AU2011346721A1 - Splash resistant facemask - Google Patents

Splash resistant facemask Download PDF

Info

Publication number
AU2011346721A1
AU2011346721A1 AU2011346721A AU2011346721A AU2011346721A1 AU 2011346721 A1 AU2011346721 A1 AU 2011346721A1 AU 2011346721 A AU2011346721 A AU 2011346721A AU 2011346721 A AU2011346721 A AU 2011346721A AU 2011346721 A1 AU2011346721 A1 AU 2011346721A1
Authority
AU
Australia
Prior art keywords
splash
layer
mask
layers
facemask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2011346721A
Other versions
AU2011346721B2 (en
Inventor
Elaine M. Namba
Roger B. Quincy Iii
Bryan James Stadelman
Catherine J. Turnbow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
O&M Halyard International ULC
Original Assignee
Kimberly Clark Worldwide Inc
Kimberly Clark Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly Clark Worldwide Inc, Kimberly Clark Corp filed Critical Kimberly Clark Worldwide Inc
Publication of AU2011346721A1 publication Critical patent/AU2011346721A1/en
Assigned to KIMBERLY-CLARK WORLDWIDE, INC. reassignment KIMBERLY-CLARK WORLDWIDE, INC. Alteration of Name(s) of Applicant(s) under S113 Assignors: KIMBERLY-CLARK WORLDWIDE, INC.
Application granted granted Critical
Publication of AU2011346721B2 publication Critical patent/AU2011346721B2/en
Assigned to AVENT, INC. reassignment AVENT, INC. Request for Assignment Assignors: KIMBERLY-CLARK WORLDWIDE, INC.
Assigned to O&M HALYARD INTERNATIONAL UNLIMITED COMPANY reassignment O&M HALYARD INTERNATIONAL UNLIMITED COMPANY Request for Assignment Assignors: AVENT, INC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • A62B23/025Filters for breathing-protection purposes for respirators the filter having substantially the shape of a mask

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

There is provided a splash resistant facemask having two outer splash layers adjacent each other on a side away from a wearer, a filter layer and an inside layer. None of the layers contains a repellent treatment. The facemask can pass a fluid splash resistance test, e.g. ASTM F-1862-05, wherein fluid is directed at the mask at a pressure of 160 mmHg.

