AU2004245988A1 - Methods and compositions for amino acid production - Google Patents

Methods and compositions for amino acid production Download PDF

Info

Publication number
AU2004245988A1
AU2004245988A1 AU2004245988A AU2004245988A AU2004245988A1 AU 2004245988 A1 AU2004245988 A1 AU 2004245988A1 AU 2004245988 A AU2004245988 A AU 2004245988A AU 2004245988 A AU2004245988 A AU 2004245988A AU 2004245988 A1 AU2004245988 A1 AU 2004245988A1
Authority
AU
Australia
Prior art keywords
polypeptide
variant
bacterium
nucleic acid
bacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2004245988A
Inventor
Richard B. Bailey
Paul Blomquist
Reed Doten
Edward M. Driggers
Kevin T. Madden
Jessica O'leary
George A. O'toole
Joshua Trueheart
Michael J. Walbridge
Peter Yorgey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microbia Inc
Original Assignee
Microbia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microbia Inc filed Critical Microbia Inc
Publication of AU2004245988A1 publication Critical patent/AU2004245988A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

WO 2004/108894 PCT/US2004/017513 METHODS AND COMPOSITIONS FOR AMINO ACID PRODUCTION CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of priority of U.S.S.N. 60/475,000, filed May 30, 2003, and U.S.S.N. 60/551,860, filed March 10, 2004. The entire contents of these applications are hereby incorporated by reference. 5 TECHNICAL FIELD This invention relates to microbiology and molecular biology, and more particularly to methods and compositions for amino acid production. BACKGROUND Industrial fermentation of bacteria is used to produce commercially useful metabolites 10 such as amino acids, nucleotides, vitamins, and antibiotics. Many of the bacterial production strains that are used in these fermentation processes have been generated by random mutagenesis and selection of mutants (Demain, A.L. Trends Biotechnol. 18:26-31, 2000). Accumulation of secondary mutations in mutagerized production strains and derivatives of these strains can reduce the efficiency of metabolite production due to altered growth and stress-tolerance 15 properties. The availability of genomic information for production strains and related bacterial organisms provides an opportunity to construct new production strains by the introduction of cloned nucleic acids into naYve, umnanipulated host strains, thereby allowing amino acid production in the absence of deleterious mutations (Ohnishi, J., et al. Apple Microbiol Biotechnol. 58:217-223, 2002). Similarly, this information provides an opportunity for identifying and 20 overcoming the limitations of existing production strains. SUMMARY The present invention relates to compositions and methods for production of amino acids and related metabolites in bacteria. In various embodiments, the invention features bacterial strains that are engineered to increase the production of amino acids and related metabolites of 25 the aspartic acid family. The strains can be engineered to harbor one or more nucleic acid molecules (e.g., recombinant nucleic acid molecules) encoding a polypeptide (e.g., a polypeptide that is heterologous or homologous to the host cell) and/or they may be engineered to increase or WO 2004/108894 PCT/US2004/017513 decrease expression and/or activity of polypeptides (e.g., by mutation of endogenous nucleic acid sequences). These polypeptides, which can be expressed by various methods familiar to those skilled in the art, include variant polypeptides, such as variant polypeptides with reduced feedback inhibition. These variant polypeptides may exhibit reduced feedback inhibition by a 5 product or intermediate of an amino acid biosynthetic pathway, such as S-adenosylmethionine, lysine, threonine or methionine, relative to wild type forms of the proteins. Also featured are the variant polypeptides encoded by the nucleic acids, as well as bacterial cells comprising the nucleic acids and the polypeptides. Combinations of nucleic acids, and cells that include the combinations of nucleic acids, are also provided herein. The invention also relates to improved 10 bacterial production strains, including, without limitation, strains of coryneform bacteria and Enterobacteriaceae (e.g., Escherichia coli (E. coli)). Bacterial polypeptides that regulate the production of an amino acid from the aspartic acid family of amino acids or related metabolites include, for example, polypeptides involved in the metabolism of methionine, threonine, isoleucine, aspartate, lysine, cysteine and sulfur, such 15 as enzymes that catalyze the conversion of intermediates of amino acid biosynthetic pathways to other intermediates and/or end product, and polypeptides that directly regulate the expression and/or function of such enzymes. The following list is only a partial list of polypeptides involved in amino acid synthesis: homoserine 0-acetyltransferase, 0-acetylhomoserine sulfhydrylase, methionine adenosyltransferase, cystathionine beta-lyase, O-succinylhomoserine 20 (thio)-lyase/O-acetylhomoserine (thio)-lyase, the McbR gene product, homocysteine methyltransferase, aspartokinases, pyruvate carboxylase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, aspartate semialdehyde dehydrogenase, homoserine dehydrogenase, dihydrodipicolinate synthase, dihydrodipicolinate reductase, N-succinyl-LL-diaminopimelate aminotransferase, tetrahydrodipicolinate N-succinyltransferase, N-succinyl-LL-diaminopimelate 25 desuccinylase, diaminopimelate epimerase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, glutamate dehydrogenase, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, seine hydroxymethyltransferase, 5,10-methylenetetrahydrofolate reductase, serine 0-acetyltransferase, D-3-phosphoglycerate dehydrogenase, and homoserine kinase. Heterologous proteins may be encoded by genes of any bacterial organism other than the 30 host bacterial species. The heterologous genes can be genes from the following, non-limiting list of bacteria: Mycobacterium siegnatis; Aimycolatopsis mediterranei; Streptomyces coelicolor; 2 WO 2004/108894 PCT/US2004/017513 Thermobifidafusca; Erwinia chrysanthemi; Shewanella oneidensis; Lactobacillus plantarun; Bifidobacterium longum; Bacillus sphaericus; and Pectobacterium chiysantheni. Of course, heterologous genes for host strains from the Enterobacteriaceae family also include genes from coryneform bacteria. Likewise, heterologous genes for host strains of coryneform bacteria also 5 include genes from Enterobacteriaceae family members. In certain embodiments, the host strain is Escherichia coli and the heterologous gene is a gene of a species other than a coryneform bacteria. In certain embodiments, the host strain is a coryneform bacteria and the heterologous gene is a gene of a species other than Escherichia coli. In certain embodiments, the host strain is Escherichia coli and the heterologous gene is a gene of a species other than Corynebacterium 10 glutamicumn. In certain embodiments, the host strain is Corynebacterium glutamicum and the heterologous gene is a gene of a species other than Escherichia coli. In Various embodiments, the polypeptide is encoded by a gene obtained from an organism of the order Actinomycetales. In various embodiments, the heterologous nucleic acid molecule is obtained from Mycobacteriun smegmatis, Streptomyces coelicolor, Thermobifidafusca, 15 Amycolatopsis nediterranei, or a coryneform bacteria. In various embodiments, the heterologous protein is encoded by a gene obtained from an organism of the family Enterobacteriaceae. In various embodiments, the heterologous nucleic acid molecule is obtained from Erwinia chysantheni or Escherichia coli. In various embodiments, the host bacterium (e.g., coryneform bacterium or bacterium of 20 the family Enterobacteriaceae) also has increased levels of a polypeptide encoded by a gene from the host bacterium (e.g., from a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium). Increased levels of a polypeptide encoded by a gene from the host bacterium may result from one of the following: introduction of additional copies of a gene from the host bacterium under the naturally occurring promoter; 25 introduction of additional copies of a gene froi the host bacterium under the control of a promoter, e.g., a promoter more optimal for amino acid production than the naturally occurring promoter, either from the host or a heterologous organism; or the replacement of the naturally occurring promoter for the gene from the host bacterium with a promoter more optimal for amino acid production, either from the host or a heterologous organism. Vectors used to 30 generate increased levels of a protein may be integrated into the host genome or exist as an episomal plasmid. 3 WO 2004/108894 PCT/US2004/017513 In various embodiments, the host bacterium has reduced activity of a polypeptide (e.g., a polypeptide involved in amino acid synthesis, e.g., an endogenous polypeptide) (e.g., decreased relative to a control). Reducing the activity of particular polypeptides involved in amino acid synthesis can facilitate enhanced production of particular amino acids and related metabolites. In 5 one embodiment, expression of a dihydrodipicolinate synthase polypeptide is deficient in the bacterium (e.g., an endogenous dapA gene in the bacterium is mutated or deleted). In various embodiments, expression of one or more of the following polypeptides is deficient: an mcbR gene product, homoserine dehydrogenase, homoserine kinase, methionine adenosyltransferase, homoserine 0-acetyltransferase, and phosphoenolpyruvate carboxykinase. 10 In various embodiments the nucleic acid molecule comprises a promoter, including, for example, the lac, trc, trcRBS, phoA, tac, or XPfL2PR promoter from E. coli (or derivatives thereof) or the phoA, gpd, rplM, or rpsJpromoter from a coryneforn bacteria. In one aspect, the invention features a host bacterium (e.g., a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium) comprising at 15 least one (two, three, or four) of: (a) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial aspartokinase polypeptide or a functional variant thereof; (b) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof; (c) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial phosphoenolpyruvate carboxylase 20 polypeptide or a functional variant thereof; (d) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial pyruvate carboxylase polypeptide or a functional variant thereof; (e) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial dihydrodipicolinate synthase polypeptide or a functional variant thereof; (f) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial homoserine dehydrogenase 25 polypeptide or a functional variant thereof; (g) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial homoserine 0-acetyltransferase polypeptide or a functional variant thereof; (h) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 0-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof; (i) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial methionine 30 adenosyltransferase polypeptide or a functional variant thereof; (j) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial mcbR gene product polypeptide or a 4 WO 2004/108894 PCT/US2004/017513 functional variant thereof; (k) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial O-succinylhomoserine/acetylhomoserine (thiol)-lyase polypeptide or a functional variant thereof; (1) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial cystathionine beta-lyase polypeptide or a functional variant thereof; (in) a 5 nucleic acid molecule comprising a sequence encoding a heterologous bacterial 5 methyltetrahydrofolate homocysteine methyltransferase polypeptide or a functional variant thereof; and (n) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or a functional variant thereof. 10 In various embodiments, the nucleic acid molecule is an isolated nucleic acid molecule (e.g., the nucleic acid molecule is free of nucleotide sequences that naturally flank the sequence in the organism from which the nucleic acid molecule is derived, e.g., the nucleic acid molecule is a recombinant nucleic acid molecule). In various embodiments, the bacterium comprises nucleic acid molecules comprising 15 sequences encoding two or more distinct heterologous bacterial polypeptides, wherein each of the heterologous polypeptides encodes the same type of polypeptide (e.g., the bacterium comprises nucleic acid molecules comprising sequences encoding an aspartokinase from a first species, and sequences encoding an aspartokinase from a second species.) 20 In various embodiments, the polypeptide is selected from an Enterobacteriaceae polypeptide, an Actinomycetes polypeptide, or a variant thereof. In various embodiments, the polypeptide is a polypeptide of one of the following Actinomycetes species: Mycobacteriun smegmatis, Streptomnyces coelicolor, Thermobifidafusca, Amycolatopsis mediterranei and coryneform bacteria, including Corynebacterium glutamnicun. In various embodiments, the 25 polypeptide is a polypeptide of one of the following Enterobacteriaceae species: Erwinia chysantheni and Escherichia coli. In various embodiments, the polypeptide is a variant polypeptide with reduced feedback inhibition (e.g., relative to a wild-type formi of the polypeptide). In various embodiments, the bacterium further comprises additional heterologous bacterial gene products involved in amino 30 acid production. In various embodiments, the bacterium further comprises a nucleic acid molecule encoding a heterologous bacterial polypeptide described herein (e.g., a nucleic acid 5 WO 2004/108894 PCT/US2004/017513 molecule encoding a heterologous bacterial homoserine dehydrogenase polypeptide). In various embodiments, the bacterium further comprises a nucleic acid molecule encoding a homologous bacterial polypeptide (i.e., a bacterial polypeptide that is native to the host species or a functional variant thereof), such as a bacterial polypeptide described herein. The homologous bacterial 5 polypeptide can be expressed at high levels and/or conditionally expressed. For example, the nucleic acid encoding the homologous bacterial polypeptide can be operably linked to a promoter that allows expression of the polypeptide over wild-type levels, and/or the nucleic acid may be present in multiple copies in the bacterium. In various embodiments the heterologous bacterial aspartokinase or functional variant 10 thereof is chosen from: (a) a Mycobacterium smegmatis aspartokinase polypeptide or a functional variant thereof, (b) an Amnycolatopsis nediterranei aspartokinase polypeptide or a functional variant thereof, (c) a Streptomnyces coelicolor aspartokinase polypeptide or a functional variant thereof, (d) a Thermobifidafusca aspartokinase polypeptide or a functional variant thereof, (e) an Erwinia chrysanthemi aspartokinase polypeptide or a functional variant 15 thereof, and (f) a Shewanella oneidensis aspartokinase polypeptide or a functional variant thereof. In certain embodiments, the heterologous bacterial aspartokinase polypeptide is an Escherichia coli aspartokinase polypeptide or a functional variant thereof. In certain embodiments, the heterologous bacterial aspartokinase polypeptide is a Corynebacterium glutamicum aspartokinase polypeptide or a functional variant thereof. In certain embodiments 20 the heterologous bacterial asparatokinase polypeptide or functional variant thereof has reduced feedback inhibition. In various embodiments the heterologous bacterial aspartate semialdehyde dehydrogenase polypeptide or functional variant thereof is chosen from: (a) a Mycobacteriumn smnegmatis aspartate semialdehyde dehydrogenase polypeptide r a functional variant thereof, (b) 25 an Amycolatopsis nediterranei aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof, (c) a Streptomnyces coelicolor aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof, and (d) a Thernobifidafusca aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof. In certain embodiments, the heterologous bacterial aspartate semialdehyde dehydrogenase polypeptide is an Escherichia coli 30 aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof. In certain embodiments, the heterologous bacterial aspartate semialdehyde dehydrogenase polypeptide is a 6 WO 2004/108894 PCT/US2004/017513 Corynebacterium glutamicum aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof In various embodiments the heterologous bacterial phosphoenolpyruvate carboxylase polypeptide or functional variant thereof is chosen from: (a) a Mycobacteriun smegmatis phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof, (b) a 5 Streptonyces coelicolor phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof, (c) a Therinobifidafusca phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof, and (d) an Erwinia chrysantheni phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof In certain embodiments, the heterologous bacterial phosphoenolpyruvate carboxylase polypeptide is an Escherichia coli phosphoenolpyruvate 10 carboxylase polypeptide or a functional variant thereof In certain embodiments, the heterologous bacterial phosphoenolpyruvate carboxylase polypeptide is a Corynebacterium glutanicum phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof. In various embodiments the heterologous bacterial pyruvate carboxylase polypeptide or functional variant thereof is chosen from: (a) a Mycobacterium smegmatis pyruvate carboxylase 15 polypeptide or a functional variant thereof, (b) a Streptomyces coelicolor pyruvate carboxylase polypeptide or a functional variant thereof, and (c) a Thermobifidafusca pyruvate carboxylase polypeptide or a functional variant thereof. In certain embodiments, the heterologous bacterial pyruvate carboxylase polypeptide is a Corynebacterium glutamicun pyruvate carboxylase or a functional variant thereof. 20 In various embodiments the bacterium is chosen from a corynefoni bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium. Coryneforn bacteria include, without limitation, Corynebacteriun glutamicum, Corynebacterium acetoglutamicun, Corynebacteriun melassecola, Corynebacterium thernoaminogenes, Brevibacterium lactofermentum, Brevibacteriun lactis, and Brevibacteriumflavum. 25 In various embodiments: the Mycobacterium smegmatis aspartokinase polypeptide comprises SEQ ID NO: 1 or a variant sequence thereof, the Amycolatopsis mediterranei aspartokinase polypeptide comprises SEQ ID NO:2 or a variant sequence thereof, the Streptomyces coelicolor aspartokinase polypeptide comprises SEQ ID NO:3 or a variant sequence thereof, the Thernobifidafusca aspartokinase.polypeptide comprises SEQ ID NO:4 or 30 a variant sequence thereof, the Erwinia chrysanthemi aspartokinase polypeptide comprises SEQ ID NO:5 or a variant sequence thereof, and the Shewanella oneidensis aspartokinase polypeptide 7 WO 2004/108894 PCT/US2004/017513 comprises SEQ ID NO:6 or a variant sequence thereof, the Escherichia coli aspartokinase polypeptide comprises SEQ ID NO: 203 or a variant sequence thereof, the Corynebacterium glutamicum aspartokinase polypeptide comprises SEQ ID NO: 202 or a variant sequence thereof, the Corynebacteriun glutamicum aspartate semialdehyde dehydrogenase polypeptide comprises 5 SEQ ID NO:204 or a variant sequence thereof, the Escherichia coli aspartate semialdehyde dehydrogenase polypeptide comprises SEQ ID NO: 205 or a variant sequence thereof, the Mycobacteriun smegmatis phosphoenolpyruvate carboxylase polypeptide or functional variant thereof comprises an amino acid sequence at least 80% identical to SEQ ID NO:8 (M. leprae phosphoenolpyruvate carboxylase) (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 10 96%, 97%, 98%, 99% or more identical to SEQ ID NO:8), the Streptomyces coelicolor phosphoenolpyruvate carboxylase polypeptide comprises SEQ ID NO:9 or a variant sequence thereof, the Thermobifidafusca phosphoenolpyruvate carboxylase polypeptide comprises SEQ ID NO:7 or a variant sequence thereof, the Erwinia chrysanthemi phosphoenolpyruvate carboxylase polyp eptide comprises SEQ ID NO: 10 or a variant sequence thereof, the 15 Mycobacterium smegmatis pyruvate carboxylase polypeptide comprises SEQ ID NO:13 or a variant sequence thereof, the Streptoimyces coelicolor pyruvate carboxylase polypeptide comprises SEQ ID NO:12 or a variant sequence thereof, and the Corynebacterium glutamicun pyruvate carboxylase polypeptide comprises SEQ ID NO:208 or a variant sequence thereof. In various embodiments, the Mycobacteriun smegmatis aspartokinase polypeptide 20 comprises at least one amino acid change chosen from: ansalanine changed to a Group 1 amino acid residue at position 279; a serine changed to a Group 6 amino acid residue at position 301; a threonine changed to a Group 2 amino acid residue at position 311; and a glycine changed to a Group 3 amino acid residue at position 345; the Mycobacterium smegmatis aspartokinase comprises at least one amino acid change chosen from: an alanine changed to a proline at 25 position 279, a shrine changed to a tyrosine at position 301, a threonine changed to an isoleucine at position 311, and a glycine changed to an aspartate at position 345. In various embodiments, the Anycolatopsis mediterranei aspartokinase polypeptide comprises at least one amino acid change chosen from: an alanine changed to a Group 1 amino acid residue at position 279; a shrine changed to a Group 6 amino acid residue at position 301;a 30 threonine changed to a Group 2 amino acid residue at position 311; and a glycine changed to a Group 3 amino acid residue at position 345. 8 WO 2004/108894 PCT/US2004/017513 In various embodiments the Amycolatopsis nediterranei aspartokinase polypeptide comprises at least one amino acid change chosen from: an alanine changed to a proline at position 279; a serine changed to a tyrosine at position 301; a threonine changed to an isoleucine at position 311; and a glycine changed to an aspartate at position 345. 5 In various embodiments the Streptomyces coelicolor aspartokinase polypeptide comprises at least one amino acid change chosen from: an alanine changed to a Group 1 amino acid residue at position 282; a serine changed to a Group 6 amino acid residue at position 304; a serine changed to a Group 2 amino acid residue at position 314; and a glycine changed to a Group 3 amino acid residue at position 348. 10 In various embodiments the Streptomyces coelicolor aspartokinase polypeptide comprises at least one amino acid change chosen from: an alanine changed to a proline at position 282; a seine changed to a tyrosine at position 304; a serine changed to an isoleucine at position 314; and a glycine changed to an aspartate at position 348. In various embodiments the Erwinia chiysantheni aspartokinase polypeptide comprises 15 at least one amino acid change chosen from: a glycine changed to a Group 3 amino acid residue at position 328; a leucine changed to a Group 6 amino acid residue at position 330; a shrine changed to a Group 2 amino acid residue at position 350; and a valine changed to a Group 2 amino acid residue other than valine at position 352. In various embodiments the Erwinia chrysanthemni aspartokinase polypeptide comprises 20 at least one amino acid change chosen from: a glycine changed to an aspartate at position 328; a leucine changed to a phenylalanine at position 330; a serine changed to an isoleucine at position 350; and a valine changed to a methionine at position 352. In various embodiments the Shewanella oneidensis aspartokinase polypeptide comprises at least one amino acid change chosen from: a glycine changed to a Group 3 amino acid residue 25 at position 323; a leucine changed to a Group"6 amino acid residue at position 325; a seine changed to a Group 2 amino acid residue at position 345; and a valine changed to a Group 2 amino acid residue other than valine at position 347. In various embodiments the Shewanella oneidensis aspartokinase polypeptide comprises at least one amino acid change chosen from: a glycine changed to an aspartate at position 323; a 30 leucine changed to a phenylalanine at position 325; a shrine changed to an isoleucine at position 345; and a valine changed to a methionine at position 347. 9 WO 2004/108894 PCT/US2004/017513 In various embodiments the Coiynebacterium glutamicum aspartokinase polypeptide comprises at least one amino acid change chosen from: an alanine changed to a Group 1 amino acid other than alanine at position 279; a serine changed to a Group 6 amino acid residue at position 301; a threonine changed to a Group 2 amino acid residue at position 311; and a glycine 5 changed to a Group 3 amino acid residue at position 345. In various embodiments the Corynebacteriun glutamicuin aspartoldnase polypeptide comprises at least one amino acid change chosen from: an alanine changed to a proline at position 279; a serine changed to a tyrosine at position 301; a threonine changed to an isoleucine at position 311; and a glycine changed to an aspartate at position 345. 10 In various embodiments the Escherichia coli aspartokinase polypeptide comprises at least one amino acid change chosen from: a glycine changed to a Group 3 amino acid residue at position 323; a leucine changed to a Group 6 amino acid residue at position 325; a serine changed to a Group 2 amino acid residue at position 345; and a valine changed to a Group 2 amino acid residue other than valine at position 347. 15 In various embodiments the Escherichia coli aspartokinase polypeptide comprises at least one amino acid change chosen from: a glycine changed to an aspartate at position 323; a leucine changed to a phenylalanine at position 325; a serine changed to an isoleucine at position 345; and a valine changed to a methionine at position 347. In various embodiments, the Corynebacterium glutamicum pyruvate carboxylase 20 polypeptide or variant thereof comprises a proline changed to Group 4 amino acid residue at position 458. In various embodiments, the Coiynebacterium glutamicum pyruvate carboxylase polypeptide or variant thereof comprises a proline changed to a seine at position 458. In various embodiments, the Mycobacteriuin smegmatis pyruvate carboxylase polypeptide or variant thereof comprises a proline changed to Group 4 amino acid residue at 25 position 448. In various embodiments, the Mycobacterium smegmatis pyruvate carboxylase polypeptide or variant thereof comprises a proline changed to a seine at position 448. In various embodiments, the Streptonyces coelicolor pyruvate carboxylase polypeptide or variant thereof comprises a proline changed to Group 4 amino acid residue at position 449. In various embodiments, the Streptomyces coelicolor pyruvate carboxylase polypeptide or variant 30 thereof comprises a proline changed to a shrine at position 449. 10 WO 2004/108894 PCT/US2004/017513 The invention also features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes a heterologous bacterial dihydrodipicolinate synthase or a functional variant thereof In various embodiments the heterologous bacterial dihydrodipicolinate synthase 5 polypeptide or functional variant thereof is chosen from: a Mycobacteriuin smegmatis dihydrodipicolinate synthase polypeptide or a functional variant thereof; a Streptomyces coelicolor dihydrodipicolinate synthase polypeptide or a functional variant thereof; a Thermobifidafusca dihydrodipicolinate synthase polypeptide or a functional variant thereof; and an Erwinia chrysanthemi dihydrodipicolinate synthase polypeptide or a functional variant 10 thereof. In certain embodiments, the heterologous bacterial dihydrodipicolinate synthase polypeptide or functional variant thereof with reduced feedback inhibition is an Escherichia coli dihydrodipicolinate synthase polypeptide or a functional variant thereof. In certain embodiments the heterologous bacterial dihydrodipicolinate synthase polypeptide or functional variant thereof has reduced feedback inhibition. 15 In various embodiments, the Mycobacterium smegmatis dihydrodipicolinate synthase polypeptide is at least 80% identical to SEQ ID NO:15 or SEQ ID NO:16 (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ID NO: 15 or SEQ ID NO: 16); the Streptonyces coelicolor dihydrodipicolinate synthase polypeptide comprises SEQ ID NO: 17 or a variant sequence thereof; the Thernobifidafusca 20 dihydrodipicolinate synthase polypeptide comprises SEQ ID NO: 14 or a variant sequence thereof; and the Erwinia chrysantherni dihydrodipicolinate synthase polypeptide comprises SEQ ID NO:18 or a variant sequence thereof. In various embodiments the Erwinia chrysanthemi dihydrodipicolinate synthase polypeptide comprises at least one amino acid change chosen from: an asparagine changed to a 25 Group 2 amino acid residue at position 80; a leucine changed to a Group 6 amino acid residue at position 88; and a histidine changed to a Group 6 amino acid residue at position 118. In various embodiments the Erwinia chrysantheni dihydrodipicolinate synthase polypeptide comprises at least one amino acid change chosen from: an asparagine changed to an isoleucine at position 80; a leucine changed to a phenylalanine at position 88; and a histidine 30 changed to a tyrosine at position 118. 11 WO 2004/108894 PCT/US2004/017513 In various embodiments, the Streptomyces coelicolor dihydrodipicolinate synthase polypeptide comprises at least one amino acid change chosen from: an asparagine changed to a Group 2 amino acid residue at position 89; aleucine changed to a Group 6 amino acid residue at position 97; and a histidine changed to a Group 6 amino acid residue at position 127. 5 In various embodiments the Streptonzyces coelicolor dihydrodipicolinate synthase polypeptide comprises at least one amino acid change chosen from: an asparagine changed to an isoleucine at position 89; a leucine changed to a phenylalanine at position 97; and a histidine changed to a tyrosine at position 127. In various embodiments the Mycobacterium smegmatis dihydrodipicolinate synthase 10 polypeptide comprises at least one amino acid change chosen from: an amino acid residue corresponding to tyrosine 90 of SEQ ID NO: 16 changed to a Group 2 amino acid residue; an amino acid residue corresponding to leucine 98 of SEQ ID NO: 16 changed to a Group 6 amino acid residue; and an amino acid residue corresponding to histidine 128 of SEQ ID NO:16 changed to a Group 6 amino acid residue. 15 In various embodiments the Mycobacterium smegnatis dihydrodipicolinate synthase polypeptide comprises at least one amino acid change chosen from: an amino acid residue corresponding to tyrosine 90 of SEQ D NO:16 changed to an isoleucine; an amino acid residue corresponding to leucine 98 of SEQ ID NO: 16 changed to a phenylalanine; and an amino acid residue corresponding to histidine 128 of SEQ ID NO:16 changed to a histidine. 20 In various embodiments the Escherichia coli dihydrodipicolinate synthase polypeptide comprises at least one amino acid change chosen from: an asparagine changed to a Group 2 amino acid residue at position 80; an alanine changed to a Group 2 amino acid residue at position 81; a glutamatate changed to a Group 5 amino acid residue at position 84; a leucine changed to a Group 6 amino acid residue at position 88; and a histidine changed to a Group 6 amino acid at 25 position 118. In various embodiments the Escherichia coli dihydrodipicolinate synthase polypeptide comprises at least one amino acid change chosen from: an asparagine changed to an isoleucine at position 80; an alanine changed to a valine at position 81; a glutamate changed to a lysine at position 84; a leucine changed to a phenylalanine at position 88; and a histidine changed to a 30 tyrosine at position 118. 12 WO 2004/108894 PCT/US2004/017513 The invention also features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes a heterologous bacterial homoserine dehydrogenase or a fimetional variant thereof. In various embodiments the heterologous bacterial homoserine dehydrogenase 5 polypeptide is chosen from: (a) a Mycobacteriuin siegmatis homoserine dehydrogenase polypeptide or functional variant thereof; (b) a Streptomyces coelicolor homoserine dehydrogenase polypeptide or a functional variant thereof; (c) a Thermobifidafusca homoserine dehydrogenase polypeptide or a functional variant thereof; and (d) an Erwinia chrysanthemi homoserine dehydrogenase polypeptide or a functional variant thereof. In certain embodiments, 10 the heterologous bacterial homoserine dehydrogenase polypeptide is a homoserine dehydrogenase polypeptide from a coryneform bacteria or a functional variant thereof (e.g., a Corynebacteriun glutamicumn homoserine dehydrogenase polypeptide or functional variant thereof, or a Brevibacterium lactofermentum homoserine dehydrogenase polypeptide or functional variant thereof). In certain embodiments, the heterologous homoserine dehydrogenase 15 polypeptide or functional variant thereof is an Escherichia coli homoserine dehydrogenase polypeptide or a functional variant thereof. In certain embodiments the heterologous homoserine dehydrogenase polypeptide or functional variant thereof has reduced feedback inhibition. In various embodiments the heterologous bacterial homoserine dehydrogenase 20 polypeptide is a Streptonyces coelicolor homoserine dehydrogenase polypeptide or functional variant thereof with reduced feedback inhibition; the Streptomyces coelicolor homoserine dehydrogenase polypeptide comprises SEQ ID NO: 19 or a variant sequence thereof; the Thermobifidafusca homoserine dehydrogenase polypeptide comprises SEQ ID NO:21 or a variant sequence thereof; the Corynebacterium glutanicum and Brevibacterium lactofermentum 25 homoserine dehydrogenases polypeptide comprise SEQ ID NO:209 or a variant sequence thereof; and the Escherichia coli homoserine dehydrogenase polypeptide comprises either SEQ ID NO:210, SEQ ID NO:211, or a variant sequence thereof In various embodiments the Corynebacterium glutamicum or Brevibacteriun lactofermentum homoserine dehydrogenase polypeptide comprises at least one amino acid 30 change chosen from: a leucine change to a Group 6 amino acid residue at position 23; a valine changed to a Group 1 amino acid residue at position 59; a valine changed to another Group 2 13 WO 2004/108894 PCT/US2004/017513 amino acid residue at position 104; a glycine changed to Group 3 amino acid residue at position 378; and an alteration that truncates the homoserine dehydrogenase protein after the lysine amino acid residue at position 428. In one embodiment, the Coiynebacterium glutamicum or Brevibacteriun lactoferinentuin homoserine dehydrogenase polypeptide is encoded by the horndr 5 sequence described in W093/09225 SEQ ID NO. 3. In various embodiments the Corynebacterium glutamicum or Brevibacteriun lactofermentun homoserine dehydrogenase polypeptide comprises at least one amino acid change chosen from: a leucine changed to a phenylalanine at position 23; valine changed to an alanine at position 59; a valine changed to an isoleucine at position 104; and a glycine changed 10 to a glutanic acid at position 378. In various embodiments the Mycobacterium smeginatis homoserine dehydrogenase polypeptide comprises at least one amino acid change chosen from: a valine change to a Group 6 amino acid residue at position 10; a valine changed to a Group 1 amino acid residue at position 46; and a glycine changed to Group 3 amino acid residue at position 364. 