AU2011265528A1 - Monitoring the operation of a subsea hydrocarbon production control system - Google Patents

Monitoring the operation of a subsea hydrocarbon production control system Download PDF

Info

Publication number
AU2011265528A1
AU2011265528A1 AU2011265528A AU2011265528A AU2011265528A1 AU 2011265528 A1 AU2011265528 A1 AU 2011265528A1 AU 2011265528 A AU2011265528 A AU 2011265528A AU 2011265528 A AU2011265528 A AU 2011265528A AU 2011265528 A1 AU2011265528 A1 AU 2011265528A1
Authority
AU
Australia
Prior art keywords
subsea
fail
monitoring
safe
indication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2011265528A
Other versions
AU2011265528B2 (en
Inventor
Gopalakrishna Gudivada
Naresh Kunchakoori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Energy Technology UK Ltd
Original Assignee
Vetco Gray Controls Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vetco Gray Controls Ltd filed Critical Vetco Gray Controls Ltd
Publication of AU2011265528A1 publication Critical patent/AU2011265528A1/en
Assigned to GE OIL & GAS UK LIMITED reassignment GE OIL & GAS UK LIMITED Request for Assignment Assignors: VETCO GRAY CONTROLS LIMITED
Application granted granted Critical
Publication of AU2011265528B2 publication Critical patent/AU2011265528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/035Well heads; Setting-up thereof specially adapted for underwater installations
    • E21B33/0355Control systems, e.g. hydraulic, pneumatic, electric, acoustic, for submerged well heads

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Safety Devices In Control Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Selective Calling Equipment (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method of monitoring the operation of a subsea hydrocarbon production control system comprises monitoring at least one subsea device of the system and, if the 5 device fails to a fail-safe condition, sending an indication of that by wireless. (Fig. 1) PDPM Failsafe Monitoring Unit Tree B Failsafe Monitoring 3 I 4 \ 6 m Tree A Failsafe Fig.1

Description

AUSTRALIA Patents Act COMPLETE SPECIFICATION (ORIGINAL) Class Int. Class Application Number: Lodged: Complete Specification Lodged: Accepted: Published: Priority Related Art: Name of Applicant: Vetco Gray Controls Limited Actual Inventor(s): Naresh Kunchakoori, Gopalakrishna Gudivada Address for Service and Correspondence: PHILLIPS ORMONDE FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA Invention Title: MONITORING THE OPERATION OF A SUBSEA HYDROCARBON PRODUCTION CONTROL SYSTEM Our Ref: 932115 POF Code: 88428/505444 The following statement is a full description of this invention, including the best method of performing it known to applicant(s): -1 6000q 2 MONITORING THE OPERATION OF A SUBSEA HYDROCARBON PRODUCTION CONTROL SYSTEM This application claims priority from European Application No. 11150315.7 filed on 5 6 January 2011, the contents of which are to be taken as incorporated herewith by this reference. Field of the Invention The present invention relates to monitoring the operation of a subsea hydrocarbon production 10 control system. Background of the Invention A shutdown philosophy is employed in the design of production control systems for subsea oil and gas wells, to ensure the protection of personnel, environment and equipment from the 15 consequences that may occur as a result of abnormal operational conditions, accidental release of hydrocarbons or other accidents. This usually entails the inclusion of production shutdown and emergency shutdown mechanisms being built into the system, so that the system fails to a safe condition. 20 In this respect it is important that the status of all subsea valves and their actuators, which form part of the production control system, are known at all times but, more essentially, after a fail-safe shutdown has occurred. However, situations can arise where this information is not available and where this knowledge is critical for eliminating the problem (such as oil spilling out of a well or pipeline). Recent events in the Gulf of Mexico have demonstrated this need. 25 Examples of fail-safe shutdowns resulting from subsea failures, where relevant status information cannot be obtained using the existing system functionality, are those which occur between a well Christmas tree and the power distribution and protection module (PDPM) which is installed subsea and is the main subsea interface with Christmas trees providing 30 electrical power, hydraulic power and communications to each Christmas tree. Such failures include: failure in communications between a Christmas tree and the PDPM; failure of the power line between a Christmas tree and PDPM; 35 failure in the hydraulic line between a Christmas tree and the PDPM; and a combination of the above three failures.
3 Other situations are possible. A failure in any of these links will result in no information being available topside on valve status. In all these situations, flow control valves and protective valves go into a fail-safe condition, but there is no means of verifying the actual status of the valves because communication is 5 not possible between the Christmas tree concerned and the PDPM. A means of overcoming this would significantly improve the functional safety of hydrocarbon production control systems. As prior art, there may be mentioned WO 2009/122168; the Internet article "To the last drop", 10 pages 63-66, XP002532134 (www.abb.com/abbreview); WO 2005/078233; US 2006/0159524 Al; US 2003/0098799 Al; US 2004/0124994 Al; US-A-6 798 338; GB-A-2 377 131; WO 2006/134331; GB-A-2 163 029; and Ram Somaraju, et al, "Frequency, Temperature and Salinity Variation of the Permittivity of Seawater", Vol. 54, No. 11, November 2006, IEEE Transactions on Antennas and Propagation, IEEEE Service Center, 15 Piscataway, NJ, US, pages 3441-3448, XP011150333 ISSN: 0018-926X. A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission that that document or matter was known or that the information it contains was part of the common general knowledge as at the priority date of any of the 20 claims. Summary of the Invention According to the present invention from one aspect, there is provided a method of monitoring the operation of a subsea hydrocarbon production control system, the method comprising 25 monitoring at least one subsea device of the system and, if the device fails to a fail-safe condition, sending an indication of that by wireless. According to the present invention from another aspect, there is provided a subsea hydrocarbon production control system, comprising means for monitoring at least one subsea 30 device of the system and means for, if the device fails to a fail-safe condition, sending an indication of that by wireless. Typically, said indication is sent to a fail-safe monitoring unit, which could be a subsea unit. 35 Typically, such a subsea unit is in a subsea power distribution and protection module.
4 Typically, the at least one device comprises at least one of a valve and an actuating mechanism for a valve. The indication could be sent from fail-safe monitoring means at a tree of the system with 5 which the device is associated. Typically, the system has at least one further such tree from which, if a device associated with it, fails to a fail-safe condition, an indication to that effect is sent by wireless from fail-safe monitoring means of the further tree. An embodiment of the invention to be described below entails including a separate, 0 independent, dedicated, health monitoring module on a Christmas tree, for monitoring the status of all actuators and valves installed on the Christmas tree and wellhead. The system has its own dedicated subsea wireless communication link capable of communicating information to a wireless receiving system on the PDPM and on other Christmas trees. Thus, in the event of failure of the normal communication links, the wireless channel is available. 15 The module is provided with its own battery back-up to provide power in the event of power supply failure. The module sits alongside the normal process and control equipment in the Christmas tree mounted subsea control module (SCM) and can also be used to enhance the fail-safe decision making process in the SCM, by providing additional confirmation of the state of actuators and valves. If a shutdown should occur, but an indication that a device has gone 20 to a fail-safe condition is not received, then this is an indication of a problem. The module can also form part of the normal decision making process by adding some intelligence to process the critical data which is related to a fail-safe condition. 25 Addition of the module also adds redundancy to the system. Brief Description of the Drawings Fig. 1 is a schematic diagram of an embodiment of the invention; and Fig. 2 is a block diagram of a modification which can be made to Fig. 1. 30 Description of Embodiments of the Invention. Fig. 1 illustrates an implementation of the invention. In a conventional production control system, a master control station (MCS) 1, installed topside, provides the operator interface with subsea equipment and displays the current state of the various equipments and sensor 35 information, enabling the operator to control the system. The MCS 1 collates data such as the operational state of all subsea valves and data relating to the state of production fluids across an entire oilfield. The MCS 1 interfaces with the subsea installed power distribution 5 and protection module (PDPM) 2 which feeds electric power on lines 3, hydraulic power on lines 4, and communication on a line 5 to a plurality of Christmas trees 6, only two (A and B) being shown. 5 Each Christmas tree 6 includes a subsea control module (SCM) 7 which controls all the Christmas tree processes by providing hydraulic power to actuate valves mounted on the Christmas tree and at the wellhead. It also receives process instrumentation signals from sensors mounted on the Christmas tree and at the wellhead. These are received and processed in a subsea electronics module (SEM) 8 housed within the SCM 7 and 0 communicated via the system communication link to the PDPM 2, and then topside. Failure of the communications link between a Christmas tree 6 and the PDPM 2 will result in no valve and other status data being available from that tree. In accordance with the embodiment of the invention, a dedicated fail-safe monitoring module 5 9 is at each tree 6, which module provides data on the health of the valves, as well as their actuating mechanisms. The module 9 includes its own interfacing, signal conditioning and processing and have its own dedicated sensors. A back-up battery 10 is built-in so that the module can still operate in the event of electrical power failure. Health monitoring of the module 9 would form part of the normal equipment condition monitoring checks and the '0 battery would be kept charged from the normal power supplies. The production control system is provided with its own subsea wireless communication arrangement to communicate with the PDPM 2, so that in the event of a normal communication channel failure (copper wire, communications-on-power or fibre-optic) it has 25 an alternative independent communication link. More particularly, at each tree 6, there is an RF antenna 11 for sending data to an RF antenna 12 at the PDPM 2 and thence to a fail-safe monitoring unit 13 in the PDPM 2. Thus, each Christmas tree 6 in the overall production well complex has its own SCM 7 and failsafe monitoring module 9 with a subsea wireless link 14. This enables individual Christmas trees to communicate with the PDPM and each other, 30 providing alternative routes for valve and other status information to reach topside. Fig. 2 illustrates an example of a configuration in which the fail-safe monitoring module 9 with its fail-safe monitoring (FSM) dedicated sensor package 15 is used in conjunction with the SEM 8 and its sensor package 16. When the sensor signals feeding the SEM 8 result in it 35 triggering the fail-safe mechanism, a check can be made against the output from the fail-safe monitoring module 9 to see if this has also triggered a fail-safe mechanism as a result of the data from its dedicated sensor package. A fail-safe mechanism gets executed if either or 6 both the SEM and the fail-safe monitoring system takes the decision to trigger a fail-safe mechanism. This also adds redundancy to the system. Advantages of using the Invention 5 The invention can utilise a wireless communication system between topside and subsurface equipment that forms part of the latest hydrocarbon production control system. There is no need to rely on hardwired communication systems using communications--on power techniques or separate wired communication cables. The availability of subsea status information can provide immediate confirmation of a fail-safe 0 situation and enable a rapid response to be achieved to a developing situation. A rapid response to dangerous situations can save lives, significantly reduce environmental pollution and thereby reduce the cost of rectifying situations which arise. Where the terms "comprise", "comprises", "comprised" or "comprising" are used in this 15 specification (including the claims) they are to be interpreted as specifying the presence of the stated features, integers, steps or components, but not precluding the presence of one or more other features, integers, steps or components, or group thereto.

Claims (16)

1. A method of monitoring the operation of a subsea hydrocarbon production control system, the method comprising monitoring at least one subsea device of the 5 system and, if the device fails to a fail-safe condition, sending an indication of that by wireless.
2. A method according to claim 1, wherein said indication is sent to a fail-safe monitoring unit.
3. A method according to claim 2, wherein said unit is a subsea unit. 10
4. A method according to claim 3, wherein said subsea unit is in a subsea power distribution and protection module.
5. A method according to any one of the preceding claims, wherein the at least one device comprises at least one of a valve and an actuating mechanism for a valve.
6. A method according to any one of the preceding claims, wherein the indication is 15 sent from fail-safe monitoring means at a tree of the system with which the device is associated.
7. A method according to claim 6, wherein the system has at least one further such tree from which, if a device associated with it, fails to a fail-safe condition, an indication to that effect is sent by wireless from fail-safe monitoring means of the 20 further tree.
8. A subsea hydrocarbon production control system, comprising means for monitoring at least one subsea device of the system and means for, if the device fails to a fail-safe condition, sending an indication of that by wireless.
9. A system according to claim 8, wherein, in use of the system, said indication is 25 sent to a fail-safe monitoring unit of the system.
10. A system according to claim 9, wherein said unit is a subsea unit.
11. A system according to claim 10, wherein said subsea unit is in a subsea power distribution and protection module.
12. A system according to any one of claims 8 to 11, wherein the at least one device 30 comprises at least one of a valve or an actuating mechanism for a valve.
13. A system according to any one of claims 9 to 12, wherein, in use of the system, the indication is sent from fail-safe monitoring means at a tree of the system with which the device is associated.
14. A system according to claim 13, wherein the system has at least one further such 35 tree from which, if a device associated with it, fails to a fail-safe condition, an indication to that effect is sent by wireless from fail-safe monitoring means of the further tree. 8
15. 15. A method of monitoring the operation of a subsea hydrocarbon production control system substantially as hereinbefore described with reference to any one of the embodiments shown in the drawings.
16. A subsea hydrocarbon production control system substantially as hereinbefore 5 described with reference to any one of the embodiments shown in the drawings.
AU2011265528A 2011-01-06 2011-12-23 Monitoring the operation of a subsea hydrocarbon production control system Active AU2011265528B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11150315.7A EP2474704B1 (en) 2011-01-06 2011-01-06 Monitoring the operation of a subsea hydrocarbon production control system
EP11150315.7 2011-01-06

Publications (2)

Publication Number Publication Date
AU2011265528A1 true AU2011265528A1 (en) 2012-07-26
AU2011265528B2 AU2011265528B2 (en) 2017-02-02

Family

ID=43983362

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011265528A Active AU2011265528B2 (en) 2011-01-06 2011-12-23 Monitoring the operation of a subsea hydrocarbon production control system

Country Status (6)

Country Link
EP (1) EP2474704B1 (en)
CN (1) CN102591274A (en)
AU (1) AU2011265528B2 (en)
BR (1) BR102012000058B1 (en)
MY (1) MY152950A (en)
SG (1) SG182906A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536451A (en) 2015-03-17 2016-09-21 Ge Oil & Gas Uk Ltd Underwater hydrocarbon extraction facility

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416566A (en) * 1966-11-07 1968-12-17 Acf Ind Inc Valve operating mechanism
GB2163029B (en) 1984-08-06 1987-11-18 Peter James Raynor Inductive communication system
US6798338B1 (en) 1999-02-08 2004-09-28 Baker Hughes Incorporated RF communication with downhole equipment
GB2377131B (en) 2001-04-23 2006-01-25 Schlumberger Holdings Subsea communication systems and techniques
US7301474B2 (en) 2001-11-28 2007-11-27 Schlumberger Technology Corporation Wireless communication system and method
US7228902B2 (en) 2002-10-07 2007-06-12 Baker Hughes Incorporated High data rate borehole telemetry system
NO323785B1 (en) 2004-02-18 2007-07-09 Fmc Kongsberg Subsea As Power Generation System
US8534959B2 (en) 2005-01-17 2013-09-17 Fairfield Industries Incorporated Method and apparatus for deployment of ocean bottom seismometers
EP2341645A1 (en) 2005-06-13 2011-07-06 WFS Technologies Limited Underwater communications system
GB2458011B (en) * 2008-02-26 2010-12-15 Vetco Gray Inc Underwater wireless communications
GB2458944B (en) * 2008-04-04 2012-06-27 Vetco Gray Controls Ltd Communication system for a hydrocarbon extraction plant
CN201322951Y (en) * 2008-11-06 2009-10-07 刘健 GPS sea chest valve operation monitoring system
CN101793036B (en) * 2010-01-28 2011-11-30 中国海洋石油总公司 Pile shoe damage and water inflow monitoring device of multifunctional self-elevating supporting platform for ocean oil field

Also Published As

Publication number Publication date
EP2474704A1 (en) 2012-07-11
BR102012000058A2 (en) 2015-06-02
SG182906A1 (en) 2012-08-30
CN102591274A (en) 2012-07-18
EP2474704B1 (en) 2013-09-04
MY152950A (en) 2014-12-15
BR102012000058A8 (en) 2016-04-12
AU2011265528B2 (en) 2017-02-02
BR102012000058B1 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
US11180967B2 (en) Blowout preventer control system and methods for controlling a blowout preventer
US10196871B2 (en) Sil rated system for blowout preventer control
US8602108B2 (en) Subsea tree safety control system
CN107002481B (en) Safety Integrity Level (SIL) rating system for blowout preventer control
GB2332220A (en) Underwater hydrocarbon production systems
CN101886530B (en) Deepwater blowout preventer set electric control system based on FPGAs (Field Programmable Gate Arrays)
US20130332079A1 (en) Monitoring environmental conditions of an underwater installation
US6615916B1 (en) Method of saving string of tools installed in an oil well and a corresponding transmission assembly
AU2011265528B2 (en) Monitoring the operation of a subsea hydrocarbon production control system
CN106164787A (en) Method and apparatus for safe shutdown electrical load
Chen et al. Effect of DGPS failures on dynamic positioning of mobile drilling units in the North Sea
US20130169448A1 (en) Monitoring the operation of a subsea hydrocarbon production control system
GB2459488A (en) Wired communication with acoustic communication backup
KR102455750B1 (en) SIL rated system for blowout arrester control
US10221680B2 (en) Underwater hydrocarbon extraction facility
US11613954B2 (en) Subsea safety node
EP3530872A1 (en) Integrated controls for subsea landing string, blow out preventer, lower marine riser package
Fulton et al. Acoustic Disconnect Latest Technological Improvements for Mooring Systems
Idachaba Remote operations implementation: a tool for improved HSE management

Legal Events

Date Code Title Description
PC1 Assignment before grant (sect. 113)

Owner name: GE OIL & GAS UK LIMITED

Free format text: FORMER APPLICANT(S): VETCO GRAY CONTROLS LIMITED

FGA Letters patent sealed or granted (standard patent)