Description

WO 2012/085709 PCT/IB2011/055140 SPLASH RESISTANT FACEMASK This application claims the benefit of priority from U.S. Provisional Application No. 61/425,875 filed on December 22, 2010 in the name of Roger B. Quincy, Ill., the contents of which are incorporated herein by reference. 5 BACKGROUND The present disclosure generally relates to face masks. In particular the disclosure relates to an assembly of material layers that provides splash resistance used in constructing the body portion of face masks (used to cover the mouth, nasal openings, and most of the cheeks). 10 Medical professionals involved in caring for sick and injured patients can be exposed to bodily fluids that may carry disease and transmit it to the medical professional through contact with the skin and mucous membranes. Those diseases of most concern include hepatitis and AIDS but also include avian flu, SARS, west Nile disease and others. While medical professionals must of course 15 exercise care in dealing with infected individuals, protective attire like gowns, gloves and facemasks are used to minimize contact with the vectors of infection. It is particularly important that the mucus membranes of the mouth be protected from inadvertent splashes of blood and other bodily fluids. The challenge in providing splash resistance to face masks is to maintain an 20 acceptable level of breathability while prohibiting splashes as well as minute airborne (virus) particles from passing through the mask and being inhaled by the wearer. Since masks cover the mouth and nasal openings, the heat and moisture from expired air creates micro-climates between the exterior of the mask and the covered skin; such micro-climates are often perceived as uncomfortable for the 25 person wearing the mask. One measure of air flow through a material layer or layers follows the procedure steps described in ASTM D737- 04. This gives quantifiable air permeability values for the layer or layers at a water pressure differential of 125 Pascals. The procedure steps of ASTM D737 used in determining air permeability values are described in US patent 4,748,065. 1 WO 2012/085709 PCT/IB2011/055140 Ways to impart splash resistance involve merely adding more layers to the mask, increasing the thickness of existing layers in the mask, or reducing the size or number of open pores of one or more of these layers. All of these approaches tend to compromise the flow of air, heat, and moisture of expired air through the 5 mask. Another way to impart splash resistance is to alter the surface energy attributes of the material layers which can be done with chemical treatments. There are a variety of repellent finishes used on fabrics including fiber reactive hydrocarbon hydrophobes, silicone water repellents and fluorochemical repellents. Fluorochemical repellents are unique in that they confer both water and low 10 surface tension fluids repellent to fabrics. This property is important because blood and alcohol, common liquids in an operating room, are low surface tension liquids. The ability of fluorochemicals to repel low surface tension liquids is related to their low surface energy. The fluorochemical finishes are organic fluorine-containing compounds in which a majority of the hydrogen atoms are replaced by fluorine. 15 When these compounds are applied to fabric followed by drying and curing, the fluorochemical tails orient themselves away from the fibers to produce a very low surface energy barrier. While fluorocarbon treatments may increase the repellency of facemasks, there is concern regarding the safety of such treated materials. Many uses of 20 fluorocarbons were phased out in the United States in the 1970s and 1980 due to concerns of safety and environmental degradation. The challenge of providing a fluorocarbon free mask that will provide sufficient splash resistance to be used in a surgical setting remains. This is an area of great importance to those in the medical profession and represents an 25 important area of research for those concerned about the safety of not only medical professionals but of their patients as well. There thus remains a need for a facemask that can protect a medical worker from exposure to the blood and bodily fluids of a patient and which does not contain a repellent treatment. The desired facemask should be sufficiently 30 breathable yet resist penetration by splashes of blood. 2 WO 2012/085709 PCT/IB2011/055140 SUMMARY The fluid resistant face mask is desirably a construction having two outer splash layers adjacent each other on the side away from the wearer, a filter layer and an inside layer. None of the material components of the mask contain a 5 repellent treatment. It is desirable that the splash layers have a combined basis weight of at least 1.4 osy (47.5 gsm) where the second (inner) splash layer has at least a 0.8 osy (27 gsm) basis weight and an air permeability value of greater than 250 CFM/Ft 2 The splash layers also desirably have a stiffness of at least 3.5 according to ASTM 10 standard test D-1388, with slight modifications. The mask can withstand a splash resistance test in which a fluid like synthetic blood is directed at the mask at a pressure of 160 mmHg according to, for example, ASTM F-1862-05. 15 The filter layer desirably has an air permeability value greater than 40 CFM/Ft 2 The overall mask desirably has an air permeability of at least 30 CFM/Ft 2 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a drawing of the layout of the test equipment used in the ASTM 20 F1862-05; the Standard Method for Resistance of Medical Facemasks to Penetration by Synthetic Blood (Horizontal Projection of Fixed Volume at a Known Velocity). Figure 2 is a depiction of the layers of the disclosed face mask showing two outer splash layers, a filter layer and a layer suitable for comfortable contact with 25 the skin. 3 WO 2012/085709 PCT/IB2011/055140 DETAILED DESCRIPTION Fluid splash resistance for face masks is measured according to ASTM method F1862-05. A certain level of splash resistance, designated "Level 3", is achieved when a mask or a construction of assembled layers of materials (that will 5 form the mask body) can keep 2.0 grams of a synthetic blood fluid from penetrating the inside layer when the fluid is squirted at a pressure of 160 mmHg to strike the outermost layer. A "Level 3 pass" rating for splash resistance is given for the mask- or construction-type when at least 29 out of 32 specimens of a sampling show no penetration of fluid through their inside layer at the Level 3 10 conditions. Likewise a "level 2" mask has resistance to fluid penetration measured in the same manner but at a pressure of 120 mmHg. In addition to fluid resistance, in order for the mask generally to be designated level 2 or level 3, certain other criteria must also be satisfied. These include resistance to flammability, pressure differential (delta P), particle filtration 15 efficiency, and bacterial filtration efficiency. This disclosure is concerned with masks that satisfy the level designation for at least the splash resistance. One can also determine directional changes in splash resistance by tracking the number (and therefore percentage) of specimens of a sampling that show no such fluid penetration. This provides