AU624016B2 - Process for reducing the carbon dioxide content of the exhaust gas of a gas and steam turbine power plant and power plant operating according to the process - Google Patents

Process for reducing the carbon dioxide content of the exhaust gas of a gas and steam turbine power plant and power plant operating according to the process

Info

Publication number
AU624016B2
AU624016B2 AU61039/90A AU6103990A AU624016B2 AU 624016 B2 AU624016 B2 AU 624016B2 AU 61039/90 A AU61039/90 A AU 61039/90A AU 6103990 A AU6103990 A AU 6103990A AU 624016 B2 AU624016 B2 AU 624016B2
Authority
AU
Australia
Prior art keywords
carbon dioxide
gas
power plant
turbine power
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU61039/90A
Other versions
AU6103990A (en
Inventor
Guenther Haupt
Rainer Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of AU6103990A publication Critical patent/AU6103990A/en
Application granted granted Critical
Publication of AU624016B2 publication Critical patent/AU624016B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/045Purification by catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B2043/106Hydrogen obtained by electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

In plants with fossil combustion, carbon dioxide and, if appropriate, water are ultimately formed as a combustion product. These two products are as a rule released as waste gases into the atmosphere. The carbon dioxide produced then impedes the heat emission from our Earth and causes the so-called greenhouse effect. The invention is based on the object of largely suppressing the release of carbon dioxide from a gas-and-steam power plant into the atmosphere. In a gas-and-steam turbine power plant with a gasifier (18, 238) upstream of the combustion chamber (14, 234), it is provided according to the invention that the raw gas (RG) from the gasifier (18, 238) is dedusted, cooled, purified and enriched with water and shift-converted. The carbon dioxide (CO2) and, if appropriate, the sulphur compounds are separated off by a scrubbing agent. The carbon dioxide is disposed of, for example passed into a dry ice plant (66, 290) or otherwise industrially utilised. The pure gas (GG) largely free of carbon dioxide and containing essentially hydrogen is fed as fuel to the combustion chamber (14, 234) of the gas turbine. The invention is applicable especially to gas-and-steam turbine power plants, but can also be used in pure gas turbine power plants. <IMAGE>
AU61039/90A 1989-08-16 1990-08-15 Process for reducing the carbon dioxide content of the exhaust gas of a gas and steam turbine power plant and power plant operating according to the process Ceased AU624016B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3926964 1989-08-16
DE3926964A DE3926964A1 (en) 1989-08-16 1989-08-16 METHOD FOR REDUCING THE CARBON DIOXIDE CONTENT OF THE EXHAUST GAS FROM A GAS AND STEAM TURBINE POWER PLANT AND POST-WORKING POWER PLANT

Publications (2)

Publication Number Publication Date
AU6103990A AU6103990A (en) 1991-02-21
AU624016B2 true AU624016B2 (en) 1992-05-28

Family

ID=6387179

Family Applications (1)

Application Number Title Priority Date Filing Date
AU61039/90A Ceased AU624016B2 (en) 1989-08-16 1990-08-15 Process for reducing the carbon dioxide content of the exhaust gas of a gas and steam turbine power plant and power plant operating according to the process

Country Status (9)

Country Link
EP (1) EP0413199B1 (en)
AT (1) ATE82009T1 (en)
AU (1) AU624016B2 (en)
DD (1) DD297078A5 (en)
DE (2) DE3926964A1 (en)
DK (1) DK0413199T3 (en)
ES (1) ES2036080T3 (en)
FI (1) FI904059A0 (en)
GR (1) GR3006989T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007047270A1 (en) * 2005-10-12 2007-04-26 Praxair Technology, Inc. Igcc wobbe index maintenance method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117192C2 (en) * 1991-05-25 1994-06-23 Saarbergwerke Ag Process for generating energy in a combined gas-steam power plant and plant for carrying out the process
DE4117191C2 (en) * 1991-05-25 1994-11-24 Saarbergwerke Ag Combined gas-steam power plant to generate energy
JPH0565237A (en) * 1991-09-10 1993-03-19 Mitsubishi Heavy Ind Ltd Energy supply method using methanol as medium
US6170264B1 (en) * 1997-09-22 2001-01-09 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with CO2 sequestration
DE19531842A1 (en) * 1995-08-29 1997-04-30 Messer Griesheim Gmbh Process for reducing flue gas in combustion processes
SE9702830D0 (en) * 1997-07-31 1997-07-31 Nonox Eng Ab Environment friendly high efficiency power generation method based on gaseous fuels and a combined cycle with a nitrogen free gas turbine and a conventional steam turbine
WO1999041188A1 (en) * 1998-02-13 1999-08-19 Norsk Hydro Asa Process for producing electrical power and steam
DE19832293A1 (en) * 1998-07-17 1999-10-21 Siemens Ag Gas-and-steam turbine plant with integrated fossil fuel gasification
AU2001276823A1 (en) 2000-05-12 2001-12-03 Clean Energy Systems, Inc. Semi-closed brayton cycle gas turbine power systems
WO2005100754A2 (en) 2004-04-16 2005-10-27 Clean Energy Systems, Inc. Zero emissions closed rankine cycle power system
DE102005026534B4 (en) * 2005-06-08 2012-04-19 Man Diesel & Turbo Se Steam generating plant
DE102006034712A1 (en) * 2006-07-27 2008-01-31 Steag Saar Energie Ag Method for reducing the CO2 emission of fossil-fired power plants
EP1944268A1 (en) 2006-12-18 2008-07-16 BP Alternative Energy Holdings Limited Process
DE102007022168A1 (en) 2007-05-11 2008-11-13 Siemens Ag Process for generating motor energy from fossil fuels with removal of pure carbon dioxide
US8951314B2 (en) 2007-10-26 2015-02-10 General Electric Company Fuel feed system for a gasifier
PL2100869T3 (en) * 2008-03-10 2020-07-13 Edgar Harzfeld Method for producing methanol by recovering carbon dioxide from exhaust gases of energy generation facilities powered by fossil fuels
EP2105189A1 (en) 2008-03-27 2009-09-30 Siemens Aktiengesellschaft Method and device for separating carbon dioxide from an exhaust gas of a fossil fuel-powered power plant
EP2133308A1 (en) * 2008-06-12 2009-12-16 Siemens Aktiengesellschaft Pure gas pre-heating device and method for pre-heating pure gas
JP5412171B2 (en) * 2009-04-30 2014-02-12 三菱重工業株式会社 Method and apparatus for separating acidic gas from synthesis gas
DE102010024465A1 (en) * 2010-06-21 2011-12-22 Siemens Aktiengesellschaft Method for utilizing waste electrical energy of e.g. coal fired power plant, involves liquefying gas with assistance of electrical power, storing liquefied gas, and cooling process medium of power station with assistance of liquefied gas
DE102015003680A1 (en) * 2015-03-24 2016-09-29 Peter Paul Smolka Fuel production plant for power plants
DE102015218502A1 (en) 2015-09-25 2017-03-30 Siemens Aktiengesellschaft Steam turbine power plant with hydrogen combustion with the involvement of a gasification device
DE112016007162A5 (en) 2016-09-25 2019-05-16 Peter Paul Smolka Fuel production plant for power plants
DE102017000590A1 (en) 2017-01-12 2018-07-12 Peter Paul Smolka Fuel Production Plant for Power Plants B

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207620A2 (en) * 1985-06-04 1987-01-07 Imperial Chemical Industries Plc Energy recovery
EP0217505A2 (en) * 1985-08-07 1987-04-08 Imperial Chemical Industries Plc Production of a gas containing hydrogen
EP0259114A1 (en) * 1986-08-29 1988-03-09 Humphreys &amp; Glasgow Limited Clean electric power generation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207620A2 (en) * 1985-06-04 1987-01-07 Imperial Chemical Industries Plc Energy recovery
EP0217505A2 (en) * 1985-08-07 1987-04-08 Imperial Chemical Industries Plc Production of a gas containing hydrogen
EP0259114A1 (en) * 1986-08-29 1988-03-09 Humphreys &amp; Glasgow Limited Clean electric power generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007047270A1 (en) * 2005-10-12 2007-04-26 Praxair Technology, Inc. Igcc wobbe index maintenance method

Also Published As

Publication number Publication date
DK0413199T3 (en) 1993-03-01
EP0413199B1 (en) 1992-11-04
ATE82009T1 (en) 1992-11-15
GR3006989T3 (en) 1993-06-30
EP0413199A1 (en) 1991-02-20
AU6103990A (en) 1991-02-21
DE59000430D1 (en) 1992-12-10
DE3926964A1 (en) 1991-02-21
ES2036080T3 (en) 1993-05-01
DD297078A5 (en) 1992-01-02
FI904059A0 (en) 1990-08-16

Similar Documents

Publication Publication Date Title
AU624016B2 (en) Process for reducing the carbon dioxide content of the exhaust gas of a gas and steam turbine power plant and power plant operating according to the process
CA2046772A1 (en) Carbon dioxide production from combustion exhaust gases with nitrogen and argon by-product recovery
AU8426201A (en) Process and apparatus for recovering sulphur from a gas stream containing sulphide
DE68921074T2 (en) CONDENSATION OF SULFURIC ACID FOR THE PRODUCTION OF SULFURIC ACID.
NZ247336A (en) Method and apparatus for removing hydrogen sulphide from a gas stream
US5035810A (en) Process for treating wastewater which contains sour gases
MX166927B (en) CONVERSION OF CALCIUM COMPOUNDS TO SOLID AND GASEOUS COMPOUNDS
ES8700307A1 (en) A process for removing gaseous sulphur compounds, particularly sulphur dioxide, from the flue gases of a furnace
JPS62230604A (en) Collection of sulfur from hydrogen sulfide equipped with washing column by high concentration oxygen and circulation process
GB1469388A (en) Method and plant for removing vapours and aerosols from gases
YU45682B (en) CARBON GASIFICATION PROCEDURE
ATE58108T1 (en) PREPARATION OF A GAS CONTAINING HYDROGEN.
BG60273B1 (en) METHOD AND DEVICE FOR CONVERSION OF POLLUTANT FUELS OR WASTE MATERIALS INTO CLEAN ENERGY AND USEFUL PRODUCTS
GB1458448A (en) Gas-preparation process
AU2610092A (en) Process and plant for the disposal of waste
GB1318074A (en) Process for obtaining sulphur from hydrogen sulphide-containing gases
ATE200800T1 (en) METHOD FOR SUPPLYING PROTECTIVE GAS TO A HEAT TREATMENT FURNACE AND HEAT TREATMENT SYSTEM
EP0328820A3 (en) Treatment of gas streams comprising hydrogen sulphide
HUP9701748A2 (en) Method for whole-content, emission-free utilization of synthese gases obtained from recycling miscellaneous high temperature wastes
GB1533209A (en) Method of removing hydrogen sulphide from gases and obtaining elemental sulphur
CA1175640A (en) Low sulfur content hot reducing gas production using calcium oxide desulfurization
RU97104670A (en) METHOD FOR PROCESSING SOLID CARBON FUEL
SU132202A1 (en) Nitrogen production method
TH10824EX (en) The process for limiting contaminated gases from gaseous feed lines such as air.
Marchenko et al. Low Temperature Catalysts for the Conversion of Carbon Monoxide in the Manufacture of Protective Atmospheres