15 In various embodiments the Mycobacterium smegmatis homoserine dehydrogenase polypeptide comprises at least one amino acid change chosen from: a valine changed to a phenylalanine at position 10; valine changed to an alanine at position 46; and a glycine changed to a glutamic acid at position 378. In various embodiments the Streptonyces coelicolor homoserine dehydrogenase 20 polypeptide comprises at least one amino acid change chosen from: a leucine change to a Group 6 amino acid residue at position 10; a valine changed to a Group 1 amino acid residue at position 46; a glycine changed to Group 3 amino acid residue at position 362; an alteration that truncates the homoserine dehydrogenase protein after the arginine amino acid residue at position 412I various embodiments the Streptonzyces coelicolor homoserine dehydrogenase polypeptide 25 comprises at least one amino acid change chosen from: a leucine changed to a phenylalanine at position 10; a valine changed to an alanine at position 46; and a glycine changed to a glutamic acid at position 362. In various embodiments the Thernobifidafusca homoserine dehydrogenase polypeptide comprises at least one amino acid change chosen from: a leucine change to a Group 6 amino acid 30 residue at position 192; a valine changed to a Group 1 amino acid residue at position 228; a glycine changed to Group 3 amino acid residue at position 545. In various embodiments, the 14 WO 2004/108894 PCT/US2004/017513 Thernobifidafusca homoserine dehydrogenase polypeptide is truncated after the arginine amino acid residue at position 595. In various embodiments the Therinobifidafusca homoserine dehydrogenase polypeptide comprises at least one amino acid change chosen from: a leucine changed to a phenylalanine at 5 position 192; valine changed to an alanine at position 228; and a glycine changed to a glutamic acid at position 545. In various embodiments the Escherichia coli homoserine dehydrogenase polypeptidecomprises at least one amino acid change in SEQ ID NO:211 chosen from: a glycine 10 changed to a Group 3 amino acid residue at position 330; and a serine changed to a Group 6 amino acid residue at position 352. In various embodiments the Escherichia coli homoserine dehydrogenase polypeptide comprises at least one amino acid change in SEQ ID NO:21 1, ,chosen from: a glycine changed to an aspartate at position 330; and a serine changed to a phenylalanine at position 352. 15 The invention also features: a'coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid that encodes a heterologous bacterial 0-homoserine acetyltransferase polypeptide or a functional variant thereof. In various embodiments the heterologous bacterial 0-homoserine acetyltransferase 20 polypeptide is chosen from: a Mycobacterium smegmatis 0-homoserine acetyltransferase polypeptide or functional variant thereof; a Streptonyces coelicolor 0-homoserine acetyltransferase polypeptide or a functional variant thereof; a Thermnobifidafusca 0-homoserine acetyltransferase polypeptide or a functional variant thereof; and an Erwinia chrysanthemi 0 homoserine acetyltransferase polypeptide or a functional variant thereof. In certain 25 embodiments, the heterologous bacterial 0-hormoserine acetyltransferase polypeptide is an 0 homoserine acetyltransferase polypeptide from Corynebacterium glutamicum or a functional variant thereof. In certain embodiments the heterologous 0-homoserine acetyltransferase polypeptide or functional variant thereof has reduced feedback inhibition. In various embodiments the Mycobacterium smeginatis 0-homoserine acetyltransferase polypeptide is at 30 least 80% identical to SEQ ID NO:22 or SEQ ID NO:23 (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ID NO:22 or SEQ ID 15 WO 2004/108894 PCT/US2004/017513 NO:23); the heterologous bacterial O-homoserine acetyltransferase polypeptide is a Thermobifidafusca 0-homoserine acetyltransferase polypeptide or functional variant thereof; the Thermobifidafusca 0-homoserine acetyltransferase polypeptide comprises SEQ ID NO:24 or a variant sequence thereof; the heterologous bacterial 0-homoserine acetyltransferase polypeptide 5 is a Corynebacteriuin glutamicun 0-homoserine acetyltransferase polypeptide or functional variant thereof; the C. glutamicum 0-homoserine acetyltransferase polypeptide comprises SEQ ID NO:212 or a variant sequence thereof; or the heterologous bacterial 0-homoserine acetyltransferase polypeptide is a Escherichia coli 0-homoserine acetyltransferase polypeptide or functional variant thereof; the Escherichia coli 0-homoserine acetyltransferase polypeptide 10 comprises SEQ ID NO:213 or a variant sequence thereof. The invention also features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes a heterologous bacterial 0-acetylhomoserine sulfhydrylase or a functional variant thereof. 15 In various embodiments the heterologous bacterial 0-acetylhomoserine sulfhydrylase polypeptide is chosen from: (a) a Mycobacterium smegmatis 0-acetylhomoserine sulfhydrylase polypeptide or functional variant thereof; (b) a Streptomyces coelicolor 0-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof; and (c) a Thernobifidafusca 0 acetylhomoserine sulfhydrylase polypeptide or, a functional variant thereof. In certain 20 embodiments, the heterologous bacterial 0-acetylhomoserine sulfhydrylase polypeptide is an 0 acetylhomoserine sulfhydrylase polypeptide from Corynebacterium glutamicum or a functional variant thereof. In certain embodiments the heterologous 0-acetylhomoserine sulfhydrylase polypeptide or functional variant thereof has reduced feedback inhibition. In various embodiments the Mycobacterium smegmatis O-acetylhomoserine 25 sulfhydrylase polypeptide is at least 80% identical to SEQ ID NO:26 (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%,,97%, 98%, 99% or more identical to SEQ ID NO:26); the Thermobifidafusca 0-acetylhomoserine sulfhydrylase polypeptide comprises SEQ ID NO:25 or a variant sequence thereof; and the Corynebacterium glutamicum heterologous bacterial 0 acetylhomoserine sulfhydrylase polypeptide comprises SEQ ID NO:214 or a variant sequence 30 thereof. 16 WO 2004/108894 PCT/US2004/017513 The invention also features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes a heterologous bacterial methionine adenosyltransferase or a functional variant thereof. 5 In various embodiments the heterologous bacterial methionine adenosyltransferase polypeptide is chosen from: a Mycobacterium snegnatis methionine adenosyltransferase polypeptide or functional variant thereof; a Streptonyces coelicolor methionine adenosyltransferase polypeptide or a functional variant thereof; a Thermobifidafusca methionine adenosyltransferase polypeptide or a functional variant thereof; and an Erwinia chrysanthemi 10 methionine adenosyltransferase polypeptide or a functional variant thereof. In certain embodiments, the heterologous bacterial methionine adenosyltransferase polypeptide is a methionine adenosyltransferase polypeptide from Corynebacteriun glutamicum or a functional variant thereof. In certain embodiments, the heterologous bacterial methionine adenosyltransferase polypeptide is a methionine adenosyltransferase polypeptide from 15 Escherichia coli or a functional variant thereof. In certain embodiments the heterologous methionine adenosyltransferase polypeptide or functional variant thereof has reduced feedback inhibition In various embodiments the Mycobacteriun smegmatis 0- methionine adenosyltransferase polypeptide is at least 80% identical to SEQ ID NO:27 or SEQ ID NO:28 20 (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ID NO:27 or SEQ ID NO:28); the Streptomyces coelicolor methionine adenosyltransferase polypeptide comprises SEQ ID NO:30 or a variant sequence thereof; the heterologous bacterial methionine adenosyltransferase polypeptide is a Thermobifidafusca methionine adenosyltransferase or functional variant thereof; the Therinobifidafusca methionine 25 adenosyltransferase polypeptide comprises SEQ ID NO:29 or a variant sequence thereof; the Corynebacteriun glutaiicun heterologous bacterial methionine adenosyltransferase comprises SEQ ID NO:215 or a variant sequence thereof; and the Escherichia coli heterologous bacterial methionine adenosyltransferase polypeptide comprises SEQ ID NO:216 or a variant sequence thereof. 17 WO 2004/108894 PCT/US2004/017513 In various embodiments the bacterium further comprises a nucleic acid molecule encoding a heterologous bacterial dihydrodipicolinate synthase polypeptide or a functional variant thereof. In various embodiments the heterologous bacterial dihydrodipicolinate synthase 5 polypeptide or a functional variant thereof is chosen from: a Mycobacterium sinegmatis dihydrodipicolinate synthase polypeptide or a functional variant thereof; a Streptonyces coelicolor dihydrodipicolinate synthase polypeptide or a functional variant thereof; a Thermobifidafusca dihydrodipicolinate synthase polypeptide or a functional variant thereof; an Erwinia chrysantheni dihydrodipicolinate synthase polypeptide or a functional variant thereof; 10 an Escherichia coli dihydrodipicolinate synthase polypeptide or a functional variant thereof; and a Corynebacterium glutamicum dihydrodipicolinate synthase polypeptide or a functional variant thereof. In certain embodiments the heterologous dihydrodipicolinate synthase polypeptide or functional variant thereof has reduced feedback inhibition. In various embodiments the bacterium further comprises at least one of: (a) a nucleic acid 15 molecule encoding a heterologous bacterial homoserine dehydrogenase polypeptide or a functional variant thereof; (b) a nucleic acid molecule encoding a heterologous bacterial 0 homoserine acetyltransferase polypeptide or a functional variant thereof; (c) a nucleic acid molecule encoding a heterologous 0-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof. In certain embodiments one or more of the heterologous polypeptides or 20 functional variants thereof has reduced feedback inhibition. In various embodiments the heterologous bacterial homoserine dehydrogenase polypeptide is chosen from: a Mycobacteriun smegmatis homoserine dehydrogenase polypeptide or functional variant thereof; a Streptonyces coelicolor homoserine dehydrogenase polypeptide or a functional variant thereof; a Thermobifidafusca homoserine dehydrogenase 25 polypeptide or a functional variant thereof; an Escherichia coli homoserine dehydrogenase polypeptide or a functional variant thereof; a Corynebacterium glutaniicum homoserine dehydrogenase polypeptide or a functional variant thereof; and an Erwinia chrysanthemi homoserine dehydrogenase polypeptide or a functional variant thereof. In certain embodiments the heterologous homoserine dehydrogenase polypeptide or functional variant thereof has 30 reduced feedback inhibition. 18 WO 2004/108894 PCT/US2004/017513 In various embodiments the heterologous bacterial 0-homoserine acetyltransferase polypeptide is chosen from: a Mycobacterium sinegmatis 0-homoserine acetyltransferase polypeptide or functional variant thereof; a Streptoinyces coelicolor 0-homoserine acetyltransferase polypeptide or a functional variant thereof; a Thernobifidafusca 0-homoserine 5 acetyltransferase polypeptide or a functional variant thereof; an Erwinia chrysanthemi 0 homoserine acetyltransferase polypeptide or a functional variant thereof; an Escherichia coli 0 homoserine acetyltransferase polypeptide or a functional variant thereof ; and a Corynebacterium glutamicun 0-homoserine acetyltransferase polypeptide or a functional variant thereof. In certain embodiments the heterologous 0-homoserine acetyltransferase polypeptide or functional 10 variant thereof has reduced feedback inhibition. In various embodiments the heterologous bacterial 0-acetylhomoserine sulfhydrylase polypeptide is chosen from: a Mycobacterium sinegmatis 0-acetylhomoserine sulfhydrylase or functional variant thereof; a Streptonyces coelicolor 0-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof; a Thermobifidafusca O-acetylhomoserine 15 sulfhydrylase polypeptide or a functional variant thereof; and a Corynebacterium glutamicun 0 acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof. In certain embodiments the heterologous 0-acetylhomoserine sulfhydrylase polypeptide or functional variant thereof has reduced feedback inhibition. In various embodiments the bacterium further comprises a nucleic acid molecule 20 encoding a heterologous bacterial methionine adenosyltransferase polypeptide (e.g., a Mycobacterium smeginatis methionine adenosyltransferase polypeptide or functional variant thereof; a Streptonyces coelicolor methionine adenosyltransferase polypeptide or a functional variant thereof; a Thermobifidafusca methionine adenosyltransferase polypeptide or a functional variant thereof; an Erwinia chrysanthemi methionine adenosyltransferase polypeptide or a 25 functional variant thereof; an Escherichia coli methionine adenosyltransferase polypeptide or a functional variant thereof; or a Corynebacterium glutamicun methionine adenosyltransferase polypeptide or a functional variant thereof). The invention features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising at least two of: (a) a 30 nucleic acid molecule encoding a heterologous bacterial homoserine dehydrogenase polypeptide or a functional variant thereof; (b) a nucleic acid molecule encoding a heterologous bacterial 0 19 WO 2004/108894 PCT/US2004/017513 homoserine acetyltransferase polypeptide or a functional variant thereof; and (c) a nucleic acid molecule encoding a heterologous bacterial 0-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof. In certain embodiments one or more of the heterologous bacterial polypetides or functional variants thereof has reduced feedback inhibition 5 In another aspect, the invention features an Escherichia coli or coryneform bacterium comprising at least one or two of: (a) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial aspartokinase polypeptide or a functional variant thereof; (b) a 10 genetically altered nucleic acid molecule comprising a sequence encoding a bacterial aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof; (c) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof; and (d) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial dihydrodipicolinate synthase polypeptide 15 or a functional variant thereof. In various embodiments, the genetically altered nucleic acid molecule is a genomic nucleic acid molecule (e.g., a genomic nucleic acid molecule in which a mutation has been introduced, e.g., into a coding or regulatory region of a gene). In various embodiments, the nucleic acid molecule is a recombinant nucleic acid molecule. In various embodiments, at least one of the at least two genetically altered nucleic acid 20 molecules encodes a heterologous polypeptide. In one embodiment, the bacterium comprises (a) and (b), (a) and (c), (a) and (d), (b) and (c), (b) and (d), or (c) and (d). In one embodiment,the bacterium comprises at least three of (a)-(e). In one embodiment, the bacterium has reduced activity of one or more of the following polypeptides, relative to a control: (a) a homoserine dehydrogenase polypeptide; (b) a homoserine kinase polypeptide; and (c) a phosphoenolpyruvate 25 carboxykinase polypeptide. In one embodiment, the bacterium comprises a mutation in an endogenous homn gene or an endogenous tirB gene (e.g., a mutation that reduces activity of the polypeptide encoded by the gene (e.g., a mutation in a catalytic region) or a mutation that reduces expression of the polypeptide encoded by the gene (e.g., the mutation causes premature tennination of the polypeptide), or a mutation which decreases transcript or protein stability or 30 half life. In one embodiment, the bacterium comprises a mutation in an endogenous hom gene 20 WO 2004/108894 PCT/US2004/017513 and an endogeous thrB gene. In one embodiment,the bacterium comprises a mutation in an endogenous pck gene. In another aspect, the invention features an Escherichia coli or coryneform bacterium comprising at least one or two of: (a) a genetically altered nucleic acid molecule comprising a 5 sequence encoding a bacterial phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof; (b) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial aspartokinase polypeptide or a functional variant thereof: (c) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof; (d) a genetically altered nucleic acid 10 molecule comprising a sequence encoding a bacterial homoserine dehydrogenase polypeptide or a functional variant thereof; (e) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial homoserine 0-acetyltransferase polypeptide or a functional variant thereof; (f) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial O-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof; (g) a 15 genetically altered nucleic acid molecule comprising a sequence encoding a bacterial 5 methyltetrahydrofolate homocysteine methyltransferase polypeptide or a functional variant thereof; (h) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial O-succinylhomoserine (thio)-lyase polypeptide or a functional variant thereof; (i) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial 5 20 methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or a functional variant thereof; (j) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial methionine adenosyltransferase polypeptide or a functional variant thereof; (k) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial seine hydroxylmethyltransferase polypeptide or a functional variant thereof; and (1) a genetically 25 altered nucleic acid molecule comprising a sequence encoding a bacterial cystathionine beta lyase polypeptide or a functional variant thereof. In various embodiments, at least one of the at least two genetically altered nucleic acid molecules encodes a heterologous polypeptide. In various embodiments, the bacterium comprises (a) and at least one of (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), and (1). In various 30 embodiments, the bacterium comprises (b) and at least one of (c), (d), (e), (f), (g), (h), (i), (j), (k), and (1). In various embodiments, the bacterium comprises (c) and at least one of (d), (e), (f), (g), 21 WO 2004/108894 PCT/US2004/017513 (h), (i), (j), (k), and (1). In various embodiments, the bacterium comprises (d) and at least one of (e), (f), (g), (h), (i), (j), (k), and (1). In various embodiments, the bacterium comprises (e) and at least one of (f), (g), (h), (i), (j), (k), and (1). In various embodiments, the bacterium comprises (f) and at least one of (g), (h), (i), (j), (k), and (1). In various embodiments, the bacterium comprises 5 (g) and at least one of (h), (i), (j), (k), and (1). In various embodiments, the bacterium comprises (h) and at least one of (i), (j), (k), and (1). In various embodiments, the bacterium comprises (i) and at least one of () (k), and (1). In various embodiments, the bacterium comprises (j) and at least one of (k), and (1). In various embodiments, the bacterium comprises (k) and (1). In various embodiments,the bacterium comprises at least three of (a)-(1). 10 In some embodiments, the bacterium has reduced activity of one or more of the following polypeptides, relative to a control: (a) a homoserine kinase polypeptide; (b) a phosphoenolpyruvate carboxykinase polypeptide; (c) a homoserine dehydrogenase polypeptide; and (d) a mcbR gene product polypeptide, e.g., the bacterium comprises a mutation in an endogenous hom gene, an endogenous thrB gene, an endogenous pck gene, or an endogenous 15 mcbR gene, or combinations thereof. In another aspect, the invention features an Escherichia coli or corynefonn bacterium comprising at least two of: (a) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof; (b) a genetically altered nucleic acid molecule comprising a sequence encoding a 20 bacterial aspartokinase polypeptide or a functional variant thereof; (c) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof (d) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial homoserine dehydrogenase polypeptide or a functional variant thereof. 25 In various embodiments, at least one of the at least two polypeptides encodes a heterologous polypeptide. In various embodiments, the bacterium comprises (a) and (b), (a) and (c), (a) and (d), (b) and (c), (b) and (d), or (c) and (d); or the bacterium comprises at least three of (a)-(d). In various embodiments, the bacterium has reduced activity of one or more of the 30 following polypeptides, relative to a control: (a) a phosphoenolpyruvate carboxykinase polypeptide; and (b) a mcbR gene product polypeptide, e.g., the bacterium comprises a mutation 22 WO 2004/108894 PCT/US2004/017513 in an endogenouspck gene or an endogenous mncbR gene, e.g.,the bacterium comprises a mutation in an endogenous pck gene and an endogenous mcbR gene. The invention also features a method of producing an amino acid or a related metabolite, the method comprising: cultivating a bacterium (e.g., a bacterium described herein) according to 5 under conditions that allow the amino acid the metabolite to be produced, and collecting a composition that comprises the amino acid or related metabolite from the culture. The method can further include fractionating at least a portion of the culture to obtain a fraction enriched in the amino acid or the metabolite. 10 The invention features a method for producing L-lysine, the method comprising: cultivating a bacterium described herein under conditions that allow L-lysine to be produced, and collecting the culture. The culture can be fractionated (e.g., to remove cells and/or to obtain fractions enriched in L-lysine). In another aspect, the invention features a method for the preparation of animal feed additives comprising an aspartate-derived amino acid(s), the method comprising two or more of the following steps: (a) cultivating a bacterium (e.g., a bacterium described herein) under conditions that allow the aspartate-derived amino acid(s) to be produced; (b) collecting a composition that comprises at least a portion of the aspartate-derived amino acid(s); (c) concentrating of the collected composition to enrich for the aspartate-derived amino acid(s); and (d) optionally, adding of one or more substances to obtain the desired animal feed 15 additive. The substances that can be added include, e.g., conventional organic or inorganic auxiliary substances or carriers, such as gelatin, cellulose derivatives (e.g., cellulose ethers), silicas, silicates, stearates, grits, brans, meals, starches, gums, alginates sugars or others, and/or mixed and stabilized with conventional thickeners or binders. 20 In various embodiments, the composition that is collected lacks bacterial cells. In various embodiments, the composition that is collected contains less than 10%, 5%, 1%, 0.5% of the bacterial cells that result from cultivating the bacterium. In various embodiments, the 23 WO 2004/108894 PCT/US2004/017513 composition comprises at least 1% (e.g., at least 1%, 5%, 10%, 20%, 40%, 50%, 75%, 80%, 90%, 95%, or to 100%) of that bacterial cells that result from cultivating the bacterium. The invention features a method for producing L-methionine, the method comprising: cultivating a bacterium described herein under conditions that allow L-methionine to be 5 produced, and collecting the culture. The culture can be fractionated (e.g., to remove cells and/or to obtain fractions enriched in L-methionine). The invention features a method for producing S-adenosyl-L-methionine (S-AM), the method comprising: cultivating a bacterium described herein under conditions that allow S adenosyl-L-metbionine to be produced, and collecting the culture. The culture can be 10 fractionated (e.g., to remove cells and/or to obtain fractions enriched in S-AM). The invention features a method for producing L-threonine or L-isoleucine, the method comprising: cultivating a bacterium described herein under conditions that allow L-threonine or L-isoleucine to be produced, and collecting the culture. The culture can be fractionated (e.g., to remove cells and/or to obtain fractions enriched in L-threonine or L-isoleucine). The invention also features methods 15 for producing homoserine, O-acetylhomoserine, and derivatives thereof, the method comprising: cultivating a bacterium described herein under conditions that allow homoserine, 0 acetylhomoserine, or derivatives thereof to be produced, and collecting the culture. The culture can be fractionated (e.g., to remove cells and/or to obtain fractions enriched in homoserine, 0 acetylhomoserine, or derivatives thereof). 20 The invention features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes a heterologous bacterial cystathionine beta-lyase polypeptide (e.g., a Mycobacterium smeginatis cystathionine beta-lyase polypeptide or functional variant thereof, a Bifidobacterium longumn cystathionine beta-lyase polypeptide or a functional variant thereof, a 25 Lactobacillus plantarum cystathionine beta-lyase polypeptide or a functional variant thereof, a Corynebacteriuni glutanicum cystathionine beta-lyase polypeptide or a functional variant thereof, an Escherichia coli cystathionine beta-lyase polypeptide or a functional variant thereof) or a functional variant thereof. In various embodiments the Mycobacterium smnegmnatis cystathionine beta-lyase 30 polypeptide comprises a sequence at least 80% identical to SEQ ID NO:59 (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ID 24 WO 2004/108894 PCT/US2004/017513 NO:59), or a variant sequence thereof; the Bifidobacterium longunz cystathionine beta-lyase polypeptide comprises SEQ ID NO:60 or a variant sequence thereof; the Lactobacillus plantarum cystathionine beta-lyase polypeptide comprises SEQ ID NO:61 or a variant sequence thereof; the Corynebacteriunz glutainicuin cystathionine beta-lyase polypeptide comprises SEQ 5 ID NO:217 or a variant sequence thereof; and the Escherichia coli cystathionine beta-lyase polypeptide comprises SEQ ID NO:218 or a variant sequence thereof. The invention features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes a heterologous bacterial glutamate dehydrogenase polypeptide (e.g., a Streptonyces 10 coelicolor glutamate dehydrogenase or functional variant thereof; a Thermobfidafusca glutamate dehydrogenase polypeptide or a functional variant thereof; a Lactobacillus plantarun glutamate dehydrogenase polypeptide or a functional variant thereof; a Corynebacteriun glutanicum glutamate dehydrogenase polypeptide or a functional variant thereof; a Escherichia coli glutamate dehydrogenase polypeptide or a functional variant thereof) or a functional variant 15 thereof. In various embodiments the Mycobacterium sm egmatis glutamate dehydrogenase polypeptide comprises SEQ ID NO:62 or a variant sequence thereof; the Thermobifidafusca glutamate dehydrogenase polypeptide comprises SEQ ID NO:63 or a variant sequence thereof; the Lactobacillusplantarum glutamate dehydrogenase polypeptide comprises SEQ ID NO:65 or 20 a variant sequence thereof; the Corynebacterium glutainicuin glutamate dehydrogenase polypeptide comprises SEQ ID NO:219 or a variant sequence thereof; and the Escherichia coli glutamate dehydrogenase polypeptide comprises SEQ ID NO:220 or a variant sequence thereof The invention also features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule 25 that encodes a heterologous bacterial diaminopimelate dehydrogenase polypeptide or a functional variant thereof (e.g., a Bacillus sphaericus diaminopimelate dehydrogenase polypeptide or a functional variant thereof; a Corynebacterium glutanicum glutamate dehydrogenase polypeptide or a functional variant thereof). In various embodiments the Bacillus sphaericus diaminopimelate dehydrogenase 30 polypeptide comprises SEQ ID NO:65 or a variant sequence thereof. 25 WO 2004/108894 PCT/US2004/017513 The invention also features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes a heterologous bacterial detergent sensitivity rescuer polypeptide (e.g., a Mycobacterium smegmatis detergent sensitivity rescuer polypeptide or functional variant thereof; 5 a Streptonyces coelicolor detergent sensitivity rescuer polypeptide or a functional variant thereof; a Thernobifidafusca detergent sensitivity rescuer polypeptide or a functional variant thereof; a Coiynebacterium glutamicum detergent sensitivity rescuer polypeptide or a functional variant thereof) or a functional variant thereof. In various embodiments the Mycobacterium smegmatis detergent sensitivity rescuer 10 polypeptide comprises a sequence at least 80% identical to either SEQ ID NO:68, SEQ ID NO:69 (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical), or a variant sequence thereof; the heterologous bacterial detergent sensitivity rescuer polypeptide is a Streptomyces coelicolor detergent sensitivity rescuer polypeptide or functional variant thereof; the Streptomyces coelicolor detergent sensitivity rescuer polypeptide 15 comprises SEQ ID NO:67 or a variant sequence thereof; the Therinobifidafusca detergent sensitivity rescuer polypeptide comprises SEQ ID NO:66 or a variant sequence thereof; and the Corynebacterium glutanicum detergent sensitivity rescuer polypeptide comprises SEQ ID NO:221 or a variant sequence thereof.The invention features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a 20 nucleic acid molecule that encodes a heterologous bacterial 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide (e.g., a Mycobacterium smegmatis 5 methyltetrahydrofolate homocysteine methyltransferase polypeptide or functional variant thereof; a Streptoinyces coelicolor 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide or a functional variant thereof; a Thermobifidafusca 5-methyltetrahydrofolate 25 homocysteine methyltransferase polypeptide or a functional variant thereof; a Lactobacillus plantarum 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide or a functional variant thereof; a Corynebacterium glutamicun 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide or a functional variant thereof; a Escherichia coli 5 methyltetrahydrofolate homocysteine methyltransferase polypeptide or a functional variant 30 thereof) or a functional variant thereof. 26 WO 2004/108894 PCT/US2004/017513 In various embodiments the Mycobacterium smegmatis 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide comprises a sequence at least 80% identical to SEQ ID NO:72, SEQ ID NO:73 (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical), or a variant sequence thereof; the Streptomyces coelicolor 5 5 methyltetrahydrofolate homocysteine methyltransferase polypeptide comprises SEQ ID NO:71 or a variant sequence thereof; the Thernobifidafusca 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide comprises SEQ ID NO:70 or a variant sequence thereof; the Lactobacillus plantarum 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide comprises SEQ ID NO:74 or a variant sequence thereof; the Corynebacteriun glutamicum 5 10 methyltetrahydrofolate homocysteine methyltransferase polypeptide comprises SEQ ID NO: 222 or a variant sequence thereof; and the Escherichia coli 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide comprises SEQ ID NO:223 or a variant sequence thereof. The invention also features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule 15 that encodes a heterologous bacterial 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide (e.g., a Mycobacterium smegmatis 5 methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or functional variant thereof; a Streptoinyces coelicolor 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or functional variant thereof; a Corynebacterium glutamicum 5 20 methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or a functional variant thereof; an Escherichia coli 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or a functional variant thereof) or a functional variant thereof. In various embodiments the Mycobacterium smegmatis 5 methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide is at least 80% 25 identical to SEQ ID NO:75 or SEQ ID NO:76'(e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ID NO:75 or SEQ ID NO:76); the Streptomyces coelicolor 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide comprises SEQ ID NO:77 or a variant sequence thereof; the Corynebacteriun glutamicuin 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide 30 comprises SEQ ID NO:224 or a variant sequence thereof; and the Escherichia coli 5 27 WO 2004/108894 PCT/US2004/017513 methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide comprises SEQ ID NO:225 or a variant sequence thereof. The invention features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as arn Escherichia coli bacterium comprising a nucleic acid molecule 5 that encodes a heterologous bacterial seine hydroxymethyltransferas polypeptide (e.g., a Mycobacteriun smegmatis serine hydroxymethyltransferase polypeptide or functional variant thereof; a Streptoinyces coelicolor serine hydroxymethyltransferase polypeptide or a functional variant thereof; a Thermobifidafusca seine hydroxymethyltransferase polypeptide or a functional variant thereof; a Lactobacillus plantarum serine hydroxymethyltransferase 10 polypeptide or a functional variant thereof; a Corynebacteriun glutanicuin seine hydroxymethyltransferase polypeptide or a functional variant thereof; an Escherichia coli serine hydroxymethyltransferase polypeptide or a functional variant thereof) or a functional variant thereof. In various embodiments the Mycobacteriun smegmatis seine hydroxymethyltransferase 15 polypeptide is at least 80% identical to SEQ ID NO:80 or SEQ ID NO:81 (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ID NO:80 or SEQ ID NO:81); the Streptomyces coelicolor serine hydroxymethyltransferase polypeptide comprises SEQ ID NO:78 or a variant sequence thereof; the Therinobifidafusca serine hydroxymethyltransferase polypeptide comprises SEQ ID NO:79 or a variant sequence 20 thereof; the Lactobacillus plantarum seine hydroxymethyltransferase polypeptide comprises SEQ ID NO:82 or a variant sequence thereof; the Corynebacteriun glutamicum serine hydroxymethyltransferase polypeptide comprises SEQ ID NO:226 or a variant sequence thereof; and the Escherichia coli seine hydroxymethyltransferase polypeptide comprises SEQ ID NO:227 or a variant sequence thereof. 