information about splash resistance when 20 one has fewer than 32 specimens in a sampling. Such tracking was recorded for sample sets of the subsequent Tables (Tables 2 - 5) and reported in the right-most column of these Tables as the number of specimens that passed the level 3 splash criteria with respect to the total specimens tested - these numbers are those inside the parentheses, e.g. for Table 2A: (20/32), meaning 20 specimens passed out of 25 the 32 specimens tested). The equipment used for this method is shown in Figure 1. As described in ASTM F1862-05 and depicted in Figure 1, a sample is placed in the sample holder 2. Liquid is directed toward the sample horizontally (at a 90 0 angle to the sample) from a pressurized fluid reservoir 4 via a valve 6 that is 30 controlled by a valve switch 8. The sample holder 2 has a targeting plate and 4 WO 2012/085709 PCT/IB2011/055140 collection cups 10 to channel and collect excess fluid. The fluid is delivered from the valve 6, through a cannula 12 and impinges on the sample. A valve timing controller 14 may also be used to control the valve opening and duration of the test. 5 To overcome the shortcomings of previous mask constructions, material components and face mask design have been leveraged to provide masks with: (1) high levels of fluid splash resistance, (2) the ability to absorb more of the fluid splash, (3) low fluid interaction with the filter layer, and (4) acceptable comfort as measured by air permeability via ASTM D737 - 04 procedures. 10 The splash resistant face mask disclosed here (see also Figure 2) has, in general terms, a first splash resistant layer 28, a second splash layer 26 between the first splash layer and the filter layer 24, and an inner comfort layer 22 for contact with the skin of a wearer. The filtration layer 24 is most commonly a layer made by the meltblowing 15 process as described below. The meltblown filter layer 24 is lightweight, generally between 0.3 and 0.9 osy (10.2 and 30.5 gsm) and usually made from a polyolefin like polypropylene due to cost considerations, though other polymers would function as well. The splash layers 28, 26 may be a number of different materials including 20 spunbond fabrics, polyester cellulose wetlaid fabrics and apertured films. These materials should have very high air permeability rates (e.g. greater than 200 cfm/ft 2 ). These layers must also not be too flexible but have sufficient stiffness to maintain their shape and integrity when impinged upon by a liquid stream (e.g. a splash). 25 The innermost layer should be comfortable when in contact with the skin and also possessing a high breathability rating. Suitable materials include polyester cellulose wetlaid materials and other nonwoven materials like spunbond and meltblown layers and combinations thereof, again having air permeability rated of greater than 200 cfm/ft 2 , more desirably greater than 300 cfm/ft 2 . 5 WO 2012/085709 PCT/IB2011/055140 More particularly, the splash resistant face mask is desirably a construction involving the following: * at least 4 separate layers that collectively pass ASTM method F1862-05 * none of the material components of the mask design contains a repellent 5 treatment. * at least 2 adjacent splash layers, a first splash layer and a second splash layer, and these layers are positioned in the assembly so that the second splash layer is adjacent the filter layer. * both adjacent splash layers are recognized as needing a certain stiffness, 10 e.g. drape stiffness, to contribute to the level 3 splash resistance. This level is met for the 0.7 and 0.9 osy (27.1 and 30.5 gsm) spunbond (SB), the 0.5 osy (17gsm) Poly-Cell (polyester cellulose) wetlaid, but not for the 0.53 osy (17 gsm) SB & meltblown (MB) (test results below). * the second splash layer desirably has at least a 0.8 osy basis weight and an 15 air permeability value of greater than about 250 CFM/Ft 2 * a filter layer with an air permeability value greater than 40 CFM/Ft 2 desirably greater than 45 and still more desirably greater than 50. The filter is desirably a meltblown fabric layer having a basis weight between 0.4 and 0.9 osy, more desirably about 0.6 osy. 20 0 an inner layer that provides for skin comfort, having a basis weight between 0.3 and 0.9 osy, desirably about 0.5 osy. * an overall face mask air permeability of at least 30 CFM/Ft 2 desirably greater than 35 and still more desirably greater than 40. One assembly of the separate layers that conform to the disclosed mask is shown 25 in Figure 2. Details of representative layers used for the disclosed masks and comparative masks and their respective air permeability values are listed in Table 1. Note that spunbond and meltblown fabrics are polypropylene unless otherwise noted. 30 6 WO 2012/085709 PCT/IB2011/055140 Table 1 Air Materials Permeability for layers: Identifying Description Basis wt., osy (AP) Avg Std Dev Reps VISPOR Microfunnel Film, MED-40 HEX, 0.86 285 32 16 E@ Film 10/1/07, FG# F110176 SB Spunbond by PGl; Orange) 0.9 402 26 15 SB Spunbond by PGl; Orange (Higher 0.9 453 15 5 Pigment Level) SB Spunbond by PGl; Orange (Higher 1.4 262 14 5 Pigment Level) SB Spunbond by Kimberly-Clark; Orange 0.9 403 17 15 SB Spunbond by PGl; white 0.7 514 23 10 wetlaid nonwoven by AHLSTROM; 0.5 7 12 Poly-Cell 55% polyester staple & 45% rayon 280 staple, White wetlaid nonwoven by AHLSTROM; 0.5 4 11 Poly-Cell 55% polyester staple & 45% rayon 270 staple, Orange Proprietary structure of polyolefin 0.53 458 18 4 SB&MB meltspun fibers consisting of polypropylene and more flexible polyethylene MB Meltblown by Kimberly-Clark 0.6 63 2 4 MB Meltblown by Kimberly-Clark 0.6 115 4 12 MB Meltblown by Kimberly-Clark 0.6 76 2 11 MB Meltblown by Kimberly-Clark 0.45 87 4 7 Kraton Elastomeric Meltblown from Kraton's 1.4 280 20 3 MB MD6717 polymer The importance of having multiple layers in front of (i.e. on the side away from the wearer) the meltblown filtration layer to achieve level 3 splash resistance 5 can be seen by comparing the fluid splash resistance data shown in Table 2 A and B. These mask designs were tested in the form of layered sheets of various materials and not in finished face mask form. It can be seen that placement of a Vispore@ film material (apertured film described in US patent 4,920,960) in front of the meltblown layer to give two layers in front of the meltblown allows the mask 10 prototype to achieve level 3 fluid resistance (31 of 32 samples pass). Placing the splash layers on either side of the meltblown filter layer (Table 2A) did not yield a sufficiently splash resistant result. Apertured films (e.g. Vispore@ film) have a particular characteristic structure that has been associated with the free passage 7 WO 2012/085709 PCT/IB2011/055140 of gases through the layer in either direction, while restricting passage of liquids in at least one direction. Table 2A MB Mask Splash 1 (Outer FILTER Air Sample Layer) ____ LAYER plash2 ____ InnrLaer Perm Level 3 Mat'l osy AP osy AP Mat'l osy AP Mat'l osy AP AP 1 0.5 270 0.6 76 Vispore 0.86 285 Poly- 0.5 280 50.4 Fail Cell Film Cell 1.9 (20/32) 5 Table 2B SPLASH LAYERS MB Mask Splash 1 (Outer FILTER Air Sample Layer) _pash 2 LAYER InnerLaer__ Perm Level 3 Mat'l osy AP Mat'l osy AP osy AP Mat'l osy AP AP 2 Poly 0.5 270 