AU685221B2 - A medical appliance for use in magnetic resonance imaging procedures - Google Patents

A medical appliance for use in magnetic resonance imaging procedures Download PDF

Info

Publication number
AU685221B2
AU685221B2 AU14906/95A AU1490695A AU685221B2 AU 685221 B2 AU685221 B2 AU 685221B2 AU 14906/95 A AU14906/95 A AU 14906/95A AU 1490695 A AU1490695 A AU 1490695A AU 685221 B2 AU685221 B2 AU 685221B2
Authority
AU
Australia
Prior art keywords
antenna
medical appliance
magnetic resonance
conductor
resonance imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU14906/95A
Other versions
AU1490695A (en
Inventor
Graeme C. Mckinnon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Europe GmbH
Original Assignee
Schneider Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Europe GmbH filed Critical Schneider Europe GmbH
Publication of AU1490695A publication Critical patent/AU1490695A/en
Application granted granted Critical
Publication of AU685221B2 publication Critical patent/AU685221B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/285Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Human Computer Interaction (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Electrotherapy Devices (AREA)

Abstract

A guidewire 9 for vascular procedures is formed by a coaxial cable acting as antenna in a magnetic resonance imaging system 1. <IMAGE>

Description

I This invention relates to a medical appliance for use in magnetic resonance imaging procedures performed on a body, comprising an antenna detecting magnetic resonance response signals, the antenna intended to be inserted into the body for interacting with a magnetic resonance procedure for calculating the position of the medical appliance in the body.
Tracking of catheters and other devices positioned within a body may be achieved by means of a magnetic resonance imaging system in order to avoid using X-rays and the risk of accumulated X-ray dose to the patient and long term exposure to the attending medical staff.
S. 15 Typically, such a magnetic resonance imaging system may be comprised of magnet means, pulsed magnetic field gradient generating means, a transmitter for electromagnetic waves in radio-frequency, a radio-frequency receiver, a processor, and a controller. The device to 20 be tracked has attached to its end a small coil of electrically conductive wire. The patient is placed into the magnet means and the device is inserted into the e patient. The magnetic resonance imaging system generates electromagnetic waves in radio-frequency and magnetic 25 field gradient pulses that are transmitted into the patient and that induce a resonant response signal from selected nuclear spins within the patient. This response signal induces current in the coil of electrically conductive wire attached to the device. The coil thus detects the nuclear spins in the vicinity of the coil. The radio-frequency receiver receives this detected response signal and processes it and then stores it with the controller. This is repeated in three orthogonal directions. The gradients cause the frequency of the detected signal to be directly proportional to the position of the radio-frequency coil along each applied gradient.
The position of the radio-frequency coil inside the patient 2 may therefore be calculated by processing the data using Fourier transformations so that a positional picture of the coil is arhieved. Since however the coil only reacts, literally not a positional picture of the coil but in fact a positional picture of the position of the response signals inside the patient is achieved. Since this positional picture contains no information yet on the region surrounding the immediate vicinity of the coil, this positional picture can be superposed with a magnetic resonance image of the region of interest. In this case the picture of the region may have been taken and stored at the same occasion as the positional picture or at any earlier occasion.
15 Radio-frequency antennas in the form of a coil couple inductively to the electromagnetic field and they allow obtaining a substantially spatially uniform magnetic field which results in a relatively uniform image intensity over a wide region. The problem is however that coil 20 configurations are bulky (the received signal is determined by the loop diameter) and cannot be implemented for use in narrow vessels, whereby their use for the placement medical appliances such as catheters may be critical.
Furthermore, the spot image which is provided for by the coil antenna does not allow knowing or even evaluating the orientation of the device; as a result, the magnetic resonance imaging system cannot be used for steering the device into tortuous areas such as blood vessels.
European Patent N' 0165742 describes a catheter for use with magnetic resonance imaging systems. This catheter comprises a sheath which has embedded within the wall thereof a pair of conductors preferably formed of a foil composite obtained by plating of conductive materials of selected magnetic susceptibility to yield a composite of desired susceptibility substantially matching that of the sheath. In this way, the magnetic invisibility 3 of the catheter is maintained. The tip of the catheter contains a loop connecting the conductors, the plane of such a loop being preferably transverse to the catheter symmetry axis. As explained in the document, when excited by a weak pulse source, the loop supports a dipole magnetic field which locally distorts the magnetic resonance image providing an image cursor on the magnetic resonance imaging display, and a low magnetic susceptibility functional element such as a light pipe threaded into the catheter sheath allows direction of the catheter through selected blood vessels. The essence of this structure is thus the accurate location and monitoring of the catheter tip.
However, this is achieved within the environment of a bulky configuration which cannot be advanced through narrow 15 vessels and which cannot be steered by reference to the :magnetic resonance imaging system.
*o.The document WO 87/04080 shows surgical catheters composed of alternating annular segments of non-magnetic materials 20 which are highly opaque to nuclear magnetic resonance examination and less opaque, respectively. These catheters have thin coatings of silicone rubber on their external o Ssurface as well as on the internal surface of their main central lumen. A plurality of further lumens are S 25 distributed circumferentially within the catheter wall and guidance wires are housed in said lumens, secured at the distal end of the catheter wall and coupled to a joystick at the proximal end of the catheter for individual tightening and relaxing to permit radial guidance of the distal end of the catheter. The central lumen of the catheter and still further secondary lumens arranged in the catheter wall are for the distribution of various drugs or for surgical tools such as optic fiber for laser surgery or suturing devices or still stitching grippers. By these arrangements, location of the catheters is apparent under nuclear magnetic resonance examination, visually at the distal end. These structures are however 4 bulky and they have the same drawbacks as outlined hereinbefore.
European Patent Application published under N' 0385367 shows an insertable prostate pick-up probe devised for being a nuclear magnetic resonance receiving device capable of imaging spectra from the human prostate and surrounding tissue; this probe may also be used as the transmit coil for radio-frequency excitation. This probe is intended to be used with an interface network providing the tuning, impedance matching, and decoupling functions, and including a connection to a magnetic resonance imaging scanner.
The probe includes a shaft supporting a patient interface balloon at its distal end, comprising an inner balloon 15 and an outer balloon, the inner balloon being capable of being inflated with air supplied through a lumen within the shaft. A non-stretchable plane formed of an adhesive backed cloth material partly covers the inner balloon and serves as a guide for a flexible receiving coil 20 arranged between the inner balloon and the outer balloon, this coil being electrically connected to the interface via an insulated cable extending through the shaft. Upon inflation, the non-stretchable plane rises and forces the receiving coil and outer balloon against the region S 25 of interest so that the receiving coil is in position to receive the best possible radio-frequency signal from the region of interest. Special indentations forming a shell are provided on the outer balloon to act as coil positioners when the balloon is in its uninflated state so that the coil may be repeatedly positioned relative to the shell inside the outer balloon for numerous clinical inflation and deflation cycles. A colored stripe is marked on the shaft, possibly including a scale, for indicating the distance which the shaft has been inserted into the patient and also the radial orientation of the balloon for proper alignment with the region of interest. In operation, the probe is inserted while the patient
I
5 interface balloon is in the uninflated state; the alignment stripe marked on the shaft is used to radially and longitudinally position the probe within the region of interest. Once the probe is correctly placed, the patient interface balloon is inflated and the receiving coil is forced against the region of interest. The probe is then connected to the interface network via the insulated cable.
