AU594521B2 - Thermal barrier coating system - Google Patents

Thermal barrier coating system Download PDF

Info

Publication number
AU594521B2
AU594521B2 AU80500/87A AU8050087A AU594521B2 AU 594521 B2 AU594521 B2 AU 594521B2 AU 80500/87 A AU80500/87 A AU 80500/87A AU 8050087 A AU8050087 A AU 8050087A AU 594521 B2 AU594521 B2 AU 594521B2
Authority
AU
Australia
Prior art keywords
coating
thermal barrier
bond coat
ceramic
sheet metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU80500/87A
Other versions
AU8050087A (en
Inventor
Charles Edward Bevan
Keith Douglas Sheffler
Raymond William Vine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of AU8050087A publication Critical patent/AU8050087A/en
Application granted granted Critical
Publication of AU594521B2 publication Critical patent/AU594521B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Description

A T I 594521 COMMONWEALTH OF AUSTRALIA PATENTS ACT 1952 COMPLETE SPECIFICATION
(ORIGINAL)
Form FOR OFFICE USE *86 '4 Je, Class Int. Class Application Number: Lodged: S 54 Complete Specification-Lodged: Accepted: Published: Priority: Related Art: This document contains the amendmewnts made uidcr Section 49 and is correct icr 4 0 Name of Applicant: Address of Applicant: Actual Inventor: TO BE COMPLETED BY APPLICANT UNITED TECHNOLOGIES CORPORATION 1, Financial Plaza, Hartford, Connecticut 06101, United States of America RAYMOND WILLIAM VINE CHARLES EDWARD BEVAN KEITH DOUGLAS SHEFFLER Address for Service: SANDERCOCK, SMITH BEADLE 207 Riversdale Road, Box 410) Hawthorn, Victoria, 3122 Complete Specification for the invention entitled: THERMAL BARRIER COATING SYSTEM The following statement is a full description of this invention, including the best method of performing it known to me:i
S
A
The present invention relates to plasma sprayed ceramic thermal barrier coatings used to protect substrates from elevated temperatures.
Background Art Gas turbine engines derive their thrust or other power output by the combustion of fuels. Since engine 10 power and economy both improve with increased temperature, there has been a persistent trend in the .*so gas turbine engine field toward increased engine operating temperatures. For many years this trend was accommodated by the development of improved materials.
15 Whereas early gas turbine engines were based mainly on alloys derived from common steels, the modern gas turbine engine relies on nickel and cobalt base .0 superalloys in many critical applications. It appears for the moment that property limits for metallic materials are being approached or perhaps have been reached, but the demand for increased temperature capability continues. While work is underway to develop ceramic turbine materials, this work is at a very preliminary stage and many difficulties must be overcome before ceramics play a structural role in gas turbine engines.
S-1 Not surprisingly, attempts have been made to use ceramics as coating materials to provide therm'al insulation to metallic substrates and thereby permit increased engine operating temperature without substrate damage. Such attempts have met with a certain degree of success as described, nonetheless, the durability of ceramic thermal barrier coatings remains a concern because such coatings are used in man rated applications and safety considerations •m 10 require maximum durability. The basic approach which has generally been taken is to apply an oxidation bb resistant metallic bond coat to the substrate and then o •to apply to this bond coat a ceramic coating, or in some cases, a mixed metal ceramic coating. Several 0* 15 patents have suggested the use of MCrAlY materials for the bond coat. MCrAlY materials were developed for the protective coating of metallic components to protect them from oxidation and corrosion under high temperature conditions. Such MCrAlY coatings are 20 described, for example, in U.S. Patents 3,676,085, 3,928,026 and 4,585,481.
The currently favored ceramic constituent is zirconia, but because zirconia undergoes a phase transformation at about 1800'F, it is necessary to 25 make additions to the zirconia to provide a stable or at least controlled microstructure at increasing temperature.
Patents which appear particularly pertinent to this subject area include U.S. Patent 4,055,705 which suggests a thermal barrier coating system using a NiCrAlY bond coat and a zirconia based ceramic coating -2-
L
ur ULli which may contain, for example, 12% yttria for stabilization. U.S. Patent 4,248,940, which shares a common assignee with the present application, describes a similar thermal barrier coating, but with emphasis on the type of thermal barrier coating in which the composition of the coating is graded from 100% metal at the bond coat to 100% ceramic at the outer surface. This patent describes the use of MCrAIY bond coats, including NiCoCrAlY, and mentions 10 the use of yttria stabilized zirconia. U.S. Patent *4,328,285 describes a ceramic thermal barrier coating using a CoCrAlY or NiCrAlY bond coat with ceria stabilized zirconia. U.S. Patent 4,335,190 describes o0 aa thermal barrier coating in which a NiCrAlY or 15 CoCrAlY bond coat has a sputtered coating of yttria stabilized zirconia on which is plasma sprayed a further coating of yttria stabilized zirconia. U.S.
Patent 4,402,992 describes a method for applying a ceramic thermal barrier coating to hollow turbine 20 hardware containing cooling holes without blockage of the holes. The specifics of the coating mentioned are a NiCrAlY or a CoCrAly bond coat with yttria stabilized zirconia. U.S. Patent 4,457,948 describes a method for producing 7 favorable crack pattern in a 25 ceramic thermal barrier coating to enhance its durability. The coating mentioned has a NiCrAlY bond coat and a fully yttria stabilized zirconia coating.
U.S. Patent 4,481,151 describes another ceramic thermal barrier coating in which the bond coat comprises NiCrAlY or CoCrA1Y, but wherein the yttrium constituent may be replaced by ytterbium. The ceramic c i i. constituent is partially yttria or ytterbium stabilized zirconia. U.S. Patent 4,535,033 is a continuation-in-part application of the previously mentioned U.S. Patent 4,481,151 and deals with a ceramic thermal barrier coating in which zirconia is stabilized by ytterbia.
Disclosure of Invention It is an object of this invention to disclose a ceramic thermal barrier coating having surprisingly 10 enhanced durability relative to similar ceramic thermal barrier coatings known in the art. According to the invention, a NiCoCrAlY bond coat is plasma sprayed, in air, on the surface of the substrate to be protected, after the substrate surface has been properly prepared. The ceramic consists of yttria partially stabilized zirconia, containing about 7% yttria to provide the proper degree of stabilization, plasma sprayed in air on the previously applied NiCoCrAlY bond coat. The resultant coating has S 20 surprisingly enhanced durability relative to similar thermal barrier coatings which employ other types of MCrAlY bond coats and ceramic top coats. The use of 7% yttria stabilized zirconia permits the coating to be used at elevated temperatures compared to other thermal barrier coatings which have employed other zirconia stabilizers or other amounts of yttria. The use of air plasma spraying as opposed to low pressure chamber plasma spraying eliminates substrate preheating and post spray heat treatment. The invention is particularly pertinent to coating of i c ~_L1 sheet metal parts which are prone to distortion in heat treatment.
The invention thus provides a sheet metal gas turbine combustor, said sheet metal gas turbine combustor, said combustor having a thermal barrier coating on at least a portion thereof, comprising too.
e 4e
S.*
*5
S
S
0 45 a) a large complex sheet metal assembly having at least one overall dimension which exceeds one foot, b) a plasma sprayed NiCoCrAlY bond coat on at least a portion of said sheet metal assembly the coat having a composition consisting of 15-40% Co, 10-40% Cr, 6-15% Al, 0-2% Hf, 0-7% SI, 0.01-1.0% Y and the balance Ni and incidental impurities, c) an adherent plasma sprayed zirconia coating which contains yttria, wherein the coated assembly is essentially undistorted as a consequence of having been plasma sprayed in air without related pre or post heat treatments.
The invention also provices for a method of applying a durable thermal barrier coating to a metallic substrate.
The foregoing and other objects, features and advantages of the present invention will become more apparent from the following description of the preferred embodiments and accompanying drawings.
Brief Description of Drawings Figure 1 is a bar chart depicting the hours to failure in cyclic testing at 2025 0 F of various combinations of metallic bond coats and ceramic outer coatings applied to sheet metal samples.
Figure 2 is a schematic drawing of a gas turbine combustion chamber.
AMSPE.001/UT 891220 L i ii ;I Y IIESEYY-- 5a Best Mode For Carrying Out The Invention The benefits of the invention are clearly illustrated in Figure 1. Figure 1 depicts the relative life of several different ceramic thermal barrier coatings in a very severe test performed at 20250F. The test comprised a six-minute thermal cycle in which the coated substrate (a sheet metal sample) was heated from about 200 0 F to about 2025°F in two minutes, held for two minutes at 2025°F and was then forced air cooled in two minutes back down to about 200 0 F. This is a severe test employing conditions which are more demanding than those which would normally be encountered in a gas turbine engine. The figure illustrates the time to failure in hours, the number of cycles is obtained by multiplying the number of hours by o S e e« AMSPE.001/UT 891220 CC'- 1 r- The left-most bar on the chart is a coating which has been used commercially in gas turbine engines at temperatures up to about 1800°F. This coating consists of zirconia (fully) stabilized with about 21% magnesia applied on a CoCrAlY (23%Cr, 13%A1, bal Co) bond coat. The left-most coating is a graded coating so that the CoCrAlY composition diminishes through the thickness of the coating from 100% at the bond coat to 0% at the outer coat at the 10 outer surface. The remaining coatings on the chart are non-graded two-layer coatings. The graded coating which displays the shortest life, failed in the graded portion of the coating as a consequence of oxidation of the finely divided metallic constituent 15 which causes swelling of the coating and subsequent spallation. This coating fails in an abnormally short time because of the nature of the coating failure and 0* the severe test conditions, the coating has a normal maximum use temperature of about 1800°F.
The remaining coatings on the chart fall by spalling and cracking occurring within the ceramic *:see* •constituent. Spallation at the interface between the ceramic and the bond coat is not a problem. This analysis of the failure mode in this type of ceramic 25 coating would lead one to suppose that the bond coat material would not play a significant role in coating performance, but rather the coating performance would essentially be determined by the nature of the ceramic material. As will be seen subsequently, this is surprisingly not the case.
The next bar on the chart comprises the same ceramic constitutent, zirconia stabilized with 21% magnesia, but this is a two-layer coating in which a 100% ceramic layer is applied to a bond coat. In this instance, the bond coat is a simple alloy of nickel-22 weight percent aluminum.
The third bar on the chart uses the same 21% magnesia stabilized zirconium on a NiCoCrAlY bond coat (nominal composition 23%Co, 17%Cr, 12.5%A1, 0.45%Y bal 10 Ni). This coating had both the bond coat and the 9.
ceramic layer deposited by plasma spraying in air.
g Interestingly enough, the third coating on the chart displays about a 2x improvement in life over the *previously mentioned 21% MgO stabilized zirconia 15 coating on Ni-22%Al coating illustrating that the bond coat does affect coating performance. All of the coatings based on 21% magnesia stabilized zirconia appear to fail as a result of destabilization of the ceramic over time by volatilization of the less stable magnesia material at elevated temperatures and/or the effects of microscopic thermal mechanical stresses/racheting with the ultimate formation of the monoclinic crystalline phase of zirconia at temperatures in excess of about 1900 0 F. The 25 monoclinic crystal phase is the non-thermal cyclable zirconia that is unstable in gas turbine applications.
The last two coatings described in the figure used zirconia partially stabilized with about 7% yttria, this type of stabilized zirconia does not undergo thermal degradation until temperatures in excess of about 2200°F are encountered.
-7i I- The fourth bar on the chart uses the 7% yttria partially stabilized zirconia on a NiCoCrAlY (23%Co, 17%Cr, 12.5%AI, 0.45%Y bal Ni) bond coat, but differs from the other coatings in that the metallic constituents were applied by low-pressure plasma spraying, spraying in a chamber in which the gas pressure was reduced to about 5 millimeters of mercury before spraying. This type of low pressure plasma spraying has been shown in the past to provide 10 substantially enhanced thermal barrier coatings containing less oxides and porosity in the metallic bond coating and having better integrity and adherence. One feature of chamber spraying is that the substrate must be preheated to 1600 0 F-1800 0
F
e 15 before spraying. This is practical for turbine blades but impractical for complex sheet metal combustors whose dimensions are on the order of 1-3 feet and which are complex warpage prone assemblies of thin (.020-.040 in) sheet metal pieces.
20 Figure 2 is a schematic illustration of a gas turbine combustor. Also, plasma spraying metallic bond coating, such as NiCoCrAlY, under reduced atmospheric pressures leads to the formation of a weak metallic substrate-metallic bond coating interface which requires a post high temperature heat treatment to form a metallurgical bond between the substrate and bond coat. The heat treatment means that sheet metal constituents which are prone to warpage cannot receive this type of coating. The necessity of applying this type of coating in a vacuum chamber thus mitigates against usage of this coating on larger sheet metal -8components, such as combustors which are inconveniently large for the readily available low pressure plasma spraying systems. This type of coating, applied in a low pressure plasma spray system with subsequent secondary heat treatment, has been used commercially with some success, but has been limited in application to use on small turbine blades and vanes having substantial structural strength. By way of contrast, in air plasma spraying, the substrate 10 is held at temperatures below 500 0 F and no post spray heat treatment is necessary. Prior air spray experience had suggested that the results would be noticeably inferior to low pressure chamber sprayed parts. Chamber sprayed bond coats contain less than 15 oxide conten: and about porosity. Air sprayed coatings contain oxides and 5%-15% porosity.
0* The final bar on the chart illustrates the invention coating performance. It can be seen that the invention coating performance is fully equivalent to that of the best prior coating despite the fact that the invention coating is applied in air and does not receive any subsequent heat treatment.
The present invention derives some of its 25 beneficial attributes from the use of the NiCoCrAlY bond coat. This appears to be the case despite the fact that failure occurs in the ceramic coating rather than at the interface between the bond coat and the ceramic coating. The exact mechanism by which the use of a NiCoCrAlY bond coat benefits coating performance is not fully understood, but is undoubtedly related to -9- L .Wd the enhanced ductility of NiCoCrAlY coatings (as described in U.S. Patent 3,928,026) relative to,.the NiCrAlY and CoCrAlY bond coats which the art has generally favored up until now. It is also the case that the ceramic constituent of the present invention, namely, zirconia stabilized with 6% to 8% yttria, is more durable than some of the zirconia coatings which the prior art has used which have been stabilized to different degrees by different additions. This can be 10 seen on the graph by the comparison between the magnesia stabilized zirconia and yttria stabilized zirconia, both of which were applied on a NiCoCrAlY bond coat. Other testing indicates that, tested at 2000 0 F, 7% yttria stabilized zirconia is about twice *0 15 as durable as 12% yttria stabilized zirconia and about as durable as 20% yttria (fully) stabilized zirconia.
The present invention can be applied to S* superalloy substrates as follows. There is generally 20 no limit on the substrate composition provided, of S.course, it has the requisite mechanical properties at S' the intended use temperature. The substrate surface must be clean and properly prepared and this is most easily accomplished by grit blasting the surface to S* 25 remove all oxide and other contaminants and to le.
I behind a slightly roughened surface of increased surface area to enhance bonding of the metallic bond coat to the substrate. The bond coat is applied to the substrate by plasma spraying. The plasma spray 4 30 parameters are the same as those described below for the ceramic constituent. The bond coat material is L i 11- NiCoCrAlY having a compositior, falling within the following range 15-40%Co, 10-40%Cr, 6-15%A1, 0.7%Si, 0-2.0%Hf, 0.01-1.0%Y, bal essentially Ni and has a particle size which is preferably within the range -170+325 US std. sieve. The bond coat preferably has a thickness of from 0.003-0.015 inches. There is no benefit to be obtained by any increase in bond coat thickness. Any bond coat thickness less than about 0.003 inch is risky because plasma sprayed coatings of thicknesses much less than about 0.003 inch tend to leave exposed substrate areas and the ceramic coating will not properly bond to the exposed substrate. This leads to early catastrophic coating failure by spallation. The plasma spraying of the bond coat to the prepared substrate surface is preferably performed in a timely fashion and preferably no more than about two S. hours elapses to minimize the possibility of substrate surface contamination, for example, by oxidation.
The bond coat coated substrates are then adapted to receive a coating of zirconia stabilized with yttria. Preferably the particle size to be sprayed is 60 micron (avg), the power flow rate a is 50 gm/min and the plasma spraying conditions are 35 volts and 800 amps using a mix of argon helium as a carrier gas in a Plasmadyne gun held about 3 inches from the surface and translated g.
about 74 ft/min relative to the surface. The ceramic coating preferably has a thickness of from 0.010-0.015 inches. Again, the application of the ceramic coating to the bond coated substrate is preferably performed within about two hours so as to minimize contamination and other problems.
As the plasma coating method is conducted in air the restrictions on size imposed by the readily available low pressure AMSPE.001/UT 891220
F
~uPwRI a~0 r~,i 12 plasma spraying systems no longer apply. Therefore the coating method can be applied to large complex sheet metal assemblies having at least one overall dimension which exceeds one foot such as a portion of a sheet metal gas turbine combustor.
Although this invention has been shown and described with respect to the preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail thereof may be made without departing from the spirit and scope of the claimed invention.
The claims form part of the disclosure of this specification.
few* *0 s .00.
00
SS
S
S.
S.
S. S 4 @00 AMSPE.001/UT 891220

