AU663775C - Method and apparatus for use in photochemically oxidizing gaseous halogenated organic compounds - Google Patents

Method and apparatus for use in photochemically oxidizing gaseous halogenated organic compounds

Info

Publication number
AU663775C
AU663775C AU37747/93A AU3774793A AU663775C AU 663775 C AU663775 C AU 663775C AU 37747/93 A AU37747/93 A AU 37747/93A AU 3774793 A AU3774793 A AU 3774793A AU 663775 C AU663775 C AU 663775C
Authority
AU
Australia
Prior art keywords
organic compounds
gaseous
reaction chamber
lining
dry porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU37747/93A
Other versions
AU3774793A (en
AU663775B2 (en
Inventor
Stephen J Galayda
Orville B Guyer
Theodore S Weigold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Process Technologies Inc
Original Assignee
Process Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/843,422 external-priority patent/US5260036A/en
Application filed by Process Technologies Inc filed Critical Process Technologies Inc
Publication of AU3774793A publication Critical patent/AU3774793A/en
Application granted granted Critical
Publication of AU663775B2 publication Critical patent/AU663775B2/en
Publication of AU663775C publication Critical patent/AU663775C/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

DESCRIPTION METHOD AND APPARATUS FOR USE IN PHOTOCHEMICALLY OXIDIZING GASEOUS HALOGENATED ORGANIC COMPOUNDS
Technical Field
This invention relates generally to methods for use in photochemically oxidizing gaseous halogenated organic compounds. Background Art
A fragile and invisible layer of ozone some nine to fifty kilometers above shields the earth's surface against harmful ultraviolet radiation from the sun. It has been discovered that this protective shield is being massively depleted. Such is generally accepted to largely be the result of man-made chemicals that have been and continue to be released into the atmosphere.
Ozone is naturally produced in the stratosphere. Molecular oxygen, O2, is naturally photodissociated into free oxygen atoms under the influence of radiation from the sun. Such production of oxygen atoms leads immediately to the production of ozone molecules as shown in the following equation,.
O2 + O + M → O3 + M, where a triple collision between a molecule of oxygen O2, an atom of oxygen O, and a third particle "M", which may be a molecule of oxygen or of nitrogen, which absorbs excess reaction energy and results in formation of a molecule of ozone, O3.
Ozone-depleting chemicals fall into four major groups. The first is known as chlorofluorocarbons (CFC's). These are used as aerosol propellants, refrigerants, blowing agents, solvents and sterilants. Freon-12
(dichlorodifluoromethane) is one example. A second group is known as "halons", which are bromine-containing chemicals used as fire suppressants. A third group is known as chlorocarbons, and include chemicals such as carbon tetrachloride and 1,1,1-trichloromethane. A fourth group consists of relatives of the CFC's called "hydrochlorofluorocarbons" (HCFC's). These are widely used as interim substitutes for some CFC's, and typically have from 2% to 10% of the ozone-destroying power of CFC's.
When released during production and use, it is believed that ozone- depleting chemicals remain in the atmosphere for decades, some even for centuries. Once released, they are atmospherically heated, wind and air current dispersed, and ultimately rise to 10 to 15 kilometers. There, ultraviolet light in the wavelength range of from 170 to 230 nanometers breaks the molecules apart. This releases chlorine, fluorine or bromine which contribute to the destruction of ozone and the formation of ordinary oxygen, a substance which is useless for screening out dangerous ultraviolet radiation from the sun.
Once the molecules are broken, some of the fluorine combines with hydrogen to form HF. Ultimately, the fluorine is precipitated into the lower atmosphere where it ends up in water solution. Carbon freed from the halogenated organic compounds combines with available oxygen to form CO2. Such is chemically benign, but physically contributes to global warming which is commonly referred to as the "greenhouse effect". Also, the gaseous halogenated organic compounds while in the lower atmosphere on their way to the stratosphere are believed to themselves absorb infrared radiation reflected from the earth's surface, thereby converting it into heat and contributing to global warming. Ozone-depleting chemicals are believed responsible for 20% to 25% of current increases in the greenhouse effect.
Combination of carbon with free oxygen to form CO2 is also believed to adversely affect O3 production. The carbon in essence consumes some of the raw material (free oxygen) out of which O3 is naturally made in the atmosphere. Free chlorine atoms from the ultraviolet light dissociation of the halogenated organic gases would have a tendency to combine with one another to form chlorine gas (Cl2), but for available free oxygen atoms available in the atmosphere. The pollutant chlorine atoms have a greater tendency to join with free oxygen atoms to form a chlorine oxide (ClOχ), again consuming one of the principal raw material (free oxygen) out of which O3 is made.
As the ozone layer is depleted, more harmful ultraviolet radiation reaches the earth's surface. Unless ozone depletion is stopped, adverse global health and environmental consequences on a large scale are predicted to occur. The Environmental Protection Agency (EPA) has predicted that increased ultraviolet radiation from ozone depletion would cause between 163,000,000 and 308,000,000 extra cases of skin cancer in the U.S. alone, among people alive today and born by 2075, if nothing were done to save the ozone layer. About 3.5 to 6.5 million of these cases are predicted to be fatal. More ultraviolet radiation would also cause an estimated 19 to 29 million additional cases of cataracts in this population. Sharp increases in the number and variety of serious immunological disorders are also predicted. Further, damage to the natural environment from increased ultraviolet radiation would range from billions of dollars in reduced crop yields to disruption of the marine food chain.
It is not surprisv r then that research is underway for substitutes for these gaseous halogenated organic compounds. However, it is estimated that it may take 20 years or more to find acceptable substitutes. Consider that the substitute will need to be benign, non-flammable, stable, inexpensive and safe for use in homes (i.e. for refrigeration and aerosol propellants). Accordingly, people are as well working on techniques for preventing these gaseous halogenated organic compounds from entering the atmosphere.
One potentially promising technique for avoiding release of these gases exposes the objectionable materials to ultraviolet radiation for destruction under controlled conditions. Examples of such techniques are disclosed in U.S. Patent No. 4,210,503 to Confer and U.S. Patent No. 4,045,316 to Legan. However, a problem associated with any such reactive systems is how one disposes of the reaction byproducts which are produced by the photochemical oxidation. While CFC's and HCFC's are rather inert to humans, the oxidation products produced by such reactors are very harmful to life. Additionally, the oxidation products can be corrosive, explosive or otherwise harmful or destructive to the reactor system and its components. Accordingly, it would be desirable to develop alternate methods and techniques for contending with the hazardous oxidation byproducts produced by such photochemical oxidations. Brief Description of the Drawings
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
Fig. 1 is a diagram of a portion of a system for carrying out methods in accordance with the invention.
Fig. 2 is a diagrammatic and side elevational view of photochemical reaction chambers in accordance with the invention. Fig. 3 is a top, but diagrammatic, view of Fig. 2.
Fig. 4 is a enlarged fragmentary sectional view of an upper portion of one of the photochemical chambers of Fig. 2.
Fig. 5 is a further enlarged diagrammatic view of a liner utilized in the photochemical reaction chambers of Fig. 2. Fig. 6 is a diagram of a wet chemical scrubber utilized in accordance with the system and method of the invention.
Fig. 7 is a fragmentary, cut-away view of an alternate embodiment system in accordance with the invention. Fig. 8 is a top view of the reaction chamber section of Fig. 7.
Fig. 9 is an enlarged fragmentary view of an alternate embodiment reaction chamber and liner in accordance with the invention.