25 The invention features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes a heterologous bacterial 5,10-methylenetetrahydrofolate reductase polypeptide (e.g., a Streptomyces coelicolor 5,1 0-methylenetetrahydrofolate reductase polypeptide or a functional variant thereof; a Thernobifida fusca 5,1 0-methylenetetrahydrofolate reductase polypeptide or a 30 functional variant thereof; a Corynebacteriun glutamicuin 5,10-methylenetetrahydrofolate reductase polypeptide or a functional variant thereof; an Escherichia coli 5,10 28 WO 2004/108894 PCT/US2004/017513 methylenetetrahydrofolate reductase polypeptide or a functional variant thereof) or a functional variant thereof. In various embodiments the Streptonyces coelicolor 5,1 0-methylenetetrahydrofolate reductase polypeptide comprises SEQ ID NO:84 or a variant sequence thereof; the Thermobifida 5 fusca 5,10-methylenetetrahydrofolate reductase polypeptide comprises SEQ ID NO: 83 or a variant sequence thereof; the Corynebacterium glutamicum 5,10-methylenetetrahydrofolate reductase polypeptide comprises SEQ ID NO: 228 or a variant sequence thereof; and the Escherichia coli 5,10-methylenetetrahydrofolate reductase polypeptide comprises SEQ ID NO: 229or a variant sequence thereof. 10 The invention features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes a heterologous bacterial seine O-acetyltransferase polypeptide (e.g., a Mycobacterium smegmnatis seine O-acetyltransferase polypeptide or functional variant thereof; a Lactobacillus plantarum serine O-acetyltransferase polypeptide or a functional variant thereof; a 15 Corynebacterium glutamicumn seine O-acetyltransferase polypeptide or a functional variant thereof; an Escherichia coli seine O-acetyltransferase polypeptide or a functional variant thereof) or a functional variant thereof. In various embodiments the Mycobacterium smegmatis seine O-acetyltransferase polypeptide is at least 80% identical to SEQ ID NO:85 or SEQ ID NO:86 (e.g., a sequence at 20 least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ED NO:85 or SEQ ID NO:86); the Lactobacillusplantarum seine O-acetyltransferase polypeptide comprises SEQ ID NO:87 or a variant sequence thereof; the Corynebacteriun glutanicum seine O-acetyltransferase polypeptide comprises SEQ ID NO:230 or a variant sequence thereof; and the Escherichia coli serine O-acetyltransferase polypeptide comprises SEQ ID NO:231 or a 25 variant sequence thereof. The invention features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes a heterologous bacterial D-3-phosphoglycerate dehydrogenase polypeptide (e.g., a Mycobacterium smegniatis D-3-phosphoglycerate dehydrogenase polypeptide or functional , 30 variant thereof; a Streptomyces coelicolor D-3-phosphoglycerate dehydrogenase polypeptide or a functional variant thereof; a Thernobifidafusca D-3-phosphoglycerate dehydrogenase 29 WO 2004/108894 PCT/US2004/017513 polypeptide or a functional variant thereof; a Lactobacillus plantarum D-3-phosphoglycerate dehydrogenase polypeptide or a functional variant thereof; a Corynebacterium glutamicum D-3 phosphoglycerate dehydrogenase polypeptide or a functional variant thereof; an Escherichia coli D-3-phosphoglycerate dehydrogenase polypeptide or a functional vaant thereof) or a functional 5 variant thereof. In various embodiments the Mycobacterium smegmatis D-3-phosphoglycerate dehydrogenase polypeptide is at least 80% identical to SEQ ID NO:88 or SEQ ID NO:89 (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ID NO:88 or SEQ ID NO:89); the Streptonyces coelicolor D-3-phosphoglycerate 10 dehydrogenase polypeptide comprises SEQ ID NO:91 or a variant sequence thereof; the Thermobifidafusca D-3-phosphoglycerate dehydrogenase polypeptide comprises SEQ ID NO:90 or a variant sequence thereof; the Lactobacillus plantarum D-3-phosphoglycerate dehydrogenase polypeptide comprises SEQ ID NO:92 or a variant sequence thereof; the Corynebacteriumn glutamnicum seine 0-acetyltransferase polypeptide comprises SEQ ID NO:232 or a variant 15 sequence thereof; and the Escherichia coli seine O-acetyltransferase polypeptide comprises SEQ ID NO:233 or a variant sequence thereof. The invention features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes a heterologous bacterial lysine exporter polypeptide (e.g., a Corynebacteriumn 20 glutamicum lysine exporter polypeptide or functional variant thereof; a Mycobacterium smnegmatis lysine exporter polypeptide or functional variant thereof; a Streptonyces coelicolor lysine exporter polypeptide or a functional variant thereof; an Escherichia coli lysine exporter polypeptide or functional variant thereof or a Lactobacillus plantarum lysine exporter protein or a functional variant thereof) or functional variant thereof. 25 In various embodiments the Mycobacterium smegmatis lysine exporter polypeptide is at least 80% identical to SEQ ID NO:93 or SEQ ID NO:94 (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ID NO:93 or SEQ ID NO:94); the Streptomyces coelicolor lysine exporter polypeptide comprises SEQ ID NO:95 or a variant sequence thereof; the Lactobacillus plantarum lysine exporter polypeptide comprises 30 SEQ ID NO:96 or a variant sequence thereof; the Coiynebacteriun glutamicum lysine exporter 30 WO 2004/108894 PCT/US2004/017513 polypeptide comprises SEQ ID NO:234 or a variant sequence thereof; and the Escherichia coli lysine exporter polypeptide comprises SEQ ID NO:237 or a variant sequence thereof. The invention features a coryneforn bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule 5 that encodes a bacterial 0-succinylhomoserine (thio)-lyase/O-acetylhomoserine (thio)-lyase polypeptide (e.g., a Corynebacteriumn glutamicum O-succinylhomoserine (thio)-lyase polypeptide or functional variant thereof; a Mycobacteriuni smeginatis 0-succinylhomoserine (thio)-lyase polypeptide or functional variant thereof; a Streptomyces coelicolor 0 succinylhomoserine (thio)-lyase polypeptide or a functional variant thereof; a Thernobifida 10 fusca O-succinylhomoserine (thio)-lyase polypeptide or a functional variant thereof; an Escherichia coli 0-succinylhomoserine (thio)-lyase polypeptide or a functional variant thereof; or a Lactobacillus plantarum O-succinylhomoserine (thio)-lyase polypeptide or a functional variant thereof) or a functional variant thereof. In various embodiments the Mycobacterium smegmatis 0-succinylhomoserine (thio) 15 lyase polypeptide is at least 80% identical to SEQ ID NO:97 or SEQ ID NO:98 (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ID NO:97 or SEQ ID NO:98); the Streptonyces coelicolor O-succinylhomoserine (thio)-lyase polypeptide comprises SEQ ID NO:99 or a variant sequence thereof; the Thermobifidafusca 0 succinyihomoserine (thio)-lyase polypeptide comprises SEQ ID NO: 100 or a variant sequence 20 thereof; the Lactobacillusplantarum O-succinylhomoserine (thio)-lyase polypeptide comprises SEQ ID NO: 101 or a variant sequence thereof; the Corynebacteriun glutainicum 0 succinylhomoserine (thio)-lyase polypeptide comprises SEQ ID NO:235 or a variant sequence thereof; and the Escherichia coli 0-succinylhomoserine (thio)-lyase polypeptide comprises SEQ ID NO:236 or a variant sequence thereof. 25 The invention features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes a threonine efflux polypeptide (e.g. a Corynebacterium glutamicun threonine efflux polypeptide or a functional variant thereof; a homolog of the Corynebacterium glutamicum threonine efflux polypeptide or a functional variant thereof; a Streptonzyces coelicolor putative 30 threonine efflux polypeptide or a functional variant thereof) or functional variant thereof. 31 WO 2004/108894 PCT/US2004/017513 In various embodiments the Corynebacterium glutamicum threonine efflux polypeptide comprises SEQ ID NO: 196 or a variant sequence thereof; the homolog of the Corynebacteriun glutamicuin threonine efflux polypeptide comprises a homolog of SEQ ID NO: 196 or a variant sequence thereof; and the Streptonyces coelicolor putative threonine efflux polypeptide 5 comprises SEQ ID NO: 102 or a variant sequence thereof. The invention also features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes C. glutamicum hypothetical polypeptide (SEQ ID NO:198), a bacterial homolog of C. glutamicuin hypothetical polypeptide (SEQ ID NO: 198), (e.g., a Mycobacteriwn smegmatis 10 hypothetical polypeptide or functional variant thereof; a Streptomyces coelicolor hypothetical polypeptide or a functional variant thereof; a Thermobifidafusca hypothetical polypeptide or a functional variant thereof; an Escherichia coli hypothetical polypeptide or a functional variant thereof; or a Lactobacillus plantarum hypothetical polypeptide or a functional variant thereof) or a functional variant thereof. 15 In various embodiments the the bacterial homolog is: a Mycobacterium smegmatis hypothetical polypeptide at least 80% identical to SEQ ID NO:104 or SEQ ID NO:105 (e.g., a sequence at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to SEQ ID NO: 104 or SEQ ID NO: 105); the Streptomyces coelicolor hypothetical polypeptide comprises SEQ ID NO: 103 or a variant sequence thereof; the Thernobifidafusca hypothetical 20 polypeptide comprises SEQ ID NO106 or a variant sequence thereof; the Lactobacillus plantarum hypothetical polypeptide comprises SEQ ID NO:107 or a variant sequence thereof The invention also features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes C. glutanicum putative membrane polypeptide (SEQ ID NO:201), a bacterial 25 homolog of C. glutanicui putative membrane polypeptide (SEQ ID NO:201), (e.g., a Streptoinyces coelicolor putative membrane polypeptide or a functional variant thereof; a Thermobifidafusca putative membrane polypeptide or a functional variant thereof; an Erwinia chiysantheni putative membrane polypeptide or a functional variant thereof; an Escherichia coli putative membrane polypeptide or a functional variant thereof; a Lactobacillus plantaruin 30 putative membrane polypeptide or a functional variant thereof; or a Pectobacterium 32 WO 2004/108894 PCT/US2004/017513 chrysanthemi putative membrane polypeptide or a functional variant thereof) or a functional variant thereof In various embodiments the Streptoinyces coelicolor putative membrane polypeptide comprises SEQ ID NO:l 11, SEQ ID NO: 112, SEQ ID NO: 113, SEQ ID NO: 114, or a variant 5 sequence thereof; the Thermobifidafusca putative membrane polypeptide comprises SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, or a variant sequence thereof; the Erwinia chrysanthemi putative membrane polypeptide comprises SEQ ID NO:115 or a variant sequence thereof; the Pectobacterium chrysanthemi putative membrane polypeptide comprises SEQ ID NO:116 or a variant sequence thereof; the Lactobacillus plantarum putative membrane 10 polypeptide comprises SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, or a variant sequence thereof. The invention also features a coryneform bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes C. glutanicum drug pennease polypeptide (SEQ ID NO: 199), a bacterial homolog 15 of C. glutanicun drug permease polypeptide (SEQ ID NO: 199), (e.g., a Streptomyces coelicolor drug permease polypeptide or-a functional variant thereof; a Thermobifidafusca drug permease polypeptide or a functional variant thereof; an Escherichia coli drug perease polypeptide or a functional variant thereof;or a Lactobacillus plantarun drug permease polypeptide or a functional variant thereof) or a functional variant thereof 20 In various embodiments the Streptomyces coelicolor drug permease polypeptide comprises SEQ ID NO:120, SEQ ID NO: 121, or a variant sequence thereof; the Thermobifida fusca drug pennease polypeptide comprises SEQ ID NO:122, SEQ ID NO:123, or a variant sequence thereof; the Lactobacillus plantarum drug permease polypeptide comprises SEQ ID NO: 124 or a variant sequence thereof 25 The invention also features a corynefonm bacterium or a bacterium of the family Enterobacteriaceae such as an Escherichia coli bacterium comprising a nucleic acid molecule that encodes C. glutamicumn hypothetical membrane polypeptide (SEQ ID NO:197), a bacterial homolog of C. glutamnicum hypothetical membrane polypeptide (SEQ ID NO: 197), (e.g., a Thernobifidafusca hypothetical membrane polypeptide or a functional variant thereof). 30 In various embodiments the Thermobifidafusca hypothetical membrane polypeptide comprises SEQ ID NO:125 or a variant sequence thereof 33 WO 2004/108894 PCT/US2004/017513 As mentioned above, the invention also provides nucleic acids encoding variant bacterial proteins. Nucleic acids that include sequences encoding variant bacterial polypeptides can be expressed in the organism from which the sequence was derived, or they can be expressed in an organism other than the organism from which they were derived (e.g., heterologous organisms). 5 In one aspect, the invention features an isolated nucleic acid (e.g., a nucleic acid expression vector) that encodes a variant of a bacterial polypeptide (e.g., a variant of a wild-type bacterial polypeptide) that regulates the production of one or more amino acids from the aspartic acid family of amino acids or related metabolites. The bacterial polypeptide can include, for example, the following amino acid sequence: G-X 2
-K
3
-X
4
-XS-X
6
-X
7 -Xs-X 9
-X
10
-XII-X
12
-X
13 10 X1 3 a-X 13 b-Xl 3 cX1 3 -X13e-X13fX13g-X13h-Xl 3 -- Xl 3 j-Xi 3 1
(X
1 3 r-F 14
-X
15 -Zl 6
-X
17 -XIs-X 19
-X
20
-X
21 X21a-X21b-X21c-X21d-X21e-X21eX21g-X21h-X21rX21j-X21k-X2n-X21nrX21n-X21o-X21p-X21q-X21r-X213
X
2 1 t-D 22 (SEQ ID NO:_), wherein each of X 2 , X 4
-X
13 , X 1 5 , and X 1 7
-X
20 is, independently, any amino acid, wherein each of X13a-X131 is, independently, any amino acid or absent, wherein each Of X21a-X2lt is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, 15 aspartate, glycine, isoleucine, and leucine. The variant of the bacterial polypeptide includes an amino acid change relative to the bacterial protein, e.g., at one or more of G1, K 3 , F 1 4 , Z 16 , or D22 of SEQ ID NO:_, or at an amino acid within 8, 5, 3, 2, or 1 residue of G1, K 3 , F 1 4 , Z 16 , or D 22 of SEQ ID NO:_. In one embodiment, variant of the bacterial polypeptide is otherwise identical in amino acid sequence to the bacterial protein, or at least 80%, 85%, 90%, 92%, 94%, 95%, 96%, 20 97%, 98%, 99%, or more identical to the bacterial polypeptide, e.g., the variant comprises fewer than 50, 40, 25, 15, 10, 7, 5, 3, 2, or 1 changes relative to the bacterial polypeptide. Alternatively, or in addition, the bacterial polypeptide includes the following amino acid sequence: L-X 2
-X
3
-G
4
-G
5
-X
6
-F
7
-X
8
-X
9 - X 10
-X
11 (SEQ ID NO:_), wherein each of X 2 , X 4
-X
1 3 ,
X
15 , and X 17
-X
20 is, independently, any amino acid,wherein Xs is selected from valine, leucine, 25 isoleucine, and aspartate, and wherein X 1 is selected from valine, leucine, isoleucine, phenylalanine, and methionine; and the variant of the bacterial protein includes an amino acid change e.g., at one or more of L1, G4, Xs, X 1 , or at an amino acid residue within 8, 5, 3, 2, or 1 residue of LI, G4, X 8 , or X 11 of SEQ ID NO: __). In various embodiments, feedback inhibition of the variant of the bacterial polypeptide by 30 S-adenosylmethionine is reduced, e.g., relative to the bacterial polypeptide (e.g., relative to a wild-type bacterial protein) or relative to a reference protein. 34 WO 2004/108894 PCT/US2004/017513 Amino acid changes in the variant of the bacterial polypeptide can be changes to alanine (e.g., wherein the original residue is other than an alanine) or non-conservative changes. The changes can be conservative changes. The invention also features polypeptides encoded by the nucleic acids described herein, 5 e.g., a polypeptide encoded by a nucleic acid that encodes a variant of a bacterial polypeptide (e.g., a variant of a wild-type bacterial polypeptide) that regulates the production of one or more amino acids from the aspartic acid family of amino acids or related metabolites, wherein the bacterial polypeptide includes SEQ ID NO:__ or SEQ ID NO:_, and wherein the variant includes an amino acid change relative to the bacterial polypeptide. 10 Also provided is a method for making a nucleic acid encoding a variant of a bacterial polypeptide that regulates the production of one or more amino acids from the aspartic acid family of amino acids or related metabolites. The method includes, for example, identifying a motif in the amino acid sequence of a wild-type form of the bacterial polypeptide, and constructing a nucleic acid that encodes a variant wherein one or more amino acid residues (e.g., 15 one, two, three, four, or five residues) within and/or near (e.g., within 10, 8, 7, 5, 3, 2, or 1 residues) the motif is changed. In various embodiments, the motif in the bacterial polypeptide includes the following amino acid sequence: G-X 2
-K
3
-X
1
-X
5
-X
6
-X
7 -Xs-X 9 -Xio3-X 1 2
X
3
X
1 3 a-X 1 3 b-X1 3 c-X13d-X13e X1 3 rX1 3 g-Xl 3 h-Xl 3 i-Xl 3 j-X1 3 k-X1 3 rF 4 Xi 5
-Z
6 X-X18-X19-X20-X2X21a-X21-X21-X21d-X21e 20 X 2 1 rX 2 1g-X 2 1h-X 2 ui-X 2 1rX 2 n1-X21nrX21n-X21o-X21p-X21q-X2eX21-X21tD22(SEQ ID NO:_), wherein each of X 2 , X 4
-X
13 , X 15 , and X 1 7
-X
20 is, independently, any amino acid, wherein each of X13a-X131 is, independently, any amino acid or absent, wherein each of X21a-X2,t is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine. In various embodiments, one or more of G 1 , K 3 , F 14 , Z 16 , or D22 25 of SEQ ID NO:__ is changed. In one embodihient, the variant of the bacterial polypeptide is otherwise identical in amino acid sequence to the bacterial polypeptide. In various embodiments, the motif in the bacterial polypeptide includes the following amino acid sequence:
L-X
2
-X
3
-G
4
-G
5
-X
6
-F
7
-X
8
-X
9 - X 10 -Xu 1 (SEQ ID NO:__), wherein each of X 2 , X 4
-X
1 3 , X 1 5 , and
X
17
-X
2 o is, independently, any amino acid, wherein X 8 is selected from valine, leucine, 30 isoleucine, and aspartate, and wherein X 11 is selected from valine, leucine, isoleucine, phenylalanine, and methionine. In various embodiments, one or more of L 1 , G4, X 8 , X 1 of SEQ 35 WO 2004/108894 PCT/US2004/017513 ID NO: - is changed. In one embodiment, the variant of the bacterial polypeptide is otherwise identical in amino acid sequence to the bacterial protein. The invention also features' a bacterium that includes a nucleic acid described herein, e.g., a nucleic acid that encodes a variant of a bacterial polypeptide (e.g., a variant of a wild-type 5 bacterial polypeptide) that regulates the production of one or more amino acids from the aspartic acid family of amino acids or related metabolites, wherein the bacterial polypeptide includes SEQ ID NO:_ or SEQ ID NO:_, and wherein the variant includes an amino acid change relative to the bacterial polypeptide. The bacterium can be a genetically modified bacterium, e.g., a bacterium that has been modified to include the nucleic acid (e.g., by transformation of the 10 nucleic acid, e.g., wherein the nucleic acid is episomal, or wherein the nucleic acid integrates into the genome of the bacterium, either at a random location, or at a specifically targeted location), and/or that has been modified within its genome (e.g., modified such that an endogenous gene has been altered by mutagenesis or replaced by recombination, or modified to include a heterologous promoter upstream of an endogenous gene. 15 The invention also features a method for producing an amino acid or a related metabolite. The methods can include, for example: cultivating a bacterium (e.g., a genetically modified bacterium) that includes a nucleic acid encoding a variant of a bacterial polypeptide (e.g., a variant of a wild-type bacterial polypeptide) that regulates the production of one or more amino acids from the aspartic acid family of amino acids or related metabolites, wherein the bacterial 20 polypeptide includes SEQ ID NO:_ or SEQ ID NO: , and wherein the variant includes an amino acid change relative to the bacterial polypeptide. The bacterium is cultivated under conditions in which the nucleic acid is expressed and that allow the amino acid (or related metabolite(s)) to be produced, and a composition that includes the amino acid (or related metabolite(s)) is collected. The composition can include, for example, culture supernatants, heat 25 or otherwise killed cells, or purified amino acid. In one aspect, the invention features an isolated nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase polypeptide. In certain embodiments, the variant bacterial homoserine 0-acetyltransferase polypeptide exhibits reduced feedback inhibition, e.g., relative to a wild-type form of the bacterial homoserine O-acetyltransferase polypeptide. In various 30 embodiments, the nucleic acid encodes a homoserine O-acetyltransferase polypeptide with reduced feedback inhibition by S-adenosylnethionine. In various embodiments, the bacterial 36 WO 2004/108894 PCT/US2004/017513 homoserine O-acetyltransferase polypeptide is chosen from: a Corynebacterium glutainicum homoserine O-acetyltransferase polypeptide, a Mycobacterium smegmatis homoserine 0 acetyltransferase polypeptide, a Thermobifidafusca homoserine 0-acetyltransferase polypeptide, an Anycolatopsis mediterranei homoserine 0-acetyltransferase polypeptide, a Streptomnyces 5 coelicolor homoserine O-acetyltransferase polypeptide, an Erwinia chrysanthemi homoserine 0 acetyltransferase polypeptide, a Shewanella oneidensis homoserine O-acetyltransferase polypeptide, a Mycobacterium tuberculosis homoserine 0-acetyltransferase polypeptide, an Escherichia coli homoserine 0-acetyltransferase polypeptide, a Corynebacterium acetoglutamicum homoserine 0-acetyltransferase polypeptide, a Corynebacterium mnelassecola 10 homoserine 0-acetyltransferase polypeptide, a Corynebacteriumn therinoaninogenes homoserine O-acetyltransferase polypeptide, a Brevibacterium lactofermentum homoserine 0 acetyltransferase polypeptide, a Brevibacterium lactis homoserine 0-acetyltransferase polypeptide, and a Brevibacteriumflavum homoserine 0-acetyltransferase polypeptide. In another aspect, the invention features an isolated nucleic acid encoding a variant 15 bacterial homoserine O-acetyltransferase polypeptide, wherein the variant homoserine 0 acetyltransferase polypeptide is a variant of a homoserine 0-acetyltransferase polypeptide including the following amino acid sequence: G-X 2
-K
3
-X
4
-X
5
-X
6
-X
7 -Xs-X 9 -Xa-X 1 I-X1 2 -Xi
X
13 a-X 1 3
-X
13 c-X 13 d-X 13 e-X 13 fX13g-X13h-Xl3i-X133-X13kX13rF14-X15-Z 16
-X
17
-X
1 s-X 1 9-X 20
-X
2 1 X21a-X21b-X21c-X21d-X21e-X21eX21g-X21h-X21rX21j-X2ucX2u-X21m-X21n-X21o-X21p-X21q-X21eX213 20 X 21 1
-D
22 (SEQ ID NO:_), wherein each of X 2 , X 4
-X
13 , X 15 , and X 17
-X
2 0 is, independently, any amino acid, wherein each of X13a-X131 is, independently, any amino acid or absent, wherein each of X21a-X2t is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant homoserine 0-acetyltransferase polypeptide includes an amino acid change at one or more of G 1 , K 3 , F 14 , Z 16 , or D 22 of SEQ ID 25 NO:_. In various embodiments, the amino a'cid change is a change to an alanine. In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase polypeptide, wherein the variant homoserine 0 acetyltransferase polypeptide is a C. glutanicum homoserine 0-acetyltransferase polypeptide including an amino acid change in one or more of the following residues of SEQ ID NO:_: 30 Glycine 231, Lysine 233, Phenylalanine 251, Valine 253, and Aspartate 269. In various embodiments, the amino acid change is a change to an alanine. 37 WO 2004/108894 PCT/US2004/017513 In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial homoserine O-acetyltransferase polypeptide, wherein the variant homoserine 0 acetyltransferase polypeptide is a T. fusca homoserine 0-acetyltransferase polypeptide including an amino acid change in one or more of the following residues of SEQ ID NO:_: Glycine 81, 5 Aspartate 287, Phenylalanine 269. In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase polypeptide, wherein the variant homoserine 0 acetyltransferase polypeptide is an E. coli homoserine 0-acetyltransferase polypeptide including an amino acid change at Glutamate 252 of SEQ ID NO:__. 10 In another aspect, the invention features an isolated nucleic acid encodiig a variant bacterial homoserine O-acetyltransferase polypeptide, wherein the variant homoserine 0 acetyltransferase polypeptide is a mycobacterial homoserine O-acetyltransferase polypeptide including an amino acid change in a residue corresponding to one or more of the following residues of M. leprae homoserine O-acetyltransferase polypeptide set forth in SEQ ID NO: 15 Glycine 73, Aspartate 278, and Tyrosine 260. In various embodiments, the variant bacterial homoserine O-acetyltransferase polypeptide is a variant of a M smegmatis homoserine 0 acetyltransferase polypeptide. In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial homoserine O-acetyltransferase polypeptide, wherein the variant homoserine 0 20 acetyltransferase polypeptide is an M tuberculosis homoserine O-acetyltransferase polypeptide including an amino acid change in one or more of the following residues of SEQ ID NO: Glycine 73, Tyrosine 260, and Aspartate 278. The invention also features polypeptides encoded by, and bacteria including, the nucleic acids encoding variant bacterial homoserine O-acetyltransferases. In various embodiments, the 25 bacteria are coryneform bacteria. The bacteria can further include nucleic acids encoding other variant bacterial proteins (e.g., variant bacterial proteins involved in amino acid production, e.g., variant bacterial proteins described herein). In another aspect, the invention features a method for producing L-methionine or related intermediates such as O-acetyl homoserine, cystathionine, homocysteine, methionine, SAM and 30 derivatives thereof, the method including: cultivating a genetically modified bacterium including a nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase under conditions in 38 WO 2004/108894 PCT/US2004/017513 which the nucleic acid is expressed and that allow L-methionine (or related intermediate) to be produced, and collecting the culture. The culture can be fractionated (e.g., to remove cells and/or to obtain fractions enriched in L-methionine). 5 In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial 0-acetylhomoserine sulfhydrylase polypeptide. In certain embodiments, the variant bacterial homoserine 0-acetylhomoserine sulfhydrylase polypeptide exhibits reduced'feedback inhibition, e.g., relative to a wild-type form of the bacterial 0-acetylhomoserine sulfhydrylase polypeptide. 10 In various embodiments, the nucleic acid encodes an O-acetylhomoserine sulfliydrylase polypeptide with reduced feedback inhibition by S-adenosyhnethionine. In various embodiments, the bacterial 0-acetylhomoserine sulfhydrylase polypeptide is chosen from: a Corynebacterium glutamicun homoserine O-acetylhomoserine sulfhydrylase polypeptide, a Mycobacterium smegmnatis homoserine O-acetylhomoserine sulfhydrylase 15 polypeptide, a Therniobifidafusca O-acetylhomoserine sulfhydrylase polypeptide, an Anycolatopsis mediterranei 0-acetylhomoserine sulfhydrylase polypeptide, a Streptonyces coelicolor O-acetylhomoserine sulfhydrylase polypeptide, an Erwinia chrysantheni homoserine 0-acetylhomoserine sulfhydrylase polypeptide, a Shewanella oneidensis O-acetylhomoserine sulfhydrylase polypeptide, a Mycobacterium tuberculosis 0-acetylhomoserine sulfhydrylase 20 polypeptide, an Escherichia coli 0-acetylhomoserine sulfhydrylase polypeptide, a Coriynebacterium acetoglutamicum 0-acetylhomoserine sulfhydrylase polypeptide, a Corynebacteriun nelassecola 0-acetylhomoserine sulfhydrylase polypeptide, a Corynebacterium thermoaminogenes 0-acetylhomoserine sulfhydrylase polypeptide, a Brevibacteriun lactofermentum 0-acetylhomoserine sulfhydrylase polypeptide, a 25 Brevibacterium lactis O-acetylhomoserine sulfhydrylase polypeptide, and a Brevibacteriun flavun O-acetylhomoserine sulfhydrylase polypeptide. In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial O-acetylhomoserine sulfhydrylase polypeptide, wherein the variant 0-acetylhomoserine sulfhydrylase polypeptide is a variant of an 0-acetylhomoserine sulfhydrylase polypeptide 30 including the following amino acid sequence: G 1
-X
2
-K
3
-X
4
-X
5
-X-X
7
-X-X-X
0 -Xi--X 2
-X
3 Xi 3 a-Xl 3 b-XI 3 c-X 3 d-X3e-X3fX3gXi3h-XIX13 -Xl 3 k-Xl 3 l-Fl 4 Xl 5 -Zl 6 Xi -X 1 8
-X
1 9
-X
2 0 39 WO 2004/108894 PCT/US2004/017513
X-X-
2 1
X
21
-X
2 lc-X 2 1a-X21e-X2lf-X21g-X21l-X21i-X21J-X 2 1-X 2 u-X 2 m-X21-X21o-X21-X21
X
2 lr-X 2 ls-X 2 t-D22 (SEQ ID NO:_), wherein each of X 2 , X4-X 1 3 , X 1 5 , and X 17
-X
2 0 is, independently, any amino acid, wherein each of X13a-X131 is, independently, any amino acid or absent, wherein each of X21a-X2It is, independently, any amino acid or absent, and wherein Z 16 is 5 selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant 0 acetylhomoserine sulfhydrylase polypeptide includes an amino acid change at one or more of G 1 ,
K
3 , F 1 4 , Z 16 , or D 22 of SEQ ID NO:_. In various embodiments, the amino acid change is a change to an alanine. In another aspect, the invention features an isolated nucleic acid encoding a variant 10 bacterial O-acetylhomoserine sulfhydrylase polypeptide, wherein the variant 0-acetylhomoserine sulfhydrylase polypeptide is a variant of a 0-acetylhomoserine sulfhydrylase polypeptide including the following amino acid sequence: L 1
-X
2
-X
3
-G
4
-G
5
-X
6
-F
7 -Xs-X 9 - X 10
-X
11 (SEQ ID NO:__, wherein X is any amino acid, wherein X 8 is selected from valine, leucine, isoleucine, and aspartate, and wherein Xu is selected from valine, leucine, isoleucine, phenylalanine, and 15 methionine; wherein the variant of the bacterial polypeptide includes an amino acid change at one or more of L 1 , G 4 , X 8 , X 11 of SEQ ID NO: _. In various embodiments, the amino acid change is a change to an alanine. In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial 0-acetylhomoserine sulfhydrylase polypeptide, wherein the variant 0-acetylhomoserine 20 sulfhydrylase polypeptide is a C. glutainicunO-acetylhomoserine sulfhydrylase polypeptide including an amino acid change in one or more of the following residues of SEQ ID NO:_: Glycine 227, Leucine 229, Aspartate 231, Glycine 232, Glycine 233, Phenylalanine 235, Aspartate 236, Valine 239, Phenylalanine 368, Aspartate 370, Aspartate 383, Glycine 346, and Lysine 348. In various embodiments, the amino acid change is a change to an alanine. 25 In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial 0-acetylhomoserine sulfhydrylase polypeptide, wherein the variant O-acetylhomoserine sulfhydrylase polypeptide is a T. fusca O-acetylhomoserine sulfhydrylase polypeptide including an amino acid change in one or more of the following residues of SEQ ID NO:_: Glycine 240, Aspartate 244, Phenylalanine 379, and Aspartate 394. 30 In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial O-acetylhomoserine sulfhydrylase polypeptide, wherein the variant 0-acetylhomoserine 40 WO 2004/108894 PCT/US2004/017513 sulfhydrylase polypeptide is a M sinegmatis 0-acetylhomoserine sulfhydrylase polypeptide including an amino acid change in one or more of the following residues of SEQ ID NO: _: Glycine 303, Aspartate 307, Phenylalanine 439, Aspartate 454. In another aspect, the invention features a polypeptide encoded by a nucleic acid 5 encoding a variant bacterial O-acetylhomoserine sulfhydrylase. In another aspect, the invention features a bacterium comprising the nucleic acid encoding a variant bacterial 0-acetylhomoserine sulfhydrylase polypeptide. In various embodiments, the bacterium is a coryneform bacterium. The bacterium can further comprise one or more nucleic acids encoding other variant bacterial polypeptides (e.g., variant bacterial 10 polypeptides involved in amino acid production, e.g., a variant bacterial polypeptide described herein). In another aspect, the invention features a method for producing L-methionine or related intermediates (e.g., homocysteine, methionine, S-AM, or derivatives thereof), the method comprising: cultivating a genetically modified bacterium comprising the nucleic acid encoding a 15 variant bacterial 0-acetylhomoserine sulfhydrylase polypeptide under conditions in which the nucleic acid is expressed and that allow L-methionine to be produced, and collecting the culture. The culture can be fractionated (e.g., to remove cells and/or to obtain fractions enriched in L methionine). In another aspect, the invention features an isolated nucleic acid encoding a variant 20 bacterial mcbR gene product. In various embodiments, the variant bacterial mcbR gene product exhibits reduced feedback inhibition relative to a wild-type form of the mcbR gene product. In various embodiments, the nucleic acid encodes a mcbR gene product with reduced feedback inhibition by S-adenosylmethionine. In various embodiments, the bacterial mcbR gene product is chosen from: a Corynebacteriun glutamicum mcbR gene product, a Corynebacterium 25 acetoglutamicum mcbR gene product, a Corynebacterium melassecola mcbR gene product, and a Corynebacteriuni thermoaminogenes mcbR gene product. In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial mcbR gene product, wherein the variant mcbR gene product is a variant of an mcbR gene product including the following amino acid sequence: G-X 2
-K-X
4
-X
5
-X
6
-X
7 rX 8 rX 9 rXi 0 r 30 XllXl 2 rXl 3 rXl 3 a Xl 3 b-X 3 c-X13-X13e-X13Xi3g-X13h-X13iX13 -X 3 -XialFi 4 Xi 5 -ZiEXi 7 41 WO 2004/108894 PCT/US2004/017513
X
1 8
-
9
-X
2 0
X
2 1
-X
2 1 aX 21 b-X2 1 c-X21d-X21e-X21-X21g-X21h-X2l-X21 -X21k-X 2 11-X 2 lm-X 2 1n Xo-X 2 1 pX 2 1 qX 2 rX2IsX21tCD22 (SEQ ID NO:__), wherein each of X 2 , X 4
-X
