JPS6049707B2 - Manufacturing method for thin-walled extruded sections - Google Patents

Manufacturing method for thin-walled extruded sections

Info

Publication number
JPS6049707B2
JPS6049707B2 JP9838777A JP9838777A JPS6049707B2 JP S6049707 B2 JPS6049707 B2 JP S6049707B2 JP 9838777 A JP9838777 A JP 9838777A JP 9838777 A JP9838777 A JP 9838777A JP S6049707 B2 JPS6049707 B2 JP S6049707B2
Authority
JP
Japan
Prior art keywords
thin
extruded
extrusion
amount
walled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9838777A
Other languages
Japanese (ja)
Other versions
JPS5432111A (en
Inventor
和彦 小川
郁夫 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Aluminum Smelting Co
Original Assignee
Sumitomo Aluminum Smelting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Aluminum Smelting Co filed Critical Sumitomo Aluminum Smelting Co
Priority to JP9838777A priority Critical patent/JPS6049707B2/en
Publication of JPS5432111A publication Critical patent/JPS5432111A/en
Publication of JPS6049707B2 publication Critical patent/JPS6049707B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Description

【発明の詳細な説明】 本発明は、薄肉押出杉林を高速て押出す際の押出加工
性、特に押出杉林の表面仕上り状態を改善したアルミニ
ウム合金薄肉押出杉林の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an aluminum alloy thin-walled extruded cedar forest that improves the extrusion processability when extruding the thin-walled extruded cedar forest at high speed, particularly the surface finish of the extruded cedar forest.

従来、押出杉材用アルミニウム合金として、アルミニ
ウム−マグネシウム−ケイ素系の合金、例えばJIS6
063合金が一般に用いられているが、各種用途の拡大
に伴い、押出生産性の向上や、押出杉林の軽量・薄肉化
が要求されてきており、この種の合金ではおのずと押出
時の各種条件に限界がある。すなわち一般的にはその押
出杉林あるいはそれから得られる製品に要求される良好
な表面状態を維持するために、形材肉厚が1.0wL程
度の中実材の生産においては、適正な最高押出速度は3
0〜40n−L/minであり、中空材の生産にはさら
に遅い押出速度を用いなければならないのが現状である
。これ以上の高速押出条件を用いると、一時的に押出可
能であつても、押出ダイスのベアリング劣化が激しいた
め、押出杉林の表面状態を著しく劣化させてしまい、ま
たこれを避けるためには、押出ダイスの取替またはダイ
スベアリング面の研磨を著しく頻繁に行なわなければな
らず、押出生産性の面で不利となる。 一方、6063
合金に特殊な元素を添加した高速押出可能な合金も提案
されているが、その特殊な元素の濃度管理は容易でなく
、またその添加元素によつて形材の性状や用途が限定さ
れてしまうことが多い。
Conventionally, aluminum-magnesium-silicon alloys, such as JIS6
063 alloy is generally used, but with the expansion of various uses, there is a demand for improved extrusion productivity and lighter and thinner extruded cedarwood. There is a limit. In other words, in general, in order to maintain the good surface condition required for the extruded cedar forest or the products obtained from it, an appropriate maximum extrusion speed is required when producing solid wood with a wall thickness of about 1.0 wL. is 3
Currently, the extrusion speed is 0 to 40 nL/min, and even lower extrusion speeds must be used to produce hollow materials. If higher-speed extrusion conditions are used, even if extrusion is possible temporarily, the bearing of the extrusion die will deteriorate significantly, resulting in a significant deterioration of the surface condition of the extruded cedar forest. The die must be replaced or the die bearing surface must be polished very frequently, which is disadvantageous in terms of extrusion productivity. On the other hand, 6063
An alloy that can be extruded at high speed by adding a special element to the alloy has been proposed, but it is not easy to control the concentration of the special element, and the properties and uses of the shape are limited by the added element. There are many things.

本発明者らは、6063合金の押出加工性およびそれ
から得られる押出杉林の各種特性について研究した結果
、6063合金のマグネシウム量を大幅に減じてマグネ
シウムシリサイド(Mg。
The present inventors researched the extrusion processability of 6063 alloy and various properties of extruded cedarwood obtained from it. As a result, the amount of magnesium in 6063 alloy was significantly reduced to create magnesium silicide (Mg).

Si)量を下げ、不純物としての鉄量を制限し、これら
とは逆に過剰ケイ素量を高めた合金を用いることにより
、薄肉押出杉林を高速で押出すことができ、押出加工性
が著しく向上するとともに、押出杉林のT5処理後の機
械的性質、表面処理性および耐食性が6063合金の場
合とほとんど変わらず、薄肉製品の生産に非常に有効で
あることを見い出した。すなわち本発明は、重量でマグ
ネシウム0.25〜0.45%、ケイ素0.62〜0.
80%、不純物としての鉄が0.2%以下で残部アルミ
ニウムおよび鉄を除く他の不可避的な不純物からなるア
ルミニウム合金ビレツトを用い、肉厚1.―以下の薄肉
押出形材を押出速度50TrL,/Min以上の高速で
押出すことを特徴とする薄肉押出形材の製造方法である
。本発明をさらに詳細に説明する。なお以下の説明にお
いて、%は特にことわらない限り、重量%を表わすこと
とする。本発明方法で用いるアルミニウム合金の合金成
分について、その限定理由を説明する。
By lowering the amount of silicon (Si), limiting the amount of iron as an impurity, and conversely increasing the amount of excess silicon, thin-walled extruded cedarwood can be extruded at high speed, and extrusion processability is significantly improved. At the same time, they found that the mechanical properties, surface treatment properties, and corrosion resistance of extruded cedarwood after T5 treatment are almost the same as those of 6063 alloy, making it very effective for producing thin-walled products. That is, the present invention contains 0.25 to 0.45% magnesium and 0.62 to 0.0% silicon by weight.
Using an aluminum alloy billet consisting of 80% iron as an impurity, 0.2% or less as an impurity, and the remainder aluminum and other unavoidable impurities excluding iron, the wall thickness is 1. - A method for producing a thin-walled extruded shape, which is characterized by extruding the following thin-walled extruded shape at an extrusion speed of 50 TrL,/Min or higher. The present invention will be explained in further detail. In the following description, % represents weight % unless otherwise specified. The reasons for limiting the alloy components of the aluminum alloy used in the method of the present invention will be explained.

マグネシウムは、0.25%以下ではマグネシウムシリ
サイド生成量の不足をきたし、所定の強度が得られない
If the amount of magnesium is less than 0.25%, the amount of magnesium silicide produced will be insufficient and the desired strength will not be obtained.

また0.45%以上ではマグネシウムシリサイドの生成
量が多過ぎて、押出加工性の低下をきたし、形材の薄肉
化および高速押出が困難となる。もつとも好ましいマグ
ネシウムの量は0.30〜0.40%の範囲から選択さ
れる。ケイ素は、0.62%以下ではマグネシウムシリ
サイド生成量との関係から過剰ケイ素量が不足し、押出
後のT5処理による強度の向上が期待できない。
Moreover, if it is 0.45% or more, the amount of magnesium silicide produced is too large, resulting in a decrease in extrusion processability, making it difficult to make the shape thinner and to extrude at high speed. A most preferred amount of magnesium is selected from the range 0.30-0.40%. If silicon is less than 0.62%, the amount of excess silicon will be insufficient in relation to the amount of magnesium silicide produced, and no improvement in strength can be expected by T5 treatment after extrusion.

0.80%以上では、強度面で満足されるものの、押出
加工性の低下をきたし、本発明の所期の目的を達し得な
い。
If it is 0.80% or more, although the strength is satisfactory, extrusion processability deteriorates and the intended purpose of the present invention cannot be achieved.

もつとも好ましいケイ素量は0.62〜0.70%の範
囲から選択される。鉄は不純物であつて、その量が多く
なると押出形材の表面に多量の欠陥を誘引するのて、0
.20%以下とする必要がある。またその他の不可避的
不純物も、量が多くなると押出形材の表面状態が劣化す
ることが多いので、それぞれ0.10%以下、合計でも
0.15%以下とするのが好ましい。
Most preferably, the amount of silicon is selected from the range of 0.62 to 0.70%. Iron is an impurity, and when its amount increases, it induces a large number of defects on the surface of the extruded section.
.. It needs to be 20% or less. In addition, since the surface condition of the extruded shape often deteriorates when the amount of other unavoidable impurities increases, it is preferable to limit each impurity to 0.10% or less, and the total amount to 0.15% or less.

なおこの合金は、通常の6063合金と同様に、溶製す
る段階でチタンおよびま″たはホウ素を含む母合金ある
いは溶剤で微細化処理することが可能である。
Note that this alloy, like the normal 6063 alloy, can be refined using a master alloy or solvent containing titanium and/or boron at the stage of melting.

このようなアルミニウム合金は押出加工に用いるため、
通常は連続鋳造法によつてビルツトに成形される。
Since such aluminum alloys are used for extrusion processing,
It is usually formed into a built-in structure using a continuous casting method.

次にこのアルミニウム合金ビレツトを用いる押出加工方
法について述べる。本発明の方法の実施に当たつては該
アルミニウム合金ビレツトを用い、肉厚1.0mm以下
の薄肉押出形材を50rrL./Min以上の高速で押
出加工する。
Next, an extrusion method using this aluminum alloy billet will be described. In carrying out the method of the present invention, the aluminum alloy billet is used to extrude a thin extruded section with a wall thickness of 1.0 mm or less into a 50rr L. Extrusion processing is performed at a high speed of /Min or higher.

アルミニウム合金ビレツトは、通常の場合と同様、押出
に先立つて均質化処理されるが、その条件は480〜5
80℃程度で2〜托時間行なえばよい。このビルツトは
、均質化温度のまま、あるいはごく一般的には冷却後さ
らに適切な押出温度まで予熱され、押出加工される。こ
の際の予熱温度は通常中実材で430〜480℃、中空
材て460〜520℃程”度である。押出しに当たつて
は肉厚1.0Tr$t以下の押出形材が50TrL,/
Min以上の高速で押出加工される。かかる条件をもつ
て押出加工することによりビレツトの鋳造組織は十分に
破壊され、良好な組織を有する薄肉形材が取得できる。
この際使用するアルミニウム合金はMg添加量を相対的
に低くおさえたことにより生成するマグネシウムシリサ
イド量は低くなり、押出加工性は改良される。他方マグ
ネシウムシリサイド量が少ないことによる強度不足は過
剰Si量を相対的に高くすることにより補い、後の熱処
理による強度の発現を目論み、目的とする適度の強度を
持たぜるとともにかようなマグネシウムシリサイド量と
過剰Si量との制御により薄肉高速押出による表面仕上
り状態を改善した製品の取得を可能にした。押出条件の
組合せにより0.7TIrm以下の薄肉形材の押出しも
、又押出速度70rrL/Min以上の高速条件の採用
も可能である。このようにして押出された形材は、さら
に]゛5処理による焼戻しによつて、引張強さ18kg
/i以上を得ることができる。
The aluminum alloy billet is homogenized prior to extrusion as in the usual case, but the conditions are 480-5
It may be carried out at about 80°C for 2 to 1 hour. The build is extruded either at the homogenization temperature or, most commonly, after cooling and preheating to the appropriate extrusion temperature. The preheating temperature at this time is usually 430 to 480 degrees Celsius for solid materials and 460 to 520 degrees Celsius for hollow materials. /
Extrusion processing is performed at a high speed of Min or higher. By extruding under these conditions, the cast structure of the billet is sufficiently destroyed, and a thin-walled shape having a good structure can be obtained.
Since the aluminum alloy used in this case has a relatively low Mg addition amount, the amount of magnesium silicide produced is reduced, and extrusion processability is improved. On the other hand, the lack of strength due to the small amount of magnesium silicide is compensated for by relatively increasing the amount of excess Si, and with the aim of increasing the strength through subsequent heat treatment, we aim to achieve the desired strength and increase the strength of magnesium silicide. By controlling the amount of Si and the amount of excess Si, it is possible to obtain a product with improved surface finish through thin-walled high-speed extrusion. Depending on the combination of extrusion conditions, it is possible to extrude thin-walled shapes of 0.7 TIrm or less, or to adopt high-speed conditions of extrusion speed of 70 rrL/Min or more. The shape thus extruded was further tempered by the process 5 to have a tensile strength of 18 kg.
/i or more can be obtained.

この焼戻し条件は180〜220℃で1〜6時間加熱す
ることが最も効果的てある。この形材はそのまま、ある
いは若干の加工を施して最終製品とすることができるが
、陽極酸化処理等の表面処理を施して耐食・耐候性にす
くれた製品とするのが一般的である。
The most effective tempering condition is heating at 180 to 220°C for 1 to 6 hours. This shape can be used as it is or with some processing to make the final product, but it is common to use surface treatments such as anodizing to make the product more resistant to corrosion and weather.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 第1表に示す化学組成からなるアルミニウム合金ビレツ
ト(152wrmφ×55叶d)を530〜580℃で
2〜5時間の均質化処理を行ない、第2表に示す条件で
押出し、最大肉厚0.7Trr!Rtの中実材を得た。
Example 1 An aluminum alloy billet (152 wrmφ x 55 d) having the chemical composition shown in Table 1 was homogenized at 530 to 580°C for 2 to 5 hours, and extruded under the conditions shown in Table 2 to obtain a billet with maximum thickness. Thickness 0.7Trr! A solid material of Rt was obtained.

この形材の表面アラサを測定した結果を第2表に合わせ
て示す。さらに得られた形材をそのまま、あるいは20
0℃で4時間のT5処理を施して、それらの機械的性質
を調べた。
The results of measuring the surface roughness of this profile are also shown in Table 2. Furthermore, the obtained shape can be used as it is, or
Their mechanical properties were investigated by subjecting them to T5 treatment for 4 hours at 0°C.

結果を第3表に示す。The results are shown in Table 3.

またT5処理した形材を15%硫酸水溶液中で陽極酸化
処理して、約6μおよび約9μの厚さの皮膜を生成させ
、これらをJISH868lに基づいてキヤス試験を行
なつて耐食性を調べた。
Further, the T5-treated shapes were anodized in a 15% sulfuric acid aqueous solution to form films with a thickness of about 6μ and about 9μ, and these were subjected to a cast test based on JISH868l to examine their corrosion resistance.

結果を第4表に示す。以上のように、本発明方法の実施
により得られた薄肉押出形材は、JIS6O63合金を
ほぼ同一条件で押出して得られる形材に比べ、表面状態
がきわめて良好であるとともに、その機械的性質、表面
処理性および耐食性に大きな差が認められない。
The results are shown in Table 4. As described above, the thin-walled extruded shape obtained by carrying out the method of the present invention has a much better surface condition than the shape obtained by extruding JIS6O63 alloy under almost the same conditions, and has better mechanical properties. No significant difference was observed in surface treatment properties and corrosion resistance.

Claims (1)

【特許請求の範囲】 1 重量でマグネシウム0.25〜0.45%、ケイ素
0.62〜0.80%、不純物としての鉄が0.2%以
下で残部がアルミニウムおよび鉄を除く他の不可避的な
不純物からなるアルミニウム合金ビレツトを用い、肉厚
1.0mm以下の薄肉押出形材を押出速度50m/mi
n以上の高速で押出すことを特徴とする薄肉押出形材の
製造方法。 2 アルミニウム合金中のマグネシウムが重量で0.3
0〜0.40%である特許請求の範囲第1項記載の方法
。 3 アルミニウム合金中のケイ素が重量で0.62〜0
.70%である特許請求の範囲第1項または第2項記載
の方法。
[Scope of Claims] 1. Magnesium 0.25-0.45%, silicon 0.62-0.80%, iron as an impurity 0.2% or less, the balance being aluminum and other unavoidable materials other than iron. Using an aluminum alloy billet containing impurities, a thin extruded section with a wall thickness of 1.0 mm or less was extruded at an extrusion speed of 50 m/mi.
A method for producing a thin-walled extruded shape, characterized by extruding at a high speed of n or more. 2 Magnesium in aluminum alloy is 0.3 by weight
The method according to claim 1, wherein the amount is 0 to 0.40%. 3 Silicon in aluminum alloy is 0.62 to 0 by weight
.. 70%.
JP9838777A 1977-08-16 1977-08-16 Manufacturing method for thin-walled extruded sections Expired JPS6049707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9838777A JPS6049707B2 (en) 1977-08-16 1977-08-16 Manufacturing method for thin-walled extruded sections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9838777A JPS6049707B2 (en) 1977-08-16 1977-08-16 Manufacturing method for thin-walled extruded sections

Publications (2)

Publication Number Publication Date
JPS5432111A JPS5432111A (en) 1979-03-09
JPS6049707B2 true JPS6049707B2 (en) 1985-11-05

Family

ID=14218440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9838777A Expired JPS6049707B2 (en) 1977-08-16 1977-08-16 Manufacturing method for thin-walled extruded sections

Country Status (1)

Country Link
JP (1) JPS6049707B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123819U (en) * 1989-03-24 1990-10-11

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134427A (en) * 1981-02-16 1982-08-19 Kuraray Co Ltd Preparation of n-octanol
GB9318041D0 (en) * 1993-08-31 1993-10-20 Alcan Int Ltd Extrudable a1-mg-si alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123819U (en) * 1989-03-24 1990-10-11

Also Published As

Publication number Publication date
JPS5432111A (en) 1979-03-09

Similar Documents

Publication Publication Date Title
US5133931A (en) Lithium aluminum alloy system
US4897126A (en) Aluminum-lithium alloys having improved corrosion resistance
JPS6140742B2 (en)
US4797165A (en) Aluminum-lithium alloys having improved corrosion resistance and method
EP0281076B1 (en) Aluminum lithium flat rolled product
US3379583A (en) Heat treatment of aluminum alloys
JPH1030147A (en) Aluminum-zinc-magnesium alloy extruded material and its production
JP3540316B2 (en) Improvement of mechanical properties of aluminum-lithium alloy
JPH01225756A (en) Manufacture of high-strength al-mg-si alloy member
JPS61163233A (en) Non-heat treatment type free-cutting aluminum alloy
US2614053A (en) Method of making aluminum alloy tubing and product
JPS6049707B2 (en) Manufacturing method for thin-walled extruded sections
JP3690623B2 (en) Bright aluminum alloy for extrusion with excellent surface properties
JPH0270044A (en) Manufacture of cast aluminum-alloy bar for hot forging
JP4174153B2 (en) Extruded product made of Mg alloy and manufacturing method thereof
JPS6135262B2 (en)
US3266945A (en) Aluminum working procedure
JPH04353A (en) Heat treatment for al-cu aluminum alloy ingot for working and production of extruded material using same
JPS5937344B2 (en) Manufacturing method for thin-walled extruded sections
JPS6283453A (en) Manufacture of aluminum alloy ingot for extrusion
JPS63190148A (en) Manufacture of structural al-zn-mg alloy extruded material
US4915798A (en) Corrosion resistant aluminum product with uniformly grey, light-fast surface and process for its manufacture
JP2001011557A5 (en)
JPS5811769A (en) Production of bright al alloy plate material having superior anodized surface
JPH04268054A (en) Manufacture of al-mg alloy sheet excellent in strength and orientation property