Claims (1)

13- THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS: 1. A method of applying a durable thermal barrier coating to a metallic substrate including the steps of a) providing a clean substrate surface b) depositing a metallic bond coat having a composition consisting of 15-40%Co, 10-40%Cr, 6-15%Al, O-2%Hf, 0- 7%Si, 0.01-1.0%Y bal essentially Ni and incidental elements by plasma deposition in air to a thickness of 0.003-0.015 inches c) depositing a ceramic coating of zirconia stabilized with 6-8 wt% yttria by plasma deposition in air to a thickness of 0.010-0.015 inches. 2. A sheet metal gas turbine combustor, said combustor having a thermal barrier coating on at least a portion thereof, comprising a) a large complex sheet metal assembly having at least one overall dimension which exceeds one foot, b) a plasma sprayed NiCoCrAlY bond coat on at least a portion of said sheet metal assembly the coat having a composition consisting of 15-40% Go, 10-40% Cr, 6-15% Al, 0-2% Hf, 0-7% Si, 0.01-1.0% Y and the balance Ni and incidental impurities, c) an adherent plasma sprayed zirconia coating which contains yttria, wherein the coated assembly is essentially undistorted as a consequence of having been plasma sprayed in air without related pre or post heat treatments. 3. A method of applying a durable thermal barrier coating *SS S 6**S 4S*S S 6*SS S. *5 9 4 4SSS 6 0595 5 500 S c. S 4 5* 9 Si 5 6 *t 4 .5. S aNT AMSPE.OOL/UT 891220 -i. 14 to a metallic substrate substantially as hereinbefore described with reference to bar E of Figure 1. 4. A metallic substrate coated by a method in accordance with claim 1 or 3. DATED this 20 December 1989 SMITH SHELSTON BEADLE Fellows Institute of Patent Attorneys of Australia Patent Attorneys for the Applicant: UNITED TECHNOLOGIES CORPORATION i I a to e** 1* I i *S S a AMSPE.001/UT 891220
AU80500/87A 1986-10-30 1987-10-27 Thermal barrier coating system Expired AU594521B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US92565486A 1986-10-30 1986-10-30
US925654 1986-10-30

Publications (2)

Publication Number Publication Date
AU8050087A AU8050087A (en) 1988-05-05
AU594521B2 true AU594521B2 (en) 1990-03-08

Family

ID=25452045

Family Applications (1)

Application Number Title Priority Date Filing Date
AU80500/87A Expired AU594521B2 (en) 1986-10-30 1987-10-27 Thermal barrier coating system

Country Status (8)

Country Link
EP (1) EP0266299B1 (en)
JP (1) JP2826824B2 (en)
AU (1) AU594521B2 (en)
CA (1) CA1330638C (en)
DE (2) DE266299T1 (en)
IL (1) IL84067A (en)
MX (1) MX169998B (en)
SG (1) SG76592G (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002825A1 (en) * 1988-09-06 1990-03-22 Battelle Memorial Institute Metal alloy coatings and methods for applying
US4936745A (en) * 1988-12-16 1990-06-26 United Technologies Corporation Thin abradable ceramic air seal
IL99473A0 (en) * 1990-09-20 1992-08-18 United Technologies Corp Columnar ceramic thermal barrier coating with improved adherence
DE4103994A1 (en) * 1991-02-11 1992-08-13 Inst Elektroswarki Patona PROTECTIVE COVER OF THE METAL-CERAMIC TYPE FOR ITEMS OF HEAT-RESISTANT ALLOYS
EP0526670B1 (en) * 1991-06-21 1995-10-25 Praxair S.T. Technology, Inc. Duplex coatings for various substrates
US5320879A (en) * 1992-07-20 1994-06-14 Hughes Missile Systems Co. Method of forming coatings by plasma spraying magnetic-cerment dielectric composite particles
RU2115812C1 (en) * 1994-02-16 1998-07-20 Юнайтед Технолоджиз Корпорейшн Method and device for holding molten material during combustion process in gas-turbine engine
DE59505454D1 (en) * 1994-10-14 1999-04-29 Siemens Ag PROTECTIVE LAYER FOR PROTECTING A COMPONENT AGAINST CORROSION, OXIDATION AND THERMAL OVERLOAD AND METHOD FOR THEIR PRODUCTION
JP3258599B2 (en) * 1996-06-27 2002-02-18 ユナイテッド テクノロジーズ コーポレイション Insulation barrier coating system
GB9617267D0 (en) * 1996-08-16 1996-09-25 Rolls Royce Plc A metallic article having a thermal barrier coating and a method of application thereof
JP3939362B2 (en) * 1997-10-30 2007-07-04 アルストム High temperature protective coating
US7316850B2 (en) * 2004-03-02 2008-01-08 Honeywell International Inc. Modified MCrAlY coatings on turbine blade tips with improved durability
US7875370B2 (en) 2006-08-18 2011-01-25 United Technologies Corporation Thermal barrier coating with a plasma spray top layer
JP2009063072A (en) * 2007-09-06 2009-03-26 Railway Technical Res Inst Brake disc, method for surface modification thereof, and surface modification device for brake disc
US10287899B2 (en) 2013-10-21 2019-05-14 United Technologies Corporation Ceramic attachment configuration and method for manufacturing same
JP2018162506A (en) * 2017-03-27 2018-10-18 川崎重工業株式会社 High temperature member and manufacturing method of the same
CN113106374A (en) * 2021-03-19 2021-07-13 航天材料及工艺研究所 Composite coating resistant to high temperature and high heat flow scouring and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU519037B2 (en) * 1977-10-17 1981-11-05 United Technologies Corporation Oxidation and wear resistant coated article
AU535069B2 (en) * 1979-10-15 1984-03-01 United Technologies Corporation Carbon bearing mcraiy coating
AU571687B2 (en) * 1984-03-30 1988-04-21 Lindblom, Y.S. Preparing high temperature materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1068178A (en) * 1975-09-11 1979-12-18 United Technologies Corporation Thermal barrier coating for nickel base super alloys
US4095003A (en) * 1976-09-09 1978-06-13 Union Carbide Corporation Duplex coating for thermal and corrosion protection
US4269903A (en) * 1979-09-06 1981-05-26 General Motors Corporation Abradable ceramic seal and method of making same
US4321310A (en) * 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings on polished substrates
IL75304A (en) * 1984-06-08 1989-03-31 United Technologies Corp Coated superalloy articles and method of strengthening same
US4576874A (en) * 1984-10-03 1986-03-18 Westinghouse Electric Corp. Spalling and corrosion resistant ceramic coating for land and marine combustion turbines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU519037B2 (en) * 1977-10-17 1981-11-05 United Technologies Corporation Oxidation and wear resistant coated article
AU535069B2 (en) * 1979-10-15 1984-03-01 United Technologies Corporation Carbon bearing mcraiy coating
AU571687B2 (en) * 1984-03-30 1988-04-21 Lindblom, Y.S. Preparing high temperature materials

