AU4135897A - Transparent solid soap and transparent soap material - Google Patents

Transparent solid soap and transparent soap material Download PDF

Info

Publication number
AU4135897A
AU4135897A AU41358/97A AU4135897A AU4135897A AU 4135897 A AU4135897 A AU 4135897A AU 41358/97 A AU41358/97 A AU 41358/97A AU 4135897 A AU4135897 A AU 4135897A AU 4135897 A AU4135897 A AU 4135897A
Authority
AU
Australia
Prior art keywords
transparent
soap
fatty acid
alkali
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU41358/97A
Other versions
AU720810B2 (en
Inventor
Masanori Okada
Isao Shimosato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pola Orbis Holdings Inc
Original Assignee
Pola Chemical Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pola Chemical Industries Inc filed Critical Pola Chemical Industries Inc
Publication of AU4135897A publication Critical patent/AU4135897A/en
Application granted granted Critical
Publication of AU720810B2 publication Critical patent/AU720810B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D13/00Making of soap or soap solutions in general; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0095Solid transparent soaps or detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D9/00Compositions of detergents based essentially on soap
    • C11D9/002Non alkali-metal soaps
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D9/00Compositions of detergents based essentially on soap
    • C11D9/02Compositions of detergents based essentially on soap on alkali or ammonium soaps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

DESCRIPTION TRANSPARENT SOLID SOAP AND TRANSPARENT SOAP MATERIAL Technical Field The present invention relates generally to a 5 transparent solid soap and a transparent soap material and, more particularly, to a transparent solid soap and a transparent soap material which can be easily produced without requiring a fine control of a water content and a maturing period till reduction in weight is settled 10 and, besides, exhibit high stabilities of transparency and weight with a passage of time. Background Arts A transparent soap is visually beautiful and excellent in terms of safety and detergency, and is 15 therefore widely used as a detergent. Generally, the transparent soap is mixed with a moisture absorbing component as an indispensable component such as polysaccharide, and the like in order to create the transparency and mixed, in addition, with a volatile 20 component such as ethanol, and the like. The transparent solid soap, however, declines in terms of the transparency on the contrary when the -2 moisture component absorbs the moisture content, and it is therefore required that fine control of the water content be precisely made by a hot roll while monitoring the transparency and the water content. Further, when 5 mixed with the volatile component, the volatile component volatilizes, resulting in a decrease in weight. Hence, a maturing period as long as several weeks through several months is needed till the decrease in weight is settled. Namely, it is quite troublesome 10 to execute the control so as to exhibit high transparency and high stabilities of transparency and of weight with a passage of time in terms of manufacturing the transparent solid soap. Moreover, if processed as a soap with a stripe 15 pattern by use of a conventional transparent soap material together with other opaque soap materials, the transparency of the transparent soap portion is spoiled by the moisture content contained in the opaque soap, which leads to a drawback in which the stripe pattern 20 becomes blurred. Furthermore, some of the actually used transparent solid soaps are mixed with sorbitol defined as polysaccharide in order to enhance the transparency. Sorbitol is, however, crystal-deposited as the time elapses enough to make the transparent soap cloudy, and 7, 7/' RN- IcN -3 it happened often that the stability of transparency with the passage of time might be spoiled. Under such circumstances, there has been demanded a transparent soap that can be easily produced without 5 requiring the fine control of the water content and the maturing period and, besides, exhibits the high stabilities of transparency and of weight with the passage of time. On the other hand, it has already practiced that 10 the transparent solid soap is mixed with organic amine such as triethanolamine, but high-concentration mixing was not carried out. Further, it was not absolutely known that the transparent solid soap and the transparent soap material, which can be easily produced 15 and exhibit the high stability, are obtained by mixing with organic amine such as triethanolamine with the high concentration. Disclosure of the Invention It is an object of the present invention, which was 20 contrived under such circumstances, to provide a transparent solid soap and a transparent soap material with a decreased labor for fine control of a moisture content, which can be easily produced without requiring
TV
-4 a maturing period till reduction in weight is settled and are good in terms of stabilities of transparency and of weight with a passage of time. Under such circumstances, as a result of 5 wholeheartedly having made studies over and over to obtain the transparent solid soap and the transparent soap material that are easy to produce and exhibit a good stability, the present inventors obtained the soap that remains transparent even when polysaccharide and 10 alcohol are not required to be indispensable components, which involves using sodium hydroxide and organic amine at a predetermined ratio as alkali used for saponification and letting a quantity of alkali with respect to fatty acid be a predetermined saponifying 15 equivalent, and found out that this transparent soap is easy to produce and exhibits a good stability, thus having completed the present invention. Namely, the present invention relates to a transparent solid soap obtained by saponifying fatty 20 acid or animal/vegetable oil with alkali, which comprises mainly a salt of fatty acid, wherein 1) the alkali is sodium hydroxide and organic amine, and a molar ratio of the sodium hydroxide to the organic amine is from 1 : 0.8 to 1 : 2, and -5 2) a quantity of the alkali is 2 to 3 saponifying equivalents to the fatty acid or the animal/vegetable oil. It is particularly preferable that the organic 5 amine is triethanolamine. Further, the present invention relates to a transparent soap material obtained by saponifying fatty acid or animal/vegetable oil with alkali, which comprises mainly a salt of fatty acid, wherein 10 1) the alkali is sodium hydroxide and organic amine, and a molar ratio of the sodium hydroxide to the organic amine is from 1 : 0.8 to 1 : 2, and 2) a quantity of the alkali is 2 to 3 saponifying equivalents to the fatty acid or the animal/vegetable 15 oil. The transparent soap material according to the present invention can be solidified as a pellet. Further, the present invention relates to a transparent solid soap obtained by molding the above 20 transparent soap material. Note that the term "transparent" implies a state of being substantially clear with slight turbidity as well as implying that a transmissivity of the visible light is approximately 25% or above. Moreover, the term -6 "transparent" is not limited to achromatic transparency. As for a distinction between the "transparent solid soap" and the "transparent soap material", the "transparent solid soap" is conceptualized as being 5 molded and solidified into a usable form, while the "transparent soap material" is conceptualized as a state before being molded into the transparent solid soap. Further, according to the present invention, the "transparent solid soap" includes a soap molded into the 10 usable form, a portion of which is transparent. The term "saponifying equivalent" means a minimum alkali quantity needed for transforming all of fatty acid or animal/vegetable oil into a salt of fatty acid, i.e., into a soap, and a quantity thereof should be 15 regarded as 1 saponifying equivalent. The transparent solid soap and the transparent soap material according to the present invention are the transparent soap in which polysaccharide such as sorbitol or alcohol such as ethanol are not used as 20 indispensable components. Accordingly, it is rare to generate turbidity caused by moisture absorption or crystal depositon, and the like, which happen on a soap comprising the polysacchride, and excellent in terms of a stability of transparency with a passage of time.