This particular arrangement of the radio-frequency coil does not reduce the bulk of the system which cannot be used for narrow or tortuous vessels. Furthermore, the system does not provide for any information as to orientation of the probe for steering purposes.
The document DE-3937052 Al shows a biopsy tube for use 15 in a magnetic resonance imaging procedure, comprising longitudinally extending coaxial conductor tubes separated by insulator tubes and extending the length of the biopsy ooeoo: tube. In a further embodiment, the conductor tubes are replaced by gutter like portions of coaxial conductor 20 tubes which are separated by an insulator filling. Here again, the result is a bulky configuration which cannot be advanced to narrow vessels. In addition, that kind S"of assembly is substantially stiff, thereby further Spreventing the applicability of the instrument in tortuous ~25 vessels.
The object of this invention is to improve the possibilities of using magnetic resonance imaging procedures by means of a medical appliance which is simple and efficient, which may continuously provide a fdll information as to its position and orientation, which occupies a minimal space and which has a great flexibility so as to be capable of reaching narrow and tortuous vascular configurations, which may be actually steered under magnetic resonance imaging, which may be used as an interventional means, and which may also prove efficient in the determination of the vascular configurations.
According to the present invention in the first aspect there is provided a medical appliance for use in magnetic resonance imaging procedures performed on a body, comprising an antenna detecting magnetic resonance response signals, the antenna intended to be inserted into the body for interacting with a magnetic resonance procedure for calculating the position of the medical aDpliance in the body, characterized in that the antenna is formed of a distally open length of wire which couples capacitively with electromagnetic fields and which forms at leas, a part of a guidewire for vascular procedures.
According to a second aspect of the invention there is provided a magnetic resonance imaging system for tracking a medical appliance comprising means for performing magnetic resonance imaging procedures on a body, whereby electromagnetic waves in radio-frequency and magnetic field gradient pulses are generated and transmitted into the body to induce a resonant response system from selected nuclear t' within the body, said system comprising a wire antenna detecting magnetic resonance response signals, the antenna being intended to be included into the medical appliance and intended to be inserted into the body for obtaining a positional picture of the antenna which can be superposed with a magnetic resonance image of the body for calculating the position of the antenna in the body, characterized in that the antenna is formed of a distally open length of wire which couples capacitively with the electromagnetic field and which forms S: 20 at least a part of a guidewire for vascular procedures.
As opposed to the core or configuration, the antenna formed of a distally open length of wire which couples capacitively with the electromagnetic field and which forms at least a part of a guidewire for vascular procedures has the effect that the received signal .1 originates from the immediate neighbourhood of the distally open length of wire, whereby it becomes possible to obtain an image of the antenna, of its position, as well as of its orientation. Steering of the appliances thus actually possible. As opposed to coil antennas for which the received signal depends on the loop diameter, diameter of the antenna formed of a distally open length of wire which couples capacitively with the electromagnetic field and which forms at least a part of the guidewire for vascular o30 procedures is of secondary relevance and, therefore the antenna may be extremely thin and it may also have a high flexibility, allowing safe driving and passage through vascular configurations, even in tortuous and restricted areas thereof. This opens way to using magnetic resonance imaging procedures in interventional conditions where time and precision are of the essence. By repeatedly measuring, reconstructing, and displaying the image with a very short image repetition time, a magnetic resonance imaging fluroscopy system can be created. One could also use the antenna to make a high resolution image of a vessel wall.
According to a simple inexpensive embodiment, the open wire length antenna may be formed by a coaxial cable. According to an embodiment aiming very thin "W configurations, the open wire length antenna may be made of a coaxial cable in which the [N:\LIBC100737:hv shield and insulators are respectively made of a conductor coating and insulating coatings.
In both these cases, the first and second conducting elements of the coaxial configuration rr' have the same length or unlike lengths.
According to a further embodiment, also aiming very thin configurations, the open wire length antenna may be made of two conducting strands insulated from one another, twisted or parallel to one another. And these strands may have the same length or unlike lengths.
The antenna may be included in a catheter and the like. It may also be used for the positioning of catheters and the like.
These and other objects will become readily apparent from the following detailed description with reference to the accompanying drawings which show, diagrammatically and by way of example only, four embodiments of the invention.
Figure 1 is a block diagram of a system environmental to the present invention.
Figure 2 is a longitudinal part section of a first embodiment of the appliance according to the invention.
Figure 3 is a longitudinal part section of a second embodiment of the appliance according to the invention.
Figures 4 and 5 are longitudinal views of r.wo further embodiments of the appliance according to the invention.
20 The system shown in Figure 1 is a magnetic resonance imaging apparatus 1 comprising a magnet system 2 for generating a homogeneous magnetic field on a subject 3 placed on a support table 4. Inside the magnet system 2 is a coil structure 5 to produce around the subject a magnetic field obtained from radio-frequency energy source 6.
Receiver 7 response to the resonance signal and processor 8 reconstitutes the integers of the 8* [N:\LIBC]00737:hrw i- I L I 8 projection which will be shown on display 11. The medical appliance 9, inserted into subject 3, is connected via conductor 10 to control station 12. Such a general configuration is familiar to those skilled in the art and it will not be described in further detail.
The appliance 9, as exemplified in Figure 2, is a guidewire including an open wire length antenna formed by a coaxial cable comprising a central conductor 13 enclosed in an insulator 14 surrounded by a shield 15 encased in an insulator 16. The shield 15 or outer conductor and the outer insulator 16 of the coaxial cable has been removed some length from the tip or distal end 17. The proximal end (not shown) of the coaxial cable is for connection o r 15 to the standard antenna input of control station 12 as generally shown in Figure 1.
e eo o o S• The appliance 9 of Figure 2 is also a guidewire including an open wire length antenna formed by a coaxial cable.
20 However, the insulator 14 surrounding the central conductor 130 is replaced by an insulating coating 140, while the shield 15 is replaced by a conductor coating 150 and the insulator 16 by an insulator coating 160. As for the embodiment of Figure 1, the conductor coating 150 and insulator coating 160 have been removed some length from .4 the distal end of tip 170. Also, the proximal end (not shown) of this coaxial cable is adapted to connection to the standard antenna input of control station 12 (Figure 1).
Variants may be envisaged.
For instance, the outer conductor and insulator, 15-16 resp. 150-160, need not being removed some length from the distal end 17 resp. 170. Similarly, the outer conductor and insulator may be removed a far greater length from the distal end 17 resp. 170, being also possible to have
I
a ~'nn~ 9 them removed up to proximal end of the guidewire, outside of the patient.
Subject to the precautions or requirements inherent to patient protection, it would be also possible to have the guidewire comprised of a naked conductor 13 or 130, while the insulator 14 or 140 and outer conductor 150 and insulator 16, 160 would be installed towards the proximal end of the guidewire, outside of the patient.
Similarly, the coaxial configuration shown is not compulsory, being possible to have the open wire lcngth antenna as a naked or insulated wire with appropriate polarities arranged for connection thereof to the antenna S0.. 15 input of the control station.
0* Figure 4 shows one such possibilities, in which the open eeeo S" wire length antenna is made of two twisted conducting strands 18 and 19 insulated from one another by appropriate coatings 20 and 21.
*Figure 5 also shows one such possibilities, in which the open wire length antenna is made of two conducting strands and 23 parallel to one another and separated by 25 25 insulator coatings 24 and a. As for the previous embodiments, the strands 18 and 19, respectively 22 and 23, may have the same )ength or unlike lengths.
In both the embodiments of Figure 4 and Figure 5, the channels 30 which are left open along the insulated strands may be used for further investigation purposes when the open wire length antenna is placed in the lumen of a catheter, for example for pressure readings.