Visme 0.86 285 0.6 76 Cell 0.5 280 51.7 (3/2 ClI Film Cel .8 (31/32) The examples in Table 3 illustrate the importance of material selection in a 4-layer mask design for passing level 3 splash resistance. When the outer layer, 10 the first splash layer, was a low basis weight material (e.g. 0.5 osy orange striped Poly-Cell) the selection of the second splash layer becomes more important. Note that the first three constructions use a relatively high air perm MB (AP = 76) filter layer. This 4-layer design was tested in layered sheet form, not in finished mask form. Also note that for sample 15, the SB&MB splash layer is believed to be too 15 flexible (not sufficiently stiff) to manage the liquid impact; it allows too much liquid through to the second splash layer and subsequent layers. The flexibility of this SB&MB splash layer was measured with the drape stiffness test, also called the cantilever bending test. This procedure follows ASTM standard test D-1388 8 WO 2012/085709 PCT/IB2011/055140 except for the fabric length which is different (1 inch by 8 inches or 2.5 cm by 20.3 cm). By comparison, the Poly-cell Splash 1 (Outer Layer) in Sample 6 was also measured. Drape stiffness test results are shown in Table 6. The fabrics of the splash layers for use in the disclosed facemask desirably have a drape stiffness of 5 at least 3.5, more desirably more than 4.0 and still more desirably more than 4.5. Table 3 SPLASH LAYERS Mask Sam Splash 2 MB FILTER Air Level pie Splash 1 (Outer Layer) LAYER Inner Layer Perm 3 Mat'l osy AP Mat'l osy AP osy AP Mat'l osy AP AP 3 0.5 270 SB 0.9 453 0.6 76 Cell 0.5 280 51.8 F72) MD6717 47.5± Fail 4 Poly 0.5 270 (Kraton 1.4 280 0.6 76 Poly 0.5 280 0.7 (5/32) M VB) 5 Poly- 0.5 270 SB 1.4 262 0.6 76 Poly- 0.5 280 48.0 Pass ICell [Cell 0.7 (31/32) Poly- Poly- 42.0± Pass 6 0.5 280 SB 0.9 402 0.6 63 C 0.5 280 4.0 2/32) SB&MIV Poly- 60.2+± Fi 15 B 0.53 458 SB 0.9 402 0.45 87 0.5 280 6 Fai The Sample 15 splash 1 outer layer is from Avgol America Inc., 178 Avgol Drive, Mocksville, NC, 27028. It was labeled YD-018-26 and described as a 10 polyethylene sheath/polypropylene core bicomponent spunbond SMS fabric. The meltblown portion is polypropylene. It should be noted that polyolefins are normally hydrophobic without a repellent treatment. This fabric was believed to be insufficiently stiff for use in the splash layers of the face mask disclosed herein, i.e., it had a drape stiffness below 3.5 and so failed the test (see Table 6). 15 The examples of Table 4 show 4-layer designs that passed level 3 using the same splash layers, two different inner layer materials, and four different MB filter layers. Sample 12 passed the level 3 splash test using two 0.9 osy SB splash layers, a 0.6 osy meltblown filter layer and a 0.5 osy polyester cellulose inner layer. Sample 11 was nearly identical to sample 12 with a lower basis weight meltblown 20 filter layer, and failed the splash test, indicating that for this combination of layers a heavier meltblown filter layer was necessary. Sample 10 was nearly identical to 9 WO 2012/085709 PCT/IB2011/055140 sample 11 with an inner layer made from the Avgol YD-01 8-26 used in the splash layer of sample 15 (described above) and passed the splash test. This result shows that while this sample 10 was quite similar to sample 11, the naturally hydrophobic SB&MB inner layer of sample 10 allowed this sample 10 to pass the 5 splash test while the poly-cell inner layer of sample 11 did not. In addition, the low drape stiffness of the Avgol SB&MB material was not as critical to splash performance when it was the inner layer when compared to when it was the outer layer in sample 15. Note that the first two samples in Table 4 were tested in finished mask form. 10 The last four samples were tested in layered sheet form. Note that a very high air permeability 0.6 osy (20.3 gsm) meltblown of 115 cfm/ ft 2 was included for this study set. 10 WO 2012/085709 PCT/IB2011/055140 Table 4 SPLASH LAYERS MB Mask Splash 1 (Outer Splash 2 FILTER Air Sample Layer) LAYER Inner Layer Perm Level 3 Mat'l osy AP Mat'l osy AP os AP Mat'l osy AP AP 7 SB 0.9 402 SB 0.9 402 0.6 76 Pol 0.5 280 0 P.8 a s *4C 8 Pass 8 SB 0.9 402 SB 0.9 402 0.6 76 SB&MB 0.53 458 1.8 (32/32) Pass 9 SB 0.9 402 SB 0.9 402 0.6 115 Pol 0.5 280 60 (29/32) 1619 Pass 10 SB 0.9 402 SB 0.9 402 0.45 87 SB&MB 0.53 458 +3.4 (32/32) 11 SB 0.9 402 SB 0.9 402 0.45 87 Pol 0.5 280 0 (25 2) 1 1 Poy 1 3.1 Pass 12 SB 0.9 402 SB 0.9 402 0.6 63 Poll 0.5 280 8 (32/32) *denotes AP measurements for layers fabricated into a mask via commercial equipment The examples in Table 5 show two 5-layer constructions (4 layers plus an 5 additional splash layer) that did not pass level 3. Of note is comparing results for Sample 14 to the Table 4 Samples that have 2 identical SB splash layers of 0.9 osy. Surprisingly, even the heavier sample 14, with three splash layers with a combined basis weight of 2.0 osy (68 gsm) failed the splash test while the two layer splash layer with a basis weight of 1.8 osy (61 gsm), sample 9, passed the 10 test. 11 WO 2012/085709 PCT/IB2011/055140 Table 5 SPLASH LAYERS Splash 1 MB Mask (Outer Splash 2 FILTER Air Leve Sample L yer Splash 3 LAYER Inner Layer Perm _I3 ~ ~a % ~a ~a ' aAP 0 O o 0 O < 2 0 A Pal N~ Fail 13 SB S S L(25 S B B cC M Cl 2) Cell N I' 2 c~ N 5 - Sn 5 - IDn Pal O CDFail 14 SB y D (24 'IT B 6 B 6 a 0 NDcN (24/3 Cell 2) Table 6 Drape Stiffness Data (ASTM D-1 388 with 1" by 8" pieces) Sample 12 splash 1 Sample 6 Sample 15 splash 1 splash 1 4.25 3.15 4.15 4.70 3.00 3.60 4.75 3.15 3.95 4.65 2.70 3.85 4.55 3.40 4.05 Average: 4.58 3.08 3.920 Standard 0.20 0.26 deviation: 0.211 5 12 WO 2012/085709 PCT/IB2011/055140 Table 7 contains data from still more air permeability testing for a level 3 splash resistant mask. In this case the materials are two layers of 0.9 spunbond splash layers, a 0.6 osy meltblown filter layer and a 0.5 osy poly-cell wetlaid inner facing. The overall mask air permeability is given also. All results are in cfm/ft 2 . 5 Table 7 1 Layer SB 2 layer SB Inner Facing Mask MB Only only only only 1 38.3 47.9 391 237 391 2 41.6 49.7 392 248 384 3 39.8 51 382 229 384 4 38.1 50.7 435 231 393 5 37.8 48 471 247 396 Average: 39.12 414 238 390 In the tables, PGI refers to Polymer Group Inc. of Charlotte, NC. PGI is a leading global engineered materials company, focused primarily on the production of nonwovens for the hygiene, wipes, medical, and industrial markets. PGI's internet site is at http://www.polymerqroupinc.com/en/ . Ahlstrom is a global 10 developer and manufacturer of high performance specialty papers and fiber composites for industrial applications. Ahlstrom's internet site is at http://www.ahlstrom .com/en/aboutAh lstrom/Paqes/default.aspx. The disclosed masks have also been observed to retain or absorb more of the splash in Level 3 splash resistance testing compared to other masks that are 15 similar yet with different constructions. For example, masks with a repellent treated (e.g. fluorochemical) outer layer were found to ricochet (or bounce off) the splashed fluid instead of absorbing and/or trapping it within the mask. The sterile surgical site can be compromised with fluid that is ricocheted from a mask. "Repellent treatment" refers to a chemical treatment that