AU736656B2 - Spray nozzle and a process using this nozzle - Google Patents

Spray nozzle and a process using this nozzle Download PDF

Info

Publication number
AU736656B2
AU736656B2 AU27518/97A AU2751897A AU736656B2 AU 736656 B2 AU736656 B2 AU 736656B2 AU 27518/97 A AU27518/97 A AU 27518/97A AU 2751897 A AU2751897 A AU 2751897A AU 736656 B2 AU736656 B2 AU 736656B2
Authority
AU
Australia
Prior art keywords
nozzle
spray
fluid
range
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU27518/97A
Other versions
AU2751897A (en
Inventor
Joseph Warren King
Michael Shawn Mccutchen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority claimed from PCT/US1997/007443 external-priority patent/WO1998050165A1/en
Publication of AU2751897A publication Critical patent/AU2751897A/en
Application granted granted Critical
Publication of AU736656B2 publication Critical patent/AU736656B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/06Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
    • B05B7/061Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with several liquid outlets discharging one or several liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nozzles (AREA)

Description

WO 98/50165 WO 9850165PCT/US97/07443 SPRAY NOZZLE AND A PROCESS USING THIS NOZZLE BACKGROUND -Of THE INVENTION The present invention relates to a dual feed injector comprising two spray nozzles housed concentrically in a compact nozzle body with an inner spray nozzle supplying a full divergent cone spray and an outer spray nozzle supplying a hollow divergent or convergent cone spray, and, more particularly, to a method of contacting materials with a broad flow range of fluid discharged from the dual feed injector.
Spray nozzles may be classified as pressure nozzles, rotating nozzles and gas-atomizing nozzles. Spray nozzles are used for atomizing a liquid into droplets and are well known in various applications. For example, U.S. Patent 3,717,306 describes a nozzle for mixing and spraying foam resin components and is made up of two concentric spray nozzle members defining a central .path and a cylindrical path concentric to the central path. Communicating passages therein are arranged so that material in the nozzle is given a swirling motion for good mixing and then the mixture is discharged in a single spray cone.
A single spray nozzle can effectively spray over a limited flow range.
For effective use of sprays in confined spaces, there is a need to spray over a broad flow range. The present invention meets this need.
-SUMMARY OF THE INVENTIN According to the invention there is provided a dual feed injector comprising: an outer spray nozzle having an outer fluid supply line comnilmicating with a means for determining an angle of a spray from about degrees to about 90 degrees, said outer nozzle terminating with an annular orifice for supplying a hollow divergent or convergent cone spray; an inner spray nozzle having an inner fluid supply line communicating with a means for determining an angle of a spray from about degrees to about 90 degrees, said inner nozzle terminating with a central orifice for supplying a full divergent cone spray; and WO 98/50165 PCT/US97/07443 -2means for atomizing a fluid near a terminal end of the outer and inner nozzles, said inner and outer nozzles being disposed concentric to each other and housed in a compact nozzle body.
BRIEF DESCRIPTON OF THE DRAWINGS Fig. 1A and Fig. 1C are a side view and top view, respectively, of the dual feed injector of this invention.
Fig. 1B is an end view of the dual feed injector of this invention.
Fig. 2 is a longitudinal cross sectional view of the dual feed injector of this invention.
DETAILED DESCRIPTION OF THE INVENTION The dual feed injector of this invention is uniquely capable of providing two streams of atomized fluid within a broad flow range for good contacting between a fluid discharged from the dual feed injector and a fluid in a vessel, pipe or the like. The dual feed injector is especially applicable for rapidly cooling an effluent gas stream in a confined space from about 800°C.1500 0 C down to about 200*C-550C. Rapid cooling from about 900'C-1000*C down to about 450*C.550C is preferred.
Illustrative of such a process is chlorinating ferrotitaniferous materials and separating titanium tetrachloride as described in greater detail in U.S. Patent 3,261,664 and U.S. Patent 4,066,424, the teachings of which are incorporated herein by reference. Hot chlorination gases produced from the reaction are primarily titanium tetrachloride, ferric chloride and ferrous chloride. These gases are passed to a transfer duct whereby a single spray injection nozzle introduces a liquid coolant, liquid titanium tetrachloride to perform the essential step of contacting and cooling the hot chlorination gases to about 450 0 C to about 550C. The dual feed injector of this invention is an improvement over this single spray injection nozzle.
