AU616777B2 - Shut-down process for a fischer-tropsch reactor, and said reactor - Google Patents

Shut-down process for a fischer-tropsch reactor, and said reactor Download PDF

Info

Publication number
AU616777B2
AU616777B2 AU38254/89A AU3825489A AU616777B2 AU 616777 B2 AU616777 B2 AU 616777B2 AU 38254/89 A AU38254/89 A AU 38254/89A AU 3825489 A AU3825489 A AU 3825489A AU 616777 B2 AU616777 B2 AU 616777B2
Authority
AU
Australia
Prior art keywords
reactor
catalyst
inert
hydrogen
shut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU38254/89A
Other versions
AU3825489A (en
Inventor
Joachim Ansorge
Sytze Abel Posthuma
Maarten Johannes Van Der Burgt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of AU3825489A publication Critical patent/AU3825489A/en
Application granted granted Critical
Publication of AU616777B2 publication Critical patent/AU616777B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/04Feed or outlet devices; Feed or outlet control devices using osmotic pressure using membranes, porous plates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0405Apparatus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0455Reaction conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

U
S F Ref: 100922 FORM COMMONWEALTH OF AUSTRALIA PATENTS ACT 1952 COMPLETE SPECIFICATIO 7
(ORIGINAL)
FOR OFFICE USE: Class Int Class Complete Specification Lodged: Accepted: Published: Priority: Related Art: Name and Address of Applicant: Address for Service: Shell Internationale Research Maatschappij B.V.
Carel van Bylandtlaan 2596 HR The Hague THE NETHERLANDS Spruson Ferguson, Patent Attorneys Level 33 St Martins Tower, 31 Market Street Sydney, New South Hales, 2000, Australia Complete Specification for the invention entitled: Shut-Down Process for a Fischer-Tropsch Reactor The following statement is a full description of best method of performing it known to me/us Reactor, and Said this invention, including the 5845/5
:I
B;i T 5705 SHUT-DOWN PROCESS FOR A FISCHER-TROPSCH REACTOR, AND SAID REACTOR The invention relates to a shut-down process for a reactor which is used for the preparation of an at least partly liquid hydrocarbonaceous product by reaction of carbon monoxide and hydrogen at elevated temperature and pressure using a Fischer-Tropsch catalyst, and to a reactor specifically designed for carrying out this shut-down process.
Processes for the preparation of an at least partly liquid hydrocarbonaceous product by catalytic reaction of carbon monoxide with hydrogen (synthesis gas) are well known. This reaction is highly exothermic and cooling means are used in the reactor for the removal of heat from the reaction zone. Additionally such a reactor is usually provided with means to recycle gas through the catalyst for equalizing the temperature in the catalyst bed. Preferably such a reactor is also provided with means to recycle liquid hydrocarbonaceous product through the catalyst for equalizing the temperature of the catalyst bed, and further to avoid the formation of hydrocarbonaceous deposits on the catalyst.
When such a reactor is to be shut-down the supply of carbon monoxide and hydrogen is interrupted. In the dome-like reactor space above the catalyst bed a large amount of reactant gas mixture is present, which will pass through the catalyst bed at a relatively low velocity. The reaction heat is insufficiently removed and hot spots are formed in the catalyst bed. These hot spots result in a deterioration of the performance of the catalys-c.
-2- The invention has for it object to provide a shut-down process which does not result in a deterioration of the performance of the catalyst and includes a passivation thereof.
The invention relates to a process for the shut-down of a reactor which is used for the preparation of an at least partly liquid hydrocarbonaceous product by reaction of carbon monoxide and hydrogen at elevated temperature and pressure and using a Fischer-Tropsch catalyst, which reactor is provided with cooling means and with means to recycle gas through the catalyst for equalizing the temperature of the catalyst, comprising the steps of: interrupting the feed of synthesis gas; (ii) depressurizing the reactor downstream of the catalyst, and providing the reactor upstream system of the catalyst with inert gas; and (iii) maintaining the supply of inert gas whilst the catalyst cools to ambient conditions.
Accordingly after the interruption of the supply of carbon monoxide and hydrogen (primary synthesis gas as well as recycled synthesis gas), a gas stream through the catalyst bed is maintained at a sufficient velocity to prevent the formation of hot spots, which gas stream becomes more and more inert by the increasing proportion of inert gas. The supply of inert gas is maintained until the catalyst is cooled down to ambient conditions. Then the catalyst can be unloaded.
Nhen the reacto, is provided with means to recycle liquid product through the catalyst, the process comprises further between step (ii) and step (iii) the step (iia) of cooling the catalyst to a temperature slightly above the solidification temperature of the liquid product, typically about 160 to 200°C; and (iib) of interrupting the recycling of the liquid product, so that initially the liquid product recycling is used for the cooling and temperature levelling and deposits of solidified hydrocarbons are avoided.
Since hydrogen is available in large amounts in the plant in which the reactor is used, hydrogen is preferably used as inert gas.
In order to reduce the amount of the reactant gas mixture in the dome-like space above the catalyst bed, it is advantageous to arrange inert packing bodies, for example spherical bodies, in the reactor space above the catalyst.
W:1456y V J, S When the inert bodies contain hydrogen releasable therefrom when the pressure in the reactor falls below the working pressure, hydrogen is automatically released in the reactor space above the catalyst when during the shut-down operation the supply of carbon monoxide and hydrogen is interrupted.
Hydrogen for use during the shut-down process is accumulated in or on the inert bodies during the normal operation of the reactor, when according to a first embodiment the inert bodies comprise an interfacial membrane permeable to hydrogen and impermeable to carbon monoxide, or according to a second embodiment the inert bodies comprise material which absorbs hydrogen under reaction conditions and desorbs hydrogen under shut-down conditions.
Advantageously, inert bodies are arranged in the reactor space under the catalyst.
The invention relates ftirther to a reactor when used for carrying out the shut-down process, comprising a reactor housing provided with at least one catalyst section containing catalyst, which section is in communication with inlet means for synthesis gas, with product outlet means, with means fc recycling gas, with means for depressuriziny the catalyst section, arranged downstream of the catalyst section and with means for supplying inert gas to the catalyst section, arranged upstream from the catalyst section.
'Y
)z ii: KXW:1456y -4- Finally the invention relates to a reactor for the preparation of at least partly liquid hydrocarbonaceous product in a conversion reactor, by catalytic reaction of carbon monoxide with hydrogen at elevated temperature and pressure, which reactor is provided with inlet means for synthesis gas, and product outlet means, wherein inert bodies are arranged in the reactor space above the catalyst.
The shut-down process according to the invention is particularly suitable for a reactor in which synthesis gas is converted into hydrocarbons, preferably having at least 10 carbon atoms per molecule; more preferably paraffinic hydrocarbons h.;-ing at least 20 carbon atoms per molecule.
Normally synthesis gas is used as the gas feed for the reactor. Synthesis gas contains as major compounds hydrogen and carbon monoxide; in addition it may contain small amounts of carbon dioxide, water, nitrogen, argon and minor amounts of compounds having 1-4 carbon atoms per molecule, such as methane, methanol and ethene.
The synthesis gas is prepared in any manner known in the art, for instance by means of steam/oxygen gasification of hydrocarbonaceous material such as brown coal, anthracite, coke, crude mineral oil and fractions thereof, and oil recovered from tar sand and bituminous shale. Alternatively, steam methane reforming and/or catalytic partial oxidation of a hydrocarbonaceous material with an oxygen-containing gas may be used to produce synthesis gas.
The process conditions in the reactor for the preparation of the at least partly liquid hydrocarbonaceous product are: a temperature from 100-500 0 C, a total pressure from 1-200 bar abs. and a 35 space velocity from 200-20,000 m 3 gaseous space velocity from 200-20,000 m gaseous I-iil_-I 1Pe*CIIYY I i- 5 feed/m 3 reaction zone/hour. Preferred process conditions include a temperature from 150-300 0 C, a pressure from 5-100 bar abs. and a space velocity from 500-5000 m 3 gaseous feed/m 3 reaction zone/hour. The expression as referred to hereinbefore means Standard Temperature (0 and Pressure (1 bar abs.). The molar ratio of hydrogen to carbon monoxide is normally 0.4-4 and preferably from 1.8-2.5.
Suitable catalysts for the preparation of (paraffinic) hydrocarbons from the synthesis gas contain at least a metal (compound) from Group VIII of the Periodic Table of Elements, preferably a non-noble metal, in particular cobalt, optionally in combination with a noble metal for instance ruthenium, on a refractory oxide carrier such a silica, alumina or silica-alumina, preferably silica. Furthermore these catalysts preferably contain at least one other metal (compound) from Group IVb and/or VIb of the Periodic Table of Elements. This metal or compound is preferably chosen from the group consisting of zirconium, titanium and chromium. The catalysts contain preferably from 3-60 parts by weight cobalt, optionally 0.05-0.5 parts by weight of ruthenium, and from 0.1-100 parts by weight of other metal(s), especially zirconium, per 100 parts by weight of carrier.
The inert bodies present in the dome-like reactor space above the catalyst bed may consist of a spherical ceramic scale filled with pressurized gas, which scale collapses when the pressure in the reactor drops below the operation pressure.
If hydrogen is used as inert gas, a supply of hydrogen may be automatically formed during the normal operation of the reactor. According to a first embodiment a supply of hydrogen is formed by diffusion I1 i 1l.
-6of hydrogen into an inert body through a semi-permeable membrane which is permeable to hydrogen and impermeable to other components of the synthesis gas. According to another embodiment of such a supply for hydrogen the inert bodies consist at least partly of a material on which hydrogen is absorbed with preference over other components of the synthesis gas mixture. A nickelsamarium alloy may be used as an absorbent metal material.
If the reactor is provided with a liquid product recycling circuit, it is preferred that the inert bodies are supported on a netting separating the dome-like reactor space from the catalyst bed.
-a

Claims (19)

1. Process for the shut-down of a reactor which is used for the preparation of an at least partly liquid hydrocarbonaceous product by reaction of carbon monoxide and hydrogen at elevated temperature and pressure and using a Fischer-Tropsch catalyst, which reactor is provided with cooling means and with means to recycle gas through the catalyst for equalizing the temperature of the catalyst, comprising the steps of: interrupting the feed of synthesis gas; (ii) depressurizing the reactor downstream of the catalyst, and providing the reactor upstream system of the catalyst with inert gas; and (iii) maintaining the supply of inert gas whilst the catalyst cools to ambient conditions.
2. Process as claimed in claim 1, wherein the reactor is provided with means to recycle liquid product through the catalyst, comprising between step (ii) and step (iii): (iia) cooling the catalyst to a temperature slightly above the solidification temperature of the liquid product; and (iib) interrupting the recycling of the liquid product.
3. Process as claimed in claim 2, wherein in step (iia) the catalyst is cooled to about 160 to 200 0 C.
4. Process as claimed in any one of claims 1 to 3, wherein in step (ii) nitrogen gas is used as inert gas.
Process as claimed in any one of claims 1 to 3, wherein in step (ii) hydrogen is used as inert gas.
6. Process as claimed in any one of claims 1 to 5, wherein inert bodies are arranged in the reactor space above the catalyst.
7. Process as claimed in claim 6, wherein the inert bodies are spherical bodies.
8. Process as claimed in any one of claims 5 to 7, wherein the inert bodies contain hydrogen releasable therefrom when the pressure in the reactor falls below the working pressure.
9. Process as claimed in claim 8, wherein the inert bodies cum!,prise an interfacial membrane permeable to hydrogen and impermeable to carbon monoxide.
Process as claimed in claim 8, wherein the inert bodies comprise material which absorbs hydrogen under reaction conditions and desorbs it under shut-down conditions. y i KXW:1456y 4- i ii- I; :I 8: -8-
11. Process as claimed in any one of claims 1 to 10, wherein inert bodies are arranged in the reactor space under the catalyst.
12. Redctor when used for carrying out the shut-down process according to any one of the preceding claims 1 to 11, comprising a reactor housing provided with at least one catalyst section containing catalyst which section is in communication with inlet means for synthesis gas, with product outlet means, with means for recycling gas, with means for depressurizing the catalyst section, arranged downstream of the catalyst section and with means for supplying inert gas to the catalyst section, arranged upstream from the catalyst section.
13. Reactor as claimed in claim 12, wherein inert bodies are arranged in the reactor space above the catalyst.
14. Reactor as claimed in claim 13, wherein the inert bodies are spherical bodies.
15. Reactor as claimed in any one of claims 12 to 14, wherein the inert bodies contain hydrogen releasable therefrom when the pressure in the reactor falls below the working pressure.
16. Reactor as claimed in claim 15, wherein the inert bodies comprise an interfacial membrane permeable to hydrogen and impermeable to carbon monoxide.
17. Reactor as claimed in any one of claims 12 to 16, wherein the inert bodies comprise material which absorbs hydrogen under reaction conditions and desorbs it under shut-down conditions.
18. Reactor as claimed in any one of claims 12 to 17, wherein inert bodies are arranged in the reactor space under the catalyst.
19. Process for the shut-down of a reactor for the preparation of an, at least partly, liquid hydrocarbonaceous product as claimed in claim i, substantially as described hereinbefore. Reactor when used for carrying out the shut-down process according to any one of claims 1 to 11, substantially as describe hereinbefore. DATED this TWENTY-NINTH day of JULY 1991 Shell Internationale Research Maatschappij B.V. i Patent Attorneys for the Applicant SPRUSON FERGUSON |t KXW:1456y
AU38254/89A 1988-07-21 1989-07-19 Shut-down process for a fischer-tropsch reactor, and said reactor Ceased AU616777B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8817407A GB2223237B (en) 1988-07-21 1988-07-21 Shut-down process for a fischer-tropsch reactor, and said reactor
GB8817407 1988-07-21

Publications (2)

Publication Number Publication Date
AU3825489A AU3825489A (en) 1990-01-25
AU616777B2 true AU616777B2 (en) 1991-11-07

Family

ID=10640883

Family Applications (1)

Application Number Title Priority Date Filing Date
AU38254/89A Ceased AU616777B2 (en) 1988-07-21 1989-07-19 Shut-down process for a fischer-tropsch reactor, and said reactor

Country Status (7)

Country Link
AU (1) AU616777B2 (en)
CA (1) CA1333006C (en)
GB (1) GB2223237B (en)
MY (1) MY105129A (en)
NO (1) NO892957L (en)
NZ (1) NZ229992A (en)
ZA (1) ZA895495B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9014417D0 (en) * 1990-06-28 1990-08-22 Shell Int Research A process for the preparation of hydrocarbons,a process for the shutdown of a reactor for carrying out said process and a reactor to be used therefor
US5286455A (en) * 1990-06-18 1994-02-15 Shell Oil Company Process for the preparation of hydrocarbons
GB2246576A (en) * 1990-06-28 1992-02-05 Shell Int Research A process for the preparation of hydrocarbons, a process for the shutdown of a reactor for carrying out said process and a reactor to be used therefor
ITMI20031777A1 (en) * 2003-09-18 2005-03-19 Enitecnologie Spa PROCEDURE FOR THE MANAGEMENT OF A REACTOR SUITABLE FOR HETEROGENEOUS REACTIONS IN COMBINATIONS WITH REACTIONS WHICH ARE CARRIED OUT IN THREE-PHASE SYSTEMS
US20050175519A1 (en) * 2004-02-06 2005-08-11 Rogers William A.Jr. Microchannel compression reactor
FR2878845B1 (en) * 2004-12-03 2007-01-12 Inst Francais Du Petrole PROCESS FOR PROVISIONALLY INTERRUPTING A FISCHER-TROPSCH TYPE REACTION IN A THREE-PHASE BED REACTOR
DE102005050526A1 (en) * 2005-10-21 2007-04-26 Choren Industries Gmbh Method for holding a Fischer-Tropsch synthesis
GB0725140D0 (en) * 2007-12-24 2008-01-30 Compactgtl Plc Catalytic Reactor
WO2010063850A1 (en) * 2008-12-16 2010-06-10 Shell Internationale Research Maatschappij B.V. High-speed stop in a fischer-tropsch process
WO2010069925A1 (en) * 2008-12-16 2010-06-24 Shell Internationale Research Maatschappij B.V. High-speed stop in fischer-tropsch process
JP5615838B2 (en) * 2008-12-16 2014-10-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Fast stop in the Fischer-Tropsch process
EP3009186A1 (en) 2014-10-15 2016-04-20 Haldor Topsøe A/S A reactor system with means for catalyst protection during trips or shut-down
CN107551961B (en) * 2017-11-03 2022-10-25 河北科技大学 High-temperature high-pressure slurry bed reaction device
GB202019079D0 (en) 2020-12-03 2021-01-20 Johnson Matthey Davy Technologies Ltd Method for shutting down a fischer-tropsch reactor
GB2622936A (en) 2022-09-09 2024-04-03 Johnson Matthey Davy Technologies Ltd Method for controlling a process comprising a steam system coupled to a reactor system
GB202306773D0 (en) 2023-05-09 2023-06-21 Johnson Matthey Davy Technologies Ltd Method for controlling a process comprising a steam system coupled to a fischer-tropsch reactor system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2169309A (en) * 1985-01-09 1986-07-09 Mobil Oil Corp Conversion of oxygenates to gasoline

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2169309A (en) * 1985-01-09 1986-07-09 Mobil Oil Corp Conversion of oxygenates to gasoline

Also Published As

Publication number Publication date
NO892957L (en) 1990-01-22
MY105129A (en) 1994-08-30
ZA895495B (en) 1990-04-25
NZ229992A (en) 1990-08-28
GB2223237A (en) 1990-04-04
AU3825489A (en) 1990-01-25
GB2223237B (en) 1992-09-16
GB8817407D0 (en) 1988-08-24
CA1333006C (en) 1994-11-15
NO892957D0 (en) 1989-07-19

Similar Documents

Publication Publication Date Title
AU616777B2 (en) Shut-down process for a fischer-tropsch reactor, and said reactor
EP1836283B1 (en) Improvements relating to coal to liquid processes
AU750915B2 (en) Gas conversion using synthesis gas produced hydrogen for catalyst rejuvenation and hydrocarbon conversion
JP4002729B2 (en) Hydrodesulfurization of gas-well hydrocarbon liquids using hydrogen produced from synthesis gas
EP1054850B1 (en) Gas conversion using hydrogen from synthesis gas and hydroconversion tail gas
US7855236B2 (en) Method to start a process for producing hydrocarbons from synthesis gas
US20080306171A1 (en) Method to Start a Process for Producing Hydrocarbons from Synthesis Gas
EP0349164B1 (en) Process for recycling and purifying condensate from a hydrocarbon or alcohol synthesis process
ZA200400212B (en) Direct production of high purity Fischer-Tropsch wax.
US5053581A (en) Process for recycling and purifying condensate from a hydrocarbon or alcohol synthesis process
CN104105658A (en) Process for preparing a paraffin product
AU2003274689B2 (en) Process for the production of hydrocarbons from gaseous hydrocarbonaceous feed
US9528049B2 (en) Process for preparing a paraffin product
US7705060B2 (en) Method to start a process for producing hydrocarbons from synthesis gas
WO2007009954A1 (en) Method to start a process for hydrocarbon synthesis
US5286455A (en) Process for the preparation of hydrocarbons
CA2449203A1 (en) Method to start a process for production of hydrocarbons
EP0466240A1 (en) A process for the preparation of hydrocarbons
US10597585B2 (en) Method of producing hydrocarbons
WO2007009987A1 (en) Hydrocarbon synthesis process