improves repellency to 13 WO 2012/085709 PCT/IB2011/055140 low surface tension fluids. For example, PP fabrics are treated with fluorochemicals to improve repellency to isopropyl alcohol (IPA). Without the fluorochemical treatment, the isopropyl alcohol repellency of PP fabrics is only 20% IPA/ water. The fluorochemical treatment is designed to improve the 5 repellency of PP to at least 70% IPA/ water. A repellent treatment as the term is used herein would be any treatment that provides the fabric (PP, wetlaid, etc.) with repellency to at least 30% IPA/ water. As used herein the term "spunbonded fibers" refers to small diameter fibers which are formed by extruding molten thermoplastic material as filaments from a 10 plurality of fine, usually circular capillaries of a spinneret with the diameter of the extruded filaments then being rapidly reduced as by, for example, in US Patent 4,340,563 to Appel et al., and US Patent 3,692,618 to Dorschner et al., US Patent 3,802,817 to Matsuki et al., US Patents 3,338,992 and 3,341,394 to Kinney, US Patent 3,502,763 to Hartman, and US Patent 3,542,615 to Dobo et al. Spunbond 15 fibers are generally not tacky when they are deposited onto a collecting surface. Spunbond fibers are generally continuous and have average diameters (from a sample of at least 10) larger than 7 microns, more particularly, between about 10 and 20 microns. The fibers may also have shapes such as those described in US Patents 5,277,976 to Hogle et al., US Patent 5,466,410 to Hills and 5,069,970 and 20 5,057,368 to Largman et al., which describe fibers with unconventional shapes. As used herein the term "bicomponent fibers" refers to fibers which have been formed from at least two polymers extruded from separate extruders but spun together to form one fiber. Bicomponent fibers are also sometimes referred to as multicomponent or conjugate fibers. The polymers are usually different from each 25 other though bicomponent fibers may be made from a single type of polymer. The polymers are arranged in substantially constantly positioned distinct zones across the cross-section of the bicomponent fibers and extend continuously along the length of the bicomponent fibers. The configuration of such a bicomponent fiber may be, for example, a sheath/core arrangement wherein one polymer is 30 surrounded by another or may be a side by side arrangement, a pie arrangement or an "islands-in-the-sea" arrangement. Bicomponent fibers are taught in US Patent 14 WO 2012/085709 PCT/IB2011/055140 5,108,820 to Kaneko et al., US Patent 4,795,668 to Krueger et al., US Patent 5,540,992 to Marcher et al. and US Patent 5,336,552 to Strack et al. Bicomponent fibers are also taught in US Patent 5,382,400 to Pike et al. and may be used to produce crimp in the fibers by using the differential rates of expansion and 5 contraction of the two (or more) polymers. For two component fibers, the polymers may be present in ratios of 75/25, 50/50, 25/75 or any other desired ratios. The fibers may also have shapes such as those described in US Patents 5,277,976 to Hogle et al., US Patent 5,466,410 to Hills and 5,069,970 and 5,057,368 to Largman et al., which describe fibers with unconventional shapes. 10 As used herein the term "meltblown fibers" means fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity, usually hot, gas (e.g. air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the 15 meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers. Such a process is disclosed, for example, in US Patent 3,849,241 to Butin et al. Meltblown fibers are microfibers which may be continuous or discontinuous, are generally smaller than 10 microns in average diameter, and are generally tacky when 20 deposited onto a collecting surface. As used herein "multilayer nonwoven laminate" means a laminate wherein some of the layers are spunbond and some meltblown such as a spun bond/meltblown/spunbond (SMS) laminate and others as disclosed in U.S. Patent 4,041,203 to Brock et al., U.S. Patent 5,169,706 to Collier, et al, US Patent 25 5,145,727 to Potts et al., US Patent 5,178,931 to Perkins et al. and U.S. Patent 5,188,885 to Timmons et al. Such a laminate may be made by sequentially depositing onto a moving forming belt first a spunbond fabric layer, then a meltblown fabric layer and last another spunbond layer and then bonding the laminate in a manner described below. Alternatively, the fabric layers may be made individually, 30 collected in rolls, and combined in a separate bonding step. Such fabrics usually have a basis weight of from about 0.1 to 12 osy (6 to 400 gsm), or more particularly 15 WO 2012/085709 PCT/IB2011/055140 from about 0.75 to about 3 osy (101.7 gsm). Multilayer laminates may also have various numbers of meltblown layers or multiple spunbond layers in many different configurations and may include other materials like films (F) or coform materials, e.g. SMMS, SM, SFS, etc. 5 The basis weight of nonwoven fabrics is usually expressed in ounces of material per square yard (osy) or grams per square meter (gsm) and the fiber diameters useful are usually expressed in microns. (Note that to convert from osy to gsm, multiply osy by 33.91). The drape stiffness test, also sometimes called the cantilever bending test, 10 determines the bending length of a fabric using the principle of cantilever bending of the fabric under its own weight. The bending length is a measure of the interaction between fabric weight and fabric stiffness. One version of this test uses a 1 inch (2.54 cm) by 8 inch (20.3 cm) fabric strip, sliding the strip at 4.75 inches per minute (12 cm/min) in a direction parallel to its long dimension so that its leading edge 15 projects from the edge of a horizontal surface. The length of the overhang is measured when the tip of the specimen is depressed under its own weight to the point where the line joining the tip of the fabric to the edge of the platform makes a 41.5 degree angle with the horizontal. The longer the overhang the slower the specimen was to bend, indicating a stiffer fabric. The drape stiffness is calculated 20 as 0.5 x bending length. When more than one specimen of a sample is measured, the drape stiffness value is reported as an average of the individual specimens of the sample. This procedure follows ASTM standard test D-1 388 except for the fabric length which is different (longer). The test equipment used is a Cantilever Bending tester model 79-10 available from Testing Machines Inc., 400 Bayview 25 Ave., Amityville, NY 11701. As in most testing, the sample should be conditioned to ASTM conditions of 65 ± 2 percent relative humidity and 72 ± 2 'F (22 ±1 C), or TAPPI conditions of 50± 2 percent relative humidity and 72 ± 1.8 'F prior to testing. As will be appreciated by those skilled in the art, changes and variations to the invention are considered to be within the ability of those skilled in the art. 30 Such changes and variations are intended by the inventors to be within the scope 16 WO 2012/085709 PCT/IB2011/055140 of the invention. It is also to be understood that the scope of the present invention is not to be interpreted as limited to the specific embodiments disclosed herein, but only in accordance with the appended claims when read in light of the foregoing disclosure. 5 17