ST
-7 Moreover, the transparent solid soap and the transparent soap material according to the present invention are easy to produce for the reason that a labor for controlling a moisture content is reduced because of 5 moisture absorbing components such as polysaccharide being not indispensable, and that a maturing period till a reduction in weight is settled after a volatile component such as alcohol has come to an equilibrium, is not indispensable. 10 The present invention will hereinafter be described in detail. (1) Transparent Solid Soap of the Present Invention A transparent solid soap of the present invention is obtained by saponifying fatty acid or 15 animal/vegetable oil with alkali, which comprises mainly a salt of fatty acid, wherein 1) the alkali is sodium hydroxide and organic amine, and a molar ratio of the sodium hydroxide to the organic amine is from 1 : 0.8 to 1 : 2, and 20 2) a quantity of the alkali is 2 to 3 saponifying equivalents to the fatty acid or the animal/vegetable oil. Herein, diethanolamine, triethanolamine, S T -8 triethylamine, trimethylamine and diethylamine, and the like are exemplified as preferable organic amine. Among these kinds of amine, triethanolamine is particularly preferable. One kind of organic amine may be solely 5 used, or tow or more kinds of amine may also be employed in combination. The alkali quantity in saponifying the fatty acid or the animal/vegetable oil with the alkali is preferably 2 to 3 saponifying equivalents, more 10 preferably, 2.1 to 2.9 saponifying equivalents and, much more preferably, 2.2 to 2.7 saponifying equivalents with respect to the fatty acid or the animal/vegetable oil. Note that the term "saponifying equivalent" in the present invention means a minimum alkali quantity 15 required for transforming all of the fatty acid or the animal/vegetable oil into a salt of fatty acid, viz., into the soap, and a quantity thereof should be regarded as 1 saponifying equivalent. The alkali quantity corresponding to 1 saponifying equivalent, for example, 20 can be obtained as the alkali quantity necessary for neutralizing the acid derived from the fatty acid, calculating the acid quantity from the weight and the molecular weight of the fatty acid. Further, a ratio of the sodium hydroxide to the ~STF?4N -7 -9 organic amine is preferably from 1 : 0.8 to 1 : 2, more preferably from 1 0.9 to 1 1.9 and, still more preferably, from 1 : 1 to 1 : 1.8 in molar ratio. The fatty acid or the animal/vegetable oil used for 5 the transparent solid soap according to the present invention may be those generally employed as fundamental sources. As the fatty acid, there can be specifically exemplified stearic acid, lauric acid, myristic acid, palmitic acid and behenic acid and the like. The fatty 10 acid, whether synthetic or natural, may be available. Further, as the animal/vegetable oil, specifically, beef tallow, coconut oil and hydrogenated coconut oil, and the like, which is previously hydrolyzed into the fatty acid, may be used or may be used intact. 15 Further, a quantity of the fatty acid prepared as a raw material into the transparent solid soap according to the present invention, i.e., a preparing quantity of the fatty acid, is preferably from 30% to 60% by weight, more preferably from 35% to 57% by weight and, much more 20 preferably, from 37% to 55% by weight. Moreover, a preparing quantity of triethanolamine is from 30% to 50% by weight, more preferably from 31% to 47% by weight, and even more preferably from 32% to 45% by weight. \ST Furthermore, a preparing quantity of sodium hydroxide is
OE
- 10 preferably from 5% to 10% by weight, more preferably from 5.5% to 9.5% by weight, and much more preferably from 6% to 9% by weight. In the transparent solid soap according to the 5 present invention, if in such a range as not to spoil the effects of the present invention, there can be optional components generally used for the soap in addition to the indispensable components described above. As the above optional components, there may be 10 exemplified, e.g., antioxidant such as BHT, chelating agent such as EDTA and hydroxyethane diphosphonic acid, antiseptic agent such as methylparaben, coloring matters, pigments, fine particles, mica titanes with interference colors, pearl agent such as mica titanes, 15 perfume, surface active agent such as POE added sodium alkylsulfate, and monovalent or polyvalent alcohol or polysaccharide such as ethanol, glycerine, white saccharide, maltitol, sorbitol and honey and the like. Note that the transparent solid soap according to 20 the present invention is mixed with the coloring matters, the pigments, the fine particles, the mica titanes with interference colors or the pearl agent as the above optional component, whereby the soap can, though the transparency might be spoiled to some extent
SCT
- 11 depending on an addition quantity, become highly lustrous and conspicuous in color. The transparent solid soap according to the present invention can be manufactured by an ordinary transparent 5 solid soap manufacturing method. For example, the transparent solid soap can be manufactured by a frame kneading method of saponifying the fatty acid or the animal/vegetable oil with alkali, melting a mixture by heating that are mixed with other components as the 10 necessity arises, pouring the mixture into a mold and solidifying it by cooling. (2) Transparent Soap Material of the Present Invention A transparent soap material of the present invention is obtained by saponifying fatty acid or 15 animal/vegetable oil with alkali, which comprises mainly a salt of fatty acid, wherein 1) the alkali is sodium hydroxide and organic amine, and a molar ratio of the sodium hydroxide to the organic amine is from 1 : 0.8 to 1 : 2, and 20 2) a quantity of the alkali is 2 to 3 saponifying equivalents to the fatty acid or the animal/vegetable oil. Herein, diethanolamine, triethanolamine, 4<, - 12 triethylamine, trimethylamine and diethylamine, and the like are exemplified as preferable organic amine. Among these kinds of amine, triethanolamine is particularly preferable. One kind of organic amine may be solely 5 used, or tow or more kinds of amine may also be employed in combination. The alkali quantity in saponifying the fatty acid or the animal/vegetable oil with the alkali is preferably 2 to 3 saponifying equivalents, more 10 preferably, 2.1 to 2.9 saponifying equivalents and, much more preferably, 2.2 to 2.7 saponifying equivalents with respect to the fatty acid or the animal/vegetable oil. Further, a ratio of the sodium hydroxide to the organic amine is preferably from 1 : 0.8 to 1 : 2, more 15 preferably from 1 0.9 to 1 1.9 and, still more preferably, from 1 1 to 1 1.8 in molar ratio. The fatty acid or the animal/vegetable oil used for the transparent soap material according to the present invention may be those generally employed as fundamental 20 sources. As the fatty acid, there can be specifically exemplified stearic acid, lauric acid, myristic acid, palmitic acid and behenic acid and the like. The fatty acid, whether synthetic or natural, may be available. Further, as the animal/vegetable oil, specifically, beef _0~ - 13 tallow, coconut oil and hydrogenated coconut oil, and the like, which is previously hydrolyzed into the fatty acid, may be used or may be used intact. Further, a quantity of the fatty acid prepared as a 5 raw material into the transparent soap material according to the present invention, i.e., a preparing quantity of the fatty acid, is preferably from 30% to 60% by weight, more preferably from 35% to 57% by weight and, much more preferably, from 37% to 55% by weight. 10 Moreover, a preparing quantity of triethanolamine is from 30% to 50% by weight, more preferably from 31% to 47% by weight, and even more preferably from 32% to 45% by weight. Furthermore, a preparing quantity of sodium hydroxide is preferably from 5% to 10% by weight, more 15 preferably from 5.5% to 9.5% by weight, and much more preferably from 6% to 9% by weight. In the transparent soap material according to the present invention, if in such a range as not to spoil the effects of the present invention, there can be 20 optional components generally used for the soap in addition to the indispensable components described above. As the above optional components, there may be exemplified, e.g., antioxidant such as BHT, chelating agent such as EDTA and hydroxyethane diphosphonic acid, - 14 antiseptic agent such as methylparaben, coloring matters, pigments, fine particles, mica titanes with interference colors, pearl agent such as mica titanes, perfume, surface active agent such as POE added sodium 5 alkylsulfate, and monovalent or polyvalent alcohol or polysaccharide such as ethanol, glycerine, white saccharide, maltitol, sorbitol and honey and the like. Note that the transparent solid soap according to the present invention is mixed with the coloring 10 matters, the pigments, the fine particles, the mica titanes with interference colors or the pearl agent and the like as the above optional component, whereby the soap can, though the transparency might be spoiled to some extent depending on an addition quantity, become 15 highly lustrous and conspicuous in color. The transparent soap material according to the present invention can be manufactured by an ordinary soap material manufacturing method. For example, the transparent soap material of the present invention can 20 be transformed into a pellet, i.e., a solidified soap material obtained by saponifying the fatty acid with alkali, adding other components as the necessity arises, kneading these components, effecting a rolling process and extruding and solidifying them.
- 15 Moreover, the transparent solid soap can be obtained by carrying out pellet processing such as pressurization-molding, i.e., by a mechanical kneading method. Further, if pressurization-molded by use of the 5 pellet into which the transparent soap material of the present invention is molded and the pellet manufactured from an ordinary opaque soap material, a transparent solid soap having a stripe pattern is to be obtained. Moreover, a flower-shaped molding is made of an opaque 10 soap and embedded in and wrapped with the transparent soap material of the present invention by the frame kneading method, thereby making it possible to obtain a transparent solid soap with the molding embedded in and wrapped therewith. Further, if a printed thin film 15 composed of carboxymethylcellulose is embedded in and wrapped therewith, it is feasible to obtain the transparent solid soap with a picture drawn inside. Best Mode of Carrying out the Invention The present invention will hereinafter be described 20 in detail by exemplifying Examples. However, the present invention is not, as a matter of course, limited to only these Examples. Note that numerical values of prescription are parts by weight as far as no particular 3T - 16 indications are given. Examples 1 - 6 The transparent soap material is manufactured according to a prescription of Table 1 which follows. 5 Concretely, prescription components in Table 1 are scale-put into a heating kneader, kneaded for 2 hours at 80 0 C, and, through a. pelletizing operation by a hot roll and a pelleter, the transparent soap material is obtained as a pellet. When a moisture content of this 10 pellet is obtained by Karl Fischer moisture content titration , the moisture content of the pellet comes to a result as shown in Table 1. When a component composition of the pellet is calculated from this moisture content, the component composition as shown in 15 Table 2 is obtained. Note that a quantity of alkali with respect to fatty acid is as shown in Table 3.
A
- 17 Table 1 Component Example Example Example 1 2 3 Coconut oil fatty acid 40 40 40 Beef tallow fatty acid 160 160 160 5 Triethanolamine 140 145 160 Sodium hydroxide 34 29 26 Water 86 81 79 State of pellet Transp Transp Transp a-rent a-rent a-rent solid- solid- solid state state state Pellet moisture content 5.4 6.2 4.8 10 (weight %) Component Example Example Example 4 5 6 Coconut oil fatty acid 40 40 40 Beef tallow fatty acid 160 160 160 Triethanolamine 170 175 160 15 Sodium hydroxide 34 26 31 Water 86 79 84 State of pellet Transp Transp Transp a-rent a-rent a-rent solid- solid- solid state state state Pellet moisture content 6.1 5.5 5.6 (weight
%)
- 18 Table 2 Component Example Example Example 1 2 3 Coconut oil fatty acid 10.2 10.0 9.7 Beef tallow fatty acid 40.9 40.1 39.5 5 Triethanolamine 35.8 36.4 39.5 Sodium hydroxide 8.7 7.3 6.4 Water 4.4 6.2 4.8 Component Example Example Example 4 5 6 Coconut oil fatty acid 9.3 9.4 9.7 10 Beef tallow fatty acid 37.2 37.7 38.6 Triethanolamine 39.5 41.3 38.6 Sodium hydroxide 7.9 6.1 7.5 Water 6.1 5.5 5'.6 Table 3 (Unit: Saponifying Equivalent) Alkali quantity to fatty acid 15 Example 1 2.37 Example 2 2.24 Example 3 2.28 Example 4 2.65 Example 5 2.41 20 Example 6 2.45 Examples 7 - 12 The transparent solid soap is obtained by pressurization-forming the pellet-like transparent soap material in the Examples 1 - 6. In this transparent 25 solid soap, a change in weight is less than 5% even when preserved at 40 0 C for one month, and, further, neither variation in the transparency nor crystal deposition can be seen.
A
- 19 Example 13 The transparent soap material is manufactured according to a scaling prescription in Table 4 which follows. Concretely, the prescription components in 5 Table 4 are scale-put into the heating kneader, kneaded for 2 hours at 80'C, and, through the pelletizing operation by the hot roll and the pelleter, the transparent soap material is obtained as a pellet. Note that according to the prescription in Table 4, the 10 alkali quantity to the fatty acid is 2.45 saponifying equivalents. A moisture content of this pellet was 5.6% by weight (which is based on the Karl Fischer moisture content titration). This pellet exhibited neither the 15 crystal deposition nor change in the transparency even when preserved at 40 0 C for one month. Table 4 (Scaling Prescription) Component Mixing quantity Stearic acid 30 20 Palmitic acid 13 Sodium hydroxide 6.7 Triethanolamine 32 BHT 0.1 Hydroxyethane 0.1 25 diphosphonic acid Water 10.7 Ethanol 7.4 - 20 Example 14 The transparent solid soap is obtained by, pressurization-forming the transparent soap material in the example 13. This transparent solid soap showed 5 neither the variation in the transparency nor crystal deposition even when preserved at 40 0 C for one month. Example 15 The transparent soap material is manufactured according to a scaling prescription in Table 5 which' 10 follows. Concretely, the prescription components in Table 5 are scale-put into the heating kneader, kneaded for 2 hours at 80 0 C, and, through the pelletizing operation by the hot roll and the pelleter, the transparent soap material is obtained as a pellet. Note 15 that according to the prescription in Table 5, the alkali quantity to the fatty acid is 2.45 saponifying equivalents. A moisture content of this pellet was 5.1% by weight (which is based on the Karl Fischer moisture 20 content titration). In this pellet, there was no change in the weight even when preserved at 40 0 C for one month.
- 21 Table 5 (Scaling Prescription) Component Mixing quantity Stearic acid 30 Palmitic acid 13 5 Sodium hydroxide 6.7 Triethanolamine 32 BHT 0.1 Hydroxyethane 0.1 diphosphonic acid 10 Water 10.7 Sorbitol 7.4 Example 16 The transparent solid soap is obtained by pressurization-forming the transparent soap material in 15 the example 15. This transparent solid soap showed no variation in the weight even when preserved at 40 0 C for one month. Example 17 The transparent soap material is manufactured 20 according to a scaling prescription in Table 6 which follows. Concretely, the prescription components in Table 6 are scale-put into the heating kneader, kneaded for 2 hours at 80*C, and, through the pelletizing operation by the hot roll and the pelleter, the 25 transparent soap material is obtained as a pellet. Note that according to the prescription in Table 6, the - 22 alkali quantity to the fatty acid is 2.45 saponifying equivalents. A moisture content of this pellet was 5.1% by weight (which is based on the Karl Fischer moisture 5 content titration). This pellet was a luster white solid body. This soap material showed no variation in the weight even when preserved at 40 0 C for one month. Table 6 (Scaling Prescription) Component Mixing quantity 10 Stearic acid 30 Palmitic acid 13 Sodium hydroxide 6.7 Triethanolamine 32 BHT 0.1 15 Hydroxyethane 0.1 diphosphonic acid Water 17.1 Titanium oxide 1 Example 18 20 The transparent soap material is manufactured according to a scaling prescription in Table 7 which follows. Concretely, the prescription components in Table 6 are scale-put into the heating kneader, kneaded for 2 hours at 80 0 C, and, through the pelletizing 25 operation by the hot roll and the pelleter, the transparent soap material is obtained as a pellet. Note that according to the prescription in Table 7, the 7s - 23 alkali quantity to the fatty acid is 2.45 saponifying equivalents. A moisture content of this pellet was 5.1% by weight (which is based on the Karl Fischer moisture 5 content titration). This pellet exhibited no change both in the weight and the transparency even when preserved at 40 0 C for one month. Table 7 (Scaling Prescription) Component Mixing quantity 10 Stearic acid 30 Palmitic acid 13 Sodium hydroxide 6.7 Triethanolamine 32 BHT 0.1 15 Hydroxyethane 0.1 diphosphonic acid Water 18.1 Example 19 The pellet in the example 17 is molten by heating, 20 poured into a silicone rubber mold and solidified, thus manufacturing a molding of a flower of rose. This molding is placed in a frame, and the transparent soap material molten by heating in the example 18 is softly poured and solidified by cooling, thus obtaining a 25 transparent solid soap including a flower. This transparent solid soap exhibited neither the change in T2 -7 - 24 the transparency of the transparent portion nor the change in the weight even when preserved at 40 0 C for one month. Industrial Applicability 5 The transparent solid soap and the transparent soap material according to the present invention can be easily produced without requiring a fine control of the moisture content and a maturing period till reduction. in the weight are settled, and, besides, exhibit the high 10 stabilities of the transparency and of the weight with the passage of time.

