AU2018244291B2 - Method for increasing the light output of microLED devices using quantum dots - Google Patents

Method for increasing the light output of microLED devices using quantum dots Download PDF

Info

Publication number
AU2018244291B2
AU2018244291B2 AU2018244291A AU2018244291A AU2018244291B2 AU 2018244291 B2 AU2018244291 B2 AU 2018244291B2 AU 2018244291 A AU2018244291 A AU 2018244291A AU 2018244291 A AU2018244291 A AU 2018244291A AU 2018244291 B2 AU2018244291 B2 AU 2018244291B2
Authority
AU
Australia
Prior art keywords
beam splitter
layer
layers
illumination device
quantum dots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2018244291A
Other languages
English (en)
Other versions
AU2018244291A1 (en
Inventor
Ernest C. Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Publication of AU2018244291A1 publication Critical patent/AU2018244291A1/en
Application granted granted Critical
Publication of AU2018244291B2 publication Critical patent/AU2018244291B2/en
Assigned to SHOEI CHEMICAL INC. reassignment SHOEI CHEMICAL INC. Request for Assignment Assignors: NANOSYS, INC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00
    • H01L25/0753Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00 the devices being arranged next to each other
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/20Dichroic filters, i.e. devices operating on the principle of wave interference to pass specific ranges of wavelengths while cancelling others
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5387Flexible insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/855Optical field-shaping means, e.g. lenses
    • H10H20/856Reflecting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/036Manufacture or treatment of packages
    • H10H20/0361Manufacture or treatment of packages of wavelength conversion means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/036Manufacture or treatment of packages
    • H10H20/0363Manufacture or treatment of packages of optical field-shaping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8515Wavelength conversion means not being in contact with the bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/872Periodic patterns for optical field-shaping, e.g. photonic bandgap structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/815Group III-V based compounds, e.g. AlaGabIncNxPyAsz
    • Y10S977/818III-P based compounds, e.g. AlxGayIn2P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/815Group III-V based compounds, e.g. AlaGabIncNxPyAsz
    • Y10S977/819III-As based compounds, e.g. AlxGayInzAs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/824Group II-VI nonoxide compounds, e.g. CdxMnyTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Filters (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)
  • Luminescent Compositions (AREA)
AU2018244291A 2017-03-28 2018-03-27 Method for increasing the light output of microLED devices using quantum dots Active AU2018244291B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762477716P 2017-03-28 2017-03-28
US62/477,716 2017-03-28
US15/935,507 US10546985B2 (en) 2017-03-28 2018-03-26 Method for increasing the light output of microLED devices using quantum dots
US15/935,507 2018-03-26
PCT/US2018/024540 WO2018183308A1 (en) 2017-03-28 2018-03-27 Method for increasing the light output of microled devices using quantum dots

Publications (2)

Publication Number Publication Date
AU2018244291A1 AU2018244291A1 (en) 2019-10-24
AU2018244291B2 true AU2018244291B2 (en) 2024-02-01

Family

ID=63669936

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2018244291A Active AU2018244291B2 (en) 2017-03-28 2018-03-27 Method for increasing the light output of microLED devices using quantum dots

Country Status (8)

Country Link
US (3) US10546985B2 (enExample)
EP (1) EP3601480B1 (enExample)
JP (1) JP7191033B2 (enExample)
KR (1) KR20190131530A (enExample)
CN (1) CN110582551A (enExample)
AU (1) AU2018244291B2 (enExample)
CA (1) CA3057983A1 (enExample)
WO (1) WO2018183308A1 (enExample)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920344A (zh) * 2019-03-22 2019-06-21 深圳康佳电子科技有限公司 一种无缝拼接的Micro LED显示装置
CN111010232B (zh) * 2019-12-20 2021-03-12 厦门大学 一种提高可见光通信中Micro-LED带宽方法
US11575065B2 (en) 2021-01-29 2023-02-07 Applied Materials, Inc. Tuning of emission properties of quantum emission devices using strain-tuned piezoelectric template layers
JP7643987B2 (ja) 2021-11-18 2025-03-11 信越化学工業株式会社 量子ドットのパターニング方法、光学素子の製造方法、バックライトユニットの製造方法及び画像表示装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262714A1 (en) * 2006-05-15 2007-11-15 X-Rite, Incorporated Illumination source including photoluminescent material and a filter, and an apparatus including same
US20100149814A1 (en) * 2008-12-17 2010-06-17 Lednovation, Inc. Semiconductor Lighting Device With Wavelength Conversion on Back-Transferred Light Path
WO2017007770A2 (en) * 2015-07-07 2017-01-12 Sxaymiq Technologies Llc Quantum dot integration schemes