13 , X 15 , and XirX 2 0 is, independently, any amino acid, wherein each of X13a-X131 is, independently, any amino acid or absent, wherein each of X21a-X21t is, 5 independently, any amino acid or absent, and wherein Z 1 6 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant mcbR gene product includes an amino acid change at one or more of G 1 , K3, F 14 , Z 16 , or D 22 of SEQ ID NO:__. In various embodiments, the amino acid change is a change to an alanine. In another aspect, the invention features an isolated nucleic acid encoding a variant 10 bacterial mcbR gene product, wherein the variant mcbR gene product is a C. glutanicum mcbR gene product including an amino acid change in one or more of the following residues of SEQ ID NO: : Glycine 92, Lysine 94, Phenylalanine 116, Glycine 118, and Aspartate 134. In various embodiments, the amino acid change is a change to an alanine. The invention also features a polypeptide encoded by the nucleic acids encoding a variant 15 bacterial mcbR gene product. The invention also features a bacterium including the nucleic acids encoding a variant bacterial mcbR gene product. In various embodiments, the bacterium is a coryneform bacterium. The bacterium can further comprise one or more nucleic acids encoding other variant bacterial polypeptides (e.g., variant bacterial polypeptides involved in amino acid production, e.g., variant 20 bacterial polypeptides described herein). The invention also features methods for producing L-methionine, the method including: cultivating a genetically modified bacterium including a nucleic acid encoding a variant bacterial mcbR gene product under conditions in which the nucleic acid is expressed and that allow L methionine to be produced, and collecting the culture. The culture can be fractionated (e.g., to 25 remove cells and/or to obtain fractions enriched in L-methionine). In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial aspartokinase polypeptide. In various embodiments, the variant bacterial aspartokinase polypeptide exhibits reduced feedback inhibition relative to a wild-type form of the bacterial aspartokinase polypeptide. In various embodiments, the nucleic acid encodes an aspartokinase 30 polypeptide with reduced feedback inhibition by S-adenosylmethionine. In various embodiments, the bacterial aspartokinase polypeptide is chosen from: a Corynebacterium 42 WO 2004/108894 PCT/US2004/017513 glutamicum aspartokinase polypeptide, a Mycobacterium smegmatis aspartokinase polypeptide, a Thernobifidafusca aspartokinase polypeptide, an Amycolatopsis mediterranei aspartokinase polypeptide, a Streptonyces coelicolor aspartokinase polypeptide, an Erwinia chrysanthemi aspartokinase polypeptide, a Shewanella oneidensis aspartokinase polypeptide, a Mycobacterium 5 tuberculosis aspartokinase polypeptide, an Escherichia coli aspartokinase polypeptide, a Corynebacteriumn acetoglutamicum aspartokinase polypeptide, a Cotynebacteriumn melassecola aspartokinase polypeptide, a Corynebacteriun thermoaminogenes aspartokinase polypeptide, a Brevibacteriun lactofermentun aspartokinase polypeptide, a Brevibacterium lactis aspartokinase polypeptide, and a Brevibacteriumflavum aspartokinase polypeptide. 10 In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial aspartokinase polypeptide, wherein the variant aspartokinase polypeptide is a variant of an aspartokinase polypeptide including the following amino acid sequence: G-X 2
-K
3
-X
4
-X
5 X 6
-X
7
X
8
X
9 Xo-Xl-X 2
-X
3 X x 1 3 a-X 1 3 c-X 1 3 d-X13e-X13Xl 3 g-Xl3h-Xl3iXl3j -Xl 3 k-X131 Fi 4 -Xi 5 -Zi 6 Xl 7 -Xi 8 Xi 9
X
2 0
-X
2
X
2 la-X 21
-X
2 1 c-X 2 1d X 2 1e-X2lXlg-X2lh-X2liX21j -X21k 15 X 2 1 1
-X
2 lmX 2 nX 2
X
2 pX -X 2 XrX2s-X2tD22 (SEQ ID NO:_), w wherein each of X 2 , X 4 X 13 , X 15 , and X 17
-X
20 is, independently, any amino acid, wherein each of X13aX131 is, independently, any amino acid or absent, wherein each of X 2 irX 2 1t is, independently, any amino acid or absent, and wherein Z 1 6 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant aspartokinase includes an amino acid change at one or more of G 1 , 20 R-3, F 1 4 , Z 16 , or D 22 of SEQ ID NO:_. In various embodiments, the amino acid change is a change to an alanine. In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial aspartokinase polypeptide, wherein the aspartokinase polypeptide is a C. glutamnicum aspartokinase polypeptide including an amino acid change in one or more of the following 25 residues of SEQ ID NO:_: Glycine 208, Lysine 210, Phenylalanine 223, Valine 225, and Aspartate 236. In various embodiments, the amino acid change is a change to an alanine. The invention also features a polypeptide encoded by the nucleic acid encoding a variant bacterial aspartokinase polypeptide. The invention also features a bacterium including the nucleic acid encoding a variant 30 bacterial aspartokinase polypeptide. In various embodiments, the bacterium is a coryneform bacterium. The bacterium can further comprise one or more nucleic acids encoding other variant 43 WO 2004/108894 PCT/US2004/017513 bacterial polypeptides (e.g., variant bacterial polypeptides involved in amino acid production, e.g., variant bacterial polypeptides described herein). In various embodiments, the bacterium further comprises one or more nucleic acid molecules (e.g., recombinant nucleic acid molecules) encoding a polypeptide involved in amino acid production (e.g., a polypeptide that is 5 heterologous or homologous to the host cell, or a variant thereof). In various embodiments, the bacterium further comprises mutations in an endogenous sequence that result in increased or decreased activity of a polypeptide involved in amino acid production (e.g., by mutation of an endogenous sequence encoding the polypeptide involved in amino acid production or a sequence that regulates expression of the polypeptide, e.g., a promoter sequence). 10 The invention also features a method for producing an amino acid, the method including: cultivating a genetically modified bacterium including the nucleic acid encoding a variant bacterial aspartokinase polypeptide under conditions in which the nucleic acid is expressed and that allow the amino acid to be produced, and collecting the culture. The culture can be fractionated (e.g., to remove cells and/or to obtain fractions enriched in the amino acid). 15 In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial O-succinylhomoserine/acetylhomoserine (thiol)-lyase polypeptide (0 succinylhomoserine (thiol)-lyase). In various embodiments, the variant O-succinylhomoserine (thiol)-lyase exhibits reduced feedback inhibition relative to a wild-type form of the 0 succinylhomoserine (thiol)-lyase polypeptide. In various embodiments, the nucleic acid encodes 20 an O-succinylhomoserinc (thiol)-lyase polypeptide with reduced feedback inhibition by S adenosylmethionine. In various embodiments, the bacterial 0-succinylhomoserine (thiol)-lyase polypeptide is chosen from: a Corynebacteriun glutamicun 0-succinylhomoserine (thiol)-lyase polypeptide, a Mycobacterium smnegmatis 0-succinylhomoserine (thiol)-lyase polypeptide, a Thermobifidafusca O-succinylhomoserine (thiol)-lyase polypeptide, an Anycolatopsis 25 mediterranei 0-succinylhomoserine (thiol)-lyase polypeptide, a Streptomyces coelicolor 0 succinylhomoserine (thiol)-lyase polypeptide, an Erwinia chrysanthemni O-succinylhomoserine (thiol)-lyase polypeptide, a Shewanella oneidensis 0-succinylhomoserine (thiol)-lyase polypeptide, a Mycobacterium tuberculosis O-succinylhomoserine (thiol)-lyase polypeptide, an Escherichia coli 0-succinylhomoserine (thiol)-lyase polypeptide, a Corynebacterium 30 acetoglutamicum O-succinylhomoserine (thiol)-lyase polypeptide, a Corynebacterium melassecola 0-succinylhomoserine (thiol)-lyase polypeptide, a Corynebacterium 44 WO 2004/108894 PCT/US2004/017513 thennoaninogenes O-succinylhomoserine (thiol)-lyase polypeptide, a Brevibacterium lactofermentum O-succinylhomoserine (thiol)-lyase polypeptide, a Brevibacteriun lactis 0 succinylhomoserine (thiol)-lyase polypeptide, and a Brevibacteriumflavum 0 succinylhomoserine (thiol)-lyase polypeptide. 5 In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial 0-succinylhomoserine (thiol)-lyase polypeptide, wherein the variant 0 succinylhomoserine (thiol)-lyase polypeptide is a variant of an O-succinylhomoserine (thiol) lyase polypeptide including the following amino acid sequence: Gi-X 2
-K
3
-X
4
-X
5
-X
6 -X -Xe-Xg9 Xio-X-Xi2-XXi 3 a-Xl 3 b-X 3 c-Xl 3 d-X3e-Xl3fXl3g-Xl3h-X13--X133 -X13k-X131-F 4 -Xis-Z1 10 Xl-Xl 8 -Xl 9
-X
2 0-X 2 l-X 2 la-X 2 1b-Xlc-X 2 ld-XlX2-X21g-X2lh-X2-X21j -X 2 k-X2-X21m
X
2 ln-X 2 o-X 2 lp-X 2 lq-X 2 lrX 2 ls-X 2 tD22 (SEQ ID NO:), wherein each of X 2 , X 4
-X
13 , X 15 , and
X
1 7
-X
2 0 is, independently, any amino acid, wherein each of X13a-X131 is, independently, any amino acid or absent, wherein each of X21a-X2lt is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the 15 variant O-succinylhomoserine (thiol)-lyase polypeptide includes an amino acid change at one or more of G 1 , K 3 , F 1 4 , Z 16 , or D 2 2 of SEQ ID NO:__. In various embodiments, the amino acid change is a change to an alanine. In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial O-succinylhomoserine (thiol)-lyase polypeptide, wherein the variant 0 20 succinylhomoserine (thiol)-lyase polypeptide is a C. glutamicum 0-succinylhomoserine (thiol) lyase polypeptide including an amino acid change in one or more of the following residues of SEQ ID NO:__: Glycine 72, Lysine 74, Phenylalanine 90, isoleucine 92, and Aspartate 105. In various embodiments, the amino acid change is a change to an alanine. The invention also features a polypeptide encoded by a nucleic acid encoding a variant 25 bacterial O-succinylhomoserine (thiol)-lyase polypeptide. The invention also features a bacterium including a nucleic acid encoding a variant bacterial O-succinylhomoserine (thiol)-lyase polypeptide. In various embodiments, the bacterium is a coryneform bacterium. The bacterium can further comprise one or more nucleic acids encoding other variant bacterial polypeptides (e.g., variant bacterial polypeptides involved 30 in amino acid production, e.g., variant bacterial polypeptides described herein). 45 WO 2004/108894 PCT/US2004/017513 The invention also features a method for producing L-methionine, the method including: cultivating a genetically modified bacterium including a nucleic acid encoding a variant bacterial O-succinylhomoserine (thiol)-lyase polypeptide under conditions in which the nucleic acid is expressed and that allow L-methionine to be produced, and collecting the culture. The culture 5 can be fractionated (e.g., to remove cells and/or to obtain fractions enriched in L-methionine). In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial cystathionine beta-lyase polypeptide. In various embodiments, the variant cystathionine beta-lyase polypeptide exhibits reduced feedback inhibition relative to a wild-type form of the cystathionine beta-lyase polypeptide. In various embodiments, the nucleic acid 10 encodes a cystathionine beta-lyase polypeptide with reduced feedback inhibition by S adenosylmethionine. In various embodiments, the bacterial cystathionine beta-lyase polypeptide is chosen from: a Corynebacterium glutamicumn cystathionine beta-lyase polypeptide, a Mycobacterium smegmnatis cystathionine beta-lyase polypeptide, a Thernmobifidafusca cystathionine beta-lyase polypeptide, an Amycolatopsis mediterranei cystathionine beta-lyase 15 polypeptide, a Streptomyces coelicolor cystathionine beta-lyase polypeptide, an Erwinia chrysanthemi cystathionine beta-lyase polypeptide, a Shewanella oneidensis cystathionine beta lyase polypeptide, a Mycobacteriumn tuberculosis cystathionine beta-lyase polypeptide, an Escherichia coli cystathionine beta-lyase polypeptide, a Corynebacterium acetoglutamicum cystathionine beta-lyase polypeptide, a Corynebacterium inelassecola cystathione beta-lyase 20 polypeptide, a Corynebacterium thermoaninogenes cystathionine beta-lyase polypeptide, a Brevibacterium lactofermentumn cystathionine beta-lyase polypeptide, a Brevibacteriun lactis cystathionine beta-lyase polypeptide, and a Brevibacteriumflavum cystathionine beta-lyase polypeptide. In another aspect, the invention features an isolated nucleic acid encoding a variant 25 bacterial cystathionine beta-lyase polypeptide, wherein the variant cystathionine beta-lyase polypeptide is a variant of a cystathionine beta-lyase polypeptide including the following amino acid sequence: G-X 2
-K
3
-X
4
-X
5
-X
6
-X
7
X
8
-X
9 -X10-Xii-X 12
-X
13
-X
13 rX13b-X13cX13d-X13eX13f X1 3 g-X13h-X13i-X1 3 j-Xl 3 k-X1 3 rF14-X5-Z1 6 -Xl 7 Xls-X1 9
-X
2 0-X21X21eX21b-X21c-X21d-X21eX21f
X
2 1g-X 2 1h-X 2 1rX 2 1j-X 2 1-X 2 11-X 2 1m-X 2 1.X21oX21p-X21q-X21eX21rX2u-D22(SEQ ID NO:_), 30 wherein each of X 2 , X 4
-X
1 3 , X 15 , and X 1 rX 2 0 is, independently, any amino acid, wherein each of X13aX131 is, independently, any amino acid or absent, wherein each of X21aX21t is, 46 WO 2004/108894 PCT/US2004/017513 independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant cystathionine beta-lyase includes an amino acid change at one or more of G 1 , K3, F 14 , Z 16 , or D 2 2 of SEQ ID NO:_. In various embodiments, the amino acid change is a change to an alanine. 5 In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial cystathionine beta-lyase polypeptide, wherein the variant cystathionine beta-lyase polypeptide is a C. glutamicum cystathionine beta-lyase polypeptide including an amino acid change in one or more of the following residues of SEQ ID NO:_ : Glycine 296, Lysine 298, Phenylalanine 312, Glycine 314 and Aspartate 335. In various embodiments, the amino acid 10 change is a change to an alanine. The invention also features a polypeptide encoded by a nucleic acid encoding a variant bacterial cystathionine beta-lyase. The invention also features a bacterium including a nucleic acid encoding a variant bacterial cystathionine beta-lyase polypeptide. In various embodiments, the bacterium is a 15 coryneforin bacterium. The bacterium can further comprise one or more nucleic acids encoding other variant bacterial polypeptides (e.g., variant bacterial polypeptides involved in amino acid production, e.g., variant bacterial polypeptides described herein). The invention also features a method for producing L-methionine, the method including: cultivating a genetically modified bacterium including a nucleic acid encoding a variant bacterial 20 cystathionine beta-lyase polypeptide under conditions in which the nucleic acid is expressed and that allow L-methionine to be produced, and collecting the culture. The culture can be fractionated (e.g., to remove cells and/or to obtain fractions enriched in L-methionine). In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide. In various 25 embodiments, the variant 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide exhibits reduced feedback inhibition relative to a wild-type fonr of the 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide. In various embodiments, the nucleic acid encodes a 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide with reduced feedback inhibition by S-adenosylmethionine polypeptide. In various embodiments, the bacterial 5 30 methyltetrahydrofolate homocysteine methyltransferase polypeptide is chosen from: a Corynebacterium glutamicum 5-methyltetrahydrofolate homocysteine methyltransferase 47 WO 2004/108894 PCT/US2004/017513 polypeptide, a Mycobacterium smegmatis 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide, a Thernobifidafusca 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide, an Anycolatopsis nediterranei 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide, a Streptomyces coelicolor 5-methyltetrahydrofolate 5 homocysteine methyltransferase polypeptide, an Erwinia chrysantheni 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide, a Shewanella oneidensis 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide, a Mycobacterium tuberculosis 5 methyltetrahydrofolate homocysteine methyltransferase polypeptide, an Escherichia coli 5 methyltetrahydrofolate homocysteine methyltransferase polypeptide, a Corynebacteriun 10 acetoglutamicum 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide, a Corynebacteriun melassecola 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide, a Corynebacteriun thermoaninogenes 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide, a Brevibacterium lactofermentumn 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide, a Brevibacterium lactis 5-methyltetrahydrofolate 15 homocysteine methyltransferase polypeptide, and a Brevibacteriumnflavumn 5 methyltetrahydrofolate homocysteine methyltransferase polypeptide. In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide, wherein the variant 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide is a variant of a 5 20 methyltetrahydrofolate homocysteine methyltransferase polypeptide including the following amino acid sequence: Gi-X 2
-K
3 -X -X5jX 6
-X
7
X
8 -X9XlOXX iX 1 3
-X
3 a-XI 3 b-X13XI3d Xi 3 eXl 3 fXig-Xl3i-Xl3iX13j-Xl 3 k-X 3 1-Fi 4 Xi 5
Z
1 6 (SEQ ID NO:_), wherein X is any amino acid, wherein each Of X13a-X131 is, independently, any amino acid or absent, and wherein Z 1 6 is selected from valine, aspartate, glycine, isoleucine, and leucine; 25 wherein the variant 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide includes an amino acid change at one or more of G 1 , K3, F 14 , or Z 16 , of SEQ ID NO:__. In various embodiments, the amino acid change is a change to an alanine. In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide, wherein the 30 variant 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide is a C. glutamicum 48 WO 2004/108894 PCT/US2004/017513 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide including an amino acid change in one or more of the following residues of SEQ ID NO:_: Glycine 708, Lysine 710, Phenylalanine 725, and Leucine 727. In various embodiments, the amino acid change is a change to an alanine. 5 The invention also features a polypeptide encoded by the nucleic acid encoding a variant bacterial 5-methyltetrahydrofolate homocysteine methyltransferase. The invention also features a bacterium including a nucleic acid encoding a variant bacterial 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide. In various embodiments, the bacterium is a corynefonn bacterium. The bacterium can further comprise one 10 or more nucleic acids encoding other variant bacterial polypeptides (e.g., variant bacterial polypeptides involved in amino acid production, e.g., variant bacterial polypeptides described herein). The invention also features a method for producing L-methionine, the method including: cultivating a genetically modified bacterium including a nucleic acid encoding a variant bacterial 15 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide under conditions in which the nucleic acid is expressed and that allow L-methionine to be produced, and collecting the culture. The culture can be fractionated (e.g., to remove cells and/or to obtain fractions enriched in L-methionine). In another aspect, the invention features an isolated nucleic acid encoding a variant 20 bacterial S-adenosylmethionine synthetase polypeptide. In various embodiments, the variant S adenosylmethionine synthetase polypeptide exhibits reduced feedback inhibition relative to a wild-type form of the S-adenosylmethionine synthetase polypeptide. In various embodiments, the nucleic acid encodes an S-adenosylmethionine synthetase polypeptide with reduced feedback inhibition by S-adenosylmethionine. In various embodiments, the bacterial S 25 adenosylmethionine synthetase polypeptide is chosen from: a Corynebacterium glutamicum S adenosylmethionine synthetase polypeptide, a Mycobacterium smegmatis S-adenosylmethionine synthetase polypeptide, a Therinobifidafusca S-adenosylmethionine synthetase polypeptide, an Anycolatopsis mediterranei S-adenosylmethionine synthetase polypeptide, a Streptonyces coelicolor S-adenosylmethionine synthetase polypeptide, an Erwinia chrysanthemi S 30 adenosylmethionine synthetase polypeptide, a Shewanella oneidensis S-adenosyhnethionine synthetase polypeptide, a Mycobacteriuni tuberculosis S-adenosylmethionine synthetase 49 WO 2004/108894 PCT/US2004/017513 polypeptide, an Escherichia coli S-adenosyhnethionine synthetase polypeptide, a Corynebacterium acetoglutamicun S-adenosylmethionine synthetase polypeptide, a Corynebacterium melassecola S-adenosylmethionine synthetase polypeptide, a Corynebacteriuin thernoaminogenes S-adenosylmethionine synthetase polypeptide, a Brevibacteriun 5 lactofermentum S-adenosylmethionine synthetase polypeptide, a Brevibacterium lactis S adenosylmethionine synthetase polypeptide, and a Brevibacteriuniflavum S-adenosylmethionine synthetase polypeptide. In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial S-adenosylmethionine synthetase polypeptide, wherein the variant S 10 adenosylmethionine synthetase polypeptide is a variant of an S-adenosylmethionine synthetase polypeptide including the following amino acid sequence: Gi-X 2 -K3-X 4
-X
5
-X
6
-X
7
-X
8
-X
9 -Xio Xu-Xi2-XirXisa-X13b-Xise-Xi3d-X13e-Xisf-X13g-Xiah-X13iX13j -Xl 3 k-Xi 3 -Fi 4 -Xl 5 Zl 6 Xl7 Xi -X 1 9
-X
2 0
-X
2 1
X
2 aX 2 bX 2 lc-X 2 1dXe-X2-X2g-X21h-X2i-X21j -X 2 ik-X21i-X21m-X21n
X
2 o-X 2 p-X 2 1 q-X 2 r-X 2 1 s-X2t-D22 (SEQ ID NO:_), wherein each of X 2 , X4-X 13 , X 15 , and X 17 15 X 2 0 is, independently, any amino acid,wherein each of X13a-X131 is, independently, any amino acid or absent, wherein each of X21a-X2lt is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant S-adenosylmethionine synthetase polypeptide includes an amino acid change at one or more of G 1 , K 3 , F 14 , Z 1 6 , or D 22 of SEQ ID NO:_. In various embodiments, the amino acid 20 change is a change to an alanine. In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial S-adenosylmethionine synthetase polypeptide, wherein the variant S adenosylmethionine synthetase polypeptide is a C. glutamicun S-adenosylmethionine synthetase polypeptide including an amino acid change in one or more of the following residues of SEQ ID 25 NO:_ : Glycine 263, Lysine 265, Phenylalanine 282, Glycine 284, and Aspartate 291. In various embodiments, the amino acid change is a change to an alanine. The invention also features a polypeptide encoded by a nucleic acid encoding a variant bacterial S-adenosylmethionine synthetase polypeptide. The invention also features a bacterium including a nucleic acid encoding a variant 30 bacterial S-adenosylmethionine synthetase polypeptide. In various embodiments, the bacterium is a coryneform bacterium. The bacterium can further comprise one or more nucleic acids 50 WO 2004/108894 PCT/US2004/017513 encoding other variant bacterial polypeptides (e.g., variant bacterial polypeptides involved in amino acid production, e.g., variant bacterial polypeptides described herein). The invention also features a method for producing L-methionine, the method including: cultivating a genetically modified bacterium including a nucleic acid encoding a variant bacterial 5 S-adenosylmethionine synthetase polypeptide under conditions in which the nucleic acid is expressed and that allow L-methionine to be produced, and collecting the culture. The culture can be fractionated (e.g., to remove cells and/or to obtain fractions enriched in L-methionine). In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial homoserine kinase polypeptide. In various embodiments, the variant homoserine 10 kinase polypeptide exhibits reduced feedback inhibition relative to a wild-type form of the bacterial homoserine kinase polypeptide. In various embodiments, the nucleic acid encodes a homoserine kinase polypeptide with reduced feedback inhibition by S-adenosylmethionine. In various embodiments, the bacterial homoserine kinase polypeptide is chosen from: a Corynebacteriun glutamicum homoserine kinase polypeptide, a Mycobacteriun smegmatis 15 homoserine kinase polypeptide, a Thermrobifidafusca homoserine kinase polypeptide, an Anycolatopsis mediterranei homoserine kinase polypeptide, a Streptonyces coelicolor homoserine kinase polypeptide, an Erwinia chrysantheini homoserine kinase polypeptide, a Shewanella oneidensis homoserine kinase polypeptide, a Mycobacteriuin tuberculosis homoserine kinase polypeptide, an Escherichia coli homoserine kinase polypeptide, a 20 Corynebacterium acetoglutamicum homoserine kinase polypeptide, a Corynebacterium melassecola homoserine kinase polypeptide, a Corynebacterium thermoaminogenes homoserine kinase polypeptide, a Brevibacterium lactofermentum homoserine kinase polypeptide, a Brevibacterium lactis homoserine kinase polypeptide, and a Brevibacteriumflavum homoserine kinase polypeptide. 25 In another aspect, the invention features an isolated nucleic acid encoding a variant bacterial homoserine kinase polypeptide, wherein the homoserine kinase polypeptide is a C. glutamicui homoserine kinase polypeptide including an amino acid change in one or more of the following residues of SEQ ID NO:_: Glycine 160, Lysine 161, Phenylalanine 186, Alanine 188, and Aspartate 205. In various embodiments, the amino acid change is a change to 30 an alanine, wherein the original residue is other than an alanine. 51 WO 2004/108894 PCT/US2004/017513 The invention also features a polypeptide encoded by the nucleic acid encoding a variant bacterial homoserine kinase. The invention also features a bacterium including the nucleic acid encoding a variant bacterial homoserine kinase polypeptide. In various embodiments, the bacterium is a 5 coryneform bacterium. The bacterium can further include one or more nucleic acids encoding other variant bacterial polypeptides (e.g., variant bacterial polypeptides involved in amino acid production, e.g., variant bacterial polypeptides described herein). The invention also features a method for producing an amino acid, the method including: cultivating a genetically modified bacterium including the nucleic acid encoding a variant bacterial homoserine kinase polypeptide under conditions in which the nucleic acid is expressed and that allow the amino acid to be produced, and collecting the culture. The culture can be fractionated (e.g., to remove cells and/or to obtain fractions enriched in the amino acid). In another aspect, the invention features a bacterium including two or more of the following: a nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase polypeptide; a nucleic acid encoding a variant bacterial O-acetylhomoserine sulfhydrylase; a nucleic acid encoding a variant bacterial McbR gene product polypeptide; a nucleic acid encoding a variant bacterial aspartokinase polypeptide; a nucleic acid encoding a variant bacterial O-succinylhomoserine (thiol)-lyase polypeptide; a nucleic acid encoding a variant bacterial cystathione beta-lyase polypeptide; a nucleic acid encoding a variant bacterial 5 methyltetrahydrofolate homocysteine methyltransferase polypeptide; and a nucleic acid encoding a variant bacterial S-adenosylmethionine synthetase polypeptide. In various embodiments, the bacterium comprises a nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase and a nucleic acid encoding a variant bacterial 0 acetylhomoserine sulfhydrylase. In certain embodiments, at least one of the variant bacterial polypeptides have reduced feedback inhibition (e.g., relative to a wild-type fonn of the polypeptide). In another aspect, the invention features a bacterium including two or more of the following: (a) a nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase polypeptide, wherein the variant homoserine 0-acetyltransferase polypeptide is a variant of a homoserine 0-acetyltransferase polypeptide including the following amino acid sequence: G X2-K3-X-X5-X6X7-XrX9-XIo-Xu-X12-X13-Xl3rX13b-X13c-X13d-X13e-X13rX13g-X13h-X13i-X13r 52 WO 2004/108894 PCT/US2004/017513 X13k-X 1 31
-FI
4 -X1 5
-Z
6
-X
7 -X18-X1 9
-X
2 0-X 2 rX 2 1a-X 2 1b-X 2 1c-X 2 1-X 2 1e-X21fX21g-X21h-X21iX21j
X
2 1 k-X 21 1-X 21 m-X 2 1 n-X21o-X21p-X21q-X21r-X21s-X21-D22 (SEQ ID NO:__), wherein each of X 2 , X 4 X 13 , X 15 , and X 17
-X
20 is, independently, any amino acid, wherein each of X13a-X1 3 1 is, independently, any amino acid or absent, wherein each of X21a-X2lt is, independently, any amino acid or absent, and wherein Z 1 6 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant homoserine O-acetyltransferase polypeptide includes an amino acid change at one or more of G 1 , K 3 , F 14 , Z 16 , or D 22 of SEQ ID NO:_; (b) a nucleic acid encoding a variant bacterial O-acetylhomoserine sulfliydrylase polypeptide, wherein the variant 0 acetylhomoserine sulfhydrylase polypeptide is a variant of an O-acetylhomoserine sulfhydrylase polypeptide including the following amino acid sequence: G 1
-X
2
-K(
3
-X
4
-X
5
-X
6
-X
7
-X
8
-X
9
-X
10 XII-X 12
-X
1 3
-X
1 3 a-X 1 3 b-X13c-X13-X13e-X13f-X13g-X13h-X1 3 i-X 1 3 3-XI 3 -X1 3 1-F14-Xi 5 -Zi 6
-X
17 -XI8 X19
-
X
2 0
-X
2 1
-X
21 a-X 21 b-X 21 c-X 2 1d-X 2 1e-X 2 1rX 2 1g-X21h-X21-X21j-X21k-X211-X21m-X21n-X21o-X21p X21q-X21r-X21s-X2t-D22 (SEQ ID NO:_), wherein each of X 2 , X 4
-X
13 , X15, and X 1 7
-X
20 is, independently, any amino acid, wherein each of X13a-X131 is, independently, any amino acid or absent, wherein each of X21a-X2ut is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant 0 acetylhomoserine sulfhydrylase polypeptide includes an amino acid change at one or more of G 1 ,
K
3 , F 1 4 , Z 16 , or D 22 of SEQ ID NO:__; and (c) a nucleic acid encoding a variant bacterial 0 acetylhomoserine sulfhydrylase polypeptide, wherein the variant O-acetylhomoserine sulfhydrylase polypeptide is a variant of a 0-acetylhomoserine sulfhydrylase polypeptide including the following amino acid sequence: L 1
-X
2
-X
3
-G
4
-G
5
-X
6
-F
7 -Xs-X 9 - X10-Xu (SEQ ID NO:_), wherein X is any amino acid, wherein Xs is selected from valine, leucine, isoleucine, and aspartate, and wherein X 11 is selected from valine, leucine, isoleucine, phenylalanine, and methionine; wherein the variant of the bacterial protein includes an amino acid change at one or more of L 1 , G 4 , Xg, X 11 of SEQ ID NO: _. In another aspect, the invention features a bacterium including'two or more of the following: (a) a nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase polypeptide, wherein the variant homoserine O-acetyltransferase polypeptide is a C. glutamicun homoserine O-acetyltransferase polypeptide including an amino acid change in one or more of 5 the following residues of SEQ ID NO:_ : Glycine 231, Lysine 233, Phenylalanine 251, and Valine 253; (b) a nucleic acid encoding a variant bacterial homoserine O-acetyltransferase 53 WO 2004/108894 PCT/US2004/017513 polypeptide, wherein the variant homoserine 0-acetyltransferase polypeptide is a T. fusca homoserine 0-acetyltransferase polypeptide including an amino acid change in one or more of the following residues of SEQ ID NO: : Glycine 81, Aspartate 287, Phenylalanine 269; (c) a nucleic acid encoding a variant bacterial homoserine O-acetyltransferase polypeptide, wherein 5 the variant homoserine 0-acetyltransferase polypeptide is an E. coli homoserine 0 acetyltransferase polypeptide including an amino acid change at Glutamate 252 of SEQ ID NO:- ;(d) a nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase polypeptide, wherein the variant homoserine 0-acetyltransferase polypeptide is a mycobacterial homoserine 0-acetyltransferase polypeptide including an amino acid change in a residue 10 corresponding to one or more of the following residues of M leprae homoserine 0 acetyltransferase polypeptide set forth in SEQ ID NO: ___: Glycine 73, Aspartate 278, and Tyrosine 260; (e) a nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase polypeptide, wherein the variant homoserine O-acetyltransferase polypeptide is an M. tuberculosis homoserine O-acetyltransferase polypeptide including an amino acid change in one 15 or more of the following residues of SEQ ID NO: __: Glycine 73, Tyrosine 260, and Aspartate 278; (f) a nucleic acid encoding a variant bacterial O-acetylhomoserine sulfhydrylase polypeptide, wherein the variant 0-acetylhomoserine sulfhydrylase polypeptide is a C. glutanicun O-acetylhomoserine sulfhydrylase polypeptide including an amino acid change in one or more of the following residues of SEQ ID NO:_: Glycine 227, Leucine 229, Aspartate 20 231, Glycine 232, Glycine 233, Phenylalanine' 235, Aspartate 236, Valine 239, Phenylalanine 368, Aspartate 370, Aspartate 383, Glycine 346, and Lycine 348; and (g) a nucleic acid encoding a variant bacterial O-acetylhomoserine sulfhydrylase polypeptide, wherein the variant 0 acetylhomoserine sulfhydrylase polypeptide is a T. fusca 0-acetylhomoserine sulfhydrylase polypeptide including an amino acid change in one or more of the following residues of SEQ ID 25 NO:_ : Glycine 240, Aspartate 244, Phenylalanine 379, and Aspartate 394. In another aspect, the invention features a bacterium including a nucleic acid encoding an episomal homoserine O-acetyltransferase polypeptide and an episomal O-acetylhomoserine sulfhydrylase polypeptide. In various embodiments, the bacterium is a Corynebacterium. In various embodiments, the episomal homoserine 0-acetyltransferase polypeptide and the episomal 0-acetylhomoserine sulfhydrylase polypeptide are of the same species as the bacterium (e.g., both are of C. glutamicum). In various embodiments, the episomal homoserine 0 54 WO 2004/108894 PCT/US2004/017513 acetyltransferase polypeptide and the episomal 0-acetylhomoserine sulfhydrylase polypeptide are of a different species than the bacterium. In various embodiments, the episomal homoserine 0-acetyltransferase polypeptide is a variant of a bacterial homoserine 0-acetyltransferase polypeptide with reduced feedback inhibition relative to a wild-type fonn of the homoserine 0 acetyltransferase polypeptide. In various embodiments, the 0-acetylhomoserine sulfhydrylase polypeptide is a variant of a bacterial 0-acetylhomoserine sulfhydrylase polypeptide with reduced feedback inhibition relative to a wild-type form of the O-acetylhomoserine sulfhydrylase polypeptide. "Aspartic acid family of amino acids and related metabolites" encompasses L-aspartate, p-aspartyl phosphate, L-aspartate-p-semialdehyde, L-2,3-dihydrodipicolinate, L-A 1 -piperideine 2,6-dicarboxylate, N-succinyl-2-amino-6-keto-L-pimelate, N-succinyl-2, 6-L, L diaminopimelate, L, L-diaminopimelate, D, L-diaminopimelate, L-lysine, homoserine, O-acetyl 5 L-homoserine, 0-succinyl-L-homoserine, cystathionine, L-homocysteine, L-methionine, S adenosyl-L-methionine, 0-phospho-L-homoserine, threonine, 2-oxobutanoate, (S)-2-aceto-2 hydroxybutanoate, (S)-2-hydroxy-3-methyl-3-oxopentanoate, (R)-2,3-Dihydroxy-3 methylpentanoate, (R)-2-oxo-3-methylpentanoate, L-isoleucine, L-asparagine. In various embodiments the aspartic acid family of amino acids and related metabolites encompasses 10 aspartic acid, asparagine, lysine, threonine, methionine, isoleucine, and S-adenosyl-L methionine. A polypeptide or functional variant thereof with "reduced feedback inhibition" includes a polypeptide that is less inhibited by the presence of an inhibitory factor as compared to a wild-type form of the polypeptide or a polypeptide that is less inhibited by the presence of an inhibitory factor as compared to the corresponding endogenous polypeptide expressed in the 15 organism into which the variant has been introduced. For example, a wild-type aspartokinase from E. coli or C. glutamicum may have 10-fold less activity in the presence of a given concentration of lysine, or lysine plus threonine, respectively. A variant with reduced feedback inhibition may have, for example, 5-fold less, 2-fold less, or wild-type levels of activity in the presence of the same concentration of lysine. 20 A "functional variant" protein is a protein that is capable of catalyzing the biosynthetic reaction catalyzed by the wild-type protein in the case where the protein is an enzyme, or providing the same biological function of the wild-type protein when that protein is not catalytic. For instance, a functional variant of a protein that normally regulates the transcription of one or 55 WO 2004/108894 PCT/US2004/017513 more genes would still regulate the transcription of one or more of the same genes when transformed into a bacterium. In certain embodiments, a functional variant protein is at least partially or entirely resistant to feedback inhibition by an amino acid. In certain embodiments, the variant has fewer than 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, or 1 amino acid changes compared to the 5 wild-type protein. In certain embodiments, the amino acid changes are conservative changes. A variant sequence is a nucleotide or amino acid sequence corresponding to a variant polypeptide, e.g., a functional variant polypeptide. An amino acid that is "corresponding" to an amino acid in a reference sequence occupies a site that is homologous to the site in the reference sequence. Corresponding amino acids can 10 be identified by alignment of related sequences. As used herein, a "heterologous" nucleic acid or protein is meant to encompass a nucleic acid or protein, or functional variant of a nucleic acid or protein, of an organism (species) other than the host organism (species) used for the production of members of the aspartic acid family of amino acids and related metabolites. In certain embodiments, when the host organism is a 15 coryneform bacteria the heterologous gene will not be obtained from E. coli. In other specific embodiments, when the host organism is E. coli the heterologous gene will not be obtained from a coryneform bacteria. "Gene", as used herein, includes coding, promoter, operator, enhancer, terminator, co transcribed (e.g., sequences from an operon), and other regulatory sequences associated with a 20 particular coding sequence. As used herein, a "homologous" nucleic acid or protein is meant to encompass a nucleic acid or protein, or functional variant of a nucleic acid or protein, of an organism that is the same species as the host organism used for the production of members of the aspartic acid family of amino acids and related metabolites. 25 As known to those skilled in the art, certain substitutions of one amino acid for another may be tolerated at one or more amino acid residues of a wild-type enzyme without eliminating the activity or function of the enzyme. As used herein, the term "conservative substitution" refers to the exchange of one amino acid for another in the same conservative substitution grouping in a protein sequence. Conservative amino acid substitutions are known in the art and 30 are generally based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. In one embodiment, 56 WO 2004/108894 PCT/US2004/017513 conservative substitutions typically include substitutions within the following groups: Group 1: glycine, alanine, and proline; Group 2: valine, isoleucine, leucine, and methionine; Group 3: aspartic acid, glutamic acid, asparagine, glutamine; Group 4: serine, threonine, and cysteine; Group 5: lysine, arginine, and histidine; Group 6: phenylalanine, tyrosine, and tryptophan. Each 5 group provides a listing of amino acids that may be substituted in a protein sequence for any one of the other amino acids in that particular group. There are several criteria used to establish groupings of amino acids for conservative substitution. For example, the importance of the hydropathic amino acid index in conferring interactive biological function on a protein is generally understood in the art (Kyte and Doolittle, 10 Mol. Biol. 157:105-132 (1982). It is known that certain amino acids may be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. Amino acid hydrophilicity is also used as a criterion for the establishment of conservative amino acid groupings (see, e.g., U.S. Patent No. 4,554,101). Information relating to the substitution of one amino acid for another is generally known 15 in the art (see, e.g., Introduction to Protein Architecture: The Structural Biology of Proteins, Lesk, A.M., Oxford University Press; ISBN: 0198504748; Introduction to Protein Structure, Branden, C.-I., Tooze, J., Karolinska Institute, Stockholm, Sweden (January 15, 1999); and Protein Structure Prediction: Methods and Protocols (Methods in Molecular Biology), Webster, D.M.(Editor), August 2000, Humana Press, ISBN: 0896036375). 20 In some embodiments, the nucleic acid and/or protein sequences of a heterologous sequence and/or host strain gene will be compared, and the homology can be determined. Homology comparisons can be used, for example, to identify corresponding amino acids. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, 25 which need to be introduced for optimal alignment of the two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For'example, the percent identity between two nucleotide sequences can be determined using the algorithm of Needleman and Wunsch ((1970) J Mol. Bio. 48:444-453) algorithm which has been incorporated into the GAP program in the GCG 30 software package, using either a Blosum 62 matrix and a gap weight of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5. 57 WO 2004/108894 PCT/US2004/017513 Generally, to determine the percent identity of two nucleic acid or protein sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second nucleic acid or amino acid sequence for optimal alignment and non homologous sequences can be disregarded for comparison purposes). The length of a test 5 sequence aligned for comparison purposes can be at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% of the length of the reference sequence. The nucleotides or amino acids at corresponding nucleotide or amino acid positions are then compared. When a position in the first sequence is occupied by the same nucleotide or amino acid as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein "identity" is 10 equivalent to "homology"). The protein sequences described herein can be used as a "query sequence" to perform a search against a database of non-redundant sequences, for example. Such searches can be performed using the BLASTP and TBLASTN programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. BLAST protein searches can be performed with the BLASTP program, 15 using, for example, the Blosum 62 matrix, a wordlength of 3, and a gap existence cost of 11 and a gap extension penalty of 1. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Infornation, and default paramenter can be used. Sequences described herein can also be used as query sequences in TBLASTN searches, using specific or default parameters. 20 The nucleic acid sequences described herein can be used as a "query sequence" to perform a search against a database of non-redundant sequences, for example. Such searches can be performed using the BLASTN and BLASTX programs (version 2.0) of Altschul, et al. (1990) J Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the BLASTN program, score = 100, wordlength = 11 to evaluate identity at the nucleic acid level. BLAST 25 protein searches can be performed with the BLASTX program, score = 50, wordlength = 3 to evaluate identity at the protein level. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25:3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., BLASTX and BLASTN) can be used. Alignment of nucleotide 30 sequences for comparison can also be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Apple. Math. 2:482 (1981), by the homology alignment algorithm of 58 WO 2004/108894 PCT/US2004/017513 Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by 5 manual alignment and visual inspection (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 1995 supplement)). Nucleic acid sequences can be analyzed for hybridization properties. As used herein, the term "hybridizes under low stringency, medium stringency, high stringency, or very high stringency conditions" describes conditions for hybridization and washing. Guidance for 10 performing hybridization reactions can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Aqueous and nonaqueous methods are described in that reference and either can be used. Specific hybridization conditions referred to herein are as follows: 1) low stringency hybridization conditions in 6X sodium chloride/sodium citrate (SSC) at about 450C, followed by two washes in 0.2X SSC, 0.1% SDS at least at 50'C (the 15 temperature of the washes can be increased to 55'C for low stringency conditions); 2) medium stringency hybridization conditions in 6X SSC at about 450C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 600C; 3) high stringency hybridization conditions in 6X SSC at about 450C, followed by one, two, three, four or more washes in 0.2X SSC, 0.1% SDS at 650C) very high stringency hybridization conditions are 0.5M sodium phosphate, 7% SDS at 650C, followed 20 by one or more washes at 0.2X SSC, 1% SDS at 65*C. Very high stringency conditions (at least 4 or more washes) are the preferred conditions and the ones that should be used unless otherwise specified. The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of 25 the invention will be apparent from the description and drawings, and from the claims. DESCRIPTION OF DRAWINGS FIG 1. is a diagram of the biosynthesis of aspartate amino acid family. FIG 2. is a diagram of the methionine biosynthetic pathway. FIG 3. is a restriction map of plasmid MB3961 (vector backbone plasmid). 30 FIG 4. is a restriction map of plasmid MB4094 (vector backbone plasmid). 59 WO 2004/108894 PCT/US2004/017513 FIG 5. is a restriction map of plasmid MB4083 (hom-thrB deletion construct). FIG 6. is a restriction map of plasmid MB4084 (thrB deletion construct). FIG 7. is a restriction map of plasmid MB4165 (mncbR deletion construct). FIG 8. is a restriction map of plasmid MB4169 (hon-thrB deletion/ gpd-M. smegmatis 5 lysC(T311)-asd replacement construct). FIG 9. is a restriction map of plasmid MB4192 (hom-thrB deletion/ gpd-S. coelicolor hom(G362E) replacement construct. FIG 10. is a restriction map of plasmid MB4276 (pck deletion/ gpd-M. smegmnatis lysC(T31 1I)-asd replacement construct). 10 FIG 11. is a restriction map of plasmid MB4286 (mcbR deletion/ trcRBS-T. fusca metA replacement construct). FIG 12A. is a restriction map of plasmid MB4287 (mcbR deletion/ trcRBS-C. glutamicum metA (K233A)-mnetB replacement construct). FIG 12B. is a depiction of the nucleotide sequence of the DNA sequence in MB4278 15 (trcRBS-C. glutamicum metA YH) that spans from the trcRBS promoter to the stop of the metH gene. FIG. 13 is a graph depicting the results of an assay to detennine in vitro 0 acetyltransferase activity of C. glutanicun MetA from two C. glutamicun strains, MA-442 and MA-449, in the presence and absence of IPTG. 20 FIG. 14 is a graph depicting the results of an assay to determine sensitivity of MetA in C. glutamicum strain MA-442 to inhibition by methionine and S-AM. FIG. 15 is a graph depicting the results of an assay to determine the in vitro 0 acetyltransferase activity of T.fusca MetA expressed in C. glutanicum strains MA-456, MA570, MA-578, and MA-479. Rate is a measure of the change in OD412 divided by time per 25 nanograms of protein. FIG. 16 is a graph depicting the results of an assay to determine in vitro MetY activity of T. fusca MetY expressed in C. glutanicum strains MA-456 and MA-570. Rate is defined as the change in OD412 divided by time per nanograms of protein. FIG 17. is a graph depicting the results of an assay to detennine lysine production in C. 30 glutamicumn and B. lactofermentun strains expressing heterologous wild-type and mutant lysC variants. 60 WO 2004/108894 PCT/US2004/017513 FIG. 18 is a graph depicting results from an assay to determine lysine and homoserine production in C. glutamicum strain, MA-0331 in the presence and absence of the S. coelicolor hon G362E variant. FIG 19. is a graph depicting results from any assay to determine asparate concentrations 5 in C. glutanicun strains MA-0331 and MA-0463 in the presence and absence of E chrysanthemi ppc. FIG. 20 is a graph depicting results from an assay to detennine lysine production in C. glutamicum strains MA-0331 and MA-0463 transformed with heterologous wild-type dapA genes. 10 FIG. 21 is a graph depicting results from an assay to determine metabolite levels in C. glutamicum strain MA-1378 and its parent strains. FIG. 22 is a graph depicting results from an assay to determine homoserine and 0 acetylhomoserine levels in C. glutamicum strains MA-0428, MA-0579, MA-1351, MA-1559 grown in the presence or absence of IPTG. IPTG induces expression of the episomal plasmid 15 borne T. fusca metA gene. FIG 23. is a graph depicting results from an assay to determine metabolite levels in C. glutanicum strain MA-1559 and its parent strains. FIG. 24 is a graph depicting methionine concentrations in broths from fennentations of two C. glutamicum strains, MA-622, and MA-699, which express a MetA K233A mutant 20 polypeptide. Production by cells cultured in the presence and absence of IPTG is depicted. FIG. 25 is a graph depicting methionine concentrations in broths from fennentations of two C. glutamicun strains, MA-622 and MA-699, expressing a MetY D23 1A mutant polypeptide. Production by cells cultured in the presence and absence of IPTG is depicted. FIG. 26 is a graph depicting methionine concentrations in broths from fermentations of 25 two C. glutamicum strains, MA-622 and MA-699, expressing a C. glutanicun MetY G232A mutant polypeptide. Production by cells cultured in the presence and absence of IPTG is depicted. FIG. 27 is a graph depicting results from an assay to determine metabolite levels in C. glutanicum strains MA-1906, MA-2028, MA-1907, and MA-2025. Strains were grown in the 30 presence and absence of IPTG. 61 WO 2004/108894 PCT/US2004/017513 FIG. 28 is a graph depicting results from an assay to determine metabolite levels in C. glutamicum strains MA-1667 and MA-1743. Strains were grown in the presence and absence of IPTG. FIG. 29 is a graph depicting results from an assay to determine metabolite levels in C. 5 glutamicum strains MA-0569, MA-1688, MA-1421, and MA-1790. Strains were grown in the absence and/or presence of IPTG. FIG. 30 is a graph depicting results from an assay to determine metabolite levels in C. glutanicum strain MA-1 668 and its parent strains. 10 DETAILED DESCRIPTION The invention provides nucleic acids and modified bacteria that comprise nucleic acids encoding proteins that improve fermentative production of aspartate-derived amino acids and intermediate compounds. In particular, nucleic acids and bacteria relevant to the production of L-aspartate, L-lysine, L-methionine, S-adenosyl-L-methionine, threonine, L-isoleucine, 15 homoserine, 0-acetyl homoserine, homocysteine, and cystathionine are disclosed. The nucleic acids include genes that encode metabolic pathway proteins that modulate the biosynthesis of these amino acids, intermediates, and related metabolites either directly (e.g., via enzymatic conversion of intermediates) or indirectly (e.g., via transcriptional regulation of enzyme expression or regulation of amino acid export). The nucleic acid sequences encoding the 20 proteins can be derived from bacterial species other than the host organism (species) used for the production of members of the aspartic acid family of amino acids and related metabolites. The invention also provides methods for producing the bacteria and the amino acids, including the production of amino acids for use in animal feed additives. Modification of the sequences of certain bacterial proteins involved in amino acid 25 production can lead to increased yields of amino acids. Regulated (e.g., reduced or increased) expression of modified or unmodified (e.g., wild type) bacterial enzymes can likewise enhance amino acid production. The methods and compositions described herein apply to bacterial proteins that regulate the production of amino acids and related metabolites, (e.g., proteins involved in the metabolism of methionine, threonine, isoleucine, aspartate, lysine, cysteine and 30 sulfur), and nucleic acids encoding these proteins. These proteins include enzymes that catalyze 62 WO 2004/108894 PCT/US2004/017513 the conversion of intermediates of amino acid biosynthetic pathways to other intermediates and/or end product, and proteins that directly regulate the expression and/or function of such enzymes. Target proteins for manipulation include those enzymes that are subject to various types of regulation such as repression, attenuation, or feedback-inhibition. Amino acid 5 biosynthetic pathways in bacterial species, information regarding the proteins involved in these pathway, links to sequences of these proteins, and other related resources for identifying proteins for manipulation and/or expression as described herein can be accessed through linked databases described by Error! Hyperlink reference not valid.Bono et al., Genome Research, 8:203-210, 1998. 10 Strategies to manipulate the efficiency of amino acid biosynthesis for commercial production include overexpression, underexpression (including gene disruption or replacement), and conditional expression of specific genes, as well as genetic modification to optimize the activity of proteins. It is possible to reduce the sensitivity of biosynthetic enzymes to inhibitory stimuli, e.g., feedback inhibition due to the presence of biosynthetic pathway end products and 15 intermediates. For example, strains used for commercial production of lysine derived from either coryneform bacteria or Escherichia coli typically display relative insensitivity to feedback inhibition by lysine. Useful coryneform bacterial strains are also relatively resistant to inhibition by threonine. Novel methods and compositions described herein result in enhanced amino acid production. While not bound by theory, these methods and compositions may result in enzymes 20 that are enhanced due to reduced feedback inhibition in the presence of S-adenosylnethionine (S-AM) and/or methionine. Exemplary target genes for manipulation are bacterial dapA, horn, thrB, ppc, pyc, pck, metE, glyA, metA, metY, mcbR, lysC, asd, metB, netC, inetH, and metK genes. These target genes can be manipulated individually or in various combinations. In certain embodiments, it is useful to engineer strains such that the activity of particular 25 genes is reduced (e.g., by mutation or deletion of an endogenous gene). For example, stains with reduced activity of one or more of hom, thrB, pck, or mcbR gene products can exhibit enhanced production of amino acids and related intermediates. Two central carbon metabolism enzymes that direct carbon flow towards the aspartic acid family of amino acids and related metabolites include phosphoenolpyruvate carboxylase (Ppc) 30 and pyruvate carboxylase (Pyc). The initial steps of biosynthesis of aspartatic acid family amino acids are diagrammed in Figure 1. Both enzymes catalyze the formation of oxaloacetate, a 63 WO 2004/108894 PCT/US2004/017513 tricarboxylic acid (TCA) cycle component that is transaminated to aspartic acid. Aspartokinase (which is encoded by lysC in coryneforn bacteria) catalyzes the first enzyme reaction in the aspartic acid family of amino acids, and is known to be regulated by both feedback-inhibition and repression. Thus, deregulation of this enzyme is critical for the production of any of the 5 commercially important amino acids and related metabolites of the aspartic acid amino acid pathway (e.g. aspartic acid, asparagine, lysine, methionine, S-adenosyl-L-methionine, threonine, and isoleucine). As critical enzymes for regulating carbon flow towards amino acids derived from aspartate, overexpression (by increasing copy number and/or the use of strong promoters) and/or deregulation of each or both of these enzymes can enhance production of the amino acids 10 listed above. Other biosynthetic enzymes can be employed to enhance production of specific amino acids. Examples of enzymes involved in L-lysine biosynthesis include: dihydrodipicolinate synthase (DapA), dihydrodipicolinate reductase (DapB), diaminopimelate dehydrogenase (Ddh), and diaminopimelate decarboxylase (LysA). A list of enzymes involved in lysine biosynthesis is 15 provided in Table 1. Overexpression and/or deregulation of each of these enzymes can enhance production of lysine. Overexpression of biosynthetic enzymes can be achieved by increasing copy number of the gene of interest and/or operably linking the gene to apromoter optimal for expression, e.g., a strong or conditional promoter. Lysine productivity can be enhanced in strains overexpressing general and specific 20 regulatory enzymes. Specific amino acid substitutions in aspartokinase and dihydrodipicolinate synthase in E. coli can lead to increased lysine production by reducing feedback inhibition. Enhanced expression of lysC and/or dapA (either wild-type or feedback-insensitive alleles) can increase lysine production. Similarly, deregulated alleles of heterologous lysC and dapA genes can be expressed in a strain of coryneform bacteria such as Corynebacterium glutamicum. 25 Likewise, overexpression of either pyc orppc can enhance lysine production. Table. 1. Genes and enzymes involved in lysine biosynthesis Gene Enzyme Comment Pyc Pyruvate Carboxylase Anaplerotic reaction Ppc Phosphoenolpyruvate Anaplerotic reaction Carboxylase AspC Aspartate Aminotransferase Converts OAA to Aspartic acid. 64 WO 2004/108894 PCT/US2004/017513 LysC Aspartate Kinase (ITT) Depending upon source species, feedback inhibited by lysine or lysine plus threonine, and in some strains, repressed by lysine. Asd Aspartic Semialdehyde Dehydrogenase Horn Homoserine Dehydrogenase Key branch-point between lysine and methionine / threonine. DapA Dihydrodipicolinate Synthase Catalyzes first committed step in lysine biosynthesis. Is inhibited by lysine in E. coli. DapB Dihydrodipicolinate Reductase DapC N-succinyl-LL-diaminopimelate Aminotransferase DapD Tetrahydrodipicolinate N Succinyltransferase DapE N-succinyl-LL-diaminopimelate Desuccinylase DapF Diaminopimelate Epimerase LysA Diaminopimelate Decarboxylase Last step in lysine biosynthesis Ddh Diaminopimelate Dehydrogenase Redundant one-step pathway for converting tetrahydrodipicolinate to meso diaminopimelate in Corynebacteria Steps in the biosynthesis of methionine are diagrammed in Figure 2. Examples of enzymes that regulate methionine biosynthesis include: Homoserine dehydrogenase (Hom), 0 homoserine acetyltransferase (MetA), and 0-acetylhomoserine sulfhydrylase (MetY). 5 Overexpression (by increasing copy number of the gene of interest and/or through the use of strong promoters) and/or deregulation of each of these enzymes can enhance production of methionine. Methionine adenosyltransferase (MetK) catalyzes the production of S-adenosyl-L methionine from methionine. Reduction of netK-expressed enzyme activity can prevent the 10 conversion of methionine to S-adenosyl-L-methionine, thus enhancing the yield of metbionine from bacterial strains. Conversely, if one wanted to enhance carbon flow from methionine to S adenosyl-L-methionine, the metK gene could be overexpressed or desensitized to feedback inhibition. 15 Bacterial Host Strains Suitable host species for the production of amino acids include bacteria of the family Enterobacteriaceae such as an Escherichia coli bacteria and strains of the genus 65 WO 2004/108894 PCT/US2004/017513 Corynebacterium. The list below contains examples of species and strains that can be used as host strains for the expression of heterologous genes and the production of amino acids. Escherichia coli W3 110 F- IN(rrnD-rrnE) 1 X- (E. coli Genetic Stock Center) Corynebacteriuin glutam icum ATCC (American Type Culture Collection) 13032 5 Corynebacterium glutamnicum ATCC 21526 Corynebacterium glutamicum ATCC 21543 Corynebacteriumn glutamnicumn ATCC 21608 Corynebacterium acetoglutamicun ATCC 15806 Cotynebacterium acetoglutamnicum ATCC 21491 10 Corynebacterium acetoglutamicum NRRL B- 11473 Corynebacteriun acetoglutamicum NRRL B- 11475 Corynebacteriun acetoacidophilum ATCC 13870 Corynebacteriun nelassecola ATCC 17965 Corynebacteriun thermoaminogenes FERM BP-1539 15 Brevibacterium lactis Brevibacterium lactofermentum ATCC 13869 Brevibacterium lactofermentum NRRL B- 11470 Brevibacterium lactofermentumn NRRL B- 11471 Brevibacterium lactofermentum ATCC 21799 20 Brevibacterium lactofermentun ATCC 31269 Brevibacteriumnflavum ATCC 14067 Brevibacteriumflavum ATCC 21269 Brevibacteriumflavumn NRRL B-i 1472 Brevibacteriumflavun NRRL B-1 1474 25 Brevibacteriumflavum ATCC 21475 Brevibacterium divaricatum ATCC 14020 Bacteria strain for use a source of useful gene Suitable species and strains for heterologous bacterial genes include, but are not limited 30 to, these listed below. Mycobacteriumn smegmatis ATCC 700084 66 WO 2004/108894 PCT/US2004/017513 Ainycolatopsis mediterranei Streptonyces coelicolor A3(2) Thernobifidafusca ATCC 27730 Erwinia chrysanthemi ATCC 11663 5 Shewanella oneidensis Mycobacteriun leprae Mycobacterium tuberculosis H3 7Rv Lactobacillus plantaruin ATCC 8014 Bacillus sphaericus 10 Amino acid sequences of exemplary proteins, which can be used to enhance amino acid production, are provided in Table 16. Nucleotide sequences encoding these proteins are provided in Table 17. The sequences that can be expressed in a host strain are not limited to those sequences provided by the Tables. 15 Aspartokinases Aspartokinases (also referred to as aspartate kinases) are enzymes that catalyze the first committed step in the biosynthesis of aspartic acid family amino acids. The level and activity of aspartokinases are typically regulated by one or more end products of the pathway (lysine or 20 lysine plus threonine depending upon the bacterial species), both through feedback inhibition (also referred to as allosteric regulation) and transcriptional control (also called repression). Bacterial homologs of coryneform and E. coli aspartokinases can be used to enhance amino acid production. Coryneform and E. coli aspartokinases can be expressed in heterologous organisms to enhance amino acid production. 25 Homologs of the LysC protein from Coryneform bacteria In Coryneforn bacteria, aspartokinase is encoded by the lysC locus. The lysC locus contains two overlapping genes, lysC alpha and lysC beta. LysC alpha and lysC beta code for the 47- and 18-kD subunits of aspartokinase, respectively. A third open-reading frame is adjacent to the lysC locus, and encodes aspartate semialdehyde dehydrogenase (asd). The asd start codon 30 begins 24 base-pairs downstream from the end of the lysC open-reading frame, is expressed as part of the lysC operon. 67 WO 2004/108894 PCT/US2004/017513 The primary sequence of aspartokinase proteins and the structure of the lysC loci are conserved across several members of the order Actinomycetales. Examples of organisms that encode both an aspartokinase and an aspartate semialdehyde dehydrogenase that are highly related to the proteins from coryneform bacteria include Mycobacteriun smegmatis, 5 Anycolatopsis mediterranei, Streptomyces coelicolor A3(2), and Thernobifidafusca. In some instances these organisms contain the lysC and asd genes arranged as in coryneforni bacteria. Table 2 displays the percent identity of proteins from these Actinomycetes to the C. glutamicun aspartokinase and aspartate semialdehyde dehydrogenase proteins. Table 2. Percent Identity of Heterologous Aspartokinase and Aspartate Semialdehyde 10 Dehydrogenase Proteins to C. glutanicumn Proteins Aspartokinase Aspartate Semialdehyde Organism (% Identity to C. Dehydrogenase Orgaismglutamicumn LysC) (% Identity to C glutamnicum Asd) Mycobacterium smegmatis 73 68 Anycolatopsis mediterranei 73 62 Streptomyces coelicolor 64 50 Thermobifidafusca 64 48 Isolates of source strains such as Mycobacterium smeginatis, Amnycolatopsis mediterranei, Streptonyces coelicolor, and Thermnobifidafusca are available. The lysC operons can be amplified from genomic DNA prepared from each source strain, and the resulting PCR 15 product can be ligated into an E. coli / C. glutamicum shuttle vector. The homolog of the aspartokinase enzyme from the source strain can then be introduced into a host strain and expressed. E. coli Aspartokinase HI honolozs In coryneform bacteria there is concerted feedback inhibition of aspartokinase by lysine 20 and threonine. This is in contrast to E. coli, where there are three distinct aspartokinases that are independently allosterically regulated by lysine, threonine, or methionine. Homologs of the E. coli aspartokinase III (and other isoenzymes) can be used as an alternative source of deregulated aspartokinase proteins. Expression of these enzymes in coryneform bacteria may decrease the 68 WO 2004/108894 PCT/US2004/017513 complexity of pathway regulation. For example, the aspartokinase III genes are feedback inhibited only by lysine instead of lysine and threonine. Therefore, the advantages of expressing feedback-resistant alleles of aspartokinase III alleles include: (1) the increased likelihood of complete deregulation; and (2) the possible removal of the need for constructing either "leaky" 5 mutations in horn or threonine auxotrophs that need to be supplemented. These features can result in decreased feedback inhibition by lysine. Genes encoding aspartokinase III isoenzymes can be isolated from bacteria that are more distantly related to Corynebacteria than the Actinomycetes described above. For example, the E. chysanthemi and S. oneidensis gene products are 77% and 60% identical to the E. coli lysC 10 protein, respectively (and 26% and 35% identical to C. glutamicun LysC). The genes coding for aspartokinase III, or functional variants therof, from the non-Escherichia bacteria, Erwinia chrysanthemi and Shewanella oneidensis can be amplified and ligated into the appropriate shuttle vector for expression in C. glutamicun. Construction ofDeremdated Aspartokinase Alleles 15 Lysine analogs (e.g. S-(2-aminoethyl)cysteine (AEC)) or high concentrations of lysine (and/or threonine) can be used to identify strains with enhanced production of lysine. A. significant portion of the known lysine-resistant strains from both C. glutamicum and E. coli contain mutations at the lysC locus. Importantly, specific amino acid substitutions that confer increased resistance to AEC have been identified, and these substitutions map to well-conserved 20 residues. Specific amino acid substitutions that result in increased lysine productivity, at least in wild-type strains, include, but are not limited to, those listed in Table 3. In many instances, several useful substitutions have been identified at a particular residue. Furthermore, in various examples, strains have been identified that contain more than one lysC mutation. Sequence alignment confirms that the residues previously associated with feedback-resistance (i.e. AEC 25 resistance) are conserved in a variety of aspartokinase proteins from distantly related bacteria. Table 3. Amino Acid Substitutions That Release Aspartokinase Feedback Inhibition. Organism Amino Acid Substitution Coiynebacterium glutamicun (or related species) Ala 279 =>Pro Ser 301 => Tyr Thr 311 => Ile 69 WO 2004/108894 PCT/US2004/017513 Gly 345 = Asp Escherichia coli (many substitutions identified Gly 323 = Asp between amino acids 318-325 and 345-352) Leu 325 = Phe Ser 345 Ile Val 347 a Met Standard site-directed mutagenesis techniques can be used to construct aspartokinase variants that are not subject to allosteric regulation. After cloning PCR-amplified lysC or aspartokinase III genes into appropriate shuttle vectors, oligonucleotide-mediated site-directed 5 mutagenesis is use to provide modified alleles that encode substitutions such as those listed in Table 3. Vectors containing either wild-type genes or modified alleles can be be transformed into C. glutamicum alongside control vectors. The resulting transformants can be screened, for example, for lysine productivity, increased resistance to AEC, relative cross-feeding of lysine auxotrophs, or other methods known to those skilled in the art to identify the mutant alleles of 10 most interest. Assays to measure lysine productivity and/or enzyme activity can be used to confirm the screening results and select useful mutant alleles. Techniques such as high pressure liquid chromatography (HPLC) and HPLC-mass spectrometry (MS) assays to quantify levels of members of the aspartic acid family of amino acids and related metabolites are known to those skilled in the art. 15 Methods for random generating amino acid substitutions within the lysC coding sequence, through methods such as mutagenenic PCR, can be used. These methods are familiar to those skilled in the art; for example, PCR can be performed using the GeneMorph PCR mutagenesis kit (Stratagene, La Jolla, Ca) according to manufacturer's instructions to achieve medium and high range mutation frequencies. 20 Evaluation of the heterologous enzymes can be carried out in the presence of the LysC, DapA, Pyc, and Ppc proteins that are endogenous to the host strain. In certain instances, it will be helpful to have reagents to specifically assess the functionality of the heterologous biosynthetic proteins. Phenotypic assays for AEC resistance or enzyme assays can be used to confirm function of wild-type and modified variants of heterologous aspartokinases. The function of 70 WO 2004/108894 PCT/US2004/017513 cloned heterologous genes can be confimed by complementation of genetically characterized mutants of E. coli or C. glutamicum. Many of the E. coli strains are publicly available from the E. coli Genetic Stock Center (http://cgsc.biology.yale.edu/top.html). C. glutanicum mutants have also been described. 5 Dihydrodipicolinate synthases Dihydrodipicolinate synthase, encoded by dapA, is the branch point enzyme that commits carbon to lysine biosynthesis rather than threonine/methionine production. DapA converts aspartate-p-semialdehyde to 2,3-dihydrodipicolinate. DapA overexpression has been shown to result in increased lysine production in both E. coli and coryneform bacteria. In E. coli, DapA is 10 allosterically regulated by lysine, whereas existing evidence suggests that C. glutamicun regulation occurs at the level of gene expression. Dihydrodipicolinate synthase proteins are not as well conserved amongst Actinomycetes as compared to LysC proteins. Both wild-type and deregulated DapA proteins that are homologous to the C. glutamicum protein or the E. coli DapA protein can be expressed to enhance lysine production. Candidate 15 organisms that can be sources of dapA genes are shown in Table 4. The known sequence from M. tuberculosis or M. leprae can be used to identify homologous genes from M. smegmatis. Table 4. Percent Identity of Dihydrodipicolinate Synthase Proteins. % Identity to % Identity to E. coli Organism C. glutanicum DapA DapA Coiynebacterium glutamicum 100 34 Mycobacteriuin tuberculosis 59 33 H37Rv * Streptomyces coelicolor 53 33 Thermobifidafusca 48 33 Erwinia chrysanthemi 34 81 * Can be used for cloning of the M. smegmatis dapA gene. 20 Amino acid substitutions that relieve feedback inhibition of E. coli DapA by lysine have been described. Examples of such substitutions are listed in Table 5. Some of the residues that can be altered to relieve feedback inhibition are conserved in all of the candidate DapA proteins 71 WO 2004/108894 PCT/US2004/017513 (e.g. Leu 88, His 118). This sequence conservation suggests that similar substitutions in the proteins from Actinomycetes may further enhance protein function. Site-directed mutagenesis can be employed to engineer deregulated DapA variants. DapA isolates can be tested for increased lysine production using methods described 5 above. For instance, one could distribute a culture of a lysine-requiring bacterium on a growth medium lacking lysine. A population of dapA mutants obtained by site-directed mutagenesis could then be introduced (through transformation or conjugation) into a wild-type coryneform strain, and subsequently spread onto the agar plate containing the distributed lysine auxotroph. A feedback-resistant dapA mutant would overproduce lysine which would be excreted into the 10 growth medium and satisfy the growth requirement of the auxotroph previously distributed on the agar plate. Therefore a halo of growth of the lysine auxotroph around a dapA mutation containing colony would indicate the presence of the desired feedback-resistant mutation. Table 5. Amino Acid Substitutions in Dihydrodipicolinate Synthase That Release 15 Feedback Inhibition. Amino Acid Substitution (using E. coli Organism DapA amino acid #' as reference Glycine max Asn 80 => Ile Nicotiana sylvestris Escherichia coli Ala 81 => Val Zea mays Glu 84 => Lys Methylobacillus glycogens Leu 88 > Phe Escherichia coli His 118 z Tyr Pyruvate and phosphoenolpyruvate carboxylases Pyruvate carboxylase (Pyc) and phosphoenolpyruvate carboxylase (Ppc) catalyze the synthesis of oxaloacetic acid (OAA), the citric acid cycle intermediate that feeds directly into 20 lysine biosynthesis. These anaplerotic reactions have been associated with improved yields of several amino acids, including lysine, and are obviously important to maximize OAA formation. In addition, a variant of the C. glutamicum Pyc protein containing a P458S substitution, has been shown to have increased activity, as demonstrated by increased lysine production. Proline 458 is 72 WO 2004/108894 PCT/US2004/017513 a highly conserved amino acid position across a broad range of pyruvate carboxylases, including proteins from the Actinomycetes S. coelicolor (amino acid residue 449) and M smemnatis (amino acid residue 448). Similar amino acid substitutions in these proteins may enhance anaplerotic activity. A third gene, PEP carboxykinase (pck), expresses an enzyme that catalyzes 5 the fonnation of phosphoenolpyruvate from OAA (for gluconeogenesis), and thus functionally competes withpyc andppc. Enhancing expression ofpyc andppc can maximize OAA formation. Reducing or eliminating pck activity can also improve OAA formation. Homoserine dehydrogenase 10 Homoserine dehydrogenase (Hom) catalyzes the conversion of aspartate semialdehyde to homoserine. Hom is feedback-inhibited by threonine and repressed by methionine in coryneform bacteria. It is thought that this enzyme has greater affinity for aspartate semialdehyde than does the competing dihydrodipicolinate synthase (DapA) reaction in the lysine branch, but slight carbon "spillage" down the threonine pathway may still block Hom activity. Feedback-resistant 15 variants of Hom, overexpression of hom, and/or deregulated transcription of hon, or a combination of any of these approaches, can enhance methionine, threonine, isoleucine, or S adenosyl-L-methionine production. Decreased Hom activity can enhance lysine production. Bifunctional enzymes with homoserine dehydrogenase activity, such as enzymes encoded by E. coli metL (aspartokinase II-homoserine dehydrogenase II) and thrA (aspartokinase I-homoserine 20 dehydrogenase I), can also be used to enhance amino acid production. Targeted amino acid substitutions can be generated either to decrease, but not eliminate, Hom activity or to relieve Hom from feedback inhibition by threonine. Mutations that result in decreased Hom activity are referred to as "leaky" Hom mutations. In the C. glutanicun homoserine dehydrogenase, amino acid residues have been identified that can be mutated to 25 either enhance or decrease Hom activity. Several of these specific amino acids are well conserved in Hom proteins in other Actinomycetes (see Table 6). Table 6. Amino acid substitutions that result in either "leaky" Hom alleles or Hom proteins relieved of feedback inhibition by threonine. 30 73 WO 2004/108894 PCT/US2004/017513 Corresponding amino acid residue from heterologous homoserine dehydrogenase C. glutamicum residue M. smegmatis S. coelicolor T. fusca Leaky Hom alleles L23F V10 L10 L192 V59A V46 V46 V228 V1041 190 191 1274 Deregulated Hom alleles G378E G364 G362 G545 K428 truncation N/a R412 truncation R595 truncation homdr N/a R412 (delete bp R595 ( delete bp 1937 -- frameshift 1785 - frameshift mutation) mutation) *The homdr mutation is described on page 11 of WO 93/09225. This mutation is a single base pair deletion at 1964 bp that disrupts the homdr reading frame at codon 429. This results in a frame shift mutation that induces approximately ten amino acid changes and a premature termination, or truncation, i.e., deletion of approximately the last seven amino acid residues of 5 the polypeptide. It is believed that this single base deletion in the carboxy terminus of the hom dr gene radically alters the protein sequence of the carboxyl terminus of the enzyme, changing its conformation in such a way that the interaction of threonine with a binding site is prevented. 10 Homoserine O-acetyltransferase Homoserine 0-acetyltransferase (MetA) acts at the first committed step in methionine biosynthesis (Park, S. et al., Mol. Cells 8:286-294, 1998). The MetA enzyme catalyzes the conversion of homoserine to 0-acetyl-homoserine. MetA is strongly regulated by end products of the methionine biosynthetic pathway. In E. coli, allosteric regulation occurs by both S-AM 15 and methionine, apparently at two separate allosteric sites. Moreover, MetJ and S-AM cause 74 WO 2004/108894 PCT/US2004/017513 transcriptional repression of metA. In corynefonn bacteria, MetA may be allosterically inhibited by methionine and S-AM, similarly to E. coli. MetA synthesis can be repressed by methionine alone. In addition, trifluoromethionine-resistance has been associated with inetA in early studies. Reduction of negative regulation by S-AM and methionine can enhance methionine or S 5 adenosyl-L-methionine production. Increased MetA activity can enhance production of aspartate-derived amino acids such as methionine and S-AM, whereas decreased MetA activity can promote the formation of amino acids such as threonine and isoleucine. O-Acetyihomoserine sulfhydrylase O-Acetylhomoserine sulfhydrylase (MetY) catalyzes the conversion of O-acetyl 10 homoserine to homocysteine. MetY may be repressed by methionine in coryneform bacteria, with a 99% reduction in enzyme activity in the presence of 0.5 mM methionine. It is likely that this inhibition represents the combined effect of allosteric regulation and repression of gene expression. In addition, enzyme activity is inhibited by methionine, homoserine, and 0 acetylserine. It is possible that S-AM also modulates MetY activity. Deregulated MetY can 15 enhance methionine or S-AM production. Homoserine kinase Homoserine kinase is encoded by thrB gene, which is part of the hom-thrB operon. ThrB phosphorylates homoserine. Threonine inhibition of homoserine kinase has been observed in several species. Some studies suggest that phosphorylation of homoserine by homoserine kinase 20 may limit threonine biosynthesis under some conditions. Increased ThrB activity can enhance production of aspartate-derived amino acids such as isoleucine and threonine, whereas decreased ThrB activity can promote the formation of amino acids including, but not limited to, lysine and methionine. 25 Methionine adenosyltransferase Methionine adenosyltransferase converts methionine to S-adenosyl-L-methionine (S AM). Down-regulating methionine adenosyltransferase (MetK) can enhance production of methionine by inhibiting conversion to S-AM. Enhancing expression of metK or activity of MetK can maximize production of S-AM. 30 75 WO 2004/108894 PCT/US2004/017513 O-Succinylhomoserine (thio)-lyase/O-acetylhomoserine (thio)-lyase O-Succinylhomoserine (thio)-lyase (MetB; also known as cystathionine gamma synthase) catalyzes the conversion of O-succinyl homoserine or O-acetyl homoserine to cystathionine. Increasing expression or activity of MetB can lead to increased methionine or S 5 AM. Cystathionine beta-lyase Cystathionine beta-lyase (MetC) can convert cystathionine to homocysteine. Increasing production of homocysteine can lead to increased production of methionine. Thus, increased 10 MetC expression or activity can increase methionine or S-adenosyl-L-methionine production. Glutamate dehydrogenase The enzyme glutamate dehydrogenase, encoded by the gdh gene, catalyses the reductive amination of oc-ketoglutarate to yield glutamic acid. Increasing expression or activity of 15 glutamate dehydrogenase can lead to increased lysine, threonine, isoleucine, valine, proline, or tryptophan. Diaminopimelate dehydrogenase Diaminopimelate dehydrogenase, encoded by the ddh gene in coryneform bacteria, 20 catalyzes the the NADPH-dependent reduction of ammonia and L-2-amino-6-oxopimelate to form meso-2,6-dianinopimelate, the direct precursor of L-lysine in the alternative pathway of lysine biosynthesis. Overexpression of diaminopimelate dehydrogenase can increase lysine production. 25 Detergent sensitivity rescuer Detergent sensitivity rescuer (dtsR1), encoding a protein related to the alpha subunit of acetyl CoA carboxylase, is a surfactant resistance gene. Increasing expression or activity of DtsR1 can lead to increased production of lysine. 30 5-Methyltetrahydrofolate homocysteine methyltransferase 76 WO 2004/108894 PCT/US2004/017513 5-Methyltetrahydrofolate homocysteine methyltransferase (MetH) catalyzes the conversion of homocysteine to methionine. This reaction is dependent on cobalamin (vitamin B 12). Increasing MetH expression or activity can lead to increased production of methionine or S-adenosyl-L-methionine. 5 5-Methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 5-Methyltetrahydropteroyltriglutamate-homocysteine methyltransferase (MetE) also catalyzes the conversion of homocysteine to methionine. Increasing MetE expression or activity can lead to increased production of methionine or S-adenosyl-L-methionine. 10 Serine hydroxymethyltransferase Increasing serine hydroxymethyltransferase (GlyA) expression or activity can lead to enhanced methionine or S-adenosyl-L-methionine production. 15 5,10-Methylenetetrahydrofolate reductase 5,10-Methylenetetrahydrofolate reductase (MetF) catalyzes the reduction of methylenetetrahydrofolate to methyltetrahydrofolate, a cofactor for homocysteine methylation to methionine. Increasing expression or activity of MetF can lead to increased methionine or S adenosyl-L-methionine production. 20 Serine 0-acetyltransferase Serine 0-acetyltransferase (CysE) catalyzes the conversion of serine to 0-acetylserine. Increasing expression or activity of CysE can lead to increased expression of methionine or S adenosyl-L-methionine. 25 D-3-phosphoglycerate dehydrogenase D-3-phosphoglycerate dehydrogenase (SerA) catalyzes the first step in shrine biosynthesis, and is allosterically inhibited by serine. Increasing expression or activity of SerA can lead to increased production of methionine or S-adenosyl-L-methionine. 30 McbR Gene Product 77 WO 2004/108894 PCT/US2004/017513 The mcbR gene product of C. glutanicun was identified as a putative transcriptional repressor of the TetR-family and may be involved in the regulation of the metabolic network directing the synthesis of methionine in C. glutamicum (Rey et al., JBiotechnol. 103(l):51-65, 2003). The mcbR gene product represses expression of metY, metK, cysK, cys1, hom, pyk, 5 ssuD, and possibly other genes. It is possible that McbR represses expression in combination with small molecules such as S-AM or methionine. To date, specific alleles of McbR that prevent binding of either S-AM or methionine have not been identified. Reducing expression of McbR, and/or preventing regulation of McbR by S-AM can enhance amino acid production. MebR is involved in the regulation of sulfur containing amino acids (e.g., cysteine, 10 methionine). Reduced McbR expression or activity can also enhance production of any of the aspartate family of amino acids that are derived from homoserine (e.g., homoserine, O-acetyl-L homoserine, O-succinyl-L-homoserine, cystathionine, L-homocysteine, L-methionine, S adenosyl-L-methionine (S-AM), 0-phospho-L-homoserin'e, threonine, 2-oxobutanoate, (S)-2 aceto-2-hydroxybutanoate, (S)-2-hydroxy-3-methyl-3-oxopentanoate, (R)-2,3-Dihydroxy-3 15 methylpentanoate, (R)-2-oxo-3-methylpentanoate, and L-isoleucine). Lysine exporter protein Lysine exporter protein (LysE) is a specific lysine translocator that mediates efflux of lysine from the cell. In C. glutamicuin with a deletion in the lysE gene, L-lysine can reach an 20 intracellular concentration of more than IM. (Erdmann, A., et al. J Gen Microbiol. 139,:3115 3122, 1993). Overexpression or increased activity of this exporter protein can enhance lysine production. 25 Efflux proteins A substantial number of bacterial genes encode membrane transport proteins. A subset of these membrane transport protein mediate efflux of amino acids from the cell. For example, Corynebacterium glutamicun express a threonine efflux protein. Loss of activity of this protein leads to a high intracellular accumulation of threonine (Simic et al., JBacteriol. 183(18):5317 30 5324, 2001). Increasing expression or activity of efflux proteins can lead to increased production of various amino acids. Useful efflux proteins include proteins of the drug/metabolite transporter 78 WO 2004/108894 PCT/US2004/017513 family. The C. glutainicum proteins listed in Table 16 or homologs thereof can be used to increase amino acid production. Isolation of bacterial genes 5 Bacterial genes for expression in host strains can be isolated by methods known in the art. See, for example, Sambrook, J., and Russell, D.W. (Molecular Cloning: A Laboratory Manual, 3nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001) for methods of construction of recombinant nucleic acids. Genomic DNA from source strains can be prepared using known methods (see, e.g., Saito, H. and, Miura, K. Biochim Biophys Acta. 72:619-629, 10 1963) and genes can be amplified from genomic DNA using PCR (U.S. Pats. 4,683,195 and 4,683,202, Saiki, et al. Science 230:350-1354, 1985). DNA primers to be used for the amplification reaction are those complemental to both 3' terminals of a double stranded DNA containing an entire region or a partial region of a gene of interest. When only a partial region of a gene is amplified, it is necessary to use such DNA 15 fragments as primers to perform screening of a DNA fragment containing the entire region from a chromosomal DNA library. When the entire region gene is amplified; a PCR reaction solution including DNA fragments containing the amplified gene is subjected to agarose gel electrophoresis, and then a DNA fragment is extracted and cloned into a vector appropriate for expression in bacterial systems. 20 DNA primers for PCR may be adequately prepared on the basis of, for example, a sequence known in the source strain (Richaud, F. et al., J Bacteriol. 297,1986). For example, primers that can amplify a region comprising the nucleotide bases coding for the heterologous gene of interest can be used. Synthesis of the primers can be performed by an ordinary method such as a phosphoamidite method (see Tetrahed Lett. 22:1859,1981) by using a commercially 25 available DNA synthesizer (for example, DNA Synthesizer Model 3 8OB produced by Applied Biosystems Inc.). Further, the PCR can be performed by using a commercially available PCR apparatus and Taq DNA polymerase, or other polymerases that display higher fidelity, in accordance with a method designated by the supplier. Construction of Variant Alleles 30 Many enzymes that regulate amino acid production are subject to allosteric feedback inhibition by biosynthetic pathway intermediates or end products. Useful variants of these enzymes can be generated by substitution of residues responsible for feedback inhibition. For 79 WO 2004/108894 PCT/US2004/017513 example, enzymes such as homoserine 0-acetyltransferase (encoded by metA) are feedback inhibited by S-AM. To generate deregulated variants of homoserine 0-acetyltransferase, we identified putative S-AM binding residues within the amino acid sequence of homoserine 0 acetyltransferase, and then constructed plasmids to express MetA variants containing specific 5 amino acid substitutions that are predicted to confer increased resistance to allosteric regulation by S-AM. Strains expressing these variants showed increased production of methionine (see Examples, below). Additional putative S-AM binding residues in various enzymes include, but are not limited to, those listed in Tables 9 and 10. One or more of the residues in Tables 9 and 10 can be 10 substituted with a non-conservative residue, or with an alanine (e.g., where the wild type residue is other than an alanine). Sequence alignment confirms that the residues potentially associated with feedback-sensitivity to S-AM are conserved in a variety of MetA and MetY proteins from distantly related bacteria. Standard site-directed mutagenesis techniques can be used to construct variants that are 15 less sensitive to allosteric regulation. After cloning a PCR-amplified gene or genes into appropriate shuttle vectors, oligonucleotide-mediated site-directed mutagenesis is use to provide modified alleles that encode specific amino acid substitutions. Vectors containing either wild type genes or modified alleles can be transformed into C. glutainicun, or another suitable host strain, alongside control vectors. The resulting transformants can be screened, for example, for 20 amino acid productivity, increased resistance to feedback inhibition by S-AM, activity of the enzyme of interest, or other methods known to those skilled in the art to identify the variant alleles of most interest. Assays to measure amino acid productivity and/or enzyme activity can be used to confirm the screening results and select useful variant alleles. Techniques such as high pressure liquid chromatography (HPLC) and HPLC-mass spectrometry (MS) assays to 25 quantify levels of amino acids and related metabolites are known to those skilled in the art. Methods for generating random amino acid substitutions within a coding sequence, through methods such as inutagenenic PCR, can be used (e.g., to generate variants for screening for reduced feedback inhibition, or for introducing further variation into enhanced variant sequences). For example, PCR can be performed using the GeneMorph*PCR mutagenesis kit 30 (Stratagene, La Jolla, Ca) according to manufacturer's instructions to achieve medium and high range mutation frequencies. Other methods are also known in the art. 80 WO 2004/108894 PCT/US2004/017513 Evaluation of enzymes can be carried out in the presence of additional enzymes that are endogenous to the host strain. In certain instances, it will be helpful to have reagents to specifically assess the functionality of a biosynthetic protein that is not endogenous to the organism (e.g., an episomally expressed protein). Phenotypic assays for feedback inhibition or 5 enzyme assays can be used to confirm function of wild-type and variants of biosynthetic enzymes. The function of cloned genes can be confirmed by complementation of genetically characterized mutants of the host organism (e.g., the host E. coli or C. glutanicum bacterium). Many of the E. coli strains are publicly available from the E. coli Genetic Stock Center (http://cgsc.biology.yale.edu/top.htnl). C. glutamicum mutants have also been described. 10 Expression of genes Bacterial genes can be expressed in host bacterial strains using methods known in the art. In some cases, overexpression of a bacterial gene (e.g., a heterologous and/or variant gene) will enhance amino acid production by the host strain. Overexpression of a gene can be achieved in a 15 variety of ways. For example, multiple copies of the gene can be expressed, or the promoter, regulatory elements, and/or ribosome binding site upstream of a gene (e.g., a variant allele of a gene, or an endogenous gene) can be modified for optimal expression in the host strain. In addition, the presence of even one additional copy of the gene can achieve increased expression, even where the host strain already harbors one or more copies of the corresponding gene native 20 to the host species. The gene can be operably linked to a strong constitutive promoter or an inducible promoter (e.g., trc, lac) and induced under conditions that facilitate maximal amino acid production. Methods to enhance stability of the mRNA are known to those skilled in the art and can be used to ensure consistently high levels of expressed proteins. See, for example, Keasling, J., Trends in Biotechnology 17:452-460, 1999. Optimization of media and culture 25 conditions may also enhance expression of the gene. Methods for facilitating expression of genes in bacteria have been described. See, for example, Guerrero, C, et al., Gene 138(1-2):35-41, 1994; Eikmanns, B.J., et al. Gene 102(1):93 8, 1991; Schwarzer, A., and Puhler, A. Biotechnol. 9(l):84-7, 1991; Labarre, J., et al., J Bacteriol. 175(4):1001-7, 1993; Malumbres, M., et al. Gene 134(1):15-24, 1993; Jensen, P.R., 30 and Hanmner, K. Biotechnol Bioeng. 158(2-3):191-5, 1998; Makrides, S.C. Microbiol Rev. 81 WO 2004/108894 PCT/US2004/017513 60(3):512-38, 1996; Tsuchiya et al. Bio/Technology 6:428-431,1988; U.S. Pat. 5,965,931; U.S. Pat. 4,601,893; and U.S. Pat. 5,175,108. A gene of interest (e.g., a heterologous or variant gene) should be operably linked to an appropriate promoter, such as a native or host strain-derived promoter, a phage promoter, one of 5 the well-characterized E. coli promoters (e.g. tac, trp, phoA, araBAD, or variants thereof etc.). Other suitable promoters are also available. In one embodiment, the heterologous gene is operably linked to a promoter that permits expression of the heterologous gene at levels at least 2-fold, 5-fold, or 10-fold higher than levels of the endogenous homolog in the host strain. Plasmid vectors that aid the process of gene amplification by integration into the chromosome 10 can be used. See, for example, by Reinscheid et al. (Appl. Environ Microbiol. 60: 126 132,1994). In this method, the complete gene is cloned in a plasmid vector that can replicate in a host (typically E. coli), but not in C. glutamicun. These vectors include, for example, pSUP301 (Simon et al., Bio/Technol. 1, 784-79,1983), pK1 8mob or pK19mob (Schfer et al., Gene 145:69 73, 1994), PGEM-T (Promega Corp., Madison, Wisc., USA), pCR2.1-TOPO (Shuman JBiol 15 Chem. 269:32678-84, 1994; U.S. Pat. 5,487,993), pCR.RTM.Blunt (Invitrogen, Groningen, Holland; Bernard et al., JMol Biol., 234:534-541,1993), pEM1 (Schrumpf et al. JBacteriol. 173:4510-4516, 1991) or'pBGS8 (Spratt et al., Gene 41:337-342, 1996). The plasmid vector that contains the gene to be amplified is then transferred into the desired strain of C. glutanicum by conjugation or transformation. The method of conjugation is described, for example, by Schfer 20 et al. (Appl Environ Microbiol. 60:756-759,1994). Methods for transformation are described, for example, by Thierbach et al. (Appl Microbiol Biotechnol. 29:356-362,1988), Dunican and Shivnan (Bio/Technol. 7:1067-1070,1989) and Tauch et al. (FEMS Microbiol Lett. 123:343 347,1994). After homologous recombination by means of a genetic cross over event, the resulting strain contains the desired gene integrated in the host genome. 25 An appropriate expression plasmid can also contain at least one selectable marker. A selectable marker can be a nucleotide sequence that confers antibiotic resistance in a host cell. These selectable markers include ampicillin, cefazolin, augmentin, cefoxitin, ceftazidime, ceftiofur, cephalothin, enrofloxicin, kanamycin, spectinomycin, streptomycin, tetracycline, ticarcillin, tilmicosin, or chloramphenicol resistance genes. Additional selectable markers include 30 genes that can complement nutritional auxotrophies present in a particular host strain (e.g. leucine, alanine, or homoserine auxotrophies). 82 WO 2004/108894 PCT/US2004/017513 In one embodiment, a replicative vector is used for expression of the heterologous gene. An exemplary replicative vector can include the following: a) a selectable marker, e.g., an antibiotic marker, such as kanR (from pACYC 184); b) an origin of replication in E. coli, such as the P1 5a ori (from pACYC 184); c) an origin of replication in C. glutamicumn such as that found 5 in pBL1; d) a promoter segment, with or without an accompanying repressor gene; and e) a terminator segment. The promoter segment can be a lac, trc, trcRBS, tac, or kPLIZPR (from E. coli), orphoA, gpd, rplM, rpsJ (from C. glutanmicum). The repressor gene can be lac or c1857, for lac, trc, trcRBS, tac and kPJAPR , respectively. The tenninator segment can be from E. coli rrnB (from ptrc99a), the T7 terminator (from pET26), or a terminator segment from C. 10 glutamnicun. In another embodiment, an integrative vector is used for expression of the heterologous gene. An exemplary integrative vector can include: a selectable marker, e.g., an antibiotic marker, such as kanR (from pACYC1 84); b) an origin of replication in E. coli, such as the P1 5a ori (from pACYC184); c) and d) two segments of the C. glutamicum genome that flank the 15 segment to be replaced, such as the pck or hom genes; e) the sacB gene from B. subtilis; f) a promoter segment to control expression of the heterologous gene, with or without an accompanying repressor gene; and g) a terminator segment. The promoter segment can be lac, trc, trcRBS, tac, or kPJIAPR (from E. coli), or phoA, gpd, rplM, rpsJ (from C. glutanicun). The repressor genes can be lacI or cI, for lac, trc, trcRBS, tac and XPJAPR, respectively. The 20 terminator segment can be from E. coli rrnB (from ptrc99a), the T7 tenninator (from pET26), or a terminator segment from C. glutanicum. The possible integrative or replicative plasmids, or reagents used to construct these plasmids, are not limited to those described herein. Other plasmids are familiar to those in the art. For use of terminator segments from C. glutamicun, the terminator and flanking 25 sequences can be supplied by a single gene segment. In this case, the above elements will be arranged in the following sequence on the plasmid: marker; origin of replication; a segment of the C. glutanicum genome that flanks the segment to be replaced; promoter; C. glutamicum terminator; sacB gene. The sacB gene can also be placed between the origin of replication and the C. glutanicum flanking segment. Integration and excision results in the insertion of only the 30 promoter, terminator, and the gene of interest. 83 WO 2004/108894 PCT/US2004/017513 A multiple cloning site can be positioned in one of several possible locations between the plasmid elements described above in order to facilitate insertion of the particular genes of interest (e.g., lysC, etc.) into the plasmid. For both replicative and integrative vectors, the addition of an origin of conjugative transfer, such as RP4 mob, can facilitate gene transfer 5 between E. coli and C. glutamnicum. In one embodiment, a bacterial gene is expressed in a host strain with an episomal plasmid. Suitable plasmids include those that replicate in the chosen host strain, such as a coryneform bacterium. Many known plasmid vectors, such as e.g. pZl (Menkel et al., Applied Environ Microbiol. 64:549-554, 1989), pEKEx1 (Eikmanns et al., Gene 102:93-98,1991) or 10 pHS2-1 (Sonnen et al., Gene 107:69-74, 1991) are based on the cryptic plasmids pHM1519, pBL1 or pGA1. Other plasmid vectors that can be used include those based on pCG4 (U.S. Pat. 4,489,160), or pNG2 (Serwold-Davis et al., FEMS Microbiol Lett. 66:119-124,1990), or pAGI (U.S. Pat. 5,158,891). Alternatively, the gene or genes may be integrated into chromosome of a host microorganism by a method using transduction, transposon (Berg, D. E. and Berg, C. M., 15 Bio/Technol. 1:417,1983), Mu phage (Japanese Patent Application Laid-open No. 2-109985) or homologous or non-homologous recombination (Experiments in Molecular Genetics, Cold Spring Harbor Lab.,1972). In addition, it may be advantageous for the production of amino acids to enhance one or more enzymes of the particular biosynthesis pathway, of glycolysis, of anaplerosis, or of amino 20 acid export, using more than one gene or using a gene in combination with other biosynthetic pathway genes. It also may be advantageous to simultaneously attenuate the expression of particular gene products to maximize production of a particular amino acid. For example, attenuation of metK expression or MetK activity can enhance methionine production by prevention conversion of 25 methionine to S-AM. Methods of introducing nucleic acids into host cells are known in the art. See, for example, Sambrook, J., and Russell, D.W. Molecular Cloning: A Laboratory Manual, 3 nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001. Suitable methods include transformation using calcium chloride (Mandel, M. and Higa, A. J. Mol Biol. 53:159, 1970) and 30 electroporation (Rest, M.E. van der, et al. Apple Microbiol. Biotechnol. 52:541-545, 1999), or conjugation. 84 WO 2004/108894 PCT/US2004/017513 Cultivation of bacteria The bacteria containing gene(s) of interest (e.g., heterologous genes, variant genes encoding enzymes with reduced feedback inhibition) can be cultured continuously or by a batch 5 fermentation process (batch culture). Other commercially used process variations known to those skilled in the art include fed batch (feed process) or repeated fed batch process (repetitive feed process). A summary of known culture methods is described in the textbook by Chmiel (Bioprozesstechnik 1. Einfuhrung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, 10 Braunschweig/Wiesbaden, 1994)). The culture medium to be used fulfills the requirements of the particular host strains. General descriptions of culture media suitable for various microorganisms can be found in the book "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981), although those skilled in the art will recognize that the 15 composition of the culture medium is often modified beyond simple growth requirements in order to maximize product formation. Sugars and carbohydrates, such as e.g., glucose, sucrose, lactose, fructose, maltose, starch and cellulose; oils and fats, such as e.g. soy oil, sunflower oil, groundnut oil and coconut fat; fatty acids, such as e.g. palmitic acid, stearic acid and linoleic acid; alcohols, such as e.g. 20 glycerol and ethanol; and organic acids, such as e.g. acetic acid, can be used as the source of carbon, either individually or as a mixture. Organic nitrogen-containing compounds, such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soy protein hydrolysate, soya bean flour and urea, or inorganic compounds, such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium 25 carbonate and ammonium nitrate, can be used as the source of nitrogen. The sources of nitrogen can be used individually or as a mixture. Phosphoric acid, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, or the corresponding sodium-containing salts can-be used as the source of phosphorus. Organic and inorganic sulfur-containing compounds, such as, for example, sulfates, 30 thiosulfates, sulfites, reduced sources such as H 2 S, sulfides, derivatives of sulfides, methyl 85 WO 2004/108894 PCT/US2004/017513 mercaptan, thioglycolytes, thiocyanates, and thiourea, can be used as sulfur sources for the preparation of sulfur-containing amino acids. The culture medium can also include salts of metals, e.g., magnesium sulfate or iron sulfate, which are necessary for growth. Essential growth substances, such as amino acids and 5 vitamins (e.g. cobalamin), can be employed in addition to the above-mentioned substances. Suitable precursors can moreover be added to the culture medium. The starting substances mentioned can be added to the culture as a single batch, or can be fed in during the culture at multiple points in time. Basic compounds, such as sodium hydroxide, potassium hydroxide, calcium carbonate, 10 ammonia or aqueous ammonia, or acid compounds, such as phosphoric acid or sulfuric acid, can be employed in a suitable manner to control the pH. Antifoams, such as e.g. fatty acid polyglycol esters, can be employed to control the development of foam. Suitable substances having a selective action, such as e.g. antibiotics, can be added to the medium to maintain the stability of plasmids. To maintain aerobic conditions, oxygen or oxygen-containing gas 15 mixtures, such as e.g. air, are introduced into the culture. The temperature of the culture is typically between 20-45'C and preferably 25-40'C. Culturing is continued until a maximum of the desired product has formed, usually within 10 hours to 160 hours. The fermentation broths obtained in this way, can contain a dry weight of 2.5 to 25 wt. % of the amino acid of interest. It also can be advantageous if the fermentation is conducted in 20 such that the growth and metabolism of the production microorganism is limited by the rate of carbohydrate addtion for some portion of the fermentation cycle, preferably at least for 30% of the duration of the fermentation. For example, the concentration of utilizable sugar in the fermentation medium is maintained at < 3 g/l during this period. The fermentation broth can then be further processed. All or some of the biomass can be 25 removed from the fermentation broth by any solid-liquid separation method, such as centrifugation, filtration, decanting or a combination thereof, or it can be left completely in the broth. Water is then removed from the broth by known methods, such as with the aid of a multiple-effect evaporator, thin film evaporator, falling film evaporator, or by reverse osmosis. The concentrated fermentation broth can then be worked up by methods of freeze drying, spray 30 drying, fluidized bed drying, or by other processes to give a preferably free-flowing, finely divided powder. 86 WO 2004/108894 PCT/US2004/017513 The free-flowing, finely divided powder can then in turn by converted by suitable compacting or granulating processes into a coarse-grained, readily free-flowing, storable and largely dust-free product. In the granulation or compacting it can be advantageous to use conventional organic or inorganic auxiliary substances or carriers, such as starch, gelatin, 5 cellulose derivatives or similar substances, such as are conventionally used as binders, gelling agents or thickeners in foodstuffs or feedstuffs processing, or further substances, such as, for example, silicas, silicates or stearates. Alternatively, however, the product can be absorbed on to an organic or inorganic carrier substance which is known and conventional in feedstuffs processing, for example, silicas, 10 silicates, grits, brans, meals, starches, sugars or others, and/or mixed and stabilized with conventional thickeners or binders. Finally, the product can be brought into a state in which it is stable to digestion by animal stomachs, in particular the stomach of ruminants, by coating processes using film-forming agents, such as, for example, metal carbonates, silicas, silicates, alginates, stearates, starches, 15 gums and cellulose ethers, as described in DE-C-4100920. If the biomass is separated off during the process, further inorganic solids, for example, those added during the fermentation, are generally removed. In one aspect of the invention, the biomass can be separated off to the extent of up to 70%, preferably up to 80%, preferably up to 90%, preferably up to 95%, and particularly 20 preferably up to 100%. In another aspect of the invention, up to 20% of the biomass, preferably up to 15%, preferably up to 10%, preferably up to 5%, particularly preferably no biomass is separated off. Organic substances which are formed or added and are present in the solution of the fennentation broth can be retained or separated by suitable processes. These organic substances 25 include organic by-products that are optionally produced, in addition to the desired L-amino acid, and optionally discharged by the microorganisms employed in the fermentation. These include L-amino acids chosen from the group consisting of L-lysine, L-valine, L-threonine, L alanine, L-methionine, L-isoleucine, or L-tryptophan. They include vitamins chosen from the group consisting of vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B5 (pantothenic 30 acid), vitamin B6 (pyridoxine), vitamin B 12 (cyanocobalamin), nicotinic acid/nicotinamide and vitamin E (tocopherol). They also include organic acids that carry one to three carboxyl groups, 87 WO 2004/108894 PCT/US2004/017513 such as, acetic acid, lactic acid, citric acid, malic acid or fumaric acid. Finally, they also include sugars, for example, trehalose. These compounds are optionally desired if they improve the nutritional value of the product. These organic substances, including L- and/or D-amino acid and/or the racemic mixture 5 D,L-amino acid, can also be added, depending on requirements, as a concentrate or pure substance in solid or liquid form during a suitable process step. These organic substances mentioned can be added individually or as mixtures to the resulting or concentrated fermentation broth, or also during the drying or granulation process. It is likewise possible to add an organic substance or a mixture of several organic substances to the fermentation broth and a further 10 organic substance or a further mixture of several organic substances during a later process step, for example granulation. The product described above can be used as a feed additive, i.e. feed additive, for animal nutrition. For methods of preparing amino acids for use as feed additives, see, e.g., WO 02/18613, the contents of which are herein incorporated by reference. 15 Example 1. Construction of vectors for expression of genes for enhancing production of aspartate-derived amino acids Plasmids were generated for expression of genes relevant to the production of aspartate derived amino acids. Many of the target genes are shown in Figure 1 and 2, which depicts most of the biosynthetic genes directly involved in producing aspartate-derived amino acids. These 20 plasmids, which may either replicate autonomously or integrate into the host C. glutanicum chromosome, were introduced into strains of corynebacteria by electroporation as described (see Follettie, M.T., et al. J. Bacteriol. 167:695-702, 1993). All plasmids contain the kanR gene that confers resistance to the antibiotic kanamycin. Transformants were selected on media containing kanamycin (25mg/L). 25 For expression from episomal plasmids, vectors were constructed using derivatives of the cryptic C. glutanicuin low-copy pBLl plasmid (see Santamaria et al. J. Gen. Microbiol. 130:2237-2246, 1984). Episomal plasmids contain sequences that encode a replicase, which enables replication of the plasmid within C. glutamnicum; therefore, these plasmids can be propagated without integration into the chromosome. Plasmids MB3961 and MB4094 were the 30 vector backbones used to construct episomal expression plasmids described herein (see Figures 3 and 4). Plasmid MB4094 contains an improved origin of replication, relative to MB3961, for use 88 WO 2004/108894 PCT/US2004/017513 in corynebacteria; therefore, this backbone was used for most studies. Both MEB3961 and MB4094 contain regulatory sequences from pTrc99A (see Amann et al., Gene 69:301-315, 1988). The 3' portion of the lacIq-trc IPTG-inducible promoter cassette resides within the polylinker in such a way that genes of interest can be inserted as fragments containing NcoI-NotI 5 compatible overhangs, with the NcoI site adjacent to the start site of the gene of interest (additional polylinker sites such as KpnI can also be used instead of the NotI site). In addition, useful promoters such as a modified irc promoter (trcRBS) and the C. glutamicun gpd, rplM, and rpsJpromoters can be inserted into the MB3961 and MB4094 backbones on convenient restriction fragments, including NheI-NcoI fragments. The trcRBS promoter contains a modified 10 ribosomal-binding site that was shown to enhance levels of expressed proteins. The sequences of promoters employed in these studies for expression of genes are found in Table 7. Table 7. Promoters used to control expression of genes in corynebacteria. Promoter Sequence SEQ ID NO: 89 WO 2004/108894 PCT/US2004/017513 Laclq-trc ctagctacgttgacaccatcgaatggtgcaaaacctttcgcggtatggcatgatagcgcccggaa gagagtcaattcagggtggtgaatgtgaaaccagtaacgttatacgatgtcgcagagtatgccggt gtctcttatcagaccgtttcccgcgtggtgaaccaggccagccacgtttctgcgaaaaegcggga aaaagtggaagcggcgatggcggagctgaattacattcccaaccgcgtggCacaacaactgge gggcaaacagtcgttgctgattggcgttgccacctccagtctggccctgcacgcgccgtcgcaaa ttgtcgcggcgattaaatctcgcgccgatcaactgggtgccagcgtggtggtgtcgatggtagaa cgaagcggcgtcgaagcctgtaaagcggcggtgacaatctctcgcgcaaCgCgtcagtggg ctgatcattaactatccgctggatgaccaggatgccattgctgtggaagctgcctgcactaatgttc cggcgttatttcttgatgtctctgaccagacacccatcaacagtattattttctcccatgaagacggta cgcgactgggcgtggagcatctggtcgcattgggtcaccagcaaatcgCgctgttagcgggCCC attaagttctgtctcggcgcgtctgcgttggctggctggataaatatctcactcgCaatcaaattc agccgatagcggaacgggaggcgactggagtgccatgtccggttttcaacaaaccatgCaaat gctgaatgagggcatcgttccactgcgatgctggttgccaacgatcagatggcgCtgggCgca atgcgcgccattaccgagtccgggctgcgcgttggtgcggatatcteggtagtgggatacgaega taccgaagacagctcatgttatatcccgccgttaaccaccatcaaacaggattttcgcctgctgggg caaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagCtgt tgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctCCCCg cgcgttggccgattcattaatgcagctggcacgacaggtttcegactggaaagegggcagtga gcgcaacgcaattaatgtgagttagcgcgaattgatctggtttgacagcttatcatcgactgcacgg tgcaccaatgcttctggcgtcaggcagccatcggaagctgtggtatggctgtgcaggtcgtaaatc actgcataattcgtgtcgctcaaggcgcactcccgttctggataatgtttttgcgccgaeatcataa cggttctggeaaatattctgaaatgagctgttgacaattaatcatccggetcgtataatgtgtggaatt gtgagcggataacaatttcacacaggaaacagac Laclq- ctagctacgttgacaccategaatggtgcaaaacctttcgcggtatggatgatagcgcCggaa trcRBS gagagtcaattcagggtggtgaatgtgaaaccagtaacgttatacgatgtcgcagagtatgccggt gtctcttatcagaccgtttcccgcgtggtgaaccaggccagccacgtttctggaaaacgcggga aaaagtggaagcggcgatggcggagctgaattacattccaaccgCgtggacaacaactggC gggcaaacagtcgttgctgattggcgttgccacctcagtctggccctgcaCgCgccgtcgcaaa ttgtcgcggcgattaaatctcgcgccgatcaactgggtgccagcgtggtggtgtcgatggtagaa cgaagcggcgtcgaagcctgtaaagcggcggtgcacaatcttctcgcgcaacgCgtcagtggg ctgatcattaactatccgctggatgaccaggatgcattgCtgtggaagctgcctgcactaatgttc 90 WO 2004/108894 PCT/US2004/017513 cggcgttatttcttgatgtctctgaccagacacccatcaacagtattattttctcccatgaagacggta cgcgactgggcgtggagcatctggtcgcattgggtcaccagcaaatcgcgctgttagcgggccc attaagttctgtctcggcgcgtctgcgtctggctggctggcataaatattctcgcaatcaaatc agccgatagcggaacgggaaggcgactggagtgccatgtccggttfcaacaaaccatgcaaat gctgaatgagggcatcgttccactgcgatgctggttgccaacgatcagatggcgCtgggcgca atgcgcgccattaccgagtccgggctgcgcgttggtgcggatatctcggtagtgggatacgacga taccgaagacagctcatgttatatcccgccgttaaccaccatcaaacaggattttcgcctgctgggg caaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgt tgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctecccg cgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtga gcgcaacgcaattaatgtgagttagcgcgaattgatctggtttgacagettatcatcgactgcacgg tgcaccaatgcttctggcgtcaggcagccatcggaagctgtggtatggctgtgcaggtcgtaaatc actgcataattcgtgtcgctcaaggcgcactcccgttctggataatgttttttgcgccgacatcataa cggttctggcaaatattctgaaatgagctgttgacaattaatcatccggCtCgtataatgtgtggaatt gtgagcggataacaatttcacacaggaaacagagaattcaaaggaggaCaac 91 WO 2004/108894 PCT/US2004/017513 C. Ctagcctaaaaacgaccgagcctattgggattaccattgaagccagtgtgagttgatacattgg glutamicum cttcaaatctgagactttaatttgtggattcacgggggtgtaatgtagttataattaaccCattegg gpd gggagcagatcgtagtgegaacgatttcaggttcgttccctgcaaaaactatttagcgcaagtgttg gaaatgccccogtttggggtcaatgtccatttttgaatgtgtctgtatgattttgcattgtgegaaat ctttgtttccccgctaaagttgaggacaggttgacacggagttgactcgacgaattatccaatgtga gtaggtttggtgcgtgagttggaaaaattgccatactgccettgggtttgtagtcaagaatte ttgagtgaccgatgctctgattgacctaactgcttgacacattgcatttcctacaatctttagaggaga cacaac C. ctagcggggttgtgcactttttaaaaaggcaaaaaataggaaaaacaccccaggtttteccgt glutamicum aaccccgctaggctatgcaatttcggtttaaccagtttttaaagaaggtcactagottttCgctg rp/iM gtcacettctttttggtttttaacgcagagatagtacactttactetttgtgtgtggagtaaacetccc ctttaaggggtgcgcttggaoagaggacaaattgggtaccaccggccgccgaatttagftc ettccgaacatattcctggctggcagttctagaccgactaattcaaggagtcattc C. ctagctatttcagtgcggggcagtgaaagtaaaaacgaatttttacagaacagggttgtctttc glutamicum agacgactatgtggttaactacttgggtgtttaacacggCgtgaattaaccatgccagttggtaa rpsJ ggcaaacatgacacettcaattggagtgaggcgcatgaaaatgcacttaaCttCagggggtat coactgaagccgggtgactggtgaaggeggaaccggagaaggggatggcaaataaacagog gcagttacgttagggcctagatcacgcattttggtecttocgatttecctgacttcattgttgggttca tcgtggagcgttttatttgtacagcgcccgtgatcaatgtcagaagcatttgacaggtcaggttaaa cactggcgttgcgcccgagccccaagccggacaacgttatagagaaagaatgaagcgaattcc caccgctttccaaaatggaagatgtgggacgagcgaggaagaggataagc Plasmids were also designed to inactivate native C. glutamicun genes by gene deletion. In some instances, these constructs both delete native genes and insert heterologous genes into 5 the host chromosome at the locus of the deletion event. Table 8 lists the endogenous gene that was deleted and the heterologous genes that were introduced, if any. Deletion plasmids contain nucleotide sequences homologous to regions upstream and downstream of the gone that is the target for the deletion event; in some instances these sequences include small amounts of coding sequence of the gene that is to be inactivated. These flanking sequences are used to facilitate 10 homologous recombination. Single cross-over events target the plasmid into the host 92 WO 2004/108894 PCT/US2004/017513 chromosome at sites upstream or downstream of the gene to be deleted. Deletion plasmids also contain the sacB gene, encoding the levansucrase gene from Bacillus subtilis. Transfonnants containing integrated plasmids were streaked to BHIl medium lacking kanamycin. After 1 day, colonies were streaked onto BHI medium containing 10% sucrose. This protocol selects for 5 strains in which the sacB gene has been excised, since it polymerizes sucrose to form levan that is toxic to C. glutamicuin (see Jager, W., et al. J. Bacteriol. 174:5462-5465, 1992). During growth of transformants upon medium containing sucrose, sacB allows for positive selection for recombination events, resulting in either a clean deletion event or removal of all portions of the integrating plasmid except for the cassette that regulates the inducible expression of a particular 10 gene of interest (see Jager, W., et al. J. Bacteriol. 174:5462-5465, 1992). PCR, together with growth on diagnostic media, was used to verify that expected recombination events have occurred in sucrose-resistant colonies. Figures 5-12A display deletion plasmids described herein. 15 Table 8. Plasmids used for deletion of C. glutamicum genes, sometimes in conjunction with insertion of expression cassettes. Plasmid Native gene(s) deleted Element inserted at locus MB4083 hon-thrB None MB4084 thrB None MB4165 ncbR None MB4169 hom-thrB gpd-M. smegmatis lysC(T311)-asd MB4192 hom-thrB gpd-S. coelicolor horn(G362E) MB4276 pck gpd-M. sniegmatis lysC(T31 1I)-asd MB4286 mcbR trcRBS-T. fusca metA MB4287 mcbR trcRBS-C. glutanicun metA (K233A)-mnetB 93 WO 2004/108894 PCT/US2004/017513 Example 2. Isolation of genes for enhancing production of aspartate-derived amino acids 5 Wild-type alleles of aspartokinase alpha (lysC-alpha) and beta (lysC-beta) and aspartate semialdehyde dehydrogenase (asd) from Mycobacterium smegmatis (homologs of lysC/asd in Corynebacteriuni glutanicum); genes encoding aspartokinase-asd (lysC-asd), dapA, and hom from Streptomyces coelicolor; metA and netYA from Thernobifidafusca; and dapA andppc from Erwinia chrysanthemi are obtained by PCR amplification using genomic DNA isolated from each 10 organism. In addition, in some cases the corresponding wild-type allele for each gene is isolated from C. glutanicum. Amplicons are subsequently cloned into pBluescriptSK II for sequence verification; in particular instances, site-directed mutagenesis to create the activated alleles is also performed in these vectors. Genomic DNA is isolated from M smegmatis grown in BHI medium for 72 h at 37 0 C using QIAGEN Genomic-tips according to the recommendations of the 15 manufacturer kits (Qiagen, Valencia, CA). For the isolation of genomic DNA from S. coelicolor, the Salting Out Procedure (as described in Practical Streptomyces Genetics, pp. 169-170, Kieser, T., et. al., John hines Foundation, Norwich, England 2000) is used on cells grown in TYE media (ATCC medium 1877 ISP Medium 1) for 7 days at 25'C. To isolate genomic DNA from T. fusca, cells are grown in TYG media (ATCC medium 20 741) for 5 days at 50'C. The 100 ml culture is spun down (5000 rpm for 10 min at 4oC) and washed twice with 40 ml 10mM Tris, 20mM EDTA pH 8.0. The cell pellet is brought up in a final volume of 40 ml of 10nMTris, 20mM EDTA pH 8.0. This suspension is passed through a Microfluidizer (Microfluidics Corporation, Newton MA) for 10 cycles and collected. The apparatus is rinsed with an additional 20 ml of buffer and collected. The final volume of lysed 25 cells is 60 ml. DNA is precipitated from the suspension of lysed cells by isopropanol precipitation, and the pellet is resuspended in 2 ml TE pH 8.0. The sample is extracted with phenol/chloroform and the DNA precipitated once again with isopropanol. To isolate DNA from K chrysantherni, genomic DNA was prepared as described for E. coli (Qiagen genomic protocol) using a Genomic Tip 500/G. 30 For PCR amplification of the M. smegmatis lysC-asd operon, primers are designed according to sequence upstream of the lysC gene and sequence near the stop of asd. The upstream primer is 5' 94 WO 2004/108894 PCT/US2004/017513 CCGTGAGCTGCTCGGATGTGACG-3' (SEQ ID NO:_), the downstream primer is 5' TCAGAGGTCGGCGGCCAACAGTTCTGC-3' (SEQ ID NO:_). The genes are amplified using Pfu Turbo (Stratagene, La Jolla, CA) in a reaction mixture containing 10 pl I OX Cloned Pfu buffer, 8 ptl dNTP mix (2.5mM each), 2 pl each primer (20uM), 1 tl Pfu Turbo, 10 ng genomic 5 DNA and water in a final reaction volume of 100 pl. The reaction conditions are 94'C for 2 min, followed by 28 cycles of 94'C for 30 sec, 60'C for 30sec, 72'C for 9 min. The reaction is completed with a final extension at 72*C for 4 min, and the reaction is then cooled to 4 0 C. The resulting product is purified by the Qiagen gel extraction protocol followed by blunt end ligation into the SmaI site of pBluescript SK II-. Ligations are transformed into E. coli DH5. and selected 10 by blue/white screening. Positive transformants are treated to isolate plasmid DNA by Qiagen methods and sequenced. MB3902 is the resulting plasmid containing the expected insert. Primer pairs for amplifying S. coelicolor genes are: 5' ACCGCACTTTCCCGAGTGAC-3' (SEQ ID NO:_) and 5'- TCATCGTCCGCTCTTCCCCT 3' (lysC-asd) (SEQ ID NO:_); 5'- ATGGCTCCGACCTCCACTCC-3' (SEQ ID NO:__) and 15 5'- CGTGCAGAAGCAGTTGTCGT-3' (dapA) (SEQ ID NO:_); and 5' TGAGGTCCGAGGGAGGGAAA-3' (SEQ ID NO:_) and 5' TTACTCTCCTTCAACCCGCA-3' (hom) (SEQ ID NO:_). The primer pair for amplifying the metYA operon from T.fusca is 5'- CATCGACTACGCCCGTGTGA-3' (SEQ ID NO:__) and 5' TGGCTGTTCTTCACCGCACC-3' (SEQ ID NO:_). Primer pairs for amplifying E. 20 chrysanthemni genes are: 5'- TTGACCTGACGCTTATAGCG-3' (SEQ ID NO:_) and 5' CCTGTACAAAATGTTGGGAG-3' (dapA) (SEQ ID NO:__); and 5' ATGAATGAACAATATTCCGCCA-3' (SEQ ID NO:__) and 5' TTAGCCGGTATTGCGCATCC-3' (ppc) (SEQ ID NO:_. Amplification of genes was done by similar methods as above or by using the 25 TripleMaster PCR System from Eppendorf (Eppendorf, Hamburg, Germany). Blunt end ligations were performed to clone amplicons into the SmaI site of pBluescript SK II-. The resulting plasmids were MB3947 (S. coelicolor lysC-asd), MB3950 (S. coelicolor dapA), MB4066 (S. coelicolor hon), MB4062 (T. fusca netYA), MB3 995 (E. chrysanthemi dapA), and MB4077 (E. chrysanthemnippc). These plasmids were used for sequence verification of inserts 30 and subsequent cloning into expression vectors; a subset of these vectors was also subjected to site-directed mutagenesis to generate deregulated alleles of specific genes. 95 WO 2004/108894 PCT/US2004/017513 Example 3. Targeted substitutions to enhance the activity of genes involved in the production of aspartate-derived amino acids 5 Site-directed mutagenesis was performed on several of the pBluescript SK II- plasmids containing the heterologous genes described in Example 2. Site-directed mutagenesis was performed using the QuikChange Site-Directed Mutagenesis Kit from Stratagene. For heterologous aspartokinase (lysC/ask) genes, substitution mutations were constructed that correspond to the T311I, S301Y, A279P, and G345D amino acid substitutions in the C. 10 glutamicum protein. These substitutions may decrease feedback inhibition by the combination of lysine and threonine. In all instances, the mutated lysC/ask alleles were expressed in an operon with the heterologous asd gene. Oligonucleotides employed to construct M smegmatis feedback resistant lysC alleles were: 5'-GGCAAGACCGACATCATATTCACGTGTGCGCGTG-3' (SEQ ID NO:_) and 5'-CACGCGCACACGTGAATATGATGTCGGTCTTGCC-3' (T3111) (SEQ ID 15 NO:_); 5'-GGTGCTGCAGAACATCTACAAGATCGAGGACGGCAA-3' (SEQ ID NO:_) and 5'-TTGCCGTCCTCGATCTTGTAGATGTTCTGCAGCACC-3' (S301Y) (SEQ ID NO:_); 5'-GACGTTCCCGGCTACGCCGCCAAGGTGTTCCGC-3'(SEQ ID NO:_) and 5' GCGGAACACCTTGGCGGCGTAGCCGGGAACGTC-3' (A279P) (SEQ ID NO:__); and 5' GTACGACGACCACATCGACAAGGTGTCGCTGATCG-3' and 5' 20 CGATCAGCGACACCTTGTCGATGTGGTCGTCGTAC-3' (G345D) (SEQ ID NO:_. Oligonucleotides employed to construct S. coelicolor feedback resistant lysC alleles were: 5' CGGGCCTGACGGACATCRTCTTCACGCTCCCCAAG-3' (SEQ ID NO:_) and 5' CTTGGGGAGCGTGAAGAYGATGTCCGTCAGGCCCG-3' (S314I/S314V) (SEQ ID NO:_); and 5'- GTCGTGCAGAACGTGTACGCCGCCTCCACGGGC-3' (SEQ ID NO:_) 25 and 5'- GCCCGTGGAGGCGGCGTACACGTTCTGCACGAC-3' (S304Y) (SEQ ID NO:_). Site-directed mutagenesis can be performed to generate deregulated alleles of additional proteins relevant to the production of aspartate-derived amino acids. For example, mutations can be generated that correspond to the V59A, G378E, or carboxy-terminal truncations of the C. glutamicun homn gene. The Transformer Site-Directed Mutagenesis Kit (BD Biosciences 30 Clontech) was used to generate the S. coelicolor homn (G362E) substitution. Oligonucleotides 5' GTCGAC.GCGTCTTAAGGCATGCAAGC-3'(SEQ ID NO:_) and 5' 96 WO 2004/108894 PCT/US2004/017513 CGACAAACCGGAAGTGCTCGCCC-3' (SEQ ID NO:_) were utilized to construct the mutation. Site-directed mutagenesis was also employed to generate specific alleles of the T. fusca and C. glutarnicum metA and metY genes (see examples 5 and 6 of the instant specification). Similar strategies can be used to construct deregulated alleles of additional 5 pathway proteins. For example, oligonucleotides 5' TTCATCGAACAGCGCTCGCACCTGCTGACCGCC-3' (SEQ ID NO:_) and 5' GGCGGTCAGCAGGTGCGAGCGCTGTTCGATGAA-3' (SEQ ID NO:9)can be used to generate a substitution in the S. coelicolor pyc gene that corresponds to the C. glutanicum pyc P458S mutation. Site-directed mutagenesis can also be utilized to introduce substitutions that 10 correspond to deregulated dapA alleles described above. Wild-type and deregulated alleles of heterologous (and C. glutamicum) genes were then cloned into vectors suitable for expression. In general, PCR was employed using oligonucleotides to facilitate cloning of genes as a NcoI-NotI fragment. DNA sequence analysis was performed to verify that mutations were not introduced during rounds of amplification. In 15 some instances, synthetic operons were constructed in order to express two or more genes, heterologous or endogenous, from the same promoter. As an example, plasmid MB4278 was generated to express the C. glutamicum metA, netY, and inetH genes from the trcRBS promoter. Figure 12B displays the DNA sequence in MB4278 that spans from the trcRBS promoter to the stop of the inetH gene; the gene order in this construct is metA YH. The open reading frames in 20 Figure 12B are shown in uppercase. Note that the construct was engineered such that each open reading frame is preceded by an identical stretch of DNA. This conserved sequence serves as a ribosomal-binding sequence that promotes efficient translation of C. glutamicum proteins. Similar intergenic sequences were used to construct additional synthetic operons. 25 Example 4: Isolation of additional threonine-insensitive mutants of homoserine dehydrogenase 30 The hom gene cloned from S. coelicolor in Example 2 is subjected to error prone PCR using the GeneMorph® Random Mutagenesis kit obtained from Stratagene. Under the conditions 97 WO 2004/108894 PCT/US2004/017513 specified in this kit, oligonucleotide primers 5' CACACGAAGACACCATGATGCGTACGCGTCCGCT -3' (contains a Bbsl site and cleavage yields a NcoI compatible overhang) (SEQ ID NO:_) and 5' ATAAGAATGCGGCCGCTTACTCTCCTTCAACCCGCA -3' (contains a NotI site) (SEQ ID 5 NO:__) are used to amplify the homn gene from plasmid MB4066. The resulting mutant population is digested with BbsI and NotI, ligated into NcoI/NotI digested episomal plasmid containing the trcRBS promoter in the MB4094 plasmid backbone, and transformed into C. glutanicumn ATCC 13032. The transformed cells are plated on agar plates containing a defined medium for corynebacteria (see Guillouet, S., et al. Apple. Environ. Microbiol. 65:3100-3107, 10 1999) containing kanamycin (25 mg/L), 20 mg/L of AHV (alpha-amino, beta-hydroxyvaleric acid; a threonine analog) and 0.01mM IPTG. After 72 h at 30*C, the resulting transformants are subsequently screened for homoserine excretion by replica plating to a defined medium agar plate supplemented with threonine, which was previously spread with ~106 cells of indicator C. glutainicum strain MA-331 (hom-thrBA). Putative feedback-resistant mutants are identified by a 15 halo of growth of the indicator strain surrounding the replica-plated transformants. From each of these colonies, the hom gene is PCR amplified using the above primer pair, the anplicon is digested as above, and ligated into the episomal plasmid described above. Each of these putative horn mutants is subsequently re-transformed into C. glutamicun ATCC 13032 and plated on minimal medium agar plates containing 25 mg/L kanamycin and 0.01mM IPTG. One colony 20 from each transformation is replica plated to defined medium for corynebacteria containing 10, 20, 50, and 100 mg/L of AHV, and sorted based on the highest level of resistance to the threonine analog. Representatives from each group are grown in minimal medium to an OD of 2.0, the cells harvested by centrifugation, and homoserine dehydrogenase activity assayed in the presence and absence of 20 mM threonine as referenced in Chassagnole, C., et al., Biochein. J 25 356:415-423, 2001. The hom gene is PCR amplified from those cultures showing feedback resistance and sequenced. The resulting plasmids are used to generate expression plasmids to enhance amino acid production. 98 WO 2004/108894 PCT/US2004/017513 Example 5. Isolation of feedback-resistant mutants of homoserine 0-acetyltransferase (metA) and 0-acetylhomoserine sulfhydrylase metal ) The heterologous metA gene cloned from T. fusca is subjected to error prone PCR using 5 the GeneMorph® Random Mutagenesis kit obtained from Stratagene. Under the conditions specified in this kit, oligonucleotide primers 5' CACACACCTGCCACACATGAGTCACGACACCACCCCTCC -3' (contains a BspMI site and cleavage yields a NcoI compatible overhang) (SEQ ID NO:_) and 5' ATAAGAATGCGGCCGCTTACTGCGCCAGCAGTTCTT -3' (contains a NotI site) (SEQ ID 10 NO:__) are used to amplify the metA gene from plasmid MB4062. The resulting mutant amplicon is digested and ligated into the NcoI/Notl digested episomal plasmid described in Example 4, and then transformed into C. glutamicum strain MA-428. MA-428 is a derivative of ATCC 13032 that has been transformed with integrating plasmid MB4192. After selection for recombination events, the resulting strain MA-428 is deleted for hom-thrB in a manner that 15 results in insertion of a deregulated S. coelicolor hom gene. The transformed MA-428 cells described are plated on minimal medium agar plates containing kanamycin (25 mg/L), 0.01 mM IPTG, and 100 tg/ml or 500 ptg/ml of trifluoromethionine (TFM; a methionine analog). After 72 h at 30'C, the resulting transformants are subsequently screened for O-acetylhomoserine excretion by replica plating to a minimal agar plate which was previously spread with ~106 cells 20 of an indicator strain, S. cerevisiae B-7588 (MATa ura3-52, ura3-58, leu2-3, leu2-112, trpl -289, mnet2, HIS3+), obtained from ATCC (#204524). Putative feedback-resistant mutants are identified by the excretion of O-acetylhomoserine (OAH), which supports a halo of indicator strain growth surrounding the replica-plated transformants. From each of these cross-feeding colonies, the mnetA gene is PCR amplified using the 25 above primer pair, digested with BspMI and NotI, and ligated into the NotlINcol digested episomal plasmid described in example 4. Each of these putative metA mutant alleles is subsequently re-transformed into C. glutamicun ATCC 13032 and plated on minimal medium agar plates containing 25 mg/L kanamycin. One colony from each transformation is replica plated to minimal medium containing 100, 200, 500, and 1000 4g/ml of TFM plus 0.01 mM 30 IPTG, and sorted based on the highest level of resistance to the methionine analog. Representatives from each group are grown in minimal medium to an OD of 2.0, the cells 99 WO 2004/108894 PCT/US2004/017513 harvested by centrifugation, and homoserine 0-acetyltransferase activity is determined by the methods described by Kredich and Tomkins (J Biol. Chem. 241:4955-4965,1966) in the presence and absence of 20 mM methionine or S-AM. The inetA gene is PCR amplified from those cultures showing feedback-resistance and sequenced. The resulting plasmids are used to 5 generate expression plasmids to enhance amino acid production. In a similar manner, the metY gene from T. fusca is subjected to mutagenic PCR. Oligonucleotide primers 5'- CACAGGTCTCCCATGGCACTGCGTCCTGACAGGAG-3' (contains a BsaI site and cleavage yields a NcoI compatible overhang) (SEQ ID NO:_ and 5' ATAAGAATGCGGCCGCTCACTGGTATGCCTTGGCTG -3' (contains a NotI site) (SEQ ID 10 NO:__) are used for cloning into the episomal plasmid, as described above, and for carrying out the mutagenesis reaction per the specifications of the GeneMorph* Random Mutagenesis kit obtained from Stratagene. The major difference is that the mutated metYpopulation is transformed into a C. glutainicum strain that already produces high levels of 0 acetylhomoserine. This strain, MICmet2, is constructed by transforming MA-428 with a 15 modified version of plasmid MB4286 that contains a deregulated T. fusca metA allele described above under the control of the trcRBS promoter. After transformation the sacB selection system enables the deletion of the endogenous mcbR locus and replacement with the deregulated heterologous ietA allele. The T. fusca metY variant transformed MICmet2 strain is spread onto minimal agar plates 20 containing 25 mg/L of kanamycin, 0.25mM IPTG, and an inhibiting concentration of toxic methionine analog(s) (e.g., ethionine, selenomethionine, TFM); the transfonnants can be grown on these 3 different methionine analogs either individually or in double or triple combination). The metY gene is amplified from those colonies growing on the selection plates, the amplicons are digested and ligated into the episomal plasmid described in example 4, and the resulting 25 plasmids are transformed into MICmet2. The transformants are grown on minimal medium agar plates containing 25 mg/L of kanamycin. The resulting colonies are replica-plated to agar plates containing a 10-fold range of the toxic methionine analogs ethionine, TFM, and selenomethionine (plus 0.01 mM IPTG), and sorted on the basis of analog sensitivity. Representatives from each group are grown in minimal medium to an OD of 2.0, the cells are 30 harvested by centrifugation, and O-acetylhomoserine sulfhydrylase enzyme activity is determined by a modified version of the methods of Kredich and Tomkins (J. Bio. Chen. 100 WO 2004/108894 PCT/US2004/017513 241:4955-4965,1966) (see example 9) in the presence and absence of 20 mM methionine. The metY gene is PCR amplified from those cultures showing feedback-resistance and sequenced. The resulting plasmids are used to generate expression plasmids to enhance amino acid production. An expression plasmid containing the feedback resistant metY and metA variants 5 from T. fusca is constructed as follows. The T. fusca metYA operon is amplified using oligonucleotides 5'- CACACACATGTCACTGCGTCCTGACAGGAGC-3' (contains a PciI site and cleavage yields a NcoI compatible overhang (also changes second codon from Ala>Ser)) (SEQ ID NO:_ and 5'-ATAAGAATGCGGCCGCTTACTGCGCCAGCAGTTCTT -3' (contains a NotI site) (SEQ ID NO:_). The amplicon is digested with PciI and NotI, and the 10 fragment is ligated into the above episomal plasmid that has been treated sequentially treated with NotI, HaeIII methylase, and NcoI. Site directed mutagenesis, performed using the QuikChange Site-Directed Mutagenesis Kit from Stratagene, is used to incorporate the described substitution mutations in T. fusca metA and metY into a single plasmid that expresses the deregulated alleles as an operon. The resulting plasmid is used to enhance amino acid 15 production. Minimalmedium: 10 g glucose, 1 g NH 4
H
2
PO
4 , 0.2 g KC1, 0.2 g MgSO 4 -7H 2 0, 30 ig biotin, and 1 ml TE per liter of demonized water (pH 7.2). Trace elements solution (TE) comprises: 88 mg Na 2
B
4 0 7 -10H 2 0, 37 mg (NH 4
)