Referring now to Fig. 1B, the dual feed injector end view shows the tangential entry 30 of the fluid supplying the outer nozzle 10. The tangential entry contributes to the flow and spray pattern of the fluid. It will be appreciated by those skilled In the art that depending upon the particular application, the entry can be tangential or concentric. Referring now to Fig. 2, the inner spray nozzle terminates with a central orifice 8 which discharges a full divergent cone spray. Full divergent cone spray is defined herein to refer to small particles or droplets forming WO 98/50165 PCT/US97/07443 -3a substantially whole conical region fanning outward. The outer spray nozzle terminates with an annular orifice 9 which discharges a hollow divergent or convergent cone spray. Hollow divergent or convergent cone spray is defined herein to refer to small particles or droplets forming a ring shape around a perimeter of a circle fanning outward or merging towards the full divergent cone spray. The inner nozzle feed I and outer nozzle feed 2 are typically fed from different sources of the same liquid. The feed can be simultaneous or sequential. In an alternative embodiment the inner nozzle feed 1 and outer nozzle feed 2 may be fed from the same source or with different fluids. Further, two liquids may be contacted with a third liquid and slurries or pastes can be extruded through the outer spray nozzle for contact or treatment with other fluids. The dual feed injector of this invention can be used for many processes or purposes, including but not limited to, atomizing, cooling, heating, chemically reacting, mixing, evaporating, spray drying, contacting or treating. Combinations of the foregoing can be used.
Upstream from a mounting flange 5, the fluid then enters a concentric or tangential outer fluid supply line 3 supplied from outer nozzle feed 2 and a concentric or tangential inner fluid supply line 4 supplied from inner nozzle feed 1.
For industrial applications or processes, the fluid flow ranges and pressure ranges can be readily determined for the desired application or process. For example, in cooling an effluent gas stream, the fluid flow range in the inner nozzle can be a high flow range, about 100 to about 600 gallons per minute at a pressure of about 1 to about 90 psig. The outer nozzle can be a low flow range, about 20 to about 200 gallons per minute at a pressure of about 1 to about 60 psig. The outer fluid supply line 3 and the inner fluid supply line 4 communicates with a means for determining an angle of the spray 6a, 6b, 7a and 7b. For example, stationary turning vanes 6a and 6b can provide a swirling motion. The swirl of the fluid in turn and, in conjunction with a decreased diameter 7a and 7b near the terminating end of the inner and outer nozzles, determine the angle of the spray. Spray angle may range from about 10 to about 90 degrees but may be selected based on the particular application with 15, 30 and 60 degrees being common. When the confined space is a relatively narrow pipe, the angle of the spray should be minimized if it is desirable to virtually avoid the spray impinging on the pipe wall. The direction of the jet of fluid can be at any angle relative to the direction of flow of the gaseous mixture, e.g., counter current or cocurrent. Counter current flow is preferred in cooling an effluent gas since it promotes rapid cooling and complete evaporation of the liquid coolant. Near the terminating end, the inner nozzle diameter 7a and the outer WO 98/50 165 PCTIUS97/07443 -4nozzle diameter 7b decrease and the volume available for the fluid flow also decreases. The change in the available volume also provides the energy needed to atomize the fluid, or break it up into many small particles or droplets. It has been observed that smaller particles or droplets provide better contacting when cooling an effluent gas. The dual feed injector can be designed for any given droplet size.
In a process for cooling an effluent gas stream, it may be desirable for the mean liquid spray droplet diameter to be in the range of about 0.2 to 20 mm. It will be appreciated by those skilled in the art that depending upon the different industrial application or fluid being fed through the dual feed injector that operating ~~~e0*parameters, vane configuration and dimensions may be readily determined by constructing a model dual feed injector and testing the operating parameters, vane C configuration and dimensions-for the desired flow range and spray pattern. By way of example and not limitation, the dimensions suitable for cooling an effluent gas can be an'overall length of about 26" long. The overall height can be about 15.25".
20 ITe upstream inner diameter of the outer nozzle can be about 5.75" and the upstream inner diameter of the inner nozzle can be about -Thne diameter then reduces near the terminal end wherein the reduced diameter 7a of the inner nozzle can be about The reduced diameter 7b of the outer nozzle can be about 2.2" :and the width of the annular orifice can be about 0.3".
0* ThIe dual feed injector can be constructed of any material that is suitable for the fluid being fed through it. -Typically, a stainless steel alloy will be 0 **Soo* appropriate for most applications but a more corrosion resistant material such as 0 0 00 0: HastefloyO can be used.
The' present invention provides greater efficiency and process S:06 e flexibility than found in conventional spray nozzles and has wide applications. T1he o 30 dual feed injector combines compactness with the ability to produce an excellent spray pattern over a much larger range of flow rates than a conventional nozzle.
The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalent of the features shown and described or any portion thereoC but it is recognized that various modifications are possible within the scope of the appended claims.
Where the terms "comprise", "comprises", "comprised" or "comprising" are used in this specification, they are to be interpreted as specifying the presence of the stated features, integers, steps or components referred to, but not to preclude the presence or #~~'dition of one or more other feature, integer, step, component or group thereof

Claims (4)