Also Published As

Publication number Publication date
AU8050087A (en) 1988-05-05
EP0266299A2 (en) 1988-05-04
DE3779045D1 (en) 1992-06-17
JP2826824B2 (en) 1998-11-18
JPS63118059A (en) 1988-05-23
IL84067A0 (en) 1988-03-31
CA1330638C (en) 1994-07-12
IL84067A (en) 1992-03-29
EP0266299A3 (en) 1989-05-31
SG76592G (en) 1992-10-02
EP0266299B1 (en) 1992-05-13
DE266299T1 (en) 1988-09-22
MX169998B (en) 1993-08-04

Similar Documents

Publication Publication Date Title
US4861618A (en) Thermal barrier coating system
AU594521B2 (en) Thermal barrier coating system
EP1995350B1 (en) High temperature component with thermal barrier coating
US6352788B1 (en) Thermal barrier coating
US5981088A (en) Thermal barrier coating system
US6291084B1 (en) Nickel aluminide coating and coating systems formed therewith
US6255001B1 (en) Bond coat for a thermal barrier coating system and method therefor
US9109279B2 (en) Method for coating a blade and blade of a gas turbine
US6730413B2 (en) Thermal barrier coating
US7306859B2 (en) Thermal barrier coating system and process therefor
US20070248457A1 (en) Rub coating for gas turbine engine compressors
US20040079648A1 (en) Method of depositing an oxidation and fatigue resistant MCrAIY-coating
US20100028711A1 (en) Thermal barrier coatings and methods of producing same
EP1627862A1 (en) Ceramic compositions for thermal barrier coatings with improved mechanical properties
US5900102A (en) Method for repairing a thermal barrier coating
US5413871A (en) Thermal barrier coating system for titanium aluminides
EP0985745B1 (en) Bond coat for a thermal barrier coating system
EP0992614B1 (en) Coatings for turbine components
GB2159838A (en) Surface strengthening of overlay coatings
US6670049B1 (en) Metal/ceramic composite protective coating and its application
US20070207339A1 (en) Bond coat process for thermal barrier coating
JP2934599B2 (en) High temperature corrosion resistant composite surface treatment method
US20050053800A1 (en) Method for post deposition of beta phase nickel aluminide coatings
CA2076091A1 (en) Superalloy component with dispersion-containing protective coatings, and method of preparation
EP1215301B1 (en) Method for treating the bond coating of a component