Claims (6)

1. A transparent solid soap obtained by saponifying fatty acid or animal/vegetable oil with alkali, which comprises mainly a salt of fatty acid, 5 wherein 1) said alkali is sodium hydroxide and organic amine, and a molar ratio of said sodium hydroxide to said organic amine is from 1 : 0.8 to 1 : 2, and 2) a quantity of said alkali is 2 to 3 saponifying 10 equivalents to said fatty acid or said animal/vegetable oil.
2. A transparent solid soap according to claim 1, wherein said organic amine is triethanolamine.
3. A transparent soap material obtained by 15 saponifying fatty acid or animal/vegetable oil with alkali, which comprises mainly a salt of fatty acid, wherein 1) said alkali is sodium hydroxide and organic amine, and a molar ratio of said sodium hydroxide to 20 said organic amine is from 1 : 0.8 to 1 : 2, and 2) a quantity of said alkali is 2 to 3 saponifying equivalents to said fatty acid or said animal/vegetable - 26 oil.
4. A transparent soap material according to claim 3, wherein said organic amine is triethanolamine.
5. A transparent soap material according to claim 3 5 or 4, wherein said transparent soap material is solidified.
6. A transparent solid soap obtained by molding a transparent soap material according to any one of claims 3 through 5.
AU41358/97A 1997-09-05 1997-09-05 Transparent solid soap and transparent soap material Ceased AU720810B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/003137 WO1999013041A1 (en) 1996-05-22 1997-09-05 Transparent solid soap and transparent soap stock