Claims (14)

1. A medical appliance for use in magnetic resonance imrnaging procedures performed on a body, comprising an antenna detecting magnetic resonance response signals, the antenna intended to be inserted into the body for interacting with a magnetic resonance procedure for calculating the position of the medical appliance in the body, characterized in that the antenna is formed of a distally open length of wire which couples capacitively with electromagnetic fields and which forms at least a part of a guidewire for vascular procedures.
2, A medical appliance according to claim 1, wherein the antenna is formed of a io coaxial cable.
3. A medical appliance according to claim 1 or 2, wherein the antenna is formed of a cable having a central conductor enclosed in an insulator surrounded by an outer conductor encased in an insulator, and wherein said central conductor and outer conductor have the same length.
4. A medical appliance according to claim 1 or 2, wherein the antenna is formed of a cable having a central conductor enclosed in an insulator surrounded by an outer conductor encased in an insulator, and wherein said central conductor and outer conductor have unlike lengths.
A medical appliance according to claim 1 or 2, wherein the antenna is made of 20 a conductor, a first insulating coating applied on said conductor, a conducting coating surrounding said first insulating coating, and a second insulating coating applied on said S: conducting coating, and wherein said conductor and conducting coating have the same length.
6. A medical appliance according to claim 1 or 2, wherein the antenna is made of a conductor, a first insulating coating applied on said conductor, a conducting coating surrounding said first insulator coating, and a second insulating coating applied on said conducting coating, and wherein said conductor and conducting coating have unlike lengths.
7. A medical appliance according to claim 1 wherein the antenna is made of two S 30 conducting strands insulated from one another.
8. A medical appliance according to claim 7, wherein the two strands are parallel to one another.
9. A medical appliance according to claim 7, wherein the two strands are twisted.
10. A medical appliance according to any one of claims 7 to 9, wherein the two strands have the same length.
11. A medical appliance according to any one of claims 7 to 9, wherein the two strands have unlike lengths.
12. A magnetic resonance imaging system for :racking a medical appliance comprising means for performing magnetic resonance imaging procedures on a body, A .r0 [NA\LIBC]00737:ZLA:hrwv 11 whereby electromagnetic waves in radio-frequency and magnetic field gradient pulses are generated and transmitted into the body to induce a resonant response signal from selected nuclear spins within the body, said system comprising a wire antenna detecting magnetic resonance response signals, the antenna being intended to be included into the medical appliance and intended to be inserted into the body for obtaining a positional picture of the antenna which can be superposed with a magnetic resonance image of the body for calculating the position of the antenna in the body, characterized in that the antenna is formed of a distally open length of wire w:.:ch couples capacitively with the electromagnetic field and which forms at least a part of a guidewire for vascular procedures.
13. A medical appliance for use in magnetic resonance imaging procedures performed on a body, substantially as hereinbefore described with reference to the accompanying drawings.
14. A magnetic resonance imaging system for tracking a medical appliance, substantially as hereinbefore described with reference to any one of the accompanying drawings. Dated 7 October, 1997 Schneider (Europe) AG Patent Attorneys for the Applicant/Nominated Person 20 SPRUSON FERGUSON o O N 7 IN \LIHCj00737:ZLA:hPW I I A Medical Appliance for Use in Magnetic Resonance Imaging Procedures Abstract A guidewire for vascular procedures is formed by a c,axial cable acting as antenna in a magnetiz resonance imaging system 9 .9 9 9 Figure 1. (N:\L1BC]00737:ZL&
AU14906/95A 1994-03-18 1995-03-20 A medical appliance for use in magnetic resonance imaging procedures Ceased AU685221B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP94104329 1994-03-18
EP94104329A EP0673621B1 (en) 1994-03-18 1994-03-18 A magnetic resonance imaging system for tracking a medical appliance

Publications (2)

Publication Number Publication Date
AU1490695A AU1490695A (en) 1995-10-19
AU685221B2 true AU685221B2 (en) 1998-01-15

Family

ID=8215788

Family Applications (1)

Application Number Title Priority Date Filing Date
AU14906/95A Ceased AU685221B2 (en) 1994-03-18 1995-03-20 A medical appliance for use in magnetic resonance imaging procedures

Country Status (9)

Country Link
US (1) US5792055A (en)
EP (1) EP0673621B1 (en)
JP (1) JP2955484B2 (en)
AT (1) ATE163525T1 (en)
AU (1) AU685221B2 (en)
CA (1) CA2141271C (en)
DE (1) DE69408826T2 (en)
DK (1) DK0673621T3 (en)
ES (1) ES2114626T3 (en)

