AU680679B2 - Extrudable AL-MG-SI alloys - Google Patents
Extrudable AL-MG-SI alloys Download PDFInfo
- Publication number
- AU680679B2 AU680679B2 AU75046/94A AU7504694A AU680679B2 AU 680679 B2 AU680679 B2 AU 680679B2 AU 75046/94 A AU75046/94 A AU 75046/94A AU 7504694 A AU7504694 A AU 7504694A AU 680679 B2 AU680679 B2 AU 680679B2
- Authority
- AU
- Australia
- Prior art keywords
- alloy
- alloys
- extrusion
- composition
- extruded section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Extrusion Of Metal (AREA)
- Powder Metallurgy (AREA)
- Glass Compositions (AREA)
Abstract
High strength high extrudability Al-Mg-Si alloys have the composition in weight %: Mg 0.25-0.40; Si 0.60-0.90; Fe up to 0.35; Mn up to 0.35 preferably 0.10-0.25.
Description
-1 EXTRUDABLE Al-Mg-Si ALLOYS This invention concerns intermediate strength extrudable Al-Mg-Si alloys, in the 6000 series of the Aluminum Association Register. The dilute Al-Mg-Si alloys, with levels of the two primary alloying additions at less than approximately 0.50 are used extensively in extruded form in many market sectors, including architectural (doors, window frames, etc.) and structural applications. These alloys generally lie within the AA6063 specification, which has compositional limits for Mg and Si of 0.45 to 0.90 wt.% and 0.20 to 0.60 wt.% respectively. These alloys are capable of producing complex sections which are readily air quenchable off the press and which may be extruded at high exit speeds whilst maintaining a very high quality surface finish; attributes which are associated with high extrudability.
In one aspect, this invention is concerned with alloys of composition in weight Mg 0.25 0.4C Si 0.60 0.90 Mn 0.10 to 0.35 Fe up to 0.35 Others up to 0.05 each, 0.15 total Balance Al.
Reference is directed to Figure 1 of the accompanying drawings, which is a compositional plot showing the Mg and Si specification ranges for various alloys in the Aluminum Association specification. The filled circle shows the nominal composition of alloys according to the present invention, and the rectangle S round it corresponds to the above definition. It can be AE SDEO
I
WO 95/06759 PCT/GB94/01880 2 seen that the above defined alloy composition does not overlap with any of the AA designated alloys shown.
The alloys of the present invention are high excess Si alloys. The nominal composition of these alloys (marked by the filled circle in Figure 1) is set out in the table below, together with the nominal compositions of AA6106 which is an excess Si alloy, and of AA6063A which is a balanced alloy. An alloy of balanced composition is one in which just enough Si is present to combine with all the Mg, Fe, Mn as Mg 2 Si and Al(Fe,Mn)Si.
Nominal Composition Alloy Si Mg Fe Invention 0.70 0.35 0.2 AA6106 0.6 0.5 0.2 AA6063A 0.5 0.63 0.2 The alloys of this invention have a number of advantages. It should be understood that not all the stated advantages are necessarily achieved by all the alloys. Also, a particular property may not be an improvement on some other alloy. But most of the advantages are possessed by most alloys according to the invention, and it is this combination that represents a significant advance in the art: Extrusion ingots of the alloys are capable of being extruded at relatively high speeds, typically around 75% of the maximum extrusion speed of AA6063 alloys.
I II~R WO 95/06759 PCT/GB94/01880 3 The extrusion pressures required are lower than for AA6063 alloys, which reduces equipment and operating costs.
The extrusions are air quenchable.
The extrusions have a surface quality which is acceptable for most architectural applications.
By particular means, e.g. the addition of Mn as discussed below, the surface quality of the extrusions can be made to be better than for any related alloy compositions.
The extrusions are capable of being aged to a tensile strength in excess of 240 MPa, often in excess of 250 MPa, with acceptable toughness.
A two-stage or ramped ageing process is particularly effective in improving aged properties.
The Mg content of the invention alloy is set at 0.25 0.40%. If the Mg content is too low, it is difficult to achieve the required strength in the aged extrusions. Extrusion pressure increases with Mg content, and becomes unacceptable at high Mg contents.
The Si content is set at 0.6 If the Si content is too low, the alloy strength is adversely affected, while if the Si content is too high, extrudability may be reduced. The function of the Si is to strengthen the alloy without adversely affecting extrudability, high temperature flow stress, or anodising and corrosion characteristics.