1. A process for cooling chlorine gases produced from reacting ferrotitaniferous materials with chlorine, comprising the steps of: injecting a cooling fluid through an outer spray nozzle in a dual feed injector at a flow rate in the range of about 25 to about 252 i/min and pressure of about 1 to about psig to contact the chlorine gases, wherein the nozzle has an outer fluid supply line communicating with a means for providing a spray angle, said nozzle terminating with an annular orifice having a smaller diameter than the fluid supply line for atomizing a fluid; and injecting the cooling fluid through an inner spray g nozzle in the dual feed injector at a flow rate in the range of about 126 to about 757 i/min and pressure of about 1 to about 90 psig to contact the chlorine gases, wherein the nozzle has an inner fluid supply line communicating with a means for providing a spray angle, said nozzle terminating with a central orifice having a smaller diameter than the inner fluid supply line for atomizing a fluid; wherein said inner and outer nozzles are disposed concentric to each other and housed in a compact nozzle body.
2. The process of claim i, wherein the cooling fluid is a liquid having a mean droplet diameter size in the range of about 0.2 to about 20 mm. ooooo
3. The process of claim i, wherein the cooling fluid cools the chlorine gases from a temperature in the range of 8000C to 15000C to a temperature in the range of 2000C to 5500C.
4. The process of claim i, wherein the cooling fluid is titanium tertrachloride. DATED this /S day of M 2001 E. I. DU PONT DE NEMRS AND COMPANY By their Patent Attorq: C LP LAWRIE
AU27518/97A 1997-05-01 1997-05-01 Spray nozzle and a process using this nozzle Ceased AU736656B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1997/007443 WO1998050165A1 (en) 1997-05-01 1997-05-01 Spray nozzle and a process using this nozzle

Publications (2)

Publication Number Publication Date
AU2751897A AU2751897A (en) 1998-11-27
AU736656B2 true AU736656B2 (en) 2001-08-02

Family

ID=22260831

Family Applications (1)

Application Number Title Priority Date Filing Date
AU27518/97A Ceased AU736656B2 (en) 1997-05-01 1997-05-01 Spray nozzle and a process using this nozzle

Country Status (4)

Country Link
JP (1) JP2000512903A (en)
AU (1) AU736656B2 (en)
CA (1) CA2288212A1 (en)
DE (1) DE69717158T2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657385A (en) * 2012-09-10 2014-03-26 杨建华 Double-atomization spray gun for SNCR (selective non-catalytic reduction) denitration system
CN103506234B (en) * 2013-09-27 2016-03-16 中节能六合天融环保科技有限公司 A kind of SNCR denitrating flue gas spray gun two-chamber hybrid double-layer spray technology
CN107470050B (en) * 2017-09-30 2023-04-18 江西远达环保有限公司 Spray gun with cooling effect for desulfurization and denitrification
CN107470049B (en) * 2017-09-30 2023-04-18 江西远达环保有限公司 Spray gun pipe with anti-vaporization function for desulfurization and denitrification

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3261664A (en) * 1963-11-21 1966-07-19 Du Pont Process for the production and separation of titanium tetrachloride from crystalline ferrous chloride
US3717306A (en) * 1971-03-10 1973-02-20 Hushon R Nozzle for spraying foaming materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3261664A (en) * 1963-11-21 1966-07-19 Du Pont Process for the production and separation of titanium tetrachloride from crystalline ferrous chloride
US3717306A (en) * 1971-03-10 1973-02-20 Hushon R Nozzle for spraying foaming materials

Also Published As

Publication number Publication date
DE69717158T2 (en) 2003-09-18
DE69717158D1 (en) 2002-12-19
AU2751897A (en) 1998-11-27
JP2000512903A (en) 2000-10-03
CA2288212A1 (en) 1998-11-12

Similar Documents

Publication Publication Date Title
EP0979149B1 (en) Spray nozzle and a process using this nozzle
KR100492441B1 (en) Method for atomizing a fluid using hot gas
JP2579192B2 (en) Two-fluid sprayer
US5899387A (en) Air assisted spray system
EP1160015B1 (en) Air assisted spray nozzle assembly
CA2332096C (en) Air atomizing nozzle assembly with improved air cap
US5170942A (en) Spray nozzle design
EP0744999A1 (en) Dual fluid spray nozzle
CA2209560A1 (en) Improved flat fan spray nozzle
JPS61259784A (en) Vibrator for ultrasonic injection
US5240183A (en) Atomizing spray nozzle for mixing a liquid with a gas
JP2001017893A (en) Penumatic atomizing nozzle assembly having improved air cap
WO2000037143A1 (en) Low pressure dual fluid atomizer
JP2000107651A (en) Two-fluid nozzle
AU736656B2 (en) Spray nozzle and a process using this nozzle
AU2019389139A1 (en) Electrostatic spray drying nozzle assembly
JP2000254554A (en) Atomizing nozzle
JPS644822B2 (en)
JP4778212B2 (en) Three fluid nozzle
US4063686A (en) Spray nozzle
CN111149437B (en) Nozzle for delivering a plasma stream for plasma abatement and related methods
RU30275U1 (en) Centrifugal atomizer
WO1991012084A1 (en) Nozzle device
SU1638458A1 (en) Nozzle
RU30257U1 (en) Pressure dressing

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)