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7367691B2 (en) * 2003-06-16 2008-05-06 Industrial Technology Research Institute Omnidirectional one-dimensional photonic crystal and light emitting device made from the same
JP2009105379A (ja) 2007-10-05 2009-05-14 Panasonic Electric Works Co Ltd 発光装置
JP4613947B2 (ja) 2007-12-07 2011-01-19 ソニー株式会社 照明装置、色変換素子及び表示装置
US8434914B2 (en) * 2009-12-11 2013-05-07 Osram Sylvania Inc. Lens generating a batwing-shaped beam distribution, and method therefor
CN101937959A (zh) * 2010-08-12 2011-01-05 武汉华灿光电有限公司 带滤光膜的发光二极管及其制造方法
KR102098682B1 (ko) 2010-11-10 2020-05-22 나노시스, 인크. 양자 도트 필름들, 조명 디바이스들, 및 조명 방법들
KR20140046419A (ko) 2011-05-16 2014-04-18 베르라세 테크놀러지스 엘엘씨 공진기가 향상된 광전자 장치 및 그 제조 방법
WO2013112435A1 (en) * 2012-01-24 2013-08-01 Cooledge Lighting Inc. Light - emitting devices having discrete phosphor chips and fabrication methods
CN103576370A (zh) * 2012-07-23 2014-02-12 天津富纳源创科技有限公司 偏光片
JP6680670B2 (ja) * 2013-04-11 2020-04-15 ルミレッズ ホールディング ベーフェー トップエミッション型半導体発光デバイス
US9484504B2 (en) * 2013-05-14 2016-11-01 Apple Inc. Micro LED with wavelength conversion layer
US8928021B1 (en) 2013-06-18 2015-01-06 LuxVue Technology Corporation LED light pipe
CN105829103B (zh) * 2013-12-20 2018-10-19 3M创新有限公司 边缘侵入得到改善的量子点制品
JP6519311B2 (ja) * 2014-06-27 2019-05-29 日亜化学工業株式会社 発光装置
KR20160025456A (ko) * 2014-08-27 2016-03-08 서울바이오시스 주식회사 발광 다이오드 및 그 제조 방법
CN104617197B (zh) * 2015-01-08 2017-08-01 青岛海信电器股份有限公司 一种显示模组用led发光器件及显示模组
KR102538377B1 (ko) 2015-05-20 2023-06-01 도레이 카부시키가이샤 조명 장치 및 표시 장치
US9841548B2 (en) 2015-06-30 2017-12-12 Apple Inc. Electronic devices with soft input-output components
CN105096749B (zh) * 2015-08-04 2017-07-04 京东方科技集团股份有限公司 一种显示装置及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262714A1 (en) * 2006-05-15 2007-11-15 X-Rite, Incorporated Illumination source including photoluminescent material and a filter, and an apparatus including same
US20100149814A1 (en) * 2008-12-17 2010-06-17 Lednovation, Inc. Semiconductor Lighting Device With Wavelength Conversion on Back-Transferred Light Path
WO2017007770A2 (en) * 2015-07-07 2017-01-12 Sxaymiq Technologies Llc Quantum dot integration schemes

Also Published As

Publication number Publication date
US11201270B2 (en) 2021-12-14
EP3601480B1 (en) 2022-12-21
CA3057983A1 (en) 2018-10-04
EP3601480A1 (en) 2020-02-05
WO2018183308A1 (en) 2018-10-04
CN110582551A (zh) 2019-12-17
US10546985B2 (en) 2020-01-28
JP2020516015A (ja) 2020-05-28
JP7191033B2 (ja) 2022-12-16
US20200161517A1 (en) 2020-05-21
US20220278258A1 (en) 2022-09-01
KR20190131530A (ko) 2019-11-26
US20180287025A1 (en) 2018-10-04
AU2018244291A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
US11824146B2 (en) Quantum dot encapsulation techniques
US20220278258A1 (en) Method for increasing the light output of microled devicecs using quantum dots
US11320577B2 (en) Radiation absorbing element for increasing color gamut of quantum dot based display devices
US11092850B2 (en) Using multiple excitation wavelengths in nanostructure based display devices
US11428988B2 (en) Increasing color gamut performance and efficiency in quantum dot color conversion layers
CN110780486A (zh) 使用具有集成光学元件的量子点改善显示效率的方法
KR102787956B1 (ko) 나노구조체 기반 디스플레이 디바이스들
US11886073B2 (en) Nanostructure based display devices
WO2023220050A1 (en) Microled-based display device and method of manufacturing same

Legal Events

Date Code Title Description
PC1 Assignment before grant (sect. 113)

Owner name: SHOEI CHEMICAL INC.

Free format text: FORMER APPLICANT(S): NANOSYS, INC.

FGA Letters patent sealed or granted (standard patent)