Fe is not a desired component of the alloy, but its presence is normally unavoidable. An upper concentration limit is set at 0.35%, and a preferred range at 0.15 0.35% (because alloys containing less Fe are more expensive). In the as-cast alloy ingot, Fe is present in the form of large plate-like P-AlFeSi particles. Preferably the extrusion ingot is homogenised to convert P-AlFeSi to the a-AlFeSi form.
T I -4 It is known however that excess Si (over the amount required to form Mg 2 Si) stabilises the S-AlFeSi phase, which has a detrimental effect on extrudability and in particular on extrusion surface quality. Where extrusion surface quality is important, this problem may be avoided by homogenising the extrusion ingot under special conditions or by modifying the alloy composition.
Mn is included in the alloys in order to improve extrusion surface quality. Mn acts to accelerate the i to a-AlFeSi transformation during homogenisation, so that the resulting homogenised ingot' has improved extrudability, that is to say improved extrusion surface quality. Any Mn addition is beneficial in this way and improvements may be seen with additions as low as 0.05% or 0.07%. Above 0.35% Mn, further improvements are not seen, or are not commensurate with the added cost, and the extrudates may show increased quench sensitivity. A preferred Mn content is 0.10 0.25%.
In the age-hardened extrusions, it is apparent that some of the Si is present as Mg 2 Si and some more is present as AlFeSi. In preferred compositions according to the invention, the excess Si, over the amount required to combine with all the Mg and Fe present, is at least 0.3%.
An extrusion ingot of the alloy of the invention may be made by any convenient casting technique, e.g. by a DC casting process preferably by means of a short mould or hot-top DC process. The Fe is preferably present as an insoluble secondary phase in the form of fine S-AlFeSi platelets preferably not more than 15 Am in length or, if in the a form, free from script and coarse eutectic particles.
The as-cast extrusion ingot is homogenised, partly to bring the soluble secondary magnesium-silicon NW4?0910 skeo ~U -B I O WO 95/06759 PCT/GB94/01880 5 phases into suitable form, and partly to convert P-AlFeSi particles into a-AiFeSi particles, preferably below 15 pm long and with 90% below 6 pm long.
Homogenisation typically involves heating the ingot at 550 600'C for 30 minutes to 24 hours, with higher temperatures requiring shorter hold times. As noted above, optimum homogenisation conditions may depend on the presence and concentration of added Mn.
The homogenised extrusion ingot is hot extruded, under conditions which may be conventional.
The emerging extrusion is quenched, either by water or forced air or more preferably in still air, and subjected to an ageing process in order to develop desired strength and toughness properties.
Ageing typically involves heating the extrusion to an elevated temperature in the range 150 200'C, and holding at that temperature for 1 48 hours, with higher temperatures requiring shorter hold times. A surprising feature of this invention is that the response of the extrusion to this ageing process depends significantly on the rate of heating.
A preferred rate of heating is from 10 100"C, particularly 10 70"C, per hour; if the heating rate is too slow, low throughput results in increased costs; if the heating rate is too high, the mechanical properties developed are less than optimum. An effect equivalent to slow heating can be achieved by a twostage heating schedule, with a hold temperature typically in the range of 80 140"C, for a time sufficient to give an overall heating rate within the above range.
When aged to peak strength, extrusions are typically found to have an ultimate tensile strength of at least 240 MPa, often greater than 250 MPa, with acceptable toughness.
Reference is directed to the accompanying s~ ~Q A _ll~q~Q* WO 95/06759 PCT/GB94/01880 6 drawings in which:- Figure 1 (already referred to) is a compositional plot showing the Aluminum Association specification ranges for Mg and Si for various alloys alongside the alloys of the present invention (the blank rectangle containing the filled circle).
Figure 2 is a bar diagram showing the effect of alloy composition and homogenisation temperature on the maximum extrusion pressure of 250 MPa target alloys extruded into a 5 x 20 mm section.
Figure 3 is a bar diagram showing the effect of alloy composition and homogenisation temperature on the surface roughness measurement of 250 MPa target alloys extruded into a 5 x 20 mm section.
Figure 4 is a bar diagram showing the effect of all-y composition and homogenisation temperature on gioss (reflectivity) measurement of 250 MPa target alloys extruded into 5 x 20 mm section.