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652928B1 (en) 1989-10-05 1994-07-29 Diadix Sa INTERACTIVE LOCAL INTERVENTION SYSTEM WITHIN A AREA OF A NON-HOMOGENEOUS STRUCTURE.
JP3432825B2 (en) 1992-08-14 2003-08-04 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Positioning system
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
GB9521009D0 (en) * 1995-10-13 1995-12-13 Marconi Gec Ltd Magnetic resonance methods and apparatus`
DE69634035T2 (en) * 1995-11-24 2005-12-08 Koninklijke Philips Electronics N.V. SYSTEM FOR IMAGING BY MAGNETIC RESONANCE AND CATHETER FOR PROCEDURE PROCEDURE
US6898454B2 (en) * 1996-04-25 2005-05-24 The Johns Hopkins University Systems and methods for evaluating the urethra and the periurethral tissues
US7236816B2 (en) 1996-04-25 2007-06-26 Johns Hopkins University Biopsy and sampling needle antennas for magnetic resonance imaging-guided biopsies
US6263229B1 (en) 1998-11-13 2001-07-17 Johns Hopkins University School Of Medicine Miniature magnetic resonance catheter coils and related methods
US6675033B1 (en) * 1999-04-15 2004-01-06 Johns Hopkins University School Of Medicine Magnetic resonance imaging guidewire probe
US6549800B1 (en) 1996-04-25 2003-04-15 Johns Hopkins Unversity School Of Medicine Methods for in vivo magnetic resonance imaging
US20020077564A1 (en) * 1996-07-29 2002-06-20 Farallon Medsystems, Inc. Thermography catheter
DE19647873A1 (en) * 1996-11-19 1998-05-20 Daum Gmbh Insert for indicating position of tumor or other diseased structures
DE69736826T2 (en) 1996-12-05 2007-05-16 Philips Medical Systems (Cleveland), Inc., Cleveland Radio frequency coils for nuclear resonance
NL1005859C2 (en) * 1997-04-21 1998-10-22 Cordis Europ Improved screened catheter for use with magnetic resonance imaging
NL1006612C2 (en) * 1997-07-17 1999-01-19 Cordis Europ Feed wire of conductive material for catheter introduction
US6226548B1 (en) 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
GB2330202A (en) * 1997-10-07 1999-04-14 Marconi Gec Ltd Flexible MRI antenna for intra-cavity use
DE19746735C2 (en) * 1997-10-13 2003-11-06 Simag Gmbh Systeme Und Instr F NMR imaging method for the display, position determination or functional control of a device inserted into an examination object and device for use in such a method
US6021343A (en) 1997-11-20 2000-02-01 Surgical Navigation Technologies Image guided awl/tap/screwdriver
US6348058B1 (en) 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6477400B1 (en) 1998-08-20 2002-11-05 Sofamor Danek Holdings, Inc. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US6408202B1 (en) 1998-11-03 2002-06-18 The Johns Hopkins University Transesophageal magnetic resonance analysis method and apparatus
US8244370B2 (en) 2001-04-13 2012-08-14 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US7844319B2 (en) 1998-11-04 2010-11-30 Susil Robert C Systems and methods for magnetic-resonance-guided interventional procedures
US6701176B1 (en) 1998-11-04 2004-03-02 Johns Hopkins University School Of Medicine Magnetic-resonance-guided imaging, electrophysiology, and ablation
AU2004202579A1 (en) * 1998-11-04 2004-07-08 The Johns Hopkins University System and Method for Magnetic-resonance-guided Electrophysiologic and Ablation Procedures
US6312380B1 (en) * 1998-12-23 2001-11-06 Radi Medical Systems Ab Method and sensor for wireless measurement of physiological variables
US6165140A (en) * 1998-12-28 2000-12-26 Micrus Corporation Composite guidewire
EP1025797A1 (en) * 1999-02-08 2000-08-09 David Lloyd Brown System for locating inflamed plaque in a vessel
US6591127B1 (en) 1999-03-15 2003-07-08 General Electric Company Integrated multi-modality imaging system and method
US6470207B1 (en) 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
US7848788B2 (en) 1999-04-15 2010-12-07 The Johns Hopkins University Magnetic resonance imaging probe
US6491699B1 (en) 1999-04-20 2002-12-10 Surgical Navigation Technologies, Inc. Instrument guidance method and system for image guided surgery
US6499488B1 (en) 1999-10-28 2002-12-31 Winchester Development Associates Surgical sensor
US6474341B1 (en) 1999-10-28 2002-11-05 Surgical Navigation Technologies, Inc. Surgical communication and power system
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US6493573B1 (en) 1999-10-28 2002-12-10 Winchester Development Associates Method and system for navigating a catheter probe in the presence of field-influencing objects
US7366562B2 (en) 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8644907B2 (en) 1999-10-28 2014-02-04 Medtronic Navigaton, Inc. Method and apparatus for surgical navigation
ATE484757T1 (en) 2000-02-01 2010-10-15 Surgivision Inc TRANSSEPTAL NEEDLE ANTENNA FOR AN MR IMAGING DEVICE
US6725080B2 (en) 2000-03-01 2004-04-20 Surgical Navigation Technologies, Inc. Multiple cannula image guided tool for image guided procedures
US6302865B1 (en) * 2000-03-13 2001-10-16 Scimed Life Systems, Inc. Intravascular guidewire with perfusion lumen