Publications (2)

Publication Number Publication Date
AU4135897A true AU4135897A (en) 1999-03-29
AU720810B2 AU720810B2 (en) 2000-06-15

Family

ID=14181076

Family Applications (1)

Application Number Title Priority Date Filing Date
AU41358/97A Ceased AU720810B2 (en) 1997-09-05 1997-09-05 Transparent solid soap and transparent soap material

Country Status (5)

Country Link
EP (1) EP0947579B1 (en)
AU (1) AU720810B2 (en)
CA (1) CA2270381A1 (en)
DE (1) DE69736071T2 (en)
WO (1) WO1999013041A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1847437A (en) * 1929-10-24 1932-03-01 Moscowitz Abraham Detergent
US4297230A (en) * 1979-02-06 1981-10-27 The Procter & Gamble Company Non-crystallizing transparent soap bars
JPS60188500A (en) * 1984-03-08 1985-09-25 三和化学工業株式会社 Manufacture of molded transparent soap bar
US4758370A (en) * 1987-04-30 1988-07-19 Neutrogena Corp. Compositions and processes for the continuous production of transparent soap
ZA882340B (en) * 1988-03-31 1989-12-27 Unilever Plc Transparent soap bar
GB8807754D0 (en) * 1988-03-31 1988-05-05 Unilever Plc Transparent soap bars
JP2728791B2 (en) * 1990-06-21 1998-03-18 鐘紡株式会社 Transparent soap composition
US5728663A (en) * 1996-07-02 1998-03-17 Johnson & Johnson Consumer Products, Inc. Clear, colorless soap bar with superior mildness, lathering and discolorization resistence

Also Published As

Publication number Publication date
DE69736071T2 (en) 2006-12-21
WO1999013041A1 (en) 1999-03-18
EP0947579B1 (en) 2006-06-07
CA2270381A1 (en) 1999-03-18
AU720810B2 (en) 2000-06-15
EP0947579A4 (en) 2001-03-28
EP0947579A1 (en) 1999-10-06
DE69736071D1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
CA2267765C (en) Mild cleansing bar compositions
KR20020052936A (en) Transparent bar soap composition
EP3931295B1 (en) A soap bar with improved perfume impact and deposition of actives
US5529714A (en) Transparent soap formulations and methods of making same
JP2010180381A (en) Method for producing transparent solid soap composition
US6156714A (en) Transparent solid soap and transparent soap stock comprising sodium hydroxide and organic amine
AU720810B2 (en) Transparent solid soap and transparent soap material
US6462003B1 (en) Transparent solid soap and transparent soap material
NZ335346A (en) Transparent solid soap and transparent soap material; obtained by saponifying fatty acid or animal/vegetable oil with sodium hydroxide and an organic amine
CA2935932C (en) Aqueous composition containing oligodynamic metal
KR100358830B1 (en) Transparent solid soap and transparent soap stock
EP0814151B1 (en) Transparent soap composition and bars of soap produced therefrom
MXPA99004172A (en) Transparent solid soap and transparent soap stock
KR950018428A (en) Transparent cosmetic soap composition containing pure gold flakes and preparation method thereof
JPH09188899A (en) Soap composition
JP3647344B2 (en) Chlorella extract-containing solid soap
JP3512147B2 (en) Soap containing α, α-glucosylglucoside
JPH09509690A (en) Fragrance composition
KR101997502B1 (en) Manufacturing method of week acid natural soap using black soap and natural soap using therof
JPH1060497A (en) Bar soap and its production
JP2889822B2 (en) Method for producing spherical small-grained soap
JPH01282299A (en) Transparent soap composition
JPS61293300A (en) Mechanically kneaded transparent soap
JPH11241096A (en) Primeverose containing solid soap
JPH09502469A (en) Method for producing transparent soap material

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)