Figure 5 is a bar diagram showing the effect of alloy composition on the mechanical properties of 250 MPa target alloys, which had been homogenised for 2 hours at 580'C, extruded into a 5 x 20 mm section, forced air quenched, and aged for 7 hours at 175'C.
The properties were measured at the back of the extrusion.
Figure 6 is a graph showing the effect of ramp rate to the ageing temperature (5 hours at 185'C) on the tensile strength of two dilute 6000 series alloys, including a very high excess Si alloy containing no Mn and having a composition within the scope of the present invention.
Figure 7 is a bar diagram showing surface roughness of the alloys extruded in Example 4.
Figure 8 is a bar diagram showing tensile properties of the alloys extruded in Example 4.
WO 95/06759 PCT/GB94/01880 7 EXAMPLE 1 The invention has been tested in the laboratory. Extrusion trials were carried out using an experimental extrusion press, in which the alloys given in Table 1 below were extruded. These alloys represent a low Mg-containing alloy of the invention, with and without an addition of 0.12% Mn, together with typical AA6063 and AA6106 compositions, again with and without an addition of about 0.12% Mn. The nominal alloy composition of the invention is shown as a filled circle in the compositional plot of Figure 1.
Extrusion ingots were DC cast and were homogenised for 2 hours at 570'C or 580'C. They were then hot extruded.
Extrusion pressure was recorded, and maximum extrusion pressure data for the alloys are given in Figure 2. Thus, this data shows that the extrusion pressure of the alloy type of the invention is significantly lower than that of the AA6106 and AA6063A alloys. The addition of Mn to the base composition may reduce the extrusion pressure still further, but is found to be dependent upon the precise homogenisation conditions used (see Figure 2).
The surface quality of the extrudate was assessed using both profilometry and Gloss (reflectivity) measurements, and the data obtained using these techniques are given in Figures 3 and 4.
From Figure 3, it can be seen that the lowest value of mean surface roughness for a given homogenisation condition, is produced in extrudate from the optimum alloy composition of the invention (the low Mg, Mncontaining alloy). The same alloy also gives the highest Gloss measurement, again for a given' homogenisation treatment. Therefore, the alloy of the invention has been shown to have the best surface quality of the alloys evaluated.
1_ li_ WO 95/06759 PCT/GB94/01880 8 The tensile properties and Kahn tear toughness of the extrudate from each alloy was evaluated following "peak" ageing (7 hours at 175'C), and the relevant data are shown in Figure 5. It can be seen from this figure that the tensile properties and the toughness of the alloy of the invention are equivalent to those of the AA6106 and AA6063A alloys.
EXAMPLE 2 An alloy of composition: 0.65Si-0.33Mg- 0.19Fe-0.08Mn was evaluated in extrusion trials. This alloy showed reduced extrudability as compared with "conventional" AA6060 alloys, but the maximum attainable extrusion speed was still relatively high (up to -80 m/min) in comparison with AA6063 alloys.
The application of two stage ageing practice to extrudate of this alloy showed that the tensile properties could be improved significantly as compared with material aged "conventionally" (see Table 2).
EXAMPL' 3 The application of a ramped ageing practice to extrusions made of two dilute 6000 series alloys is shown in Figure 6, in which the response of the extrusions to slow ramp rates is demonstrated. The composition of the alloys were:- Excess Si AA6060 alloy: 0.35 Mg 0.52 Si 0.20 Fe.
Very high excess Si alloy: 0.35 Mg 0.70 Si 0.20 Fe.
EXAMPLE 4 The invention has been tested on a commercial scale. Extrusion trials were carried out using 180 mm diameter billets. The compositions of the trial alloys are given in Table 3.
c aaL~lp~~~~p WO 95/06759 PCT/GB94/01880 9 Surface quality of the extrusions is shown in Figure 7. The experimental alloy of the invention gives a "less rough" surface than either of the other two alloys.
Tensile properties of the extrusions, after ageing to peak strength, are set out in Figure 8. The experimental alloy of the invention has properties equivalent to the AA6063A alloy, and their tensile strength well in excess of 250 MPa with acceptable toughness.
I I~U~U WO 95/06759 WO 9506759PCTGJ394O 1880 10 Alloy SI Mg Fe Mn 1 0.74 0.34 0.20 2 0.73 0.33 0.20 0.12 3 0.58 0.49 0.20 4 0.60 0.49 0.19 t 0.49 0.63 0.18 61 0.51 0.64 0.19 0.11 High excess SI Ex lesSS ItIA6106 BnlIanAed' AA6063A Table 1 Analysed compositions of the alloys cast in the development programme for an alloy capable of achieving a tensile strength of Ageing Practice 3 'PS UITS, elongation Toughness.
.1 (MPa) (h k/ 2 216 245 10.7 185 0 C (8 hr cycle) 3 hrsat20 0 C+ 229 259 104114 hrs at 1 85 0
C
Table 2 Tensile properties and Kahn tear toughness of a highi excess Si alloy C.65M-.33Mg-O.l9Fe-O.OSMn, following "conventional" and ramped ageing.
C-OMMERCIAL TRIAL,- ALLO COMPOSITON 0.51 0.43 0.17 0.012 0.024 0.001 0.62 0.51 0.16 0.010 0.032 0.001 1 0.36 0.69 0.19 0.004 0.12 0.001 Table 3 00
Claims (13)
1. An extrusion alloy of composition in weight Mg 0.25 0.40 Si 0.60 0.90 Mn 0.10 -0.35 Fe up to 0.35 Others up to 0.05 each, 0.15 total Balance Al.
2. An extrusion alloy as claimed in claim 1, wherein the Si content is more than 0.30% by weight greater than is required to combine with all the Mg and Fe present. is1
3. An extrusion alloy as claimed in claim 1 or claim 2 comprising Fe 0.15-0.35 Mn 0.10-0.25.
4. An extrusion alloy as claimed in claim 1 comprising Mn 0.10-0.15.
5. An extrusion alloy of composition in weight Mg 0.25 0.40 Si 0.60 0.90 Mn up to 0.35 Fe 0.15-0.35 Others up to 0.05 each, 0.15 total Al balance.
6. An alloy as claimed in claim 5, wherein the Si contents is more than 0.30% by weight greater than is required to combine with all the Mg and Fe present. -13-
7.
8. in which Fe An alloy as claimed in claim 5 or claim 6, comprising Mn 0.10 0.35. An extruded section of the following composition in weight is present as c-AIFeSi:- Mg 0.25 0.40 Si 0.60 0.90 Mn up to 0.35 Fe up to 0.35 Others up to 0.05 each, 0.15 total A; balance. An extruded section as claimed in claim 8 comprising: Fe 0.15-0.35. An extruded section as claimed in claim 8 or claim 9, *e t 9 4. *I *et .5.
9 .9i 9 S r 099
10. comprising: Mn 0.10 0.35.
11. An extruded section made by extruding the extrusion alloy of any one of claims 1 to 7.
12. An extruded section as claimed in any one of claims 8 to 11 which has after ageing an ultimate tensile strength of at least 240 MPa.
13. An extruded section as claimed in any one of claims 8 to 12 which has been thermally aged, wherein the rate of heating for ageing was 100°C/hr. DATED this 27th day of May, 1997. ALCAN INTERNATIONAL LIMITED WATERMARK PATENT TRADEMARK ATTORNEYS 290 BURWOOD ROAD HAWTHORN VICTORIA 3122 AUSTRALIA SKP:RJD:GL
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB939318041A GB9318041D0 (en) | 1993-08-31 | 1993-08-31 | Extrudable a1-mg-si alloys |
GB9318041 | 1993-08-31 | ||
PCT/GB1994/001880 WO1995006759A1 (en) | 1993-08-31 | 1994-08-30 | EXTRUDABLE Al-Mg-Si ALLOYS |
Publications (2)
Publication Number | Publication Date |
---|---|
AU7504694A AU7504694A (en) | 1995-03-22 |
AU680679B2 true AU680679B2 (en) | 1997-08-07 |
Family
ID=10741279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU75046/94A Ceased AU680679B2 (en) | 1993-08-31 | 1994-08-30 | Extrudable AL-MG-SI alloys |
Country Status (12)
Country | Link |
---|---|
US (1) | US20090047172A1 (en) |
EP (1) | EP0716716B2 (en) |
JP (1) | JPH09501987A (en) |
AT (1) | ATE169689T1 (en) |
AU (1) | AU680679B2 (en) |
BR (1) | BR9407462A (en) |
CA (1) | CA2169968C (en) |
DE (1) | DE69412491T3 (en) |
GB (1) | GB9318041D0 (en) |
NO (1) | NO960808L (en) |
NZ (1) | NZ271423A (en) |
WO (1) | WO1995006759A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0968315B1 (en) * | 1997-03-21 | 2001-11-14 | Alcan International Limited | Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES |
US6440359B1 (en) | 1997-03-21 | 2002-08-27 | Alcan International Limited | Al-Mg-Si alloy with good extrusion properties |
SI1155156T1 (en) * | 1999-02-12 | 2003-10-31 | Norsk Hydro Asa | Aluminium alloy containing magnesium and silicon |
HU226904B1 (en) * | 1999-02-12 | 2010-01-28 | Norsk Hydro As | Aluminium alloy containing magnesium and silicon |
BG65068B1 (en) * | 2001-08-09 | 2007-01-31 | Norsk Hydro Asa | Method for the treatment of alluminium alloy containing magnesium and silicon |
NO20034731D0 (en) | 2003-10-22 | 2003-10-22 | Norsk Hydro As | aluminum Alloy |
WO2006056481A1 (en) * | 2004-11-25 | 2006-06-01 | Corus Aluminium Nv | Aluminium alloy sheet for automotive applications |
JP5153659B2 (en) * | 2009-01-09 | 2013-02-27 | ノルスク・ヒドロ・アーエスアー | Method for treating aluminum alloy containing magnesium and silicon |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE906107A (en) * | 1986-12-30 | 1987-04-16 | Alusuisse | Fabrication aluminium alloy - containing iron, vanadium, copper, manganese |
EP0480402A1 (en) * | 1990-10-09 | 1992-04-15 | Sumitomo Light Metal Industries Limited | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1333327A (en) * | 1971-05-25 | 1973-10-10 | Alcan Res & Dev | Aluminium alloys |
GB1430758A (en) * | 1972-08-23 | 1976-04-07 | Alcan Res & Dev | Aluminium alloys |
JPS6049707B2 (en) * | 1977-08-16 | 1985-11-05 | 住友アルミニウム製錬株式会社 | Manufacturing method for thin-walled extruded sections |
US4256488A (en) * | 1979-09-27 | 1981-03-17 | Swiss Aluminium Ltd. | Al-Mg-Si Extrusion alloy |
DE3243371A1 (en) * | 1982-09-13 | 1984-03-15 | Schweizerische Aluminium AG, 3965 Chippis | ALUMINUM ALLOY |
JPS61136650A (en) * | 1984-12-05 | 1986-06-24 | Sumitomo Alum Smelt Co Ltd | Medium strength aluminum alloy having superior extrudability and bendability |
US4729939A (en) * | 1985-07-25 | 1988-03-08 | Nippon Light Metal Company Limited | Aluminum alloy support for lithographic printing plates |
GB8524077D0 (en) * | 1985-09-30 | 1985-11-06 | Alcan Int Ltd | Al-mg-si extrusion alloy |
US5223050A (en) * | 1985-09-30 | 1993-06-29 | Alcan International Limited | Al-Mg-Si extrusion alloy |
US4808247A (en) * | 1986-02-21 | 1989-02-28 | Sky Aluminium Co., Ltd. | Production process for aluminum-alloy rolled sheet |
FR2601040B1 (en) * | 1986-07-07 | 1988-09-02 | Cegedur | SOLDERABLE AND WELDABLE ALUMINUM ALLOY AND MANUFACTURING METHOD THEREOF |
JPH07197219A (en) * | 1993-12-28 | 1995-08-01 | Furukawa Electric Co Ltd:The | Production of aluminum alloy sheet for forming |
US5571347A (en) * | 1994-04-07 | 1996-11-05 | Northwest Aluminum Company | High strength MG-SI type aluminum alloy |
US5525169A (en) * | 1994-05-11 | 1996-06-11 | Aluminum Company Of America | Corrosion resistant aluminum alloy rolled sheet |
US6440359B1 (en) * | 1997-03-21 | 2002-08-27 | Alcan International Limited | Al-Mg-Si alloy with good extrusion properties |
-
1993
- 1993-08-31 GB GB939318041A patent/GB9318041D0/en active Pending
-
1994
- 1994-08-30 CA CA002169968A patent/CA2169968C/en not_active Expired - Fee Related
- 1994-08-30 JP JP7508000A patent/JPH09501987A/en not_active Expired - Lifetime
- 1994-08-30 DE DE69412491T patent/DE69412491T3/en not_active Expired - Lifetime
- 1994-08-30 AU AU75046/94A patent/AU680679B2/en not_active Ceased
- 1994-08-30 AT AT94924943T patent/ATE169689T1/en active
- 1994-08-30 BR BR9407462A patent/BR9407462A/en not_active IP Right Cessation
- 1994-08-30 EP EP94924943A patent/EP0716716B2/en not_active Expired - Lifetime
- 1994-08-30 NZ NZ271423A patent/NZ271423A/en not_active IP Right Cessation
- 1994-08-30 WO PCT/GB1994/001880 patent/WO1995006759A1/en active IP Right Grant
-
1996
- 1996-02-28 NO NO960808A patent/NO960808L/en not_active Application Discontinuation
-
2008
- 2008-10-15 US US12/288,022 patent/US20090047172A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE906107A (en) * | 1986-12-30 | 1987-04-16 | Alusuisse | Fabrication aluminium alloy - containing iron, vanadium, copper, manganese |
EP0480402A1 (en) * | 1990-10-09 | 1992-04-15 | Sumitomo Light Metal Industries Limited | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability |
Also Published As
Publication number | Publication date |
---|---|
EP0716716A1 (en) | 1996-06-19 |
NO960808D0 (en) | 1996-02-28 |
AU7504694A (en) | 1995-03-22 |
DE69412491D1 (en) | 1998-09-17 |
BR9407462A (en) | 1996-11-12 |
JPH09501987A (en) | 1997-02-25 |
WO1995006759A1 (en) | 1995-03-09 |
NZ271423A (en) | 1997-11-24 |
CA2169968A1 (en) | 1995-03-09 |
EP0716716B2 (en) | 2004-12-29 |
US20090047172A1 (en) | 2009-02-19 |
CA2169968C (en) | 2006-08-29 |
ATE169689T1 (en) | 1998-08-15 |
DE69412491T3 (en) | 2005-07-07 |
EP0716716B1 (en) | 1998-08-12 |
GB9318041D0 (en) | 1993-10-20 |
NO960808L (en) | 1996-02-28 |
DE69412491T2 (en) | 1998-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5133931A (en) | Lithium aluminum alloy system | |
US5560789A (en) | 7000 Alloy having high mechanical strength and a process for obtaining it | |
US20090047172A1 (en) | Extrudable Al-Mg-Si alloys | |
US4305763A (en) | Method of producing an aluminum alloy product | |
CA2657331C (en) | A high strength, heat treatable aluminum alloy | |
US5503690A (en) | Method of extruding a 6000-series aluminum alloy and an extruded product therefrom | |
US4840683A (en) | Al-Cu-Li-Mg alloys with very high specific mechanical strength | |
CA2135790C (en) | Low density, high strength al-li alloy having high toughness at elevated temperatures | |
JP2004225160A (en) | Cast alloy | |
KR20050081168A (en) | Casting of an aluminium alloy | |
US5162065A (en) | Aluminum alloy suitable for pistons | |
US20040261916A1 (en) | Dispersion hardenable Al-Ni-Mn casting alloys for automotive and aerospace structural components | |
US6440359B1 (en) | Al-Mg-Si alloy with good extrusion properties | |
US5055255A (en) | Aluminum alloy suitable for pistons | |
US6565679B1 (en) | Extrudable aluminum alloys | |
US20080163960A1 (en) | Aluminium alloy and extrusion | |
US20170002448A1 (en) | Aluminum alloy combining high strength and extrudability, and low quench sensitivity | |
EP0968315B1 (en) | Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES | |
JPS6135262B2 (en) | ||
US1911080A (en) | Aluminum alloy | |
JPH10298724A (en) | Production of al-mg-si alloy extruded material excellent in surface roughness | |
JPS63161136A (en) | Aluminum alloy for bomb | |
WO2023220830A1 (en) | Aluminum alloy with improved strength and ductility | |
RU2090643C1 (en) | Aluminium-base alloy | |
JPH0741897A (en) | High strength aluminum alloy for extrusion |