AU2001247806A1 (en) 2000-03-24 2001-10-08 Surgi-Vision Endoluminal mri probe
US6535756B1 (en) 2000-04-07 2003-03-18 Surgical Navigation Technologies, Inc. Trajectory storage apparatus and method for surgical navigation system
US7085400B1 (en) 2000-06-14 2006-08-01 Surgical Navigation Technologies, Inc. System and method for image based sensor calibration
US20020055678A1 (en) * 2000-07-13 2002-05-09 Scott Greig C. Electrode probe coil for MRI
US20040087877A1 (en) 2000-08-23 2004-05-06 Besz William John Catheter locator apparatus and method of use
EP1228379A1 (en) * 2000-10-02 2002-08-07 Koninklijke Philips Electronics N.V. Movement of an rf antenna in magnetic resonance angiography
AU2002239278A1 (en) 2000-11-20 2002-05-27 Surgi-Vision, Inc. Connector and guidewire connectable thereto
WO2002043798A1 (en) * 2000-12-01 2002-06-06 Micrus Corporation Composite guidewire
US20030060731A1 (en) * 2001-01-26 2003-03-27 Fleischhacker Mark G. Non-metallic guide wire
US8600519B2 (en) 2001-04-13 2013-12-03 Greatbatch Ltd. Transient voltage/current protection system for electronic circuits associated with implanted leads
WO2002083016A1 (en) 2001-04-13 2002-10-24 Surgi-Vision, Inc. Systems and methods for magnetic-resonance-guided interventional procedures
US9295828B2 (en) 2001-04-13 2016-03-29 Greatbatch Ltd. Self-resonant inductor wound portion of an implantable lead for enhanced MRI compatibility of active implantable medical devices
US8989870B2 (en) 2001-04-13 2015-03-24 Greatbatch Ltd. Tuned energy balanced system for minimizing heating and/or to provide EMI protection of implanted leads in a high power electromagnetic field environment
US8219208B2 (en) 2001-04-13 2012-07-10 Greatbatch Ltd. Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface
US20070088416A1 (en) 2001-04-13 2007-04-19 Surgi-Vision, Inc. Mri compatible medical leads
US8977355B2 (en) 2001-04-13 2015-03-10 Greatbatch Ltd. EMI filter employing a capacitor and an inductor tank circuit having optimum component values
US8457760B2 (en) 2001-04-13 2013-06-04 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US8509913B2 (en) 2001-04-13 2013-08-13 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
GB2378760A (en) * 2001-04-20 2003-02-19 Marconi Medical Systems Uk Ltd Surgical Probe
US6636757B1 (en) 2001-06-04 2003-10-21 Surgical Navigation Technologies, Inc. Method and apparatus for electromagnetic navigation of a surgical probe near a metal object
US8579825B2 (en) 2001-06-15 2013-11-12 Radi Medical Systems Ab Electrically conductive guide wire
EP1266671B1 (en) * 2001-06-15 2004-09-15 Radi Medical Systems Ab Electrically conductive coaxial guide wire
JP4222775B2 (en) * 2001-06-15 2009-02-12 ラディ・メディカル・システムズ・アクチェボラーグ Measuring device that can be inserted into living organisms
JP3996359B2 (en) * 2001-07-12 2007-10-24 株式会社日立メディコ Magnetic resonance imaging system
US6862468B2 (en) * 2001-09-28 2005-03-01 Scimed Life Systems, Inc. Systems and methods for magnetic resonance imaging elastography
US7194297B2 (en) 2001-11-13 2007-03-20 Boston Scientific Scimed, Inc. Impedance-matching apparatus and construction for intravascular device
US6703596B1 (en) * 2001-11-13 2004-03-09 Lockheed Martin Corporation Apparatus and system for imaging radio frequency electromagnetic signals
US20030114747A1 (en) * 2001-12-14 2003-06-19 Smith Scott R. Recanalization of occluded vessel using magnetic resonance guidance
US6799067B2 (en) * 2001-12-26 2004-09-28 Advanced Cardiovascular Systems, Inc. MRI compatible guide wire
US6947786B2 (en) 2002-02-28 2005-09-20 Surgical Navigation Technologies, Inc. Method and apparatus for perspective inversion
US6990368B2 (en) 2002-04-04 2006-01-24 Surgical Navigation Technologies, Inc. Method and apparatus for virtual digital subtraction angiography
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US6904307B2 (en) 2002-05-29 2005-06-07 Surgi-Vision, Inc. Magnetic resonance probes
US7096057B2 (en) 2002-08-02 2006-08-22 Barnes Jewish Hospital Method and apparatus for intracorporeal medical imaging using a self-tuned coil
US20040024308A1 (en) * 2002-08-02 2004-02-05 Wickline Samuel A. Method and apparatus for intracorporeal medical imaging using self-tuned coils
EP1391743A1 (en) * 2002-08-05 2004-02-25 Koninklijke Philips Electronics N.V. Surgical probe with MR tip tracking
DE10240960A1 (en) * 2002-09-05 2004-03-18 Philips Intellectual Property & Standards Gmbh Catheters, especially for use in MR imaging
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7542791B2 (en) 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
WO2004068947A2 (en) * 2003-02-03 2004-08-19 Johns Hopkins University Active mri intramyocardial injection catheter with deflectable distal section
US20040167438A1 (en) * 2003-02-26 2004-08-26 Sharrow James S. Reinforced medical device
US7758520B2 (en) * 2003-05-27 2010-07-20 Boston Scientific Scimed, Inc. Medical device having segmented construction
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
EP2316328B1 (en) 2003-09-15 2012-05-09 Super Dimension Ltd. Wrap-around holding device for use with bronchoscopes
DE602004022432D1 (en) 2003-09-15 2009-09-17 Super Dimension Ltd SYSTEM FROM ACCESSORIES FOR USE WITH BRONCHOSCOPES
US20050085895A1 (en) * 2003-10-15 2005-04-21 Scimed Life Systems, Inc. RF-based markers for MRI visualization of medical devices
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US7567834B2 (en) 2004-05-03 2009-07-28 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
US20050251031A1 (en) * 2004-05-06 2005-11-10 Scimed Life Systems, Inc. Apparatus and construction for intravascular device
US7496397B2 (en) 2004-05-06 2009-02-24 Boston Scientific Scimed, Inc. Intravascular antenna
WO2006043273A2 (en) * 2004-10-18 2006-04-27 Topspin Medical (Israel) Ltd. Probe with asymmetric balloon
US7976518B2 (en) 2005-01-13 2011-07-12 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US20100191306A1 (en) * 2006-01-25 2010-07-29 Greatbatch Ltd. Transient voltage suppression circuit for an implanted rfid chip
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US8903505B2 (en) 2006-06-08 2014-12-02 Greatbatch Ltd. Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices
US8197494B2 (en) 2006-09-08 2012-06-12 Corpak Medsystems, Inc. Medical device position guidance system with wireless connectivity between a noninvasive device and an invasive device
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
ES2651898T3 (en) 2007-11-26 2018-01-30 C.R. Bard Inc. Integrated system for intravascular catheter placement
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
WO2009088936A1 (en) * 2008-01-03 2009-07-16 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Mri guidewire
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US10080889B2 (en) 2009-03-19 2018-09-25 Greatbatch Ltd. Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD
US9108066B2 (en) 2008-03-20 2015-08-18 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
WO2009122273A2 (en) 2008-04-03 2009-10-08 Superdimension, Ltd. Magnetic interference detection system and method
WO2009147671A1 (en) 2008-06-03 2009-12-10 Superdimension Ltd. Feature-based registration method
US8218847B2 (en) 2008-06-06 2012-07-10 Superdimension, Ltd. Hybrid registration method
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
EP2313143B1 (en) 2008-08-22 2014-09-24 C.R. Bard, Inc. Catheter assembly including ecg sensor and magnetic assemblies
US8165658B2 (en) 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US8447414B2 (en) 2008-12-17 2013-05-21 Greatbatch Ltd. Switched safety protection circuit for an AIMD system during exposure to high power electromagnetic fields
US8095224B2 (en) 2009-03-19 2012-01-10 Greatbatch Ltd. EMI shielded conduit assembly for an active implantable medical device
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
JP5859431B2 (en) 2009-06-08 2016-02-10 エムアールアイ・インターヴェンションズ,インコーポレイテッド MRI guided intervention system capable of tracking flexible internal devices and generating dynamic visualization in near real time
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
EP3542713A1 (en) 2009-06-12 2019-09-25 Bard Access Systems, Inc. Adapter for a catheter tip positioning device
US8396532B2 (en) 2009-06-16 2013-03-12 MRI Interventions, Inc. MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
WO2011019760A2 (en) 2009-08-10 2011-02-17 Romedex International Srl Devices and methods for endovascular electrography
US8494614B2 (en) 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
US8494613B2 (en) 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US8882763B2 (en) 2010-01-12 2014-11-11 Greatbatch Ltd. Patient attached bonding strap for energy dissipation from a probe or a catheter during magnetic resonance imaging
BR112012019354B1 (en) 2010-02-02 2021-09-08 C.R.Bard, Inc METHOD FOR LOCATION OF AN IMPLANTABLE MEDICAL DEVICE
JP5980201B2 (en) 2010-05-28 2016-08-31 シー・アール・バード・インコーポレーテッドC R Bard Incorporated Insertion guidance system for needles and medical components
EP2912999B1 (en) 2010-05-28 2022-06-29 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US10582834B2 (en) 2010-06-15 2020-03-10 Covidien Lp Locatable expandable working channel and method
CN103228219B (en) 2010-08-09 2016-04-27 C·R·巴德股份有限公司 For support and the covered structure of ultrasound probe head
MX338127B (en) 2010-08-20 2016-04-04 Bard Inc C R Reconfirmation of ecg-assisted catheter tip placement.
WO2012058461A1 (en) 2010-10-29 2012-05-03 C.R.Bard, Inc. Bioimpedance-assisted placement of a medical device
US10596369B2 (en) 2011-03-01 2020-03-24 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device
US10350421B2 (en) 2013-06-30 2019-07-16 Greatbatch Ltd. Metallurgically bonded gold pocket pad for grounding an EMI filter to a hermetic terminal for an active implantable medical device