Fig. 10 is a cross-section of another alternate embodiment reaction chamber liner in accordance with the invention. Disclosure of Invention and Best Modes for Carrying Out the Invention
In accordance with one aspect of the invention, a method of photochemically oxidizing gaseous halogenated organic compounds comprises: exposing gaseous halogenated organic compounds to ultraviolet light to oxidize the gaseous halogenated organic compounds into gaseous oxidation products; and reacting the gaseous oxidation products with an internal surface of a chamber, the internal surface comprising a dry porous cementitious and chemically sorbent material which is chemically reactive with the gaseous oxidation products, the gaseous oxidation products being reacted with the dry porous cementitious material to produce solid reaction products incorporated in sidewalls of the chamber.
Preferably, the chamber comprises an elongated reaction chamber provided with internal sidewalls effectively lined with the dry porous cementitious and chemically sorbent material. In the context of this document, the word "sorbent material" means a material which chemically or physically adsorbs or absorbs the gaseous oxidation products.
In accordance with another aspect of the invention, an apparatus for photochemically oxidizing gaseous halogenated organic compounds comprises: an elongated reaction chamber, the reaction chamber having a gas inlet, internal sidewalls and a gas outlet; a source of ultraviolet light provided within and along the elongated reaction chamber to oxidize gaseous halogenated organic compounds fed to the reaction chamber into gaseous oxidation products; and the reaction chamber internal sidewalls comprising a dry porous cementitious and chemically sorbent material, the sorbent material being chemically reactive with the gaseous oxidation products to produce solid reaction products incorporated in the reaction chamber sidewalls.
In accordance with yet another aspect of the invention, a removable reaction chamber liner for a photochemical oxidation reactor apparatus comprises: a support shell sized and shaped to be received internally within a photochemical oxidation reactor, the support shell having internal sidewalls which define a pathway for gaseous flow therethrough, the pathway being of sufficient size to receive a source of ultraviolet light sufficient to oxidize gaseous halogenated organic compounds fed to the reaction chamber into gaseous oxidation products; and the sidewalls being lined with a dry porous cementitious and chemically sorbent material, the sorbent material being chemically reactive with the gaseous oxidation products to produce solid reaction products incorporated in the lined reaction chamber sidewalls. In accordance with still a further aspect of the invention, a method of producing such a liner comprises the following steps: providing a dry mixture of material, the material comprising: from about 20% to 33% by weight alumina based CaO cement; from about 0% to 10% by weight added CaO; from about 0% to 25% by weight added Ca(OH)2,
Mg(OH)2 or mixtures thereof; from about 50% to 70% by weight added "alumina aggregate; from about 0% to 1% by weight of a foaming agent; combining the dry mixture of material with water in a ratio of water to dry mixture of from about 1.5:1 to 1.65:1 by weight; mixing the dry mixture and water into a slurry; applying the slurry to internal sidewalls of a supporting shell; and allowing the slurry to harden on the supporting shell into a dry cementitious material predominately comprising a metastable compound of CaO«Al2O3 »xH2O.
More particularly and with reference to the figures, Fig. 1 illustrates a mixing and charging system 10 for combining gaseous halogenated organic compounds and oxygen (typically ambient air) for feeding to reaction chambers for processing in accordance with the invention. Such a system might include a storage tank 12 for the gaseous halogenated organic compounds to be treated and an air pump 14 for combining air with the gaseous halogenated organic compounds. Most any gaseous halogenated organic compounds are anticipated to be usable in accordance with the invention. However, those compounds identified in the "Background of the Invention" section of this document are the primary gaseous organic compounds with which the invention was designed and reduced to practice.
Intake air (preferably filtered) would be pumped by air pump 14 to an air dehumidifier 16 for dehumidification. Preferably as much H2O is moved from the intake air stream as possible. However, the methods of the invention would also function with H2O present, although at a much slower reaction rate. Gaseous halogenated organic compounds from tank 12 (preferably dried and de-oiled) and from intake air dehumidifier 16 are passed to a mixing chamber 18 through respective flow meters 22, 20. Pressure within mixing chamber 18 would be monitored by a pressure gauge 24, with feed of the mixed gases to the reaction chambers being regulated by a regulator 26. Preferably the reaction mixture exiting tank 18 is provided such that there is from a 33% to 250% molar excess of O2 as compared to the quantity of atoms which form the gaseous halogenated organic compound(s). Yet, photochemical oxidation will occur at the extremes of where there is a negligible quantity of O2 or where the organic compounds are only present in part per million quantities. However, the efficiency and rate of conversion are expected to be considerably less.
Fig. 1 illustrates but one system for selectively mixing desired quantities of oxygen and gaseous halogenated organic compounds to be treated. Alternate systems could of course be developed without departing from the principles and scope of the invention, which are intended to only be limited by the accompanying claims appropriately interpreted in accordance with the Doctrine of Equivalents. The invention is expected to have both large and small scale uses, such as for example in the air conditioning/refrigeration and computer chip industries. A typical small scale use in connection with one part of the air conditioning industry would be in a common automotive service station where Freon or mixed Freons are collected during routine auto air conditioning maintenance. Collected Freons that cannot be recycled could be metered into photooxidation systems to be described subsequently, along with room air, and thereby be treated and disposed of without threat to the environment. Larger computer chip manufacturers typically have condensation or adsorption units in their vent systems that recycle or capture the objectionable halogenated organic compounds, such as Freon-113. Such might utilize a system such as is in part disclosed in Fig. 1.
Referring to Figs. 2 and 3, the mixed gases exiting through regulator 26 from Fig. 1 can be fed via a line 28 (Figs. 1 and 2) to a series of four photochemical reaction chambers 30, 32, 33 and 34. A source of ultraviolet light would be positioned within each of chambers 30, 32, 33 and 34, as will be described subsequently. Gas to be treated from line 28 would flow into the lower portion of chamber 30, as indicated by arrow 28 in Fig. 2. The gas mixture would be oxidized by the ultraviolet light source, with reacted and unreacted gas flowing from the upper end of chamber 30 through an interconnecting channel 35 to the top of chamber 32. Gases would flow down chamber 32 for continued reaction of the mixture and across an interconnecting channel 37 to the bottom of chamber 33. From there, reacted and unreacted gases would flow up chamber 33 and across an interconnecting channel 39 to the top of chamber 34, and down chamber 34 to an outlet 41. A recirculation pump 36 and associated recycle control valve 38 can be provided for causing recycle of the reactant and reacted gases, as desired, for substantial oxidation of the halogenated organic compounds. Gaseous product would be fed through valve 38 to a wet chemical scrubber 40 for further capture or reaction therewithin. Thereafter, gas can be vented via a line 42 to the atmosphere or to another system for subsequent treatment, as desired.
The elongated reaction chambers are described in more detail with reference to Figs 4 and 5. Each of reaction chambers 30, 32, 33 and 34 are substantially identical, but for interconnection of their respective inlets and outlets to enable the above described gas flow. Chamber 30 is described with reference to Figs. 4 and 5. Reaction chamber 30 has a gas inlet (Fig. 2) where line 28 enters, a gas outlet 46 defined in part by channel member 35, and effective internal sidewalls 45. A source of ultraviolet light 48 is provided within and along reaction chamber 30 to oxidize gaseous halogenated organic compounds fed thereto into gaseous oxidation products. Internal sidewalls 45 comprise a dry porous cementitious and chemically sorbent material which is chemically reactive with the gaseous oxidation products.
Specifically, reaction chamber 30 is comprised of an elongated stainless steel or other metal sleeve 50 having opposing male threaded ends 52. Only one threaded end 52 is shown in Fig. 4. A complementary metal female cap 54 threads to each end 52 of teflon sleeve 50. Sleeve 50 is provided with an internal coating 58 of a protective material, such as polytetrafluoroethylene. Metal would be rapidly corroded if exposed to the gaseous oxidation products. The polytetrafluoroethylene provides protection to the apparatus should gaseous oxidation products reach sleeve 50. The intent, however, is to prevent any exposure of gaseous oxidation products to lined sleeve 50.
A removable reaction chamber liner 60 is provided immediately inwardly adjacent polytetrafluoroethylene coating 58 within chamber 30 for providing a gas/solid reaction between liner 60 and gaseous oxidation products the result of exposure to ultraviolet light source 48. More particularly, removable reaction chamber liner 60 is comprised of a support shell 62, preferably made of polytetrafluoroethylene, which is sized and shaped to be slidably and snugly received internally within polytetrafluoroethylene coated sleeve 50. In this manner removable liner 60, and all components forming apart thereof, is replaceable and potentially recyclable. Support shell 62 has internal side walls 64 which are coated with a lining 66 comprised of the dry porous cementitious and chemically sorbent material which is chemically reactive with the gaseous oxidation products, thereby producing solid reaction products incorporated into solid lining 66. In the described embodiment, the lining 66 effectively forms or comprises reaction chamber sidewalls 45 which are exposed to the gaseous oxidation products for a gas-solid phase reaction therewith. The composition and application of material 66 is described in more detail below.
Support shell 62 with lining 66 defines a pathway 68 within elongated reactor chamber 30 for gaseous flow, and is of sufficient size to receive and retain ultraviolet light source 48. More particularly, support shell 62 has identical opposed female threaded ends. The illustrated upper end internally receives an externally male threaded end cap apparatus 71 which functions to retain ultraviolet light source 48 and prevent escape of any reactant and reacted gases. An identical end cap apparatus is received at the end opposite the Fig. 4 illustrated end.
End cap apparatus 71 includes a donut shaped component 70 having a threaded central opening provided therethrough, and having external threads which thread relative to threaded end 52 of support shell 62. An elongated and threaded female compression component 72 threads internally to the central opening provided in first donut 70. Compression component 72 projects upwardly relative to first donut 70. A central opening, inwardly tapered from the top, is provided internally through compression component 72. A wedge shaped hollow male compression ring 76 is slidably received within the tapered central compression component 72 opening. An elongated ultraviolet lamp 74, which defines ultraviolet light source 48, extends slidably through the central opening in compression component 72 and within compression ring 76. Lamp 74 preferably produces ultraviolet light in the wavelength of approximately 185 nanometers. An example would be 64-inch long 65 watt quartz enveloped ultraviolet light tubes which are commercially available from, for example, Atlantic Ultraviolet Corporation of Long Island, New York. A compression cap 79 threads to compression component 72 and engages ring 76 for creating a compression seal against lamp 76.
A cross member cutout 77 is provided through support shell 62 and lining 66 as shown for alignment with cross piece 35. Cross piece 35 is shown lined with polytetrafluoroethylene layer 59. In addition, although not shown, the cross pieces are also preferably provided with separate, snug-fitting replaceable polytetrafluoroethylene shells lined with material 66 for reaction with the oxidized reaction products. Additionally, the cross pieces can be constructed to connect with the associated sleeve 50 by any suitable means, such as with pipe unions, flange and bolt covers, etc.
It is expected that lining 66, upon reaction to produce incorporated solid reaction products, will ultimately be degraded by the gaseous oxidation products to the point of appreciable corrosion signifying its end of life. To monitor the life of lining material 66, and correspondingly the life of removable liner 60, a sensor is interposed between internal sidewall 64 of support shell 62 and dry porous cementitious material 66. The sensor is comprised of a material which is reactive with the gaseous oxidation products upon exhaustion and degradation of the overlying dry porous cementitious chemically sorbent material of liner 66. The sensor is comprised of a strip of metal tape 90 which extends along the length of shell 60 between sidewall 64 and beneath lining 66. An example material for tape 90 would be copper. Conductive leads, such as lead 92, are connected to opposite ends of tape strip 90. Such leads would be connected to a resistance meter which would provide a small source of monitored electric current. Upon complete corrosion through and across strip 90, infinite resistance would be registered clearly indicating that the gaseous oxidation products had permeated the spent lining 66.
As one alternative to copper strip 90 and a resistance measurement, a bimetal circuit material could be provided that would generate a milliamp current which could be monitored by an amp meter. Changes in amperage would be indicative of the presence of gaseous oxidation products which have permeated lining 66. Any such indication would indicate that replacement of replaceable liner 60 was in order. Note that support shell 62 might be recycled by stripping spent cementitious material 66 therefrom, and reusing shell 62 for another application of such material. Also preferably, but not shown, a similar sensor circuit could be positioned between shell 62 and lining 58 of sleeve 50 in an effort to detect any gaseous oxidation products which would indicate faulty operation. As well, a sensor would preferably be provided in association with cross piece 35. An alternate embodiment reaction chamber 30a and associated liner 60a is shown and described with reference to Fig. 9. Such construction is analogous to the first described embodiment, but replaces the threading of various components with clamping action. Here, sleeve 50a is provided with a pair of external clamp retainers 130. A modified cap 54a is fitted with an opposing pair of external clamps 132 which engage with retainers 130. Cap 54a includes an annular groove 134 sized to receive the end of sleeve 50a. A gasket 136 is provided in groove 134 for sealing engagement relative to cap 54a and sleeve 50a. Cap 54a is also provided with a central projecting cylinder 138 having an opening 140 therein which receives the end of ultraviolet light 74. A conventional spring biased electrical connection 142 is provided at the base of cylinder 138. An external post 144 would be connected to a suitable power source for energizing light 74.
Support shell 62a of lining component 60a is provided with blunt non-threaded ends. A compression component 70a is clamped in place against the blunt end of shell 60a by cap 54a, as shown. Component 70a is provided with a central conical opening 146 which receives a conical compression insert 76a. Central projecting cylinder 138 of cap 54a is sized and shaped to provide a suitable downward clamping force against insert 76a for retaining and sealing relative to light 74 when clamps 132 engages clamp retainers 130. The embodiment of Fig. 10 illustrates but one alternate example for sealing the end of a reaction chamber. Alternate methods could of course be used, for example, draw clamps, overcenter cams, a flange with bolt circle, tie rods, collet and lock ring, etc.
Where the gaseous halogenated organic compounds fed to the reaction chamber include chlorocarbons, fluorocarbons, chlorofluorocarbons and hydrochlorofluorocarbons, typical gaseous oxidation products from HFC and CFC exposure to ultraviolet light are expected to include Cl2, F2, CχO Fz, CχO Clz, HC1 and HF, among potential others. To react with such products, the dry porous cementitious material of layer or lining 66 preferably comprises a calcium based cement having induced porosity to maximize available surface area. Most preferably, the calcium based cement as solidified will comprise a metastable compound of CaO,AI2O3 ,xH2O, where "x" may be anywhere from 1 to 6. Also preferably, the calcium based cement will be produced by having added basic constituents such as Ca(OH) and Mg(OH)2 or mixtures thereof. Where the gaseous organic compounds being oxidized include fluorine and chlorine containing compounds, the ultraviolet light will oxidize the feed material to highly reactive fluorine and chlorine containing radicals which will produce solid reaction products within lining 66 comprising CaF2, CaFCl, CaCl2, MgF2, MgFCl, or MgCl2, and perhaps other solid reaction products. The preferred dry mixture for making the cementitious material comprises from about 20% to 33% by weight of an alumina based CaO cement. Preferably, added CaO is provided up to an additional 10 weight per cent of the dry mixture. Also preferably, added Ca(OH)2, Mg(OH)2 or mixtures thereof is provided up to 25% by weight of the dry mixture. The dry mixture also preferably includes alumina aggregate at between 50% to 70% by weight.
Preferably, a foaming agent is also added in an effective mount to impart foaming in the resultant slurry and corresponding porosity in the hardened material. The intent is to produce a porous composite having a density from about 0.5 g/cm2 to about 3 g/cm2- Elemental aluminum is one example of a material which will induce such porosity.
The resultant product provides a porous, basic constituent for reacting with the largely acidic radical oxidation products produced by the photooxidation. The added CaO, Ca(OH)2 or Mg(OH)2 provide added basic components for reaction and neutralization of the oxidized products produced by the ultraviolet light. Preferably the amount of silicon in the form of SiO2 or others in the cementitious material is minimized in an effort to avoid formation of hazardous gaseous silicon chlorides or silicon fluorides.
A lining in accordance with the above parameters was produced from the following dry powder composition, by weight: Fondu™ cement 25%
CaO 10%
Ca(OH)2 14.25%
Al2O3 50%
Al 0.75% Total 100%
Fondu™ cement is a trademark composition sold by the Fondu International Company of Chesapeake, Virginia. Its composition is understood to comprise,
TiO2 (2% CaO 38%
Fe2O3 11%
FeO 4%
SiO2 (5%
The dry powder composition was mixed with water in a weight ratio of water to dry mixture of 1.65:1. Preferably, the weight ratio of water to dry mixture is from about 1.5:1 to 1.65:1. The dry mixture and water are then thoroughly mixed into a slurry and then spun internally onto a spinning support shell. For example, a support tube spun at between 50 to 100 rpms was internally coated by applying the slurry with a syringe to provide a 5 to 10 millimeter thick layer. The tube was allowed to spin for approximately one hour after application until the material adequately set, and then the spinning was stopped. The tube was then exposed to steam for approximately 24 hours to maximize the amount of hydrated water incorporated in the finished lining. Then, the tube was dried at 100° C for and additional 25 hours in the absence of any water vapor to fully cure the lining.
The invention was reduced to practice utilizing a gas mixture of gaseous halogenated organic material (5% by volume) and ambient air (95% by volume) which was oxidized by a 184.9 nanometer ultraviolet light source. The major reaction product peak was identified as COF2. Additionally, a larger number of other yet unidentified peaks by chromatography were also developed. However, when the dry chemical liner of the invention was in place, none of these peaks were observed by gas chromatography, indicating that chemical reaction or incorporation into the lining had occurred.
The effects of the photochemical oxidation process on the dry chemical lining, though not fully characterized, were evaluated using scanning electron microscopy (SEM) and semi-quantitative energy dispersive X-ray spectroscopy (EDXS) elemental analysis. The SEM evaluations of dry liners before and after exposure demonstrate observable changes in the crystalline structure of the dry chemical liner. Specifically in most all cases, the Ca(OH)2 crystals observed before exposure could not be observed after exposure. The hexagonal CaO»Al2O3 plates also demonstrated substantial change in shape. The EDXS evaluation of the material indicated a significant increase in elemental chlorine after exposure. Elemental fluorine is something which is not observable by EDXS, and accordingly could not be observed. Referring again briefly to Fig. 2, wet chemical scrubber 40 is provided to catch any gaseous oxidation products which pass through the reaction chambers without reacting with the liner side walls. A more detailed example of a preferred scrubber is indicated generally by reference numeral 100 in Fig. 6. Scrubber 100 is comprised of a enclosed tank 102 which retains a quantity of an alkaline solution 104. Solution 104 preferably comprises a 0.1 - 5.0 molar solution of, for example, Ca(OH)2, Na(OH)2, Mg(OH)2, NH3(OH)2, or mixtures thereof, to provide a pH of approximately 11-13. Exhaust gases are fed to scrubber 100 through a line 112 which passes through a check valve 114. Preferably, a suction pressure pump (not shown) is provided upstream of valve 114 to assure complete evacuation of the reaction chambers. Check valve 114 prevents back flow of any fluid into the photochemical reaction chambers. Line 112 is fed to a looped line 110 through which alkaline solution 104 in tank 102 is pumped by a pump 108. Such provides a pressure drop in line 110 where it meets with line 112, thereby drawing the exhaust gases into the scrubber. As well, the fluid emitted into alkaline solution 104 from line 110 facilitates intermixing of the alkaline solution and gas supplied thereto.
The gaseous products fed to scrubber 100 are expected to include COF , COC1F, F2, Cl2, CIO, HC1, HF, and potentially any unreacted gaseous halogenated organic compounds. All of such .components, except the gaseous halogenated organic compounds, are essentially reacted with either the linings 66 or retained in alkaline solution 104 of reaction in scrubber 100. Gas exiting tank 102 passes through a vapor trap and return 101. A pH monitor 103 is utilized to monitor pH of solution 104.
It is anticipated that the ultraviolet light sources will produce considerable heat which must be removed. Figs. 7 and 8 illustrate a cooling jacket 122 provided about reaction chambers 30, 32, 33 and 34 which are here surrounded by a fluid tight cooling jacket 122. Cooling jacket 122 receives a cooling fluid through orifice 126 and emits heated fluid through orifice 128 for cooling the reaction chambers. An isolated central tube 124 (Fig. 8) as well passes through jacket 122. Ambient air or some other fluid is preferably blown through tube 124 for added heat dissipation.
An alternate embodiment reaction chamber 32b is shown in cross-section in Fig. 10. Chamber 32b comprises an extruded sleeve 50b, preferably comprised of polytetrafluoroethylene, having inward projecting components 63b. A central opening 59b at the end of sleeve 50b is provided for retaining an ultraviolet light source. Components 63b define elongated slots or cavities which retain a plurality of discrete elongated segments 65b which are comprised of the dry porous cementitious and chemically sorbent material. As illustrated, projecting components 63b retain segments 65b in juxtaposition to define effective internal reaction chamber sidewalls 45b which react with the gaseous oxidation products. Segments 65b would be separately fabricated and then slid into the slots or cavities. The segments would therefore also be replaceable. Alternate constructions could of course be utilized without departing from the principles and scope of the invention. By way of example only, segments could be provided in the form of rods or other shapes to effectively provide a lining for reaction with the gaseous oxidation products.
Process Control
The following is provided to illustrate example controls for operating the preferred embodiment equipment. The control of the stoichiometric relationship between the halogenated organic compounds and oxygen could be controlled through any number of means. One example would be to start with an evacuated chamber use an absolute manometer to regulate the partial pressure of each component of the mixture. An alternative method would be to use a dedicated infrared spectrometer attached to a computer monitored operating valving system that would adjust the concentration of the halogenated organic compounds and oxygen to predetermine concentrations. Another alternative would be to use a gas chromatograph in a similar manner. Other monitoring/control systems could of course be utilized. Once the optimum concentration of halogenated organic compounds and air (oxygen) has been reached in the premixing chamber, a computer activated or manual valve could be opened that would allow the photochemical reaction chambers to be charged with the premixed gases. This charging process could be enhanced by having a reduced pressure in the photochemical reactor and a slightly elevated pressure in the premixing chamber. To assist in the circumstances, the scrubber unit is preferably provided with an aspirator vacuum line (as described above), which could also be attached to the reaction chamber exhaust line. The reaction chamber exhaust line would be closed by a valve while the gas mixture was being treated and opened upon determination that halogenated organic compounds were no longer present in the chamber.
The in situ determination of halogenated organic compound concentration during treatment could also be accomplished by several instrumental methods as well as by predetermined rates of destruction values. The preferred method is expected to utilize an instrumental method that monitors the disappearance of the halogenated organic compounds during reaction. A dedicated infrared spectrometer would probably function well in this capacity although other instrumental controls could easily be substituted. This system of monitoring the reaction process should also save, either to a computer or hard copy, the record of the reaction for environmental monitoring concerns. The wet chemical wash system is also envisioned as being monitored. The preferred method would be as described above by using an in situ pH electrodes. As long as the pH of the basic solutions remain above 7.0, they would still be effective. When the monitor determines that the pH is approaching 7.0, a feedback loop should notify the operator and insure that no additional operation of the device is possible until the pH has been returned to establish parameters. This will insure against any unreacted harmful gases passing through the scrubber system.
Two additional monitoring systems that are capable of preventing operation of the device are envisioned. One of these is the previously described resistance circuit designed into the dry chemical liners. Upon failure of this monitoring circuit, the chemical liner may be considered exhausted and no longer capable of protecting the reaction chamber walls. This chemical activity monitor is envisioned as being monitored by computer and capable of preventing operation of the reaction chambers when not within specified parameters. The final control system envisioned will monitor the circuitry of the UV lamps. Should a lamp or series of lamps fail, this monitor would either compensate by increasing time of exposure of gases to the reaction chambers, or prevent operation of the photochemical reactor.

Claims (104)

Claims
1. An apparatus for photochemically oxidizing gaseous halogenated organic compounds comprising: an elongated reaction chamber, the reaction chamber having a gas inlet, internal sidewalls and a gas outlet; a source of ultraviolet light provided within and along the elongated reaction chamber to oxidize gaseous halogenated organic compounds fed to the reaction chamber into gaseous oxidation products; and the reaction chamber internal sidewalls comprising a dry porous cementitious and chemically sorbent material, the sorbent material being chemically reactive with the gaseous oxidation products to produce solid reaction products incorporated in the reaction chamber sidewalls.
2. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 1 wherein the dry porous cementitious material has a density of from about 0.5 g/cm3 to 3 g/cm3.
3. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 1 wherein the dry porous cementitious material comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof.
4. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 1 wherein the dry porous cementitious material comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof, the cement having a density of from about 0.5 g/cm3 to 3 g/cm3.
5. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 1 wherein the dry porous cementitious material comprises a metastable compound of CaO#Al2θ3#xH2θ.
6. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 1 wherein the dry porous cementitious material consists essentially of a metastable compound of CaO»Al2O3»xH O and Ca(OH)2.
7. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 1 wherein, the dry porous cementitious material comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof; the gaseous organic compounds include fluorine and chlorine containing compounds; and the solid reaction products comprise one or more of CaF2, CaFCl, CaCl2, MgF2, MgFCl and MgCl2.
8. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 1 wherein the elongated reaction chamber includes a removable liner which defines the internal reaction chamber sidewalls, the dry porous cementitious and chemically sorbent material lining internal sidewalls of the removable liner.
9. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 8 wherein the dry porous cementitious material lining sidewalls of the removable liner comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof.
10. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 8 wherein the dry porous cementitious material lining sidewalls of the removable liner comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof, the cement having a density of from about 0.5 g cm to 3 g/cm3.
11. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 8 wherein the dry porous cementitious material lining sidewalls of the removable liner comprises a metastable compound of CaO»AI2O3*xH2O.
12. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 8 wherein the dry porous cementitious material lining sidewalls of the removable liner consists essentially of a metastable compound of CaO»Al2O3 »xH2O and Ca(OH)2.
13. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 8 wherein the removable liner includes an end cap having an opening provided therethrough, the ultraviolet light source being removably mounted to the end cap through the opening and supported internally within the removable liner.
14. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 8 wherein the removable liner includes a threaded end, the apparatus further comprising an end cap sized and configured for threaded engagement with the threaded end, the end cap having an opening provided therethrough, the ultraviolet light source being removably mounted to the threaded end cap through the opening and supported internally within the removable liner.
15. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 8 further comprising a sensor interposed between the removable liner sidewalls and the dry porous cementitious and chemically sorbent material to monitor the life of such material, the sensor being comprised of a material which is reactive with the gaseous oxidation products upon exhaustion of the overlying dry porous cementitious chemically sorbent material.
16. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 15 wherein the sensor comprises a conductive copper strip connected with a monitored source of electric current.
17. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 1 further comprising a cooling jacket surrounding the reaction chamber which receives a cooling fluid for cooling the reaction chamber.
18. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 17 wherein the cooling jacket is adapted for receiving and utilizing the gaseous halogenated organic compounds to be treated as the cooling fluid for cooling the reaction chamber.
19. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 1 further comprising multiple elongated reaction chambers connected in series.
20. The apparatus for photochemically oxidizing gaseous halogenated organic compounds of claim 1 wherein the dry porous cementitious and chemically sorbent material comprises a plurality of discrete elongated segments arranged in juxtaposition to define effective internal reaction chamber sidewalls.
21. A removable reaction chamber liner for a photochemical oxidation reactor apparatus for oxidizing gaseous halogenated organic compounds, the liner comprising: a support shell sized and shaped to be received internally within a photochemical oxidation reactor, the support shell having internal sidewalls which define a pathway for gaseous flow therethrough, the pathway being of sufficient size to receive a source of ultraviolet light sufficient to oxidize gaseous halogenated organic compounds fed to the reaction chamber into gaseous oxidation products; and the sidewalls being lined with a dry porous cementitious and chemically sorbent material, the sorbent material being chemically reactive with the gaseous oxidation products to produce solid reaction products incorporated in the lined reaction chamber sidewalls.
22. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 21 wherein the dry porous cementitious material lining the internal sidewalls has a density of from about 0.5 g/cm to 3 g/cm .
23. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 21 wherein the dry porous cementitious material lining the internal sidewalls comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof.
24. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 21 wherein the dry porous cementitious material lining the internal sidewalls comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof, the cement having a density of from about 0.5 g/cm ~ to 3 g cm 3.
25. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 21 wherein the dry porous cementitious material lining the internal sidewalls comprises a metastable compound of CaO»Al2O3#xH2O.
26. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 21 wherein the dry porous cementitious material lining the internal sidewalls consists essentially of a metastable compound of CaO«AI2O3-xH2O and Ca(OH)2-
27. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 21 wherein, the dry porous cementitious material lining the internal sidewalls comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof; the gaseous organic compounds include fluorine and chlorine containing compounds; and the solid reaction products comprise one or more of CaF2, CaFCl, CaCl2, MgF2, MgFCl and MgCl2.
28. The removable reaction chamber liner for a photochemical oxidation reactor of claim 21 wherein the support shell includes a threaded end, the liner further comprising an end cap sized and configured for threaded engagement with the threaded end, the end cap having an opening provided therethrough for slidable receiving and mounting an ultraviolet light source therethrough.
29. The removable reaction chamber liner for a photochemical oxidation reactor of claim 21 further comprising a sensor interposed between the internal sidewalls of the support shell and the dry porous cementitious and chemically sorbent material to monitor the life of such material, the sensor being comprised of a material which is reactive with the gaseous oxidation products upon exhaustion of the overlying dry porous cementitious chemically sorbent material.
30. The removable reaction chamber liner for a photochemical oxidation reactor of claim 29 wherein the sensor comprises a conductive copper strip having conductive leads for connection with a monitored source of electric current.
31. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 21 wherein the support shell is comprised of reusable polytetrafluoroethylene.
32. A method of photochemically oxidizing gaseous halogenated organic compounds comprising: feeding gaseous halogenated organic compounds to an elongated reaction chamber having a source of ultraviolet light provided internally within the chamber, the reaction chamber having internal sidewalls; exposing the gaseous halogenated organic compounds to ultraviolet light within the chamber to oxidize the gaseous halogenated organic compounds into gaseous oxidation products; and reacting the gaseous oxidation products with a lining of the reaction chamber, the lining comprising a dry porous cementitious and chemically sorbent material which lines the reaction chamber and is chemically reactive with the gaseous oxidation products, the gaseous oxidation products being reacted with the lining material to produce solid reaction products incorporated in the lined reaction chamber sidewalls.
33. The method of photochemically oxidizing gaseous halogenated organic compounds of claim 32 wherein. the gaseous halogenated organic compounds fed to the reaction chamber are selected from the group consisting of chlorocarbons, fluorocarbons, chlorofluorocarbons, and hydrochlorofluorocarbons; the dry porous cementitious and chemically sorbent material comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof; and the solid reaction products comprise one or more of CaF2, CaFCl, CaCl , MgF2, MgFCl and MgCl2.
34. The method of photochemically oxidizing gaseous halogenated organic compounds of claim 32 wherein, the gaseous halogenated organic compounds fed to the reaction chamber are selected from the group consisting of chlorocarbons, fluorocarbons, chlorofluorocarbons, and hydrochlorofluorocarbons; the dry porous cementitious and chemically sorbent material comprises a metastable compound of CaO»Al2O3#xH2O; and the solid reaction products comprise one or more of CaF2, CaFCl, and CaCl2.
35. The method of photochemically oxidizing gaseous halogenated organic compounds of claim 32 wherein, the gaseous halogenated organic compounds fed to the reaction chamber are selected from the group consisting of chlorocarbons, fluorocarbons, chlorofluorocarbons, and hydrochlorofluorocarbons; the dry porous cementitious and chemically sorbent material consists essentially of a metastable compound of CaO*Al2O3#xH2O and Ca(OH)2; and the solid reaction products comprise one or more of CaF2, CaFCl, and CaCl2.
36. The method of photochemically oxidizing gaseous halogenated organic compounds of claim 32 wherein the lining is supported on a reusable support shell, the method further comprising removing spent dry porous cementitious and chemically sorbent material incorporating solid reaction products and recycling the reusable support shell for subsequent use in the method of claim 32.
37. The method of photochemically oxidizing gaseous halogenated organic compounds of claim 32 wherein the lining is supported on a reusable support shell comprising polytetrafluoroethylene, the method further comprising removing spent dry porous cementitious and chemically sorbent material incorporating solid reaction products and recycling the reusable support shell for subsequent use in the method of claim 32.
38. A method of photochemically oxidizing gaseous halogenated organic compounds comprising: exposing gaseous halogenated organic compounds to ultraviolet light to oxidize the gaseous halogenated organic compounds into gaseous oxidation products; and reacting the gaseous oxidation products with an internal surface of a chamber, the internal surface comprising a dry porous cementitious and chemically sorbent material which is chemically reactive with the gaseous oxidation products, the gaseous oxidation products being reacted with the dry porous cementitious material to produce solid reaction products incorporated in sidewalls of the chamber.
39. The method of photochemically oxidizing gaseous halogenated organic compounds of claim 38 wherein, the gaseous halogenated organic compounds fed to the reaction chamber are selected from the group consisting of chlorocarbons, fluorocarbons, chlorofluorocarbons, and hydrochlorofluorocarbons; the dry porous cementitious and chemically sorbent material comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof; and the solid reaction products comprise one or more of CaF2, CaFCl, CaCl2,
MgF2, MgFCl and MgCl2.
40. The method of photochemically oxidizing gaseous halogenated organic compounds of claim 38 wherein, the gaseous halogenated organic compounds fed to the reaction chamber are selected from the group consisting of chlorocarbons, fluorocarbons, chlorofluorocarbons, and hydrochlorofluorocarbons; the dry porous cementitious and chemically sorbent material comprises a metastable compound of CaO#Al2O3#xH2O; and the solid reaction products comprise one or more of CaF2, CaFCl, and CaCl2.
41. The method of photochemically oxidizing gaseous halogenated organic compounds of claim 38 wherein, the gaseous halogenated organic compounds fed to the reaction chamber are selected from the group consisting of chlorocarbons, fluorocarbons, chlorofluorocarbons, and hydrochlorofluorocarbons; the dry porous cementitious and chemically sorbent material consists essentially of a metastable compound of CaO#Al2O3#xH2O and Ca(OH)2; and the solid reaction products comprise one or more of CaF , CaFCl, and CaCl2.
42. The method of photochemically oxidizing gaseous halogenated organic compounds of claim 38 wherein the dry porous cementitious material is supported on a reusable support shell, the method further comprising removing spent dry porous cementitious and chemically sorbent material incorporating solid reaction products and recycling the reusable support shell for subsequent use in the method of claim 38.
43. The method of photochemically oxidizing gaseous halogenated organic compounds of claim 38 wherein the dry porous cementitious material is supported on a reusable support shell comprising polytetrafluoroethylene, the method further comprising removing spent dry porous cementitious and chemically sorbent material incorporating solid reaction products and recycling the reusable support shell for subsequent use in the method of claim 38.
44. A method of preparing a lining for a reactor for photochemically oxidizing gaseous halogenated organic compounds, the lining being reactive with gaseous oxidation products produced by the photochemical oxidation of the gaseous halogenated organic compounds, the method comprising the following steps: providing a dry mixture of material, the material comprising: 16 from about 20% to 33% by weight alumina based CaO cement; from about 0% to 10% by weight added CaO; from about 0% to 25% by weight added Ca(OH)2, Mg(OH)2 or mixtures thereof; from about 50% to 70% by weight added alumina aggregate; from about 0% to 1% by weight of a foaming agent; combining the dry mixture of material with water in a ratio of water to dry mixture of from about 1.5:1 to 1.65:1 by weight; mixing the dry mixture and water into a slurry; applying the slurry to internal sidewalls of a supporting shell; and allowing the slurry to harden on the supporting shell into a dry cementitious material predominately comprising a metastable compound of CaO-Al2O3 «xH2O.
45. A lining produced by the process of claim 44.
46. The method of preparing a lining of claim 44 further comprising providing an effective amount of the foaming agent in the mixture to impart foaming in the slurry and corresponding porosity in the hardened material to produce a hardened material density from about 0.5 g/cm to about 3 g/cm .
47. A lining produced by the process of claim 46.
48. The method of preparing a lining of claim 44 further comprising hardening the slurry on the supporting shell in the presence of steam at a temperature of 100° C or greater to maximize incorporation of hydrated water into the hardened material.
49. A lining produced by the process of claim 48.
50. The method of preparing a lining of claim 44 further comprising: providing an effective amount of the foaming agent in the mixture to impart foaming in the slurry and corresponding porosity in the hardened material
3 3 to produce a hardened material density from about 0.5 g/cm to about 3 g/cm ; hardening the slurry on the supporting shell in the presence of steam at a temperature of 100° C or greater to maximize incorporation of hydrated water into the hardened material; and drying the steam hardened slurry in a dry atmosphere of 100° C or greater.
51. A lining produced by the process of claim 50.
AMENDED CLAIMS
[received by the International Bureau on 23 July 1993 (23.07.93) ; new claims 52-104 added; other claims unchanged (10 pages) ]
52. An apparatus for photochemically oxidizing gaseous organic compounds comprising: an elongated reaction chamber, the reaction chamber having a gas inlet, internal sidewalls and a gas outlet; a source of ultraviolet light provided within and along the elongated reaction chamber to oxidize gaseous organic compounds fed to the reaction chamber into gaseous oxidation products; and the reaction chamber internal sidewalls comprising a dry porous cementitious and chemically sorbent material, the sorbent material being chemically reactive with the gaseous oxidation products to produce solid reaction products incorporated in the reaction chamber sidewalls.
53. The apparatus for photochemically oxidizing gaseous organic compounds of claim 52 wherein the dry porous cementitious material has a density of from about 0.5 g/cm3 to 3 g/cm .
54. The apparatus for photochemically oxidizing gaseous organic compounds of claim 52 wherein the dry porous cementitious material comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof.
55. The apparatus for photochemically oxidizing gaseous organic compounds of claim 52 wherein the dry porous cementitious material comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof, the cement having a density of from about 0.5 g/cm to 3 g/cm .
56. The apparatus for photochemically oxidizing gaseous organic compounds of claim 52 wherein the dry porous cementitious material comprises a metastable compound of CaO»Al2O3,xH2O.
57. The apparatus for photochemically oxidizing gaseous organic compounds of claim 52 wherein the dry porous cementitious material consists essentially of a metastable compound of CaO»Al2O3»xH2O and Ca(OH)2.
58. The apparatus for photochemically oxidizing gaseous organic compounds of claim 52 wherein, the dry porous cementitious material comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof; the gaseous organic compounds include fluorine and chlorine containing compounds; and the solid reaction products comprise one or more of CaF2, CaFCl, CaCl2, MgF2, MgFCl and MgCl2.
59. The apparatus for photochemically oxidizing gaseous organic compounds of claim 52 wherein the elongated reaction chamber includes a removable liner which defines the internal reaction chamber sidewalls, the dry porous cementitious and chemically sorbent material lining internal sidewalls of the removable liner.
60. The apparatus for photochemically oxidizing gaseous organic compounds of claim 59 wherein the dry porous cementitious material lining sidewalls of the removable liner comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof.
61. The apparatus for photochemically oxidizing gaseous organic compounds of claim 59 wherein the dry porous cementitious material lining sidewalls of the removable liner comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof, the cement having a density of from about 0.5 g/cm to 3 g/cm3.
62. The apparatus for photochemicaiiy oxidizing gaseous organic compounds of claim 59 wherein the dry porous cementitious material lining sidewalls of the removable liner comprises a metastable compound of CaO»Al2O3 »xH2O.
63. The apparatus for photochemically oxidizing gaseous organic compounds of claim 59 wherein the dry porous cementitious material lining sidewalls of the removable liner consists essentially of a metastable compound of CaO»Al2O3 »xH2O and Ca(OH)2.
64. The apparatus for photochemically oxidizing gaseous organic compounds of claim 59 wherein the removable liner includes an end cap having an opening provided therethrough, the ultraviolet light source being removably mounted to the end cap through the opening and supported internally within the removable liner.
65. The apparatus for photochemically oxidizing gaseous organic compounds of claim 59 wherein the removable liner includes a threaded end, the apparatus further comprising an end cap sized and configured for threaded engagement with the threaded end, the end cap having an opening provided therethrough, the ultraviolet light source being removably mounted to the threaded end cap through the opening and supported internally within the removable liner.
66. The apparatus for photochemically oxidizing gaseous organic compounds of claim 59 further comprising a sensor interposed between the removable liner sidewalls and the dry porous cementitious and chemically sorbent material to monitor the life of such material, the sensor being comprised of a material which is reactive with the gaseous oxidation products upon exhaustion of the overlying dry porous cementitious chemically sorbent material.
67. The apparatus for photochemically oxidizing gaseous organic compounds of claim 66 wherein the sensor comprises a conductive copper strip connected with a monitored source of electric current.
68. The apparatus for photochemically oxidizing gaseous organic compounds of claim 52 further comprising a cooling jacket surrounding the reaction chamber which receives a cooling fluid for cooling the reaction chamber.
69. The apparatus for photochemically oxidizing gaseous organic compounds of claim 68 wherein the cooling jacket is adapted for receiving and utilizing the gaseous organic compounds to be treated as the cooling fluid for cooling the reaction chamber.
70. The apparatus for photochemically oxidizing gaseous organic compounds of claim 52 further comprising multiple elongated reaction chambers connected in series.
71. The apparatus for photochemically oxidizing gaseous organic compounds of claim 52 wherein the dry porous cementitious and chemically sorbent material comprises a plurality of discrete elongated segments arranged in juxtaposition to define effective internal reaction chamber sidewalls.
72. A removable reaction chamber liner for a photochemical oxidation reactor apparatus for oxidizing gaseous organic compounds, the liner comprising: a support shell sized and shaped to be received internally within a photochemical oxidation reactor, the support shell having internal sidewalls which define a pathway for gaseous flow therethrough, the pathway being of sufficient size to receive a source of ultraviolet light sufficient to oxidize gaseous organic compounds fed to the reaction chamber into gaseous oxidation products; and the sidewalls being lined with a dry porous cementitious and chemically sorbent material, the sorbent material being chemically reactive with the gaseous oxidation products to produce solid reaction products incorporated in the lined reaction chamber sidewalls.
73. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 72 wherein the dry porous cementitious material lining 3 the internal sidewalls has a density of from about 0.5 g/cm to 3 g/cm .
74. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 72 wherein the dry porous cementitious material lining the internal sidewalls comprises a calcium based cement with an added component selected from the group consisting of Ca(OH) and Mg(OH)2 or mixtures thereof.
75. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 72 wherein the dry porous cementitious material lining the internal sidewalls comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof, the cement having a density of from about 0.5 g/cm to 3 g/cm .
76. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 72 wherein the dry porous cementitious material lining the internal sidewalls comprises a metastable compound of CaO^A^O^x^O.
77. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 72 wherein the dry porous cementitious material lining the internal sidewalls consists essentially of a metastable compound of CaO«AI2O3 «xH2O and Ca(OH)2.
78. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 72 wherein, the dry porous cementitious material lining the internal sidewalls comprises a calcium based cement with an added component selected from the group consisting of Ca(OH)2 and Mg(OH)2 or mixtures thereof; the gaseous organic compounds include fluorine and chlorine containing compounds; and the solid reaction products comprise one or more of CaF2, CaFCl, CaCl2, MgF2, MgFCl and MgCl2.
79. The removable reaction chamber liner for a photochemical oxidation reactor of claim 72 wherein the support shell includes a threaded end, the liner further comprising an end cap sized and configured for threaded engagement with the threaded end, the end cap having an opening provided therethrough for slidable receiving and mounting an ultraviolet light source therethrough.
80. The removable reaction chamber liner for a photochemical oxidation reactor of claim 72 further comprising a sensor interposed between the internal sidewalls of the support shell and the dry porous cementitious and chemically sorbent material to monitor the life of such material, the sensor being comprised of a material which is reactive with the gaseous oxidation products upon exhaustion of the overlying dry porous cementitious chemically sorbent material.
81. The removable reaction chamber liner for a photochemical oxidation reactor of claim 80 wherein the sensor comprises a conductive copper strip having conductive leads for connection with a monitored source of electric current.
82. The removable reaction chamber liner for a photochemical oxidation reactor apparatus of claim 72 wherein the support shell is comprised of reusable polytetrafluoroethylene.
83. A method of photochemically oxidizing gaseous organic compounds comprising: feeding gaseous organic compounds to an elongated reaction chamber having a source of ultraviolet light provided internally within the chamber, the reaction chamber having internal sidewalls; exposing the gaseous organic compounds to ultraviolet light within the chamber to oxidize the gaseous organic compounds into gaseous oxidation products; and reacting the gaseous oxidation products with a lining of the reaction chamber, the lining comprising a dry porous cementitious and chemically sorbent material which lines the reaction chamber and is chemically reactive with the gaseous oxidation products, the gaseous oxidation products being reacted with the lining material to produce solid reaction products incorporated in the lined reaction chamber sidewalls.
84. The method of photochemically oxidizing gaseous organic compounds of claim 83 wherein the lining is supported on a reusable support shell, the method further comprising removing spent dry porous cementitious and chemically sorbent material incorporating solid reaction products and recycling the reusable support shell for subsequent use in the method of claim 83.
85. The method of photochemically oxidizing gaseous organic compounds of claim 83 wherein the lining is supported on a reusable support shell comprising polytetrafluoroethylene, the method further comprising removing spent dry porous cementitious and chemically sorbent material incorporating solid reaction products and recycling the reusable support shell for subsequent use in the method of claim 83.
86. A method of photochemically oxidizing gaseous organic compounds comprising: exposing gaseous organic compounds to ultraviolet light to oxidize the gaseous organic compounds into gaseous oxidation products; and reacting the gaseous oxidation products with an internal surface of a chamber, the internal surface comprising a dry porous cementitious and chemically sorbent material which is chemically reactive with the gaseous oxidation products, the gaseous oxidation products being reacted with the dry porous cementitious material to produce solid reaction products incorporated in sidewalls of the chamber.
87. The method of photochemically oxidizing gaseous organic compounds of claim 86 wherein the dry porous cementitious material is supported on a reusable support shell, the method further comprising removing spent dry porous cementitious and chemically sorbent material incorporating solid reaction products and recycling the reusable support shell for subsequent use in the method of claim 86.
88. The method of photochemically oxidizing gaseous organic compounds of claim 86 wherein the dry porous cementitious material is supported on a reusable support shell comprising polytetrafluoroethylene, the method further comprising removing spent dry porous cementitious and chemically sorbent material incorporating solid reaction products and recycling the reusable support shell for subsequent use in the method of claim 86.
89. A method of preparing a lining for a reactor for photochemically oxidizing gaseous organic compounds, the lining being reactive with gaseous oxidation products produced by the photochemical oxidation of the gaseous organic compounds, the method comprising the following steps: providing a dry mixture of material, the material comprising: from about 20% to 33% by weight alumina based CaO cement; from about 0% to 10% by weight added CaO; from about 0% to 25% by weight added Ca(OH)2, Mg(OH)2 or mixtures thereof; from about 50% to 70% by weight added alumina aggregate; from about 0% to 1% by weight of a foaming agent; combining the dry mixture of material with water in a ratio of water to dry mixture of from about 1.5:1 to 1.65:1 by weight; mixing the dry mixture and water into a slurry; applying the slurry to internal sidewalls of a supporting shell; and allowing the slurry to harden on the supporting shell into a dry cementitious material predominately comprising a metastable compound of CaO»Al2O3 «xH2O.
90. A lining produced by the process of claim 89.
91. The method of preparing a lining of claim 89 further comprising providing an effective amount of the foaming agent in the mixture to impart foaming in the slurry and corresponding porosity in the hardened material to produce a hardened material density from about 0.5 g/cm3 to about 3 g/cm3.
92. A lining produced by the process of claim 91.
93. The method of preparing a lining of claim 89 further comprising hardening the slurry on the supporting shell in the presence of steam at a temperature of 100° C or greater to maximize incorporation of hydrated water into the hardened material.
94. A lining produced by the process of claim 93.
95. The method of preparing a lining of claim 89 further comprising: providing an effective amount of the foaming agent in the mixture to impart foaming in the slurry and corresponding porosity in the hardened material to produce a hardened material density from about 0.5 g/cm to about 3 g/cm ; hardening the slurry on the supporting shell in the presence of steam at a temperature of 100° C or greater to maximize incorporation of hydrated water into the hardened material; and drying the steam hardened slurry in a dry atmosphere of 100° C or greater.
96. A lining produced by the process of claim 95.
97. A method of preparing a lining for a reactor for photochemically oxidizing gaseous organic compounds, the lining being reactive with gaseous oxidation products produced by the photochemical oxidation of the gaseous organic compounds, the method comprising the following steps: providing a dry mixture of material, the material comprising alumina based CaO cement and aggregate; combining the dry mixture of material with water; mixing the dry mixture and water into a slurry; applying the slurry to internal sidewalls of a supporting shell; and allowing the slurry to harden on the supporting shell into a dry cementitious material predominately comprising a metastable compound of CaO»Al2O3 »xH2O.
98. A lining produced by the process of claim 97.
99. The method of preparing a lining of claim 97 further comprising providing an effective amount of a foaming agent in the mixture to impart foaming in the slurry and corresponding porosity in the hardened material to
3 3 produce a hardened material density from about 0.5 g/cm to about 3 g/cm .
100. A lining produced by the process of claim 99.
101. The method of preparing a lining of claim 97 further comprising hardening the slurry on the supporting shell in the presence of steam at a temperature of 100° C or greater to maximize incorporation of hydrated water into the hardened material.
102. A lining produced by the process of claim 101.
103. The method of preparing a lining of claim 97 further comprising: providing an effective amount of a foaming agent in the mixture to impart foaming in the slurry and corresponding porosity in the hardened material to produce a hardened material density from about 0.5 g/cm to about 3 g/cm ; hardening the slurry on the supporting shell in the presence of steam at a temperature of 100° C or greater to maximize incorporation of hydrated water into the hardened material; and drying the steam hardened slurry in a dry atmosphere of 100° C or greater.
104. A lining produced by the process of claim 103.
AU37747/93A 1992-02-27 1993-02-18 Method and apparatus for use in photochemically oxidizing gaseous halogenated organic compounds Ceased AU663775C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/843,422 US5260036A (en) 1992-02-27 1992-02-27 Method and apparatus for use in photochemically oxidizing gaseous halogenated organic compounds
US843422 1992-02-27
PCT/US1993/001475 WO1993016761A1 (en) 1992-02-27 1993-02-18 Method and apparatus for use in photochemically oxidizing gaseous halogenated organic compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU71107/94A Addition AU687074B2 (en) 1993-06-15 1994-06-15 Method and apparatus for photochemically oxidizing gaseous organic compounds

Publications (3)

Publication Number Publication Date
AU3774793A AU3774793A (en) 1993-09-13
AU663775B2 AU663775B2 (en) 1995-10-19
AU663775C true AU663775C (en) 1997-12-18

Family

ID=

Similar Documents

Publication Publication Date Title
EP0627944B1 (en) Method and apparatus for use in photochemically oxidizing gaseous halogenated organic compounds
AU687074B2 (en) Method and apparatus for photochemically oxidizing gaseous organic compounds
US5817284A (en) Method for decomposing halide-containing gas
US6077482A (en) Method for treating organohalogen compounds with catalyst
KR19990045278A (en) Method and apparatus for treating overburden
US20040101460A1 (en) Apparatus and method for point-of-use treatment of effluent gas streams
US5979054A (en) Method of forming a sidewall for a reactor for oxidizing volatile or semi-volatile organic compounds
AU663775C (en) Method and apparatus for use in photochemically oxidizing gaseous halogenated organic compounds
LT5934B (en) Treatment method, treatment facility and impurity removing material for radioactive gaseous vaste
JP4699919B2 (en) Exhaust gas treatment method and treatment apparatus
CA1172828A (en) Iodine removal from a gas phase
KR920007856B1 (en) Method of removing gassy acidic halogen compound
JP3376789B2 (en) Method for treating organic halogen compounds with a catalyst
JP2001300260A (en) Photodecomposition method of non-metallic fluoride in gas
KR20040047770A (en) Method and apparatus for treating exhaust gases containing fluorine-containing compounds
JP3384464B2 (en) Method for treating volatile organic chlorine compounds
JPS62289222A (en) Gas adsorption and capture apparatus
JP3228459B2 (en) Decomposition method of halide gas
JP2006122790A (en) Fluorine-containing gas decomposing treatment apparatus and fluorine compound recovery method using it
JP2718884B2 (en) Apparatus and method for decomposing and recycling fluorocarbons by ultraviolet light
JPS6035172B2 (en) Hydrogen fluoride removal from gas mixtures by absorption on alkaline earth metal fluorides
JPH06327931A (en) Purifying method of waste gas
JPH05154333A (en) Method for purifying harmful gas
WO1998026855A1 (en) Method for preparing alkali metal fluoride pellets and gas scrubbing method using the same
Vikis Iodine removal from a gas phase