Claims (15)

1. A fluid resistant face mask comprising two outer splash layers adjacent each other on a side away from a wearer, a filter layer and an inside layer wherein none of the layers has a repellent treatment and wherein said mask 5 passes a test of splash resistance conducted at a pressure of 160 mmHg.
2. The mask of claim 1 wherein the splash layers have a combined basis weight of at least 1.4 osy and where the second (inner) splash layer has an air permeability value of greater than 250 CFM/Ft 2
3. The mask of claim 1 wherein the filter layer has an air permeability value 10 greater than 40 CFM/Ft2
4. The mask of claim 1 having an air permeability of at least 30 CFM/Ft 2 .
5. The mask of claim 1 wherein said outermost splash layer has a drape stiffness above 3.5.
6. The mask of claim 1 wherein said outermost splash layer has a drape 15 stiffness above 4.0.
7. The mask of claim 1 wherein said outermost splash layer has a drape stiffness above 4.5.
8. The mask of claim 2 wherein said second splash layer is comprised of an aperture film. 20
9. A facemask for surgical use comprising a first spunbond splash layer on a side away from a wearer's face, a second splash layer made from a spunbond fabric or apertured film, a meltblown filtration layer and an inner layer suitable for contact with the wearer's face and wherein said facemask passes an ASTM F-1 862-05 level 3 test. 25
10. The facemask of claim 9 wherein said second layer has a basis weight of at least 0.8 osy and the first and second layers have a combined basis weight of at least 1.4 osy.
11. The facemask of claim 9 wherein the filter layer has an air permeability value greater than 40 CFM/Ft 2 18 WO 2012/085709 PCT/IB2011/055140
12. The facemask of claim 9 having an air permeability of at least 30 CFM/Ft2
13. The facemask of claim 9 wherein said outermost splash layer has a drape stiffness above 3.5.
14. The facemask of claim 9 wherein said outermost splash layer has a drape 5 stiffness above 4.0.
15. The facemask of claim 9 wherein said outermost splash layer has a drape stiffness above 4.5. 19
AU2011346721A 2010-12-22 2011-11-16 Splash resistant facemask Active AU2011346721B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201061425875P 2010-12-22 2010-12-22
US61/425,875 2010-12-22
US13/100,353 2011-05-04
US13/100,353 US20120160247A1 (en) 2010-12-22 2011-05-04 Splash Resistant Facemask
PCT/IB2011/055140 WO2012085709A1 (en) 2010-12-22 2011-11-16 Splash resistant facemask

Publications (2)

Publication Number Publication Date
AU2011346721A1 true AU2011346721A1 (en) 2013-06-13
AU2011346721B2 AU2011346721B2 (en) 2015-08-27

Family

ID=45688189

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011346721A Active AU2011346721B2 (en) 2010-12-22 2011-11-16 Splash resistant facemask

Country Status (7)

Country Link
US (2) US20120160247A1 (en)
EP (1) EP2654472B1 (en)
JP (1) JP2014503288A (en)
AU (1) AU2011346721B2 (en)
CA (1) CA2818675C (en)
MX (1) MX2013005990A (en)
WO (1) WO2012085709A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10065481B2 (en) * 2009-08-14 2018-09-04 Freudenberg Filtration Technologies, L.P. Non-woven air exhauster and filter
CN104305591B (en) * 2014-09-23 2016-07-20 西安交通大学医学院第一附属医院 A kind of have the haze mask filtered with adsorption dual function based on nanostructured
JP6998323B2 (en) * 2016-04-21 2022-01-18 オーアンドエム ハリヤード インターナショナル アンリミテッド カンパニー Multi-layer structure with improved splash resistance by increasing the spacing between layers and articles formed from it
CN114847564A (en) * 2016-10-17 2022-08-05 株式会社Nbc纱网技术 Gauze mask
CN107006920A (en) * 2017-03-27 2017-08-04 深圳市九明药业有限公司 A kind of multi-layer structure design filtration efficiency absorption mouth mask and preparation method thereof
KR102174440B1 (en) * 2018-05-09 2020-11-04 주식회사 엘지생활건강 Mask pack sheet comprising silk produced by silkworm variety goldensilk and mask pack using the same
KR102085479B1 (en) * 2019-06-03 2020-03-05 이원석 A Neck Warmer Having a Distinguishing Area
CN111109713A (en) * 2020-03-03 2020-05-08 杭州余宏卫生用品有限公司 Anti-blood SMS non-woven fabric mask

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920960A (en) * 1987-10-02 1990-05-01 Tecnol, Inc. Body fluids barrier mask
US4969457A (en) * 1987-10-02 1990-11-13 Tecnol, Inc. Body fluids barrier mask
GB9307117D0 (en) * 1993-04-06 1993-05-26 Hercules Inc Card bonded comfort barrier fabrics
CA2132555A1 (en) * 1993-12-15 1995-06-16 Kevin K. Brunson Disposable aerosol mask with face shield
US6055982A (en) * 1993-12-15 2000-05-02 Kimberly-Clark Worldwide, Inc. Disposable face mask with enhanced fluid barrier
US5467765A (en) * 1994-10-06 1995-11-21 Maturaporn; Thawatchai Disposable face mask with multiple liquid resistant layers
US6103647A (en) * 1996-03-14 2000-08-15 Kimberly-Clark Worldwide, Inc. Nonwoven fabric laminate with good conformability
US8091550B2 (en) * 2003-12-22 2012-01-10 Kimberly-Clark Worldwide, Inc. Face mask having baffle layer for improved fluid resistance
US20060289009A1 (en) * 2005-06-24 2006-12-28 Joe Palomo Coordinated medical face mask system
US7845351B2 (en) * 2005-08-31 2010-12-07 Kimberly-Clark Worldwide Inc. Germicidal face mask
JP2007282720A (en) * 2006-04-13 2007-11-01 Nitto Denko Corp Fabric for mask having moisture retentivity, and hygienic mask using it
US8129298B2 (en) * 2006-05-31 2012-03-06 Mitsui Chemicals, Inc. Nonwoven laminates and process for producing the same
US7642208B2 (en) * 2006-12-14 2010-01-05 Kimberly-Clark Worldwide, Inc. Abrasion resistant material for use in various media
US20080271739A1 (en) * 2007-05-03 2008-11-06 3M Innovative Properties Company Maintenance-free respirator that has concave portions on opposing sides of mask top section
KR20100100753A (en) * 2007-09-07 2010-09-15 에이. 코헨 빈요민 Apparatus for producing oxygen and/or hydrogen in an environment devoid of breathable oxygen
US20090151733A1 (en) * 2007-12-13 2009-06-18 Welchel Debra N Respirator with stretch-panels

Also Published As

Publication number Publication date
US20120160247A1 (en) 2012-06-28
AU2011346721B2 (en) 2015-08-27
EP2654472B1 (en) 2016-08-03
CA2818675A1 (en) 2012-06-28
US20190059471A1 (en) 2019-02-28
JP2014503288A (en) 2014-02-13
EP2654472A1 (en) 2013-10-30
WO2012085709A1 (en) 2012-06-28
CA2818675C (en) 2019-01-15
MX2013005990A (en) 2013-07-15

Similar Documents

Publication Publication Date Title
US20190059471A1 (en) Splash Resistant Facemask
US7290545B2 (en) Face mask with anti-fog folding
AU2013381874B2 (en) A facemask having one or more nanofiber layers
US20200298031A1 (en) Filter mask having one or more malleable stiffening members
US20060130842A1 (en) Face mask with absorbent element
JP4510834B2 (en) Facial mask with baffle layer for improved fluid resistance
US11033763B2 (en) Respirator including polymeric netting and method of forming same
US20060130841A1 (en) Face mask with horizontal and vertical folds
JP4099394B2 (en) Stretchable face mask
JP4823314B2 (en) Bactericidal face mask
KR101546980B1 (en) A disposable respirator with exhalation vents
CN102958570B (en) There is the high temporal respiratory organ of inside nasal region folded portion
US20060130214A1 (en) Face mask with offset folding for improved fluid resistance
US20050079379A1 (en) Enhancement of barrier fabrics with breathable films and of face masks and filters with novel fluorochemical electret reinforcing treatment
US20110039468A1 (en) Protective apparel having breathable film layer
EP1542770A1 (en) Easy gripping face mask
CN109715252A (en) Outlet valve and respirator including outlet valve
US7285595B2 (en) Synergistic fluorochemical treatment blend
KR20210143666A (en) Face mask with filter medium from multicomponent filaments
WO2023009151A1 (en) Ultra-light nanotechnology breathable gowns and method of making same
CN111528564A (en) Application of coated polyester taffeta in manufacturing medical isolation clothes

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
PC Assignment registered

Owner name: AVENT, INC.

Free format text: FORMER OWNER(S): KIMBERLY-CLARK WORLDWIDE, INC.

PC Assignment registered

Owner name: O&M HALYARD INTERNATIONAL UNLIMITED COMPANY

Free format text: FORMER OWNER(S): AVENT, INC.