control method for different electric appliances and its universal controller |
GB9928455D0 (en) | 1999-12-02 | 2000-01-26 | Ascot Management Solutions Ltd | Monitoring system |
US8161193B1 (en) | 1999-12-08 | 2012-04-17 | Rockstar Bidco Lp | System, device, and method for sending keep-alive messages in a communication network |
JP2001184145A (en) | 1999-12-27 | 2001-07-06 | Id Gate Co Ltd | Remote power supply management system for information processor or the like |
CA2326278C (en) | 1999-12-30 | 2008-06-03 | At&T Corp. | Remote monitoring through the brg |
US6792321B2 (en) | 2000-03-02 | 2004-09-14 | Electro Standards Laboratories | Remote web-based control |
CA2403270C (en) | 2000-03-14 | 2011-05-17 | Joseph Robert Marchese | Digital video system using networked cameras |
GB2361156B (en) | 2000-04-07 | 2002-08-07 | 3Com Corp | Discovering non managed devices in a network such as a LAN using HTTP |
JP4403335B2 (en) | 2000-04-17 | 2010-01-27 | ソニー株式会社 | Maintenance support system for video processing equipment |
US6670810B2 (en) | 2000-04-25 | 2003-12-30 | Airak, Inc. | System and method for distributed monitoring of surroundings using telemetry of data from remote sensors |
US6208261B1 (en) * | 2000-05-13 | 2001-03-27 | John Olstead | Use of visual building alarm system to display public information to building visitors |
US7010594B2 (en) | 2000-05-26 | 2006-03-07 | Isochron, Llc | System using environmental sensor and intelligent management and control transceiver for monitoring and controlling remote computing resources |
JP2002009864A (en) | 2000-06-20 | 2002-01-11 | Sony Corp | Control method and communication equipment |
WO2001098936A2 (en) | 2000-06-22 | 2001-12-27 | Microsoft Corporation | Distributed computing services platform |
US20020023258A1 (en) | 2000-06-27 | 2002-02-21 | Elwahab Amgad Mazen | System and method for managing telecommunications devices |
WO2002007365A2 (en) | 2000-07-13 | 2002-01-24 | Nxegen | System and method for monitoring and controlling energy usage |
IT1318284B1 (en) | 2000-07-31 | 2003-07-28 | Cit Alcatel | METHOD AND DEVICE FOR REMOTE CONFIGURATION AND MONITORING OF TELECOMMUNICATIONS NETWORK ELEMENTS. |
US6686838B1 (en) * | 2000-09-06 | 2004-02-03 | Xanboo Inc. | Systems and methods for the automatic registration of devices |
US6756998B1 (en) * | 2000-10-19 | 2004-06-29 | Destiny Networks, Inc. | User interface and method for home automation system |
US7043661B2 (en) | 2000-10-19 | 2006-05-09 | Tti-Team Telecom International Ltd. | Topology-based reasoning apparatus for root-cause analysis of network faults |
US6829630B1 (en) | 2000-11-24 | 2004-12-07 | Xerox Corporation | Mechanisms for web-object event/state-driven communication between networked devices |
US20020071031A1 (en) | 2000-12-07 | 2002-06-13 | Philips Electronics North America Corporation | Remote monitoring via a consumer electronic appliance |
US6795941B2 (en) | 2000-12-21 | 2004-09-21 | Honeywell International Inc. | Method for diagnosing a network |
CA2432440C (en) * | 2001-01-12 | 2007-03-27 | Novar Controls Corporation | Small building automation control system |
US8271626B2 (en) | 2001-01-26 | 2012-09-18 | American Power Conversion Corporation | Methods for displaying physical network topology and environmental status by location, organization, or responsible party |
US7493391B2 (en) | 2001-02-12 | 2009-02-17 | International Business Machines Corporation | System for automated session resource clean-up by determining whether server resources have been held by client longer than preset thresholds |
US7207041B2 (en) | 2001-06-28 | 2007-04-17 | Tranzeo Wireless Technologies, Inc. | Open platform architecture for shared resource access management |
US6505086B1 (en) * | 2001-08-13 | 2003-01-07 | William A. Dodd, Jr. | XML sensor system |
DE60213746T2 (en) * | 2001-11-28 | 2007-08-16 | Matsushita Electric Industrial Co., Ltd., Kadoma | Security system for a house |
US6633835B1 (en) | 2002-01-10 | 2003-10-14 | Networks Associates Technology, Inc. | Prioritized data capture, classification and filtering in a network monitoring environment |
US7162223B2 (en) | 2004-02-17 | 2007-01-09 | Teamon Systems, Inc. | System and method for notifying users of an event using alerts |
-
1999
- 1999-10-27 US US09/429,504 patent/US6714977B1/en not_active Expired - Lifetime
-
2000
- 2000-10-26 AU AU12395/01A patent/AU777375B2/en not_active Ceased
- 2000-10-26 WO PCT/US2000/029689 patent/WO2001031849A1/en active IP Right Grant
- 2000-10-26 CA CA2395450A patent/CA2395450C/en not_active Expired - Fee Related
- 2000-10-27 EP EP00123523A patent/EP1096724A1/en not_active Ceased
-
2004
- 2004-02-10 US US10/775,899 patent/US8090817B2/en not_active Expired - Lifetime
- 2004-02-10 US US10/775,898 patent/US8024451B2/en not_active Expired - Lifetime
-
2006
- 2006-12-08 US US11/608,639 patent/US8005944B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5955946A (en) * | 1998-02-06 | 1999-09-21 | Beheshti; Ali | Alarm/facility management unit |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8005944B2 (en) | 1999-10-27 | 2011-08-23 | American Power Conversion Corporation | Method and system for monitoring computer networks and equipment |
US8024451B2 (en) | 1999-10-27 | 2011-09-20 | American Power Conversion Corporation | Method and system for monitoring computer networks and equipment |
US8090817B2 (en) | 1999-10-27 | 2012-01-03 | American Power Conversion Corporation | Method and system for monitoring computer networks and equipment |
US8224953B2 (en) | 1999-10-27 | 2012-07-17 | American Power Conversion Corporation | Method and apparatus for replay of historical data |
US8271626B2 (en) | 2001-01-26 | 2012-09-18 | American Power Conversion Corporation | Methods for displaying physical network topology and environmental status by location, organization, or responsible party |
US8966044B2 (en) | 2001-01-26 | 2015-02-24 | Schneider Electric It Corporation | Methods for displaying physical network topology and environmental status by location, organization, or responsible party |
US11503744B2 (en) | 2007-05-15 | 2022-11-15 | Schneider Electric It Corporation | Methods and systems for managing facility power and cooling |
US9952103B2 (en) | 2011-12-22 | 2018-04-24 | Schneider Electric It Corporation | Analysis of effect of transient events on temperature in a data center |
Also Published As
Publication number | Publication date |
---|---|
WO2001031849A1 (en) | 2001-05-03 |
US20040160897A1 (en) | 2004-08-19 |
US8005944B2 (en) | 2011-08-23 |
AU1239501A (en) | 2001-05-08 |
US8090817B2 (en) | 2012-01-03 |
US20040163102A1 (en) | 2004-08-19 |
EP1096724A1 (en) | 2001-05-02 |
US20070088823A1 (en) | 2007-04-19 |
US6714977B1 (en) | 2004-03-30 |
CA2395450A1 (en) | 2001-05-03 |
US8024451B2 (en) | 2011-09-20 |
CA2395450C (en) | 2015-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU777375B2 (en) | Method and system for monitoring computer networks and equipment | |
US8190728B1 (en) | Building automation system devices | |
JP4421817B2 (en) | Method and system for a set of network devices that can be connected to provide improved collaboration, scalability, and reliability | |
US8966044B2 (en) | Methods for displaying physical network topology and environmental status by location, organization, or responsible party | |
US7392309B2 (en) | Network appliance management | |
US7921315B2 (en) | Managing power consumption in a data center based on monitoring circuit breakers | |
US20060031476A1 (en) | Apparatus and method for remotely monitoring a computer network | |
US9420042B2 (en) | Facilities management system | |
US20150008740A1 (en) | Power monitoring system | |
KR20000076842A (en) | System and method for configuring network-attached terminals | |
US20040214617A1 (en) | Electronic apparatus and service providing method used in the electronic apparatus | |
JP2004004084A (en) | Watthour meter | |
CN101351779A (en) | Network system | |
JP2001141290A (en) | Air conditioner and its monitoring device | |
CN108023783A (en) | network equipment monitoring system and method | |
Hung et al. | Development of a web-services-based remote monitoring and control architecture | |
JP2002333929A (en) | Data center system | |
WO2014162601A1 (en) | Information processing system and data processing control method | |
KR100374474B1 (en) | Game room management support system using internet | |
Bierman et al. | A YANG Data Model for Hardware Management | |
JP2005005798A (en) | Remote monitoring apparatus | |
Paul Richards et al. | Mesh Sensor Networks | |
JP2001160811A (en) | Measurement device and measurement system | |
KR20040044576A (en) | Sever management system | |
JP2018055450A (en) | Malfunction detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK6 | Application lapsed section 142(2)(f)/reg. 8.3(3) - pct applic. not entering national phase | ||
NB | Applications allowed - extensions of time section 223(2) |
Free format text: THE TIME IN WHICH TO ENTER THE NATIONAL PHASE HAS BEEN EXTENDED TO 20020627 |
|
TC | Change of applicant's name (sec. 104) |
Owner name: NETBOTZ, INC. Free format text: FORMER NAME: MICRO WEB SERVERS |
|
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |