AU658140B2 - Composite structural element and process for making same - Google Patents
Composite structural element and process for making same Download PDFInfo
- Publication number
- AU658140B2 AU658140B2 AU75559/91A AU7555991A AU658140B2 AU 658140 B2 AU658140 B2 AU 658140B2 AU 75559/91 A AU75559/91 A AU 75559/91A AU 7555991 A AU7555991 A AU 7555991A AU 658140 B2 AU658140 B2 AU 658140B2
- Authority
- AU
- Australia
- Prior art keywords
- casing
- casings
- plug
- elongated
- structural element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0046—Producing rods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/54—Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
- B29C70/542—Placing or positioning the reinforcement in a covering or packaging element before or during moulding, e.g. drawing in a sleeve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/08—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
- B29K2105/10—Cords, strands or rovings, e.g. oriented cords, strands or rovings
- B29K2105/101—Oriented
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2023/00—Tubular articles
- B29L2023/22—Tubes or pipes, i.e. rigid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/001—Profiled members, e.g. beams, sections
- B29L2031/003—Profiled members, e.g. beams, sections having a profiled transverse cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/06—Rods, e.g. connecting rods, rails, stakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/774—Springs
- B29L2031/7742—Springs helical springs
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Moulding By Coating Moulds (AREA)
Description
OPI DATE 21/10/92 AOJP DATE 26/11/92 APPLN. ID 75559 91 0 PCT NUMBER PCT/US91/01636 IN1 LTION TREATY (PCT) (51) International Patent Classification 5 (11) International Publication Number: WO 92/16347 B29C 39/10 Al (43) International Publication Date: 1 October 1992 (01.10.92) (21) International Application Number: PCT/US91/01636 Published With international search report.
(22) International Filing Date: 13 March 1991 (13.03.91) (71)(72) Applicant and Inventor: SANDT, Hartley [US/US]; 2425 Dogwood Lane, Orange Park, FL 32073 (US).
(74) Agents: YEAGER, Arthur, G. et al.; Suite 1305, 112 W.
Adams St., Jacksonville, FL 32202 4 (81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), NO, SE (European patent), SU, US.
(54) Title: COMPOSITE STRUCTURAL ELEMENT AND PROCESS FOR MAKING SAME (57) Abstract An elongated structural element includes an external tubular casing (11) with the hollow interior space filled with a plastic Sbinder (12) containing a plurality of elongated parallel continuous strands of fiber reinforcement material (13) extending lengthwise of the element. A method for preparing such an element is provided by filling a preformed tubular casing (11) with a plastic binder (12) in liquid form in which is dispersed the fiber reinforcement material (13) and allowing the plastic binder to solidify.
The element may be initially shaped prior to solidification or reheated into another shape such as a helical coil or spring. An internal casing (29) can also be used where the fiber reinforcement strands (13) are between the external and internal casings (11) and (29).
R$ eed MOA'c 0 O COMPOSITE STRUCTURAL ELEMENT AN'D PROCESS FOR MAKING SAME BACKGR.OUND OF TH~E INVEN~TION Structural elements such as rods, tubes, and beams are normally made by casting, extruding, or rolling techniques to produce plastic or metal tubing, sheets, rods, beams, and the like. These structural elements normally comprise a single material which is chosen for its combination of physical properties, strength and weight, as well as corr6sion resistance, color, and texture. Plastic molding and extrusion procedures have provided the possibility of preparing plastic structural elements with selected combinations of physical properties, chemical properties, color, texture, etc. Fiber reinforcement of plastic materials has provided much higher physical strength properties than the plastic material alone could offer. In general, these fiber reinforced materials are made by extruding through a die a plastic melt having continuous strands of fiber distributed therein. The extrudate is then solidified in the form of a continuous rod, beam, or strand and can be cut into whatever length is desired for use.
The disadvantages of the pl.ior art procedures are that the extrudate can not be made into a curved or non-linear article, and the surface properties at the extrudata cannot be changed from that inherent in the extruded plastic.
It is an object of this invention to provide a novel structural element of fiber reinforced plastic material. It is another object of this invention to provide processes for manufacturing such structural elements. Still other objects will be apparent from the more detailed description which follows.
BRIEF SUMM4ARY OF THE INVENTION This invention relates to an elongated solid or tubular structural element having a substantially identical cross section over its entire length, the element having a solid core of thermoplastic or thermosetting resin material embedded in which is a plurality of elongated continuous strands *4U~Zhof lengthwise fiber reinforcement material, preferably in K. SUBSTITUTE SHEET
IPENUIS
substantially parallel array, and a continuous casing around the core.
This invention also relates to a process for preparing an elongated structural element comprising: preparing a hollow tubular solid casing being an integral part of the structural element; filling the interior of the casing with a polymer material in liquid form; and distributing throughout said polymer material a plurality of elongated continuous strands of fibre reinforcement material substantially parallel to each other and extending lengthwise of the casing; and allowing the polymer material to solidify with the strands of fibre reinforcement material embedded therein.
The process and element may include a tubular shape employing an external casing and an internal casing with the space therebetween being filled with the polymer material and fibre reinforcement materials. The element may also be shaped before solidification, or thereafter by reheating, into a helical coil or spring, or other shape like an I-beam or an H-beam or any irregular shape. Sometimes this requires the displacement and/or removal of some of the plastic material.
According to a first embodiment of this invention there is provided a process for preparing a non-extruded elongated structural element characterised by the steps of: preparing a hollow external solid walled casing of a tubular material being an integral part of the structural element; preparing a hollow internal solid walled casing of a tubular material being an integral part of the structural element; positioning the internal casing generally concentrically within the external casing to provide a space therebetween; Illing the space between said external and internal casings with a polymer binder material in liquid form and distributing generally uniformly throughout the polymer binder material a plurality of individual elongated continuous strands of fibre reinforcement material extending substantially parallel and lengtmiwise of the externwl and 30 internal casings thereby forming a hollow elongated structural element; and solidifying the polymer binder material with the strands of fibre reinforcement material embedded therein.
According to a second embocdiment of this invention there is provided a nonextruded rigid solid composite structural element comprising an elongated hollow member, said member having a solid rigid core of solidified polymer material, a plurality of elongated substantially continuous and individual strands of fiber reinforcement material extending lengthwise of an embedded in and substantially uniformly througbout and filling said core, a continuous elongated solid walled casing around said core of polymer material, said elongated hollow member having an elongated hollow extending [N:\LIBXXIOO58:KEH generally centrally thereof and generally parallel to said elongated casing, and an elongated internal solid walled casing extending substantially throughout said elongated hollow with said core being contained between said casings.
Brief Description of the Drawings The invention as to its organisation and method of operation, together with further objects and advantages thereof, is better understood by reference to the following description taken in connection with the accompanying drawings in which: FIG. 1 is a side elevational view of one embodiment of the structural element of this invention; FIG. 2 is an end elevational view of the structural element shown in FIG. 1; FIG. 3 is an end elevational view of a second embodiment of the structural element of this invention; FIG. 4 is an end elevational view of a third embodiment of the structural element of this invention;
I
I
1 Ir i. P IN:\LIBXXI00508:KEH WO 92/16347 PCT/US91/01636 -3- FIG. 5 is an end elevational view of a fourth embodiment of the structural element of this invention; FIG. 6 is an illustration of one type of article, e.g., a coil spring, that can be made from the structural element of this invention; FIG. 7 is an illustration of one embodiment of the process of this invention; FIG. 8 is an illustration of a second embodiment of the process of this invention; FIG. 9 is an illustration of a third embodiment of the process of this invention; FIG. 10 is an illustration of the structural element of this invention with end caps attached; FIG. 11 is an end elevational view of a hollow structural element of this invention; FIG. 12 is an illustration of a fourth embodiment of this invention; FIG. 13 is an illustration of a fifth embodiment of this invention; and FIG. 14 is an illustration of a prccess for changing a structural element having a round cross section to one having a non-round cross section.
DETAILED DESCRIPTION OF THE INVENTION This invention relates to articles of manufacture which are shown in FIGS. 1-6, 10, and 11 of the attached drawings, and to processes for preparing such articles which are shown in FIGS. 7-9, and 12-14.
In FIGS. 1-6, 10 and 11 there are depicted several types of structural elements according to this invention. In FIGS. 1-2 there is shown a cylindrical rod element having three components; namely, an external casing 11, an internal binder 12, and strands 13 of fiber reinforcement material.
These are all joined together into a single unitary structure which has an indefinite length and a substantially similar cross section at any place along that length.
External casing 11 is a flexible, semiflex:.ble, or rigid pipe or tubing having whatever properties are important 4 Rec d PT/PTD 0 I JUN 199 ST/US 91/01636 -4for the eventual use of the structural element. If corrosion resistance, abrasion resistance, or weather resistance is important, casing 11 must provide that property; and so on for other property requirements. Generally, casing 11 should be a flexible or semiflexible thermoplastic material which is compatible with binder 12 and does not react chemically therewith. In other embodiments casing 11 may be a metallic tube, an animal or human vein, intestine, or the like. Preferably there is no bond between the two, although in certain embodiments binder 12 and casing 11 may be bonded to each other. Typical materials for casing 11 include polyolefins, polyvinyls, polyesters, polyacetals, polyacrylics, polyamides, polyfluorocarbons, polycarbonates, and other plastics of similar properties, aluminum, human or animal tissue, and the like.
The internal space in casing 11 is filled with binder 12 and fiber reinforcement 13. Binder 12 must be capable of tightly adhering to strands 13. Preferably, binder 12 should be available in liquid form for ease in manufacturing the structural element of this invention, and capable of being transformed into solid form at ambient conditiohs for use as binder 12 in the structural element in ordinary use. Binder 12 may be a thermoplastic or a thermosetting material each of which exists in both liquid and solid forms. The thermoplastic materials normally change from liquid to solid and from solid to liquid by temperature changes. Thermosetting materials normally involve two or more starting components which are mixed together to produce a liquid which is hardened by chemical reaction between the components and cannot later be liquefied. Typical thermoplastics include polyolefins, polyesters, polyvinyls, polyacetals, polyacrylics, polyamidese polyfluorocarbons, polycarbonates, and the like. Typical thermosetting binders include phenol-formaldehyde resins, melamine resins, epoxy resins, urea-formaldehyde resins, polyesters, and the like.
The fiber reinforcement material 13 is a plurality of 'strands of fiber or filament that are distributed throughout SUBSTITUTE
SHEET
IPEANUS
WO 92/16347 PCT/US9 1/ 01636 the binder and are in substantially parallel arrangement running lengthwise of the structural element. The strands may be in a linear arrangement or in a sinuous or helical arrangement preferably mutually parallel to each other, although there may be embodiments where strands 13 are in any desired nonparallel arrangement. Ideally, the strands 13 would be separated from each other and equally distributed throughout all of the binder 12. From a practical point of view this may not be achieved, but preferably, the strands are extended lengthwise throughout the structural element and distributed as evenly as possible in the binder. Each strand 13 may be a single filament or a plurality of filaments twisted together, or may be a single fiber or a plurality of fibers twisted into a thread; or may be any other combination of fibers, filaments, threads, yarns or the like that are relatively small in diameter and relatively long and continuous in length. Tubular filaments, threads, yarns and the like are also useful as strands 13. The word "strand" herein is meant to be generic and to include all of the above configurations. The material of the strands may be organic or inorganic. The organic strands include materials such as cotton, wool, bagassee, hemp, polyamide, polyacrylonitrile, polyester, rayon and the like. Inorganic strands include materials such as glass, steel, copper, aluminum, titanium, graphite, and the like.
In order to assure good adhesion between the binder 12 and the strands 13, certain promoters or agents may be employed to enhance the bonds between binder 12 and strands 13.
In FIGS. 3-5 there are shown other structural elements of other cross sectional shapes, square (FIG. oblong (FIG. and triangular (FIG. which may be solid as shown, or tubular with an internal open space, as shown in FIG. 11.
Any of these shapes may be prepared in finite lengths and endcapped, as shown in FIG. 10, if it is desirable to protect the open ends from -he surrounding medium in which the structural element is used. Still other shapes are within the scope of this invention since any geometric design like an H-beam, an WO 92/16347 PCT/US91/01636 -6- I-beam or star shaped cross section is acceptable.
The structural element bf this invention can be sawed, drilled, tapped, twisted, bent, and otherwise used to form useful.articles of manufacture. For example, the element may be coiled into a helix to form a coil spring as shown in FIG.
6. If the structural element is made with a thermoplastic binder 12, a preformed straight length of element may be heated, and formed into another shape, coiled to form the spring of FIG. 6, and cooled to solidify the binder 12, and thereby produce a stable shape. Alternatively, the element may employ a thermoplastic molten binder 12 in casina 11, and the element may be coiled into a spring or formed into another shape before the binder 12 is allowed to solidify. If the binder 12 is a thermosetting material, it must be formed into the final desired shape, coiled into the spring of FIG. 6, before binder 12 has had time to set to a solid. There are a multitude of applications for the structural element of this invention including ropes, rods, structural beams for chemical processing equipment, articles used under sea water, strands or bones used in human surgical procedures, and the like.
In the process of this invention as shown in FIGS 7-9 and 12-14 a plug 17 is moved through the internal hollow of casing 11 with binder 12 and fiber reinforcement strands 13 filling the hollow behind the plug 17 as it moves along. In the process depicted in FIG. 7, a length of casing 11 is fitted with a feed funnel 16 into which is fed a continuous length of a plurality of strands 13 and at the same time is fed liquid or molten binder 12 from a supply reservoir Plug 17 is slidable within casing 11 and has an eye 18 to which the hank of strands 13 is attached. A pull cable 19 is attached to the front of plug 17 to pull plug 17 through casing 11 by windup drum 20. As plug 17 is moved downward toward drum 20, binder 12 fills the interior hollow of casing 11 and the individual strands in the hank disperse themselves throughout the entire cross section of the interior hollow of casing 11 to eventually approach bhe distribution shown in 16 ee d PCVPTO u .1 AU I99 PCT/US 91 /01636 -7- FIGS. 2-5. It can be appreciated that casing 11 and plug 17 may take any shape, such as those in FIGS. 2-5. Furthermore, hollow shapes as shown in FIG. 11 may be made by making plug 17 into an annular object and sliding between an inner casing 29 and an outer casing 11 (see FIG. 11). if preferred, inner casing 29 may be supported by an internal mandrel (not shown) to support inner c ,ing against collapse until binder 12 hardens.
In FIG. 8 the same general arrangement as that of FIG.
7 is shown except that instead of a windup drum 20 and a cable 19 to move plug 17 there is a vacuum pump 21 to produce a lower pressure in the space 25 ahead of plug 17 causing plug 17 to move toward vacuum pump 21.
in FIG. 9 there also is the same general arrangement of casing 11, plug 17 and strands 13, attached to eye 18. in this instance the force to move plug 17 through casing 11 is.
provided by the pressure on binder 12. Inlet pipe 22 feeds liquid binder 12 to pump 23 which pumps binder into pressure vessel 27 which has an outlet into casing 11. Roll 14 of fiber reinforcement strands 13 is mounted inside vessel 27 in a pressurized space 26 designed to offset the pressure on binder 12 emitted from pump 23. Binder 13 is supplied to space 24 under pressure and this bears against plug 17 causing it to move to the right and fill up casing 11.
In all of the embodiments of FIGS. 7, 8, and 9 the strands will be substantially linear and parallel to each other and to the longitudinal axis of casirig 11 if plugi 17 is simply pulled through casing 11. if plug 11 is rotated about its axis of travel as it is pulled through casing 11, strands 13 can be made into a sinuous or helical orientation while the individual strands 13 remain generally parallel with each other.
it is contemplated that in certain corrosive conditions there may be a need to completely insulate binder IL and strands 13 fmom the surrounding corrosive medium. In such instances there may be end caps 28 sealed onto any cut eiAds of Z the structural element so as to leave only the material of the SUBSTITUTE SHEET
IPENIS
i~w4 %%0P-A9f/erO U 1 J 0 A 993 PCT/UIS 91/01636 casing exposed as sh(?wn -n FIG. 10. End cap 28 can be heat sealed or otherwise attached to casing 11 so as to be leak proof and therefore completely corrosion-resistant.
It is an important feature of this invention to provide elements in which the fiber reinforcing component is a continuous strand and not a plurality of chopped fibers. The continuous strands employed in this invention provide a greatly improved modulus of elasticity as compared to that of the strand containing short lengths of reinforcing fibers or filaments. It is for this reason that an excellent coil spring can be mrade from the structural element of this inventiorn, while such a coil spring from the prior art would not be operable.II FIGS. 12-14 show alternate embodiments of the process of making the structural elements of FIGS. 2-5 and 11. In FIG. 12 there is illustrated a procedure to make hollow tubular structural elements as shown in FIG. 11. Outer casing 1-1 is attached to funnel 16 by clamp 30. Inner casing 29 with a plug at its lower or forward end is introducpd into funnel 16 along with plug 33 into which the forward en~ds of fiber strands 13 have been embedded by previously molding plug 33 with strands 13 embedded therein. Plug 33, inner casing 29, and plug 34 are moved downwardly in the direction of arrow while outer casing 11. and funnel 16 remain stationary and filled with liquid binder 12. As inner casing 29, plug 34f plug 33 and strands 13 move downwardly the annular space between casings 11 and .29 fills with binder 12 and fiber strands 13 are dispersed throughout. Plug 34 is needed to prevent binder 12 from leaking into the interior hollow of internal casing 29. Plug 34 may be independent of plug 33 or attached thereto in different embodiments of this process.
Centering guides 31 and 32 keep inner casing 29 centered in casing 11 as casing 29 advances. Guides 31 and 32 are spider legs. Guide 31 is attached to funnel 16 with its distal ends r-ubbing against inner casing 29 as it moves forward. Guides 32 are attached to casing 29 or its plug 34 with its distal rgnds rubbing against outer casing 11 as inner casing 29 moves SUBSTITUTE SHEET
RPEAMUS
WO 92/16347 PCT/US91/01636 -9forward. Preferably, guides 31 and 32 are spring biased to bear against casings 29 and 11, respectively. Furthermore, guides 31 preferably are pivotable so as to be no obstacle to the initial entrance of plug 33 into and through funnel 16 to the top of outer casing 11. When the desired length of tubular structural element 11 has been made, the process can be repeated by starting again with a new length of outer casing 11.
In FIG. 13 there is shown an alternative to the process of FIG. 9 for making the structural element by fluid pressure causing the movement of the plug to which fiber strands 13 are attached. A plurality of fiber strands 13 are introduced over a feed roller 37 in header box 38 and downward through funnel 16 into outer casing 11 which is temporarily attached to funnel 16 by clamp 20. The forward ends of strands 13 are embedded in plug 36. Casing 11 rests on a base plate 39 which will serve as a stop to plug 36 which moves downward in the process. Binder 12 is kept in container 40 which is connected by passageway 43 to funnel feeder 16 permitting the level of binder 12 to be the same in funnel 16 and in container Air pressure is maintained in tank 44 which is connected by lines 45, 46 and 47 to both of header box 38 and binder container 40 to equalize the pressure on both surfaces of liquid binder 12. The pressure is transmitted to plug 36 causing it to move forward in casing 11 until it reaches base plate 39.
Lid 41 is provided for adding binder 12 to container 40, and lid 42 is provided for replacing a supply of strands 13 over roller 37 in head box 38.
In FIG. 14 there is shon a procedure for transforming an element of circular cross section, as in FIG. 2, to an element of noncircular cross section, as in FIGS. 3-5, when outer casing 11 is flexible and capable of being bent and formed into different shapes. The problem in such modifications is that the cross sectional area and circumference of the beginning element, circular, may not be the same as those of th' final element, a rectangle. The limiting factor normally is that the circumference or perimeter of the WO 92/16347 PCT/US91/01636 beginning element and final element must be the same if the outer casing 11 is to remain smooth, continuous, and unwrinkled. Generally this is accomplished by fixing the perimeter dimensions of the desired final element and adjusting the process of making the beginning element to fit those dimensions. It is basic geometry that for any given cross sectional area, a circle will have the smallest perimeter length of any shape that encloses that area. Accordingly, as an example, if the final element is to be a rectangular beam having dimensions of one inch by two inches, a perimeter length of six inches and a cross sectional area of two square inches; a circle of the same perimeter length of six inches will have a diameter of 1.91 inches and a cross sectional area of 2.865 square inches. Therefore, an element of circular cross section (2.865 square inches) must be squeezed to a cross sectional area of 2.0 square inches to be reshaped into a rectangular cross section of one inch by two inches. Referring to FIG. 14, the above means that a circular cross section element 50 with a cross sectional area of 2.865 square inches and with binder 12 in a liquid form is squeezed by rollers 49 turning in the direction of arrows 52 as the element moves past an internal solid of about 0.865 square inch cross section to reduce the cross sectional area to square inches.
Rollers 49 with or without the assistance of other forming devices can then shape element 51 into a rectangular cross section of one inch by two inches before binder 12 solidifies. It may be seen that this procedure may be applied to the end of the procedures of FIGS. 7-9 and 13 or before binder 12 solidifies, or alternatively, a rigid element may be heated to liquefy binder 12 (if it is thermoplastic) and then subjected to the reshaping procedure of FIG. 14. While the beginning element may have any shape, it preferably is circular because it is easier to make and it automatically provides a better dispersion of strands 13 than any other shape.
LQ nci\ -j rfLi1ja .I JU 1993 PCT/US 91/01636 -11- As seen hereinabove, the binder 12 may be thermoplastic in certain embodiments and thermosetting in other embodiments. In any event the binder needs to be a plastic or polymer material which is capable of tightly adherirj to strands 13 and not reacting chemically with casing 11.
While the invention has been described with respect to certain specific embodiments, it will be appreciated that many .odifications and changes may be made by those skilled in the art without departing from the spirit of the invention.
It is intended, therefore, by the appended claims to cover all such modifications and changes as fall within the true spirit and scope of the invention.
1* SUBSTITUTE
SHEET
IPENUS
Claims (15)
1. A process for preparing a non-extruded elongated structural element characterised by the steps of: preparing a hollow external solid walled casing of a tubular material being an integral part of the structural element; preparing a hollow internal solid walled casing of a tubular material being an integral part of the structural element; positioning the internal casing generally concentrically within the external casing to provide a space therebetween; filling the space between said external and internal casings with a polymer binder material in liquid form and distributing generally uniformly throughout the polymer binder material a plurality of individual elongated continuous strands of fibre reinforcement material extending substantially parallel and lengthwise of the external and internal casings thereby forming a hollow elongated structural element; and solidifying the polymer binder material with the strands of fibre rinforcement material embedded therein.
2. The process of claim, 1 wherein said step includes the step of: moving a plug in the space between the external and internal casings through the length of the casings to, cause the polymer binder material and the fibre reinforcement material to be fed into the space between the casings behind the moving plug.
3. The process of claim 1 wherein step includes the step of: positioning a plug on the end of the internal casing, which extends outwardly to abut the inside of the external casing; and moving the plug and internal casing through the length of the external casing to cause polymer binder material, and fiber reinforcement material to be fed imo the space between said casings behind the moving plug.
4. The process of claim 2 or 3 further characterised by the step of: connecting a hank of the fiber reinforcement material to the plug so that the 0 fiber reinforcement material is pulled behind the plug as the plug moves. 30
5. The process of any one of claims 2 to 4 further characterised by the step of: pressurising the polymer binder material between the casings behind the plug for moving the plug through the casings.
6. The process of any one of the preceding claims wherein step is accomplished while maintaining the casings containing the polymer material and the fiber reinforcement in the shape of a helical coil.
7. The process of any one of the preceding claims further characterised by the steps of: reheating the solidified structural element; forming it into a desired shape; and IN;A\IDXXI00508:KEH allowing the polymer binder material to resolidify with the element in the desired shape.
8. The process of claim 1 which is characterised by the following additional step accomplished after step and before step passing the casings while the polymer binder material is liquid through a shape forming means to cause the element to assume a noncircular: cross sectional shape.
9. A non-extruded rigid solid composite structural element comprising an elongated hollow member, said member having a solid rigid core of solidified polymer material, a plurality of elongated substantially continuous and individual strands of fiber reinforcement material extending lengthwise of an embedded in and substantially uniformly throughout and filling said core, a continuous elongated solid walled casing ,round said core of polymer material, said elongated hollow member having an elongated hollow extending generally centrally thereof and generally parallel to said elongated casing, and an elongated internal solid walled casing extending substantially throughout 1L :aid elongated hollow with said core being contained between said casings.
The element of claim 9 further comprising cap means on respective ends of said element for sealing said core within and between said casings and said cap means.
11. The element of claim 9 or 10 wherein said element after solidification of said core is adapted to be reheated and formed into another shape and thereafter solidified to such other shape.
12. The element of any one of claims 9 to 11 wherein said core is maintained in an unbonded condition with respect to said casings.
13. The process of any one of claims 1 to 8 wherein said distributing is performed S simultaneously as said filling the space.
14. A non-extruded rigid solid composite structural element, substantially as herein described with reference to Figs. 1 and 2, or Fig. 3 or Fig. 4 or Fig. 5 or Fig. 6 or Fig. 10 or Fig. 11.
15. A process for preparing a non-extruded elongated structural element, which process s substantially as herein described with reference to Fig. 7 or Fig. 8 or Fig. 9 or 30 Fig. 12 or Fig. 13 or Fig. 14. Dated 1 February, 1995 Hartley Sandt Patent Attorneys for the Applicant/Nominated Person SPRUSON FERGUSON IN:\LIBXXI00508KEH
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1991/001636 WO1992016347A1 (en) | 1991-03-13 | 1991-03-13 | Composite structural element and process for making same |
CA002105983A CA2105983A1 (en) | 1991-03-13 | 1991-03-13 | Composite structural element and process for making same |
Publications (2)
Publication Number | Publication Date |
---|---|
AU7555991A AU7555991A (en) | 1992-10-21 |
AU658140B2 true AU658140B2 (en) | 1995-04-06 |
Family
ID=4152300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU75559/91A Ceased AU658140B2 (en) | 1991-03-13 | 1991-03-13 | Composite structural element and process for making same |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0589872A1 (en) |
JP (1) | JPH06506406A (en) |
AU (1) | AU658140B2 (en) |
CA (1) | CA2105983A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3231592B1 (en) * | 2014-12-12 | 2021-07-21 | Fundació Eurecat | Method for manufacturing a part from composite material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2082872A5 (en) * | 1970-03-31 | 1971-12-10 | Pigeon Daniel | Prefabricated frames - of glass fibre reinforced plastics |
US3713946A (en) * | 1969-04-30 | 1973-01-30 | Nat Res Dev | Method of making fiber reinforced composites |
US4676942A (en) * | 1983-06-24 | 1987-06-30 | Atochem | Process for producing a composite lightened product |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2852424A (en) * | 1957-04-30 | 1958-09-16 | Frank W Reinhart | Reinforced plastic springs |
DE2021347C2 (en) * | 1969-04-30 | 1984-08-16 | National Research Development Corp., London | Process for the production of elongated, fiber-reinforced composite bodies |
-
1991
- 1991-03-13 EP EP91907310A patent/EP0589872A1/en not_active Withdrawn
- 1991-03-13 CA CA002105983A patent/CA2105983A1/en not_active Abandoned
- 1991-03-13 JP JP3506577A patent/JPH06506406A/en active Pending
- 1991-03-13 AU AU75559/91A patent/AU658140B2/en not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3713946A (en) * | 1969-04-30 | 1973-01-30 | Nat Res Dev | Method of making fiber reinforced composites |
FR2082872A5 (en) * | 1970-03-31 | 1971-12-10 | Pigeon Daniel | Prefabricated frames - of glass fibre reinforced plastics |
US4676942A (en) * | 1983-06-24 | 1987-06-30 | Atochem | Process for producing a composite lightened product |
Also Published As
Publication number | Publication date |
---|---|
EP0589872A4 (en) | 1993-12-16 |
JPH06506406A (en) | 1994-07-21 |
EP0589872A1 (en) | 1994-04-06 |
CA2105983A1 (en) | 1992-09-14 |
AU7555991A (en) | 1992-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5004574A (en) | Method of making a composite structural element | |
US5576081A (en) | Composite structural element and process for making same | |
US5437899A (en) | Structural element formed of a fiber reinforced thermoplastic material and method of manufacture | |
CA1302674C (en) | Method and apparatus of manufacturing a cable-like plastic composite body | |
US4992313A (en) | Fiber-reinforced plastic strut connecting link | |
EP2324258B1 (en) | Composite tie rod and method for making the same | |
US6017335A (en) | Method for making a tubular product, especially a catheter, and article made thereby | |
US4764324A (en) | Method of making a catheter | |
CA2066257C (en) | Flexible hose constructions and methods of making the same | |
US3769127A (en) | Method and apparatus for producing filament reinforced tubular products on a continuous basis | |
US4857124A (en) | Fiber-reinforced plastic strut connecting link | |
US5468327A (en) | Method and device for continuous formation of braid reinforced thermoplastic structural and flexible members | |
US5033925A (en) | Composite nut and bolt | |
CN114801274A (en) | Method for manufacturing steel bar body | |
US10654227B2 (en) | Method of manufacturing resin molded article and resin molded article | |
WO2003020535A2 (en) | Reinforced carbon fiber comprising spoke for bicycle wheel | |
AU658140B2 (en) | Composite structural element and process for making same | |
WO1992016347A1 (en) | Composite structural element and process for making same | |
JP6485762B1 (en) | Method for producing thermoplastic tube of metal or synthetic fiber reinforced wire rod | |
JPH0911355A (en) | Manufacture of fiber reinforced thermoplastic resin composite tube | |
WO2012076446A1 (en) | Method for producing a fiber composite receiving body | |
US4452314A (en) | Method of installing a reinforced thermosetting resin sucker rod assembly composed of pultruded arcuate sections | |
HU218838B (en) | Extrusion die for making a plastic pipe, and plastic pipe | |
JPH074875B2 (en) | Method for producing fiber reinforced thermoplastic resin pipe | |
JPH0681995B2 (en) | Fiber reinforced thermoplastic resin tube and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |