AU2011265528B2 - Monitoring the operation of a subsea hydrocarbon production control system - Google Patents

Monitoring the operation of a subsea hydrocarbon production control system Download PDF

Info

Publication number
AU2011265528B2
AU2011265528B2 AU2011265528A AU2011265528A AU2011265528B2 AU 2011265528 B2 AU2011265528 B2 AU 2011265528B2 AU 2011265528 A AU2011265528 A AU 2011265528A AU 2011265528 A AU2011265528 A AU 2011265528A AU 2011265528 B2 AU2011265528 B2 AU 2011265528B2
Authority
AU
Australia
Prior art keywords
subsea
fail
safe
monitoring
indication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2011265528A
Other versions
AU2011265528A1 (en
Inventor
Gopalakrishna Gudivada
Naresh Kunchakoori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Energy Technology UK Ltd
Original Assignee
GE Oil and Gas UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Oil and Gas UK Ltd filed Critical GE Oil and Gas UK Ltd
Publication of AU2011265528A1 publication Critical patent/AU2011265528A1/en
Assigned to GE OIL & GAS UK LIMITED reassignment GE OIL & GAS UK LIMITED Request for Assignment Assignors: VETCO GRAY CONTROLS LIMITED
Application granted granted Critical
Publication of AU2011265528B2 publication Critical patent/AU2011265528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/035Well heads; Setting-up thereof specially adapted for underwater installations
    • E21B33/0355Control systems, e.g. hydraulic, pneumatic, electric, acoustic, for submerged well heads

Abstract

A method of monitoring the operation of a subsea hydrocarbon production control system comprises monitoring at least one subsea device of the system and, if the 5 device fails to a fail-safe condition, sending an indication of that by wireless. (Fig. 1) PDPM Failsafe Monitoring Unit Tree B Failsafe Monitoring 3 I 4 \ 6 m Tree A Failsafe Fig.1

Description

AUSTRALIA 2011265528 23 Dec 2011
Patents Act COMPLETE SPECIFICATION (ORIGINAL)
Class Int. Class
Application Number: Lodged:
Complete Specification Lodged: Accepted: Published:
Priority
Related Art:
Name of Applicant:
Vetco Gray Controls Limited Actual Inventor(s):
Naresh Kunchakoori, Gopalakrishna Gudivada
Address for Service and Correspondence:
PHILLIPS ORMONDE FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA
Invention Title:
MONITORING THE OPERATION OF A SUBSEA HYDROCARBON PRODUCTION CONTROL
SYSTEM
Our Ref: 932115 POF Code: 88428/505444
The following statement is a full description of this invention, including the best method of performing it known to applicant(s): -1 - OOOOq 2 2011265528 23 Dec 2011
MONITORING THE OPERATION OF A SUBSEA HYDROCARBON PRODUCTION CONTROL SYSTEM
This application claims priority from European Application No. 11150315.7 filed on 5 6 January 2011, the contents of which are to be taken as incorporated herewith by this reference.
Field of the Invention
The present invention relates to monitoring the operation of a subsea hydrocarbon production I0 control system.
Background of the Invention A shutdown philosophy is employed in the design of production control systems for subsea oil and gas wells, to ensure the protection of personnel, environment and equipment from the 15 consequences that may occur as a result of abnormal operational conditions, accidental release of hydrocarbons or other accidents. This usually entails the inclusion of production shutdown and emergency shutdown mechanisms being built into the system, so that the system fails to a safe condition. 20 In this respect it is important that the status of all subsea valves and their actuators, which form part of the production control system, are known at all times but, more essentially, after a fail-safe shutdown has occurred. However, situations can arise where this information is not available and where this knowledge is critical for eliminating the problem (such as oil spilling out of a well or pipeline). Recent events in the Gulf of Mexico have demonstrated this need. 25
Examples of fail-safe shutdowns resulting from subsea failures, where relevant status information cannot be obtained using the existing system functionality, are those which occur between a well Christmas tree and the power distribution and protection module (PDPM) which is installed subsea and is the main subsea interface with Christmas trees providing 30 electrical power, hydraulic power and communications to each Christmas tree. Such failures include: failure in communications between a Christmas tree and the PDPM; failure of the power line between a Christmas tree and PDPM; 35 failure in the hydraulic line between a Christmas tree and the PDPM; and a combination of the above three failures. 3 2011265528 05 Jan 2017
Other situations are possible. A failure in any of these links will result in no information being available topside on valve status.
In all these situations, flow control valves and protective valves go into a fail-safe condition, but there is no means of verifying the actual status of the valves because communication is 5 not possible between the Christmas tree concerned and the PDPM. A means of overcoming this would significantly improve the functional safety of hydrocarbon production control systems.
As prior art, there may be mentioned WO 2009/122168; the Internet article “To the last drop”, 10 pages 63-66, XP002532134 (www.abb.com/abbreview); WO 2005/078233; US 2006/0159524 A1; US 2003/0098799 A1; US 2004/0124994 A1; US-A-6 798 338; GB-A-2 377 131; WO 2006/134331; GB-A-2 163 029; and Ram Somaraju, et al, “Frequency, Temperature and Salinity Variation of the Permittivity of Seawater”, Vol. 54, No. 11, November 2006, IEEE Transactions on Antennas and Propagation, IEEEE Service Center, 15 Piscataway, NJ, US, pages 3441 -3448, XP011150333 ISSN: 0018-926X. A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission that that document or matter was known or that the information it contains was part of the common general knowledge as at the priority date of any of the 20 claims.
Summary of the Invention
According to the present invention from one aspect, there is provided a method of monitoring the operation of a subsea hydrocarbon production control system, the method comprising 25 monitoring a state of at least one subsea device of the system using a fail-safe monitoring module that is only wirelessly coupled to the at least one subsea device detecting a change in state of the at least one subsea device to a fail-safe condition, sending an indication of the change in state of the at least one subsea device to a power distribution and protection module that is coupled to a topside master control station over a wireless connection to the 30 power distribution and protection module, the method further comprises checking an output from a fail-safe module of the at least one subsea device and checking an output from a subsea electronics module (SEM) of the at least one subsea device to detect the change in state of the at least one subsea device and produce said indication. 35 According to the present invention from another aspect, there is provided a subsea hydrocarbon production control system, comprising a fail-safe monitoring module only wirelessly coupled to at least one subsea device for monitoring a state of the at least one subsea device of the system , wherein the fail-safe monitoring device is configured to detect a 2011265528 05 Jan 2017 3a change in state of the at least one subsea device to a fail-safe condition, the fail-safe monitoring device being further configured to send via a wireless communication link an indication of the change in state to the fail-safe condition, wherein the at least one subsea unit comprises a fail-safe monitoring module with an associated sensor package used in 5 conjunction with a subsea electronics module (SEM) with an associated sensor package.
Typically, said indication is sent to a fail-safe monitoring unit, which could be a subsea unit. Typically, such a subsea unit is in a subsea power distribution and protection module.
Typically, the at least one device comprises at least one of a valve and an actuating mechanism for a valve. 2011265528 23 Dec 201
The indication could be sent from fail-safe monitoring means at a tree of the system with 5 which the device is associated. Typically, the system has at least one further such tree from which, if a device associated with it, fails to a fail-safe condition, an indication to that effect is sent by wireless from fail-safe monitoring means of the further tree.
An embodiment of the invention to be described below entails including a separate, 0 independent, dedicated, health monitoring module on a Christmas tree, for monitoring the status of all actuators and valves installed on the Christmas tree and wellhead. The system has its own dedicated subsea wireless communication link capable of communicating information to a wireless receiving system on the PDPM and on other Christmas trees. Thus, in the event of failure of the normal communication links, the wireless channel is available. 15 The module is provided with its own battery back-up to provide power in the event of power supply failure. The module sits alongside the normal process and control equipment in the Christmas tree mounted subsea control module (SCM) and can also be used to enhance the fail-safe decision making process in the SCM, by providing additional confirmation of the state of actuators and valves. If a shutdown should occur, but an indication that a device has gone 20 to a fail-safe condition is not received, then this is an indication of a problem.
The module can also form part of the normal decision making process by adding some intelligence to process the critical data which is related to a fail-safe condition. 25 Addition of the module also adds redundancy to the system.
Brief Description of the Drawings
Fig. 1 is a schematic diagram of an embodiment of the invention; and Fig. 2 is a block diagram of a modification which can be made to Fig. 1. 30
Description of Embodiments of the Invention.
Fig. 1 illustrates an implementation of the invention. In a conventional production control system, a master control station (MCS) 1, installed topside, provides the operator interface with subsea equipment and displays the current state of the various equipments and sensor 35 information, enabling the operator to control the system. The MCS 1 collates data such as the operational state of all subsea valves and data relating to the state of production fluids across an entire oilfield. The MCS 1 interfaces with the subsea installed power distribution 5 2011265528 05 Jan 2017 and protection module (PDPM) 2 which feeds electric power on lines 3, hydraulic power on lines 4, and communication on a line 5 to a plurality of Christmas trees 6, only two (A and B) being shown. 5 Each Christmas tree 6 includes a subsea control module (SCM) 7 which controls all the Christmas tree processes by providing hydraulic power to actuate valves mounted on the Christmas tree and at the wellhead. It also receives process instrumentation signals from sensors mounted on the Christmas tree and at the wellhead. These are received and processed in a subsea electronics module (SEM) 8 housed within the SCM 7 and 10 communicated via the system communication link to the PDPM 2, and then topside. Failure of the communications link between a Christmas tree 6 and the PDPM 2 will result in no valve and other status data being available from that tree.
In accordance with the embodiment of the invention, a dedicated fail-safe monitoring module 15 9 is at each tree 6, which module provides data on the health of the valves, as well as their actuating mechanisms. The module 9 includes its own interfacing, signal conditioning and processing and have its own dedicated sensors. A back-up battery 10 is built-in so that the module can still operate in the event of electrical power failure. Health monitoring of the module 9 would form part of the normal equipment condition monitoring checks and the 20 battery would be kept charged from the normal power supplies.
The production control system is provided with its own subsea wireless communication arrangement to communicate with the PDPM 2, so that in the event of a normal communication channel failure (copper wire, communications-on-power or fibre-optic) it has 25 an alternative independent communication link. More particularly, at each tree 6, there is an RF antenna 11 for sending data to an RF antenna 12 at the PDPM 2 and thence to a fail-safe monitoring unit 13 in the PDPM 2. Thus, each Christmas tree 6 in the overall production well complex has its own SCM 7 and fail-safe monitoring module 9 with a subsea wireless link 14. This enables individual Christmas trees to communicate with the PDPM and each other, 30 providing alternative routes for valve and other status information to reach topside.
Fig. 2 illustrates an example of a configuration in which the fail-safe monitoring module 9 with its fail-safe monitoring (FSM) dedicated sensor package 15 is used in conjunction with the SEM 8 and its sensor package 16. When the sensor signals feeding the SEM 8 result in it 35 triggering the fail-safe mechanism, a check can be made against the output from the fail-safe monitoring module 9 to see if this has also triggered a fail-safe mechanism as a result of the data from its dedicated sensor package. A fail-safe mechanism gets executed if 2011265528 23 Dec 2011 6 both the SEM and the fail-safe monitoring system takes the decision to trigger a fail-safe mechanism. This also adds redundancy to the system.
Advantages of using the Invention 5 The invention can utilise a wireless communication system between topside and subsurface equipment that forms part of the latest hydrocarbon production control system.
There is no need to rely on hardwired communication systems using communications-on-power techniques or separate wired communication cables.
The availability of subsea status information can provide immediate confirmation of a fail-safe 10 situation and enable a rapid response to be achieved to a developing situation. A rapid response to dangerous situations can save lives, significantly reduce environmental pollution and thereby reduce the cost of rectifying situations which arise.
Where the terms “comprise”, “comprises”, “comprised” or “comprising" are used in this 15 specification (including the claims) they are to be interpreted as specifying the presence of the stated features, integers, steps or components, but not precluding the presence of one or more other features, integers, steps or components, or group thereto.

Claims (12)

  1. The claims defining the present invention are as follows:
    1. A method of monitoring the operation of a subsea hydrocarbon production control system, the method comprising monitoring a state of at least one subsea device of the system using a fail-safe monitoring module that is only wirelessly coupled to the at least one subsea device; detecting a change in state of the at least one subsea device to a fail-safe condition, sending an indication of the change in state of the at least one subsea device to a power distribution and protection module that is coupled to a topside master control station over a wireless connection to the power distribution and protection module, the method further comprises checking an output from a fail-safe module of the at least one subsea device and checking an output from a subsea electronics module (SEM) of the at least one subsea device to detect the change in state of the at least one subsea device and produce said indication.
  2. 2. A method according to claim 1, wherein said indication is sent to a fail-safe monitoring unit of the power distribution and protection module.
  3. 3. A method according to claim 2, wherein said unit is a subsea unit.
  4. 4. A method according to claim 3, wherein said subsea unit is in a subsea power distribution and protection module.
  5. 5. A method according to any one of the preceding claims, wherein the at least one device comprises at least one of a valve and an actuating mechanism for a valve.
  6. 6. A method according to any one of the preceding claims, wherein the indication is sent from fail-safe monitoring means at a tree of the system with which the device is associated.
  7. 7. A method according to claim 6, wherein the system has at least one further such tree from which, if a device associated with it, fails to a fail-safe condition, an indication to that effect is sent by wireless from fail-safe monitoring means of the further tree.
  8. 8. A subsea hydrocarbon production control system, comprising a fail-safe monitoring module only wirelessly coupled to at least one subsea device for monitoring a state of the at least one subsea device of the system, wherein the fail-safe monitoring device is configured to detect a change in state of the at least one subsea device to a fail-safe condition, the failsafe monitoring device being further configured to send via a wireless communication link an indication of the change in state to the fail-safe condition, wherein the at least one subsea unit comprises a fail-safe monitoring module with an associated sensor package used in conjunction with a subsea electronics module (SEM) with an associated sensor package.
  9. 9. A system according to claim 8, wherein, in use of the system, said indication is sent to a fail-safe monitoring unit in a power distribution and protection module of the system.
  10. 10. A system claim 8 or 9, wherein the at least one device comprises at least one of a valve or an actuating mechanism for a valve.
  11. 11. A system according to claim 9 or 10, wherein, in use of the system, the indication is sent from fail-safe monitoring means at a tree of the system with which the device is associated.
  12. 12. A system according to claim 11, wherein the system has at least one further such tree from which, if a device associated with it, fails to a fail-safe condition, an indication to that effect is sent by wireless from fail-safe monitoring means of the further tree.
AU2011265528A 2011-01-06 2011-12-23 Monitoring the operation of a subsea hydrocarbon production control system Active AU2011265528B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11150315.7 2011-01-06
EP11150315.7A EP2474704B1 (en) 2011-01-06 2011-01-06 Monitoring the operation of a subsea hydrocarbon production control system

Publications (2)

Publication Number Publication Date
AU2011265528A1 AU2011265528A1 (en) 2012-07-26
AU2011265528B2 true AU2011265528B2 (en) 2017-02-02

Family

ID=43983362

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011265528A Active AU2011265528B2 (en) 2011-01-06 2011-12-23 Monitoring the operation of a subsea hydrocarbon production control system

Country Status (6)

Country Link
EP (1) EP2474704B1 (en)
CN (1) CN102591274A (en)
AU (1) AU2011265528B2 (en)
BR (1) BR102012000058B1 (en)
MY (1) MY152950A (en)
SG (1) SG182906A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536451A (en) 2015-03-17 2016-09-21 Ge Oil & Gas Uk Ltd Underwater hydrocarbon extraction facility

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416566A (en) * 1966-11-07 1968-12-17 Acf Ind Inc Valve operating mechanism
US20090212969A1 (en) * 2008-02-26 2009-08-27 Vecto Gray Inc. Underwater Communications Using RF

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2163029B (en) 1984-08-06 1987-11-18 Peter James Raynor Inductive communication system
US6798338B1 (en) 1999-02-08 2004-09-28 Baker Hughes Incorporated RF communication with downhole equipment
US7123162B2 (en) 2001-04-23 2006-10-17 Schlumberger Technology Corporation Subsea communication system and technique
US7301474B2 (en) 2001-11-28 2007-11-27 Schlumberger Technology Corporation Wireless communication system and method
US7228902B2 (en) 2002-10-07 2007-06-12 Baker Hughes Incorporated High data rate borehole telemetry system
NO323785B1 (en) 2004-02-18 2007-07-09 Fmc Kongsberg Subsea As Power Generation System
US8534959B2 (en) 2005-01-17 2013-09-17 Fairfield Industries Incorporated Method and apparatus for deployment of ocean bottom seismometers
EP2341645A1 (en) 2005-06-13 2011-07-06 WFS Technologies Limited Underwater communications system
GB2458944B (en) * 2008-04-04 2012-06-27 Vetco Gray Controls Ltd Communication system for a hydrocarbon extraction plant
CN201322951Y (en) * 2008-11-06 2009-10-07 刘健 GPS sea chest valve operation monitoring system
CN101793036B (en) * 2010-01-28 2011-11-30 中国海洋石油总公司 Pile shoe damage and water inflow monitoring device of multifunctional self-elevating supporting platform for ocean oil field

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416566A (en) * 1966-11-07 1968-12-17 Acf Ind Inc Valve operating mechanism
US20090212969A1 (en) * 2008-02-26 2009-08-27 Vecto Gray Inc. Underwater Communications Using RF

Also Published As

Publication number Publication date
BR102012000058A2 (en) 2015-06-02
MY152950A (en) 2014-12-15
CN102591274A (en) 2012-07-18
BR102012000058A8 (en) 2016-04-12
BR102012000058B1 (en) 2020-03-31
EP2474704B1 (en) 2013-09-04
SG182906A1 (en) 2012-08-30
EP2474704A1 (en) 2012-07-11
AU2011265528A1 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
US11180967B2 (en) Blowout preventer control system and methods for controlling a blowout preventer
US10196871B2 (en) Sil rated system for blowout preventer control
US9650869B2 (en) Well shut in device
US20120294114A1 (en) Acoustic telemetry of subsea measurements from an offshore well
WO2010039511A2 (en) Subsea system and method for protecting equipment of a subsea system
CN101886530B (en) Deepwater blowout preventer set electric control system based on FPGAs (Field Programmable Gate Arrays)
US20130332079A1 (en) Monitoring environmental conditions of an underwater installation
US6615916B1 (en) Method of saving string of tools installed in an oil well and a corresponding transmission assembly
CN106164787B (en) Method and apparatus for safe shutdown electrical load
AU2011265528B2 (en) Monitoring the operation of a subsea hydrocarbon production control system
Chen et al. Effect of DGPS failures on dynamic positioning of mobile drilling units in the North Sea
US20130169448A1 (en) Monitoring the operation of a subsea hydrocarbon production control system
GB2459488A (en) Wired communication with acoustic communication backup
KR102455750B1 (en) SIL rated system for blowout arrester control
US20170018173A1 (en) Acoustic frequency interrogation and data system
EP2651724A1 (en) Apparatus and method for clustered wellhead high integrity protection system
US11613954B2 (en) Subsea safety node
US10221680B2 (en) Underwater hydrocarbon extraction facility
CN104203714B (en) The method of control, protection and/or supervision track traffic and operation control system
Pye Development Trends In Subsea Well Head Control Systems, The Safety Implications.

Legal Events

Date Code Title Description
PC1 Assignment before grant (sect. 113)

Owner name: GE OIL & GAS UK LIMITED

Free format text: FORMER APPLICANT(S): VETCO GRAY CONTROLS LIMITED

FGA Letters patent sealed or granted (standard patent)