US11198014B2 (en) 2011-03-01 2021-12-14 Greatbatch Ltd. Hermetically sealed filtered feedthrough assembly having a capacitor with an oxide resistant electrical connection to an active implantable medical device housing
US9931514B2 (en) 2013-06-30 2018-04-03 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US9427596B2 (en) 2013-01-16 2016-08-30 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10272252B2 (en) 2016-11-08 2019-04-30 Greatbatch Ltd. Hermetic terminal for an AIMD having a composite brazed conductive lead
RU2609203C2 (en) 2011-07-06 2017-01-30 Си.Ар. Бард, Инк. Determination and calibration of needle length for needle guidance system
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
US9028441B2 (en) 2011-09-08 2015-05-12 Corpak Medsystems, Inc. Apparatus and method used with guidance system for feeding and suctioning
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
US9427172B2 (en) * 2011-12-30 2016-08-30 Mediguide Ltd. Roll detection and six degrees of freedom sensor assembly
EP2861153A4 (en) 2012-06-15 2016-10-19 Bard Inc C R Apparatus and methods for detection of a removable cap on an ultrasound probe
USRE46699E1 (en) 2013-01-16 2018-02-06 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
EP3073910B1 (en) 2014-02-06 2020-07-15 C.R. Bard, Inc. Systems for guidance and placement of an intravascular device
US9810751B2 (en) 2014-02-24 2017-11-07 Northrop Grumman Systems Corporation Customized magnetic susceptibility materials
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
WO2016210325A1 (en) 2015-06-26 2016-12-29 C.R. Bard, Inc. Connector interface for ecg-based catheter positioning system
US9962134B2 (en) 2015-10-28 2018-05-08 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing X-ray dosage of a patient
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US10249415B2 (en) 2017-01-06 2019-04-02 Greatbatch Ltd. Process for manufacturing a leadless feedthrough for an active implantable medical device
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools
WO2019109063A2 (en) 2017-12-03 2019-06-06 Paul Ram H Jr Mri compatible interventional wireguide
US10912945B2 (en) 2018-03-22 2021-02-09 Greatbatch Ltd. Hermetic terminal for an active implantable medical device having a feedthrough capacitor partially overhanging a ferrule for high effective capacitance area
US10905888B2 (en) 2018-03-22 2021-02-02 Greatbatch Ltd. Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer
WO2020081373A1 (en) 2018-10-16 2020-04-23 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US12089902B2 (en) 2019-07-30 2024-09-17 Coviden Lp Cone beam and 3D fluoroscope lung navigation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091577A1 (en) * 1982-03-25 1983-10-19 Kunke, Stefan, Dr.med. Apparatus for the determination of the position of a probe
DE3937052A1 (en) * 1988-11-11 1990-05-17 Instrumentarium Corp Operation instrument for examining object - copes with e.g. biopsy tube with detection by NMR process
US5271400A (en) * 1992-04-01 1993-12-21 General Electric Company Tracking system to monitor the position and orientation of a device using magnetic resonance detection of a sample contained within the device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572198A (en) * 1984-06-18 1986-02-25 Varian Associates, Inc. Catheter for use with NMR imaging systems
GB8600665D0 (en) * 1986-01-13 1986-02-19 Longmore D B Surgical catheters
US4960106A (en) * 1987-04-28 1990-10-02 Olympus Optical Co., Ltd. Endoscope apparatus
US5170789A (en) * 1987-06-17 1992-12-15 Perinchery Narayan Insertable NMR coil probe
DE3723951A1 (en) * 1987-07-20 1989-02-02 Rheydt Kabelwerk Ag ARRANGEMENT FOR TRANSMITTING HIGH-FREQUENCY SIGNALS
US4865047A (en) * 1988-06-30 1989-09-12 City Of Hope Hyperthermia applicator
US5348010A (en) * 1989-02-24 1994-09-20 Medrea, Inc., Pennsylvania Corp., Pa. Intracavity probe and interface device for MRI imaging and spectroscopy
ATE129395T1 (en) * 1989-02-27 1995-11-15 Medrad Inc PROBE FOR BODY CAVIES AND INTERFACE DEVICE FOR MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY.
DE3926934A1 (en) * 1989-08-16 1991-02-21 Deutsches Krebsforsch HYPERTHERMIC MICROWAVE APPLICATOR FOR WARMING A LIMITED ENVIRONMENT IN A DISSIPATIVE MEDIUM
US5427103A (en) * 1992-06-29 1995-06-27 Olympus Optical Co., Ltd. MRI apparatus for receiving nuclear-magnetic resonance signals of a living body
US5347221A (en) * 1993-03-09 1994-09-13 Rubinson Kenneth A Truncated nuclear magnetic imaging probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091577A1 (en) * 1982-03-25 1983-10-19 Kunke, Stefan, Dr.med. Apparatus for the determination of the position of a probe
DE3937052A1 (en) * 1988-11-11 1990-05-17 Instrumentarium Corp Operation instrument for examining object - copes with e.g. biopsy tube with detection by NMR process
US5271400A (en) * 1992-04-01 1993-12-21 General Electric Company Tracking system to monitor the position and orientation of a device using magnetic resonance detection of a sample contained within the device

Also Published As

Publication number Publication date
JP2955484B2 (en) 1999-10-04
ES2114626T3 (en) 1998-06-01
ATE163525T1 (en) 1998-03-15
EP0673621A1 (en) 1995-09-27
EP0673621B1 (en) 1998-03-04
DE69408826D1 (en) 1998-04-09
DE69408826T2 (en) 1998-07-23
JPH07255694A (en) 1995-10-09
US5792055A (en) 1998-08-11
CA2141271C (en) 1999-03-23
AU1490695A (en) 1995-10-19
CA2141271A1 (en) 1995-09-19
DK0673621T3 (en) 1998-11-30

Similar Documents

Publication Publication Date Title
AU685221B2 (en) A medical appliance for use in magnetic resonance imaging procedures
JP3854667B2 (en) Magnetic resonance system and magnetic resonance imaging and tracking system
EP0864102B1 (en) Invasive device for use in a magnetic resonance imaging apparatus
EP1018936B1 (en) Magnetically directable remote guidance systems, and methods of use thereof
US6171240B1 (en) MRI RF catheter coil
EP2334364B1 (en) Catheter for magnetic resonance guided procedures
US4932411A (en) Intervivo coil for a nuclear magnetic resonance tomographic apparatus
US4572198A (en) Catheter for use with NMR imaging systems
JP3440114B2 (en) Tracking system for monitoring instrument position and orientation using multiple magnetic resonance detection
US20060106303A1 (en) Interventional devices for chronic total occlusion recanalization under MRI guidance
EP2734853B1 (en) Position marker for use in an mri apparatus
US20070106148A1 (en) Electronic circuits to improve the sensitivity of magnetic resonance tracking catheters and intraluminal RF coils
WO2003041785A2 (en) Ceramic reinforcement members for mri devices
JPH0614905A (en) System and method for tracking position of apparatus by magnetic resonance detection of sample in apparatus
USRE40587E1 (en) Antenna for magnetic resonance imaging and method of use
US20050261569A1 (en) Catheter for use in mr imaging
US20030114747A1 (en) Recanalization of occluded vessel using magnetic resonance guidance
EP1785739A1 (en) An elongate, segmented, RF safe device for use with an MRI machine

Legal Events

Date Code Title Description
MK14 Patent ceased section 143(a) (annual fees not paid) or expired