6 Mo 7 0 27 -4H 2 0, 8.8 mg ZnSO 4 -7H 2 0, 270 mg CuSO 4 -5H 2 0, 20 7.2 mg MnC1 2 -4H 2 0, and 970 mg FeC1 3 -6H 2 0 per liter of deionized water. (When needed to support auxotrophic requirements, amino acids and purines are supplemented to 30 mg/L final concentration.) 25 Example 6. Identification of S-AM-binding residues in bacterial amino acid sequences Many enzymes that regulate amino acid production are subject to allosteric feedback inhibition by S-AM. We hypothesized that variants of these enzymes with resistance to S-AM regulation (e.g., via resistance to S-AM binding or to S-AM-induced allosteric effects) would be 30 resistant to feedback inhibition. S-AM binding motifs have been identified in bacterial DNA methyltransferases (Roth et al., J. Biol. Chem., 273:17333-17342, 1998). Roth et al. identified a 101 WO 2004/108894 PCT/US2004/017513 highly conserved amino acid motif in EcoRV a-adenine-N 6 -DNA methyltransferase which appeared to be critical for S-AM binding by the enzyme. We searched for related motifs in the amino acid sequences of the following proteins of C. glutamicum: MetA, MetY, McbR, LysC, MetB, MetC, MetE, MetH, and MetK. Putative S-AM binding motifs were identified in MetA, 5 MetY, McbR, LysC, MetB, MetC, MetH, and MetK. We also identified additional residues in metY that are analogous to a S-AM binding motif in a yeast protein. (Pintard et al., Mol. Cell Biol., 20(4):1370-1381, 2000). Residues of each protein that may be involved in S-AM binding are listed in Table 9. 10 Table 9. Putative residues involved in S-AM binding in C. glutamicum proteins Protein Putative residue involved in S-AM binding MetA G231 K233 F251 V253 D269 MetY G227 L229 D231 G232 G233 F235 D236 V239 F368 D370 D383 G346 K348 McbR G92 102 WO 2004/108894 PCT/US2004/017513 ......... ........ .... ........ . ... .. . ....... ..... ...... ........... . . . . . . . . . .. .............. K(94 F116 G118 D134 Ly. ............................. K210 F223 V225 D236 MetB ~ G72 K74 F90 192 D105 [-metC G 296 K,298 F312 G314 D335 MetH G708 K710 F725 L727 MetK G263 K265 F282 G284 D291 Alignment of MetA and MetY sequences from other species was used to identify additional putative S-AM-binding residues. These residues are listed in Table 10. 103 WO 2004/108894 PCT/US2004/017513 Table 10. Putative S-AM binding amino acids in bacterial MetA and MetY proteins Protein Organism Putative residue 'homologous Residue in involved in S-AM C. glutamicun binding MetY !T.fusca IG240 227 !D244 D231 F379 368 ........ ...- ......... ................... D394 383 MetY M. tuberculosis G231 G227 D235 b231 F367 [F368 D382 P383 . ........ ... ..... .. .. ........... ..... I ....... ............ .. ... ....... ........... ...... ..- ,........ ... ...... ........ .... .... MetA T.fusca Ianalogous residue absent in G81 |. glutanicun D287 D269 F269 F251 MetA E ccli E252 D269 MetA M leprae analogous residue absent in G73 C. glutamicum D278 D269 Y260 ~ D269 .. .............. ... ..... .... .................... I.. ......... ... .. ... . .... 1,.... .... 1 ... ...... . . . . . . . . ............ . . ....... ... .. ...... ........... MetA M. tuberculosis analogous residue absent in G73 C glutanicum Y260 jF251 104 WO 2004/108894 PCT/US2004/017513 278 D269 {............................ ....... .. .. ... ......... .. ..... ..... ........ . .. ................. ........ ............. ..... ... . MetA and MetY genes were cloned from C. glutamicun and T. fusca as described in Example 2. Table 11 lists the plasmids and strains used for the expression of wild-type and mutated alleles of MetA and MetY genes. Tables 12 and 13 list the plasmids used for expression 5 and the oligonucleotides employed for site-directed mutagenesis to generate MetA and MetY variants. Example 7: Preparation of protein extracts for MetA and MetY assays 10 A single C. glutamicuM colony was inoculated into seed culture media (see example 10 below) and grown for 24 hour with agitation at 33 'C. The seed culture was diluted 1:20 in production soy media (40 mL) (example 10) and grown 8 hours. Following harvest by centrifugation, the pellet was washed 1x in 1 volume of water. The pellet was resuspended in 15 250 pl lysis buffer (lml HEPES buffer, pH 7.5, 0.5ml 1M KOH, 10p l 0.5M EDTA, water to 5ml), 30 1d protease inhibitor cocktail, and 1 volume of 0.1 mm acid washed glass beads. The mixture was alternately vortexed and held on ice for 15 seconds each for 8 reptitions. After centrifugation for 5' at 4,000 rpm, the supernatant was removed and re-spun for 20' at 10,000 rpm. The Bradford assay was used to determine protein concentration in the cleared supernatant. 20 Example 8: Quantifying MetA activity in C. glutamicum strains containing episomal plasmids 25 MetA activity in C. glutamicuin expressing endogenous and episomal metA genes was determined. MetA activity was assayed in crude protein extracts using a protocol described by Kredich and Tomkins (J. Biol. Chen.241(21):4955-4965, 1966). Preparation of protein extracts is described in the Example 7. Briefly, 1 pg of protein extract was added to a microtiter plate. Reaction mix (25 Opl; 100mM tris-HC1 pH 7.5, 2mM 5,5'-Dithiobis(2-nitrobenzoic acid) (DTN), 30 2mM sodium EDTA, 2mM acetyl CoA, 2mM homoserine) was added to each well of the microtiter plate. In the course of the reactions, MetA activity liberates CoA from acetyl-CoA. A 105 WO 2004/108894 PCT/US2004/017513 disulfide interchange occurs between the CoA and DTN to produce thionitrobenzoic acid. The production of thionitrobenzoic acid is followed spectrophotometrically. Absorbance at 412 nrn was measured every 5 minutes over a period of 30 minutes. A well without protein extract was included as a control. Inhibition of MetA activity was determined by addition of S-adenosyl 5 methionine (S-AM; .02 mM, .2 mM, 2 mM) and methionine (.5mM, 5 mM, 50 mM). Inhibitors were added directly to the reaction mix before it was added to the protein extract. In vitro 0-acetyltransferase activity was measured in crude protein extracts derived from C. glutamicum strains MA-442 and MA-449 which contain both endogenous and episomal C. glutainicum MetA and MetY genes. Episomal mnetA and metY genes were expressed as a 10 synthetic operon; the nucleic acid sequence of the metAY operon is as shown in the netA YH operon of Figure 12B, only lacking mnetH sequence. The trcRBS promoter was employed in these episomal plasmids. MA-442 expresses the episomal genes in the order mnetA-metY. MA-449 expresses the episomal genes in the order metY-metA. Experiments were performed in the presence and absence of IPTG that induces expression of the plasmid borne MetA and MetY 15 genes. Figure 13 shows a time course of MetA activity. MetA activity was observed only when the genes were in the MetA-MetY (MA-442) configuration in samples from 8 hour and 20 hour cultures. In contrast, MetA activity in extracts from strain MA-449 (MetY-MetA) was not significantly elevated relative to a control sample lacking protein at both 8 hour and 20 hour time points, with and without induction. This data is consistent with Northern blot analysis that 20 showed low expression of metA when the two genes were in the metY-metA orientation. Next, sensitivity of extracts from strain MA-442 to feedback inhibition was tested. MA 442 extracts were assayed in the presence of 5 mM methionine, 0.2 mM S-AM, or in the absence of additional methionine or S-AM, and MetA activity was assayed as described above. As shown in Figure 14, MetA activity was reduced in the presence of 5 mM methionine and 0.2 mM S-AM. 25 Thus, reducing allosteric repression of MetA may enhance MetA activity, allowing production of higher levels of methionine. It is possible that allosteric repression would also be observed at much lower levels of methionine or S-AM. Regardless, the levels tested are physiologically relevant levels in strains engineered for the production of amino acids such as methionine. C. glutanicun strains expressing episomal T fusca MetA (strains MA-578 and MA-579), or both 30 episomal Tfusca MetA and MetY (strains MA-456 and MA-570) were constructed and extracts were prepared from these strains and assayed for MetA activity. The regulatory elements 106 WO 2004/108894 PCT/US2004/017513 associated with each episomal gene are listed in Table 12. The rate of MetA activity in extracts of each strain was determined by calculating the change in OD 41 2 divided by time per ng of protein. The results of these assays are depicted in Figure 15, which shows that strain MA-578 exhibited a rate of approximately 2.75 units (change in OD 412 / time/ng protein) under inducing 5 conditions, whereas the rate under non-inducing conditions was approximately 1. Strain MA 579 exhibited a rate of approximately 2.5 under inducing conditions and a rate of approximately 0.4 under non-inducing conditions. Strain MA-456, which expresses metA and metYunder the control of a constitutive promoter, exhibited a rate of approximately 2.2. Strain MA-570 exhibited a rate of approximately 1 under inducing conditions and a rate of 0.3 under non 10 inducing conditions. The negative control sample (no protein) exhibited a rate of approximately 0.1. These data show that episomal expression of .fusca metA in C. glutamicumn increases the rate of MetA activity. The increase was similar to the increase observed with episomal expression of C. glutamicum MetA in C. glutamicum. 15 Example 9: Quantifying MetY activity in C. glutamicun strains containing episomal plasmids The in vitro activity of episomal T fusca MetY was determined in several C. glutamicum 20 strains. MetY activity was assayed in C. glutamicum crude protein extracts using a modified protocol of Kredich and Tomkins (J. Biol. Chem., 241(21):4955-4965, 1966). Crude protein extracts were prepared as described. Briefly, 900 ptl of reaction mix (50mM Tris pH 7.5, 1mM EDTA, 1mM sodium sulfide nonahydrate (Na 2 S), 0.2mM pyridoxal-5-phosphoric acid (PLP) was mixed with 45 4g of protein extract. At time zero, 0-acetyl homoserine (OAH; Toronto 25 Research Chemicals Inc) was added to a final concentration of 0.625mM. 200 pl of the reaction was removed immediately for the zero time point. The remainder of the reaction was incubated at 30'C. Three 200 p1 samples were removed at 10 minute intervals. Immediately after removal from 30'C, the reactions were stopped by the addition of 125 pl 1mM nitrous acid which nitrosates the thiol groups of homocysteine to form S-nitrosothiol. Five minutes later, 30 pl of 30 0.5% ammonium sulfamate (removes excess nitrous acid) was added and the sample vortexed. Two minutes later, 400 pl of detection solution (1 part 1% HgCl2 in 0.4N HC1, 4 parts 3.44% % sulfanilamide in 0.4N HCl, 2 parts 0.1% 1-naphthylethylenediamine dihydrochloride in 0.4N 107 WO 2004/108894 PCT/US2004/017513 HCl) was added and the solution vortexed. In the presence of mercuric ion the S-nitrosothiol rapidly decomposes to give nitrous acid, diazotizing the sulfanilamide, which then couples with the naphthylethylenediamine to give a stable azo dye as a chromaphore. After 5 minutes, the solution was transferred to a microtiter dish and the absorbance at 540 nm was measured. A 5 reaction without protein extract was included as a control. The results of the assays are depicted in Figure 16. Strain MA-456, which expresses episomal wild type T. fusca metA and metY alleles under the control of a constitutive promoter, exhibited a rate of 0.04. Strain MA-570, which expresses episomal wild type T. fusca metA and 10 metY alleles under the control of an inducible promoter, exhibited a rate of approximately 0.038 under inducing conditions, and a rate of less than 0.01 under non-inducing conditions. Thus, expression of heterologous MetY results in enzyme activity that is significantly elevated over that of the endogenous MetY. 15 Table 11. C. glutanicum strains used to determine activity of MetA and MetY proteins, and impact of overexpression on production of aspartate-derived amino acids. Strain relevant episomal relevant episomal episomal Name strain plasmid plasmid metY metA genotype regulatory species species sequence MA-2 n/a n/a n/a n/a n/a (ATCC 13032) MA-422 ethionine n/a n/a n/a n/a resistant variant of MA-2 MA-428 MA-2 n/a n/a n/a n/a derivative with Ahom 108 WO 2004/108894 PCT/US2004/017513 AthrB:: C glutamicun gpd promoter - S. coelicolor hom (G362E)" MA-442 MA-428 MB-4135' lacIQ-TrcRBS Cg wild- Cg wild-type derivative type MA-449 MA-428 MB-4138 lacIQ-TrcRBS Cg wild- Cg wild-type derivative type MA-456 MA-428 MB-4168 gpd Tf wild-type Tf wild-type derivative MA-570 MA-428 MB-4199 lacIQ-TrcRBS Tf wild-type Tf wild-type derivative MA-578 MA-428 MB-4205 gpd none Tf wild-type derivative MA-579 MA-428 MB-4207 lacIQ-TrcRBS none Tf wild-type derivative MA-622 mobRA n/a n/a n/a n/a derivative of MA-422 MA-641 MA-622 MB-4136 gpd Cg wild- Cg wild-type derivative type MA-699 MA-622 n/a n/a n/a n/a derivative MA-721 MA-622 MB-4236T lacIQ-TrcRBS Cg wild- Cg K233A derivative type MA-725 MA-622 MB-4238b lacIQ-TrcRBS Cg D231A Cg wild-type derivative MA-727 MA-622 MB-4239F lacIQ-TrcRBS Cg G232A Cg wild-type 109 WO 2004/108894 PCT/US2004/017513 derivative I abbreviations - Cg (Coryneform glutamnicum), Tf (Thermobifidafusca), lacIQ TrcRBS (see above) (lacIQ-Trc regulatory sequence from pTrc99A (Amann et al., Gene (1988) 69:301-315 )); gpd (C. glutamicun gpd promoter) a the endogenous hom(thrA)-thrB locus was replaced with the S. coelicolor hom (G362E) sequence under the C. glutamicun gpd (glyceraldehyde-3-phosphate dehydrogenase) promoter b in this plasmid the gene order is MetA-MetY. Unless otherwise indicated, in other plasmids the gene order is MetY-MetA Table 12. Plasmids and oligos used for site directed mutagenesis to generate MetA and MetY variants. 5 Plasmid oligo 1 oligo 2 Gene wt/varian Organism t MB4238 M04057 M04058 metY D23 1A C. glutamicum n/a M04045 M04046 metY D244A T. fusca n/a M04041 M04042 metA D287A T.fusca n/a M04049 M04050 metY D394A T.fusca n/a M04039 M04040 metA F269A T.fusca n/a M04047 M04048 metY F379A T.fusca MB4239 M04059 M04060 metY G232A C. glutamicum n/a M04043 M04044 metY G240A T fusca n/a M04037 M04038 metA G81A T fusca MB4236 M04051 M04052 metA K233A C. glutamicum MB4135 n/a n/a metA wt C. glutamicum MB4135 n/a n/a metY wt C. glutanmicumn MB4210 n/a n/a metY wt T.fusca MB4210 n/a n/a metA wt T. fusca 110 WO 2004/108894 PCT/US2004/017513 Table 13. Sequences of oligos used for site-directed inutagenesis to generate MetA and MetY variants. Oligo name Oligo Sequence SEQ ID NO: M04037 5' GTAGGCCCGGAAGGCCCCGCGCACCCCAGCCCAGGCTGG 3' M04038 5' CCAGCCTGGGCTGGGGTGCGCGGGGCCTTCCGGGCCTAC 3' M04039 5' CCGATGGCCGGGGGCCGGGCCGCTGTCGAGTCGTACCTG 3' M04040 5' CAGGTACGACTCGACAGCGGCCCGGCCCCCGGCCATCGG 3' M04041 5' AAACTCGCCCGCCGGTTCGCCGCGGGCAGCTACGTCGTG 3' M04042 5' CACGACGTAGCTGCCCGCGGCGAACCGGCGGGCGAGTTT 3' M04043 5' CACGGCACCACGATCGCGGCCATCGTGGTGGACGCCGGC 3' M04044 5' GCCGGCGTCCACCACGATGGCCGCGATCGTGGTGCCGTG 3' M04045 5' ATCGCGGGCATCGTGGTGGCCGCCGGCACCTTCGACTTC 3' M04046 5' GAAGTCGAAGGTGCCGGCGGCCACCACGATGCCCGCGAT 3' M04047 5' ATCGAGGCCGGACGCGCCGCCGTGGACGGCACCGAACTG 3' M04048 5' CAGTTCGGTGCCGTCCACGGCGGCGCGTCCGGCCTCGAT 3' M04049 5' CAGCTCGTCAACATCGGTGCCGTGCGCAGCCTCATCGTC 3' M04050 5' GACGATGAGGCTGCGCACGGCACCGATGTTGACGAGCTG 3' M04051 5' GACGAACGCTTCGGCACCGCAGCCCAAAAGAACGAAAAC 3' M04052 5' GThTCGTTCTTTTGGGCTGCGGTGCCGAAGCGTTCGTC 3' M04057 5' CTGGGCGGCGTGCTTATCGCCGGCGGAAAGTTCGATTGG 3' M04058 5' CCAATCGAACTTTCCGCCGGCGATAAGCACGCCGCCCAG 3' M04059 5' GGCGGCGTGCTTATCGACGCCGGAAAGTTCGATTGGACT 3' M04060 5' AGTCCAATCGAACTTTCCGGCGTCGATAAGCACGCCGCC 3' 5 Example 10: Methods for producing and detecting aspartate-derived amino acids For shake flask production of aspartate-derived amino acids, each strain was inoculated 10 from an agar plate into 10 ml of Seed Culture Medium in a 125 ml Erlenmeyer flask. The seed culture was incubated at 250 rpm on a shaker for 16 h at 31*C. A culture for monitoring amino acid production was prepared by performing a 1:20 dilution of the seed culture into 10 ml of Batch Production Medium in 125 ml Erlenmeyer flasks. When appropriate, IPTG was added to a set of the cultures to induce expression of the IPTG regulated genes (final concentration 0.25 111 WO 2004/108894 PCT/US2004/017513 mM). Methionine fermentations were carried out for 60-66 h at 3 VC with agitation (250 rpm). For the studies reported herein, in nearly all instances, multiple transformants were fermented in parallel, and each transformant was often grown in duplicate. Most reported data points reflect the average of at least two fermentations with a representative transfonnant, together with 5 control strains that were grown at the same time. After cultivation, amino acid levels in the resulting broths were determined using liquid chromatography-mass spectrometry (LCMS). Approximately 1 ml of culture was harvested and centrifuged to pellet cells and particulate debris. A fraction of the resulting supernatant was 10 diluted 1:5000 into aqueous 0.1% formic acid and injected in 10 pL portions onto a reverse phase HPLC column (Waters Atlantis C18, 2.1 x 150 nn). Compounds were eluted at a flow rate of 0.350 mL min 1 ', using a gradient mixture of 0.1% formic acid in acetonitrile ("B") and 0.1% formic acid in water ("A"), (1% B 4 50% B over 4 minutes, hold at 50% B for 0.2 minutes, 50% B -> 1% over 1 minute, hold at 1% for 1.8 minutes). Eluting compounds were 15 detected with a triple-quadropole mass spectrometer using positive electrospray ionization. The instrument was operated in MRM mode to detect amino acids (lysine: 147 + 84 (15 eV); methionine: 150 + 104 (12 eV); threonine/homoserine: 120 + 74 (10 eV); aspartic acid: 134 + 88 (15 eV); glutamic acid: 148 4 84 (15 eV); O-acetylhomoserine: 162 + 102 (12 eV); and homocysteine: 136 4 90 (15 eV)). On occasion, additional amino acids were quantified using 20 similar methods (e.g. homocystine, glycine, S-adenosylmethionine). Individual amino acids were quantified by comparison with amino acid standards injected under identical conditions. Using this mass spectrometric method it is not possible to distinguish between homoserine and threonine. Therefore, when necessary, samples were also derivatized with a fluorescent label and subjected to liquid chromatography followed by fluorescent detection. This method was 25 used to both resolve homoserine and threonine as well as to confirm concentrations determined using the LCMS method. Seed Culture Mediumfor Production Assays Glucose 100 g/L Ammonium acetate 3 g/L 30 KH 2
PO
4 1 g/L MgSO 4 -7H 2 0 0.4 g/L 112 WO 2004/108894 PCT/US2004/017513 FeSO4-7H20 10 mg/L MnSO4-41120 10 mg/L Biotin 50 pig/L Thiamine-HC1 200 pg/L 5 Soy protein 15 ml/L hydrolysate (total nitrogen 7%) Yeast extract 5 g/L pH 7.5 10 Batch Production Medium for Production Assays Glucose 50 g/L
(NH
4
)
2
SO
4 45g/L
KH
2 P0 4 1 g/L MgSO 4 -7H 2 0 0.4 g/L 15 FeSO 4 -7H 2 0 10 mg/L MnSO 4 -411 2 0 10 mg/L Biotin 50 ig/L Thiamine-HC1 200 Rg/L Soy protein 15 ml/L 20 hydrolysate (total nitrogen 7%) CaCO 3 50 g/L Cobalamin 1 tg/ml pH 7.5 (cobalamin addition not necessary when lysine is the target aspartate-derived amino acid) 25 Example 11: Heterologous wild-type and mutant lysC variants increase lysine production in C. glutamicum and B. lactofermentum. 30 Aspartokinase is often the rate-limiting activity for lysine production in corynebacteria. The primary mechanism for regulating aspartokinase activity is allosteric regulation by the combination of lysine and threonine. Heterologous operons encoding aspartokinases and 113 WO 2004/108894 PCT/US2004/017513 aspartate semi-aldehyde dehydrogenases were cloned from M. siegmatis and S. coelicolor as described in Example 2. Site-directed mutagenesis was used to generate deregulated alleles (see Example 3), and these modified genes were inserted into vectors suitable for expression in corynebacteria (Example 1). The resulting plasmids, and the wild-type counterparts, were 5 transformed into strains, including wild-type C. glutamicun strain ATCC 13032 and wild-type B. lactofermnentum strain ATCC 13869, which were analyzed for lysine production (Figure 17). Strains MA-00 14, MA-0025, MA-0022, MA-00 16, MA-0008 and MA-0019 contain plasmids with the MB3961 backbone (see Example 1). Increased expression, via addition of 10 IPTG to the production medium, of either wild-type or deregulated heterologous lysC-asd operons promoted lysine production. Strain ATCC 13869 is the untransformed control for these strains. The plasmids containing M smegmatis S301Y, T3111, and G345D alleles were most effective at enhancing lysine production; these alleles were chosen for expression for expression from improved vectors. Improved vectors containing deregulated M. smegmatis alleles were 15 transformed into C. glutanicum (ATCC 13032) to generate strains MA-0333, MA-0334, MA 0336, MA-0361, and MA-0362 (plasmids contain either trcRBS or gpd promoter, MB4094 backbone; see Example 1). Strain ATCC 13032 (A) is the untransformed control for strains MA 0333, MA-0334 and MA-0336. Strain ATCC 13032 (B) is the untransformed control for strains MA-0361 and MA-0362.Strains MA-0333, MA-0334, MA-0336, MA-0361, and MA-0362 all 20 displayed improvement in lysine production. For example, strain MA-0334 produced in excess of 20 g/L lysine from 50 g/L glucose. In addition, the T31 11 and G345D alleles were shown to be effective when expressed from either the trcRBS or gpd promoter. Example 12: S. coelicolor hoin G362E variant increases carbon flow to homoserine 25 in C. glutamicum strain, MA-0331 As shown in Example 11, deregulation of aspartokinase increased carbon flow to aspartate-derived amino acids. In principle, aspartokinase activity could be increased by the use of deregulated lysC alleles and/or by elimination of the small molecules that mediate the 30 allosteric regulation (lysine or threonine). Figure 18 (strain MA-033 1) shows that high levels of lysine accumulated in the broth when the homn-thrB locus was inactivated. Horn and thrB encode for homoserine dehydrogenase and homoserine kinase, respectively, two proteins required for the production of threonine. Lysine accumulation was also observed when only the thrB gene 114 WO 2004/108894 PCT/US2004/017513 was deleted (see strain MA-0933 in Figure 21 (MA-0933 is one example, though it is not appropriate to directly compare MA-0933 to MA-0331, as these strains are from different genetic backgrounds). In order to increase carbon flow to methionine pathway intermediates, a putative 5 deregulated variant of the S. coelicolor hon gene was transformed into MA-033 1. Similar strategies were used to engineer strains containing only the thrB deletion. Strains MA-03 84, MA-0386, and MA-0389 contain the S. coelicolor homG362E variant underthe control of the rplM, gpd, and trcRBS promoters, respectively. These plasmids also contain an additional substitution (G43S) that was introduced as part of the site-directed mutagenesis strategy; 10 subsequent experiments suggested that the G43S substitution does not enhance Hom activity. Figure 18 shows the results from shake flask experiments performed using strains MA-03 31, MA-0384, MA-0386, and MA-0389, in whichbroths were analyzed for aspartate-derived amino acids, including lysine and homosermie. Strains expressing the S. coelicolor homG362E gene display a dramatic decrease in lysine production as well as a significant increase in homoserine 15 levels. Broth levels of homoserine were in excess of 5 g/L in strains such as MA-03 89. It is possible that significant levels of homoserine still remain within the cell or that some homoserine has been converted to additional products. Overexpression of deregulated lysC and other genes downstream of horn, together with hom, may increase production of homoserine-based amino acids, including methionine (see below). 20 Example 13: Heterologous phosphoenolpyruvate carboxylase (Ppc) enzymes increase carbon flow to aspartate-derived amino acids. 25 Phosphoenolpyruvate carboxylase (Ppc), together with pyruvate carboxylase (Pyc), catalyze the synthesis of oxaloacetic acid (OAA), the citric acid cycle intermediate that feeds directly into the production of aspartate-derived amino acids. The wild-type E. chiysanthemi ppc gene was cloned into expression vectors under control of the IPTG inducible trcRBS promoter. This plasmid was transfonned into high lysine strains MA-0331 and MA-0463 30 (Figure 19). Strains were grown in the absence or presence of IPTG and analyzed for production of aspartate-derived amino acids, including aspartate. Strain MA-0331 contains the hom-thrBA mutation, whereas MA-0463 contains the M. smegmatis lysC (T31 1I)-asd operon integrated at 115 WO 2004/108894 PCT/US2004/017513 the deleted hom-thrB locus; the lysC-asd operon is under control of the C. glutainicum gpd promoter. Figure 19 shows that the E. chrysanthemippc gene increased the accumulation of aspartate. This difference was even detectable in strains that converted most of the available aspartate into lysine. 5 Example 14: Heterologous dihydrodipicolinate synthases (dapA) enzymes increase lysine production. 10 Dihydrodipicolinate synthase is the branch point enzyme that commits carbon to lysine biosynthesis rather than to the production of homoserine-based amino acids. DapA converts aspartate-B-semialdehyde to 2,3-dihydrodipicolinate. The wild-type E. chrysantheini and S. coelicolor dapA genes were cloned into expression vectors under the control of the trcRBS and gpd promoters. The resulting plasmids were transformed into strains MA-0331 and MA-0463, 15 two strains that had already been engineered to produce high levels of lysine (see Example 13). MA-0463 was engineered for increased expression of the M. smegniatis lysC(T31 1I)-asd operon. This manipulation is expected to drive production of aspartate-B-semialdehyde, the substrate for the DapA catalyzed reaction. Strains'MA-0481, MA-0482, MA-0472, MA-0501, MA-0502, MA-0492, MA-0497 were grown in shake flask, and the broths were analyzed for aspartate 20 derived amino acids, including lysine. As shown in Figure 20, increased expression of either the E. chrysantiheni or S. coelicolor dapA gene increases lysine production in the MA-0331 and MA-0463 backgrounds. Strain MA-0502 produced nearly 35 g/L lysine in a 50 g/L glucose process. It may be possible to engineer further lysine improvements by constructing deregulated variants of these heterologous dapA genes. 25 Example 15: Constructing strains that produce high levels of homoserine. Strains that produce high levels of homoserine-based amino acids can be generated 30 through a combination of genetic engineering and mutagenesis strategies. As an example, five distinct genetic manipulations were performed to construct MA-1378, a strain that produces >10 116 WO 2004/108894 PCT/US2004/017513 g/L homoserine (Figure 21). To generate MA-1378, wild-type C. glutamicun was first mutated using nitrosoguanidine (NTG) mutagenesis (based on the protocol described in "A short course in bacterial genetics." J. H. Miller. Cold Spring Harbor Laboratory Press. 1992, page 143) followed by selection of colonies that grew on minimal plates containing high levels of 5 ethionine, a toxic methionine analog. The endogenous mcbR locus was then deleted in one of the resulting ethionine-resistant strains (MA-0422) using plasmid MB4154 in order to generate strain MA-0622. McbR is a transcriptional repressor that regulates the expression of several genes required for the production of sulfur-containing amino acids such as methionine (see Rey, D.A., Puhler, A., and Kalinowski, J., J Biotechnology 103:51-65, 2003). In several instances we 10 observed that inactivation of McbR generated strains with increased levels of homoserine-based amino acids. Plasmid MB4084 was utilized to delete the thrB locus in MA-0622, causing the accumulation of lysine and homoserine; methionine and methionine pathway intermediates also accumulated to a lesser degree. MA-0933 resulted from this manipulation. As described above, it is believed that the lysine and homoserine accumulation was a result of deregulation of lysC, 15 via the lack of threonine production. In order to further optimize carbon flow to aspartate-B semialdehyde and downstream amino acids, MA-0933 was transformed with an episomal plasmid expressing the M smegmatis lysC (T311lI)-asd operon (strain MA-1162). High homoserine producing strain MA- 1162 was then inutagenized with NTG, and colonies were selected on minimal medium plates containing a level of methionine methylsulfonium chloride 20 (MMSC) that is normally inhibitory to growth. MA-1378 was one such MMSC-resistant strain. Example 16: Heterologous homoserine acetyltransferases (MetA) enzymes increase carbon flow to homoserine-based amino acids. 25 MetA is the commitment step to methionine biosynthesis. The wild-type T. fusca metA gene was cloned into an expression vector under the control of the trcRBS promoter. This plasmid was transformed into high homoserine producing strains to test for elevated MetA activity (Figures 22 and 23). MA-0428, MA-0933, and MA-1514 were example high homoserine producing strains. MA-0428 is a wild-type ATCC 13032 derivative that has been 30 engineered with plasmid MB4192 (see Example 1) to delete the hom-thrB locus and integrate the gpd- S. coelicolor hom(G362E) expression cassette. MA-1514 was constructed by using 117 WO 2004/108894 PCT/US2004/017513 novobiocin to allow for loss of the M smegmatis lysC(T31 l)-asd operon plasmid from strain MA-1378. This manipulation was performed to allow for transformation with the episomal plasmid containing the T.fusca metA gene and the kanR selectable marker. Strain MA-1559 resulted from the transformation of strain MA-15 14 with the T fusca inetA gene under control of 5 the trcRBS promoter. MA-0933 is as described in Example 15. Induction ofT. fusca metA expression in each of these high homoserine strains resulted in accumulation of 0 acetylhomoserine in culture broths. For example, strain MA-1559 displayed OAH levels in excess of 9 g/L. Additional manipulations can be perfonned to elicit conversion of OAH to other products, including methionine. 10 Example 17: Effects of metA variants on methionine production in C. glutamicum. C. glutamicum homoserine acetyltransferase (MetA) variants were generated by site 15 directed mutagenesis of MetA-encoding DNA (Example 6). C. glutanicun strains MA-0622 and MA-0699 were transformed with a high copy plasmid, MB4236, that encodes MetA with a lysine to alanine mutation at position 233 (MetA (K233A)). This plasmid also contains a wild type copy of the C. glutamicum inetY gene. Strain MA-0699 was constructed by transforming MA-0622 with plasmid MB4192 to delete the hon-thrB locus and integrate the gpd- S. 20 coelicolor hom(G362E) expression cassette. metA and metY are expressed in a synthetic metAY operon under control of a modified version of the trc promoter. The strains were cultured in the presence and absence of IPTG induction, and methionine productivity was assayed. Methionine production from each strain is plotted in Figure 24. As shown, individual transformants of MA 622 and MA-699, when cultured under inducing conditions, each produced over 3000 pLM 25 methionine. MA-699 strains, which express an S. coelicolor horn G362E variant under the control of a constitutive promoter, produced over 3000 piM methionine in the absence of IPTG. IPTG induction resulted in an increased methionine production by 1000-2500 LM. These data show that expression of MetA (K233A) enhances methionine production. Manipulation of methionine biosynthesis at multiple points can further enhance production. 30 Example 17: Effects of metY variants on methionine production in C. glutamicum 118 WO 2004/108894 PCT/US2004/017513 C. glutamicum 0-acetylhomoserine sulfhydrylase (MetY) variants were generated by site-directed mutagenesis of MetY-encoding DNA (Example 6). C. glutamicum strain MA-622 and strain MA-699 were transformed with a high copy plasmid, MB4238, that encodes MetY 5 with an aspartate to alanine mutation at position 231 (MetY (D231A)). This plasmid also , contains the wild-type copy of the C. glutaniicun metA gene, expressed as in Example 16. The strains were cultured in the presence and absence of IPTG induction, and methionine productivity was assayed. The methionine production from each strain is plotted in Figure 25. As shown, individual transfornants of MA-622, when cultured under conditions in which 10 expression of MetY (D23 1A) was induced, each produced over 1800 pM methionine. MA-622 strains showed variation in the levels of methionine produced by individual transformants (i.e., transformants 1 and 2 produced approx. 1800 M methionine when induced, whereas transformants 3 and 4 produced over 4000 pLM methionine when induced). MA-699 strains, which express an S. coelicolor Hom variant, produced approximately 3000 pM methionine in the 15 absence of IIPTG. IPTG induction increased methionine production by 1500-2000 pM. These data show that expression of MetY (D23 1A) enhances methionine production. Methionine production was also enhanced in strain MA-699, relative to MA-622. Expression of MetY (D23 1A) in strain MA-699 further enhanced methionine production in that strain. 20 A second variant allele of inetY was expressed in C. glutamicuni and assayed for its effect on methionine production. C. glutamicum strain MA-622 and strain MA-699 were transformed with a high copy plasmid, MB4239, that encodes MetY with a glycine to alanine mutation at position 232 (MetY (G232A)). The strains were cultured in the presence and absence of IPTG induction, and methionine productivity was assayed. The methionine production from each 25 strain is plotted in Figure 26. As shown, individual transformants of MA-622, when cultured under conditions in which expression of MetY (G232A) was induced, each produced over 1700 piM methionine. MA-699 strains produced approximately 3000 pM methionine in the absence of IPTG. IPTG induction resulted in an increased methionine production by 2000-3000 pM. These data show that expression of MetY (G232A) enhances methionine production. Methionine 30 production was also enhanced in strain MA-699, relative to MA-622. Expression of MetY (G232A) in strain MA-699 further enhanced methionine production in that strain. 119 WO 2004/108894 PCT/US2004/017513 Example 18: Methionine production in C. glutamicum strains expressing metA and metYwild-type and mutant alleles 5 Methionine production was assayed in five different C. glutamicum strains. Four of these strains express a unique combination of episomal C. glutainicuni metA and inetY alleles, as listed in Table 14. A fifth strain, MA-622, does not contain episomal metA or inetY alleles. The amount of methionine produced by each strain (g/L) is listed in Table 14. 10 The highest levels of methionine production were observed in strains expressing a combination of either a wild-type metA and a variant metY, or a wild-type metY and a variant mnetA. Table 14. Methionine production in strains expressing C. glutaincuin metA and metY wild 15 type and mutant alleles Strain IPTG metA allele metY allele methionine (g/L) MA-622 - None none 0.00 MA-641 - WT WT 0.03 MA-721 - K233A WT 0.00 MA-721 + K233A WT 0.53 MA-725 - WT D231A 0 MA-725 + WT D231A 0.28 MA-727 - WT G232A 0 MA-727 + WT G232A 0.37 Example 19: Combinations of genetic manipulations, using both heterologous and native 20 genes, elicits production of aspartate-derived amino acids As described above, gene combinations may optimize corynebacteria for the production of aspartate-derived amino acids. Below are examples that show how multiple manipulations can increase the production of methionine. Figure 27 shows the production of several aspartate 120 WO 2004/108894 PCT/US2004/017513 derived amino acids by strains MA-2028 and MA-2025 along with titers from their parent strains MA-1906 and MA-1907, respectively. MA-1906 was constructed by using plasmid MB4276 to delete the native pck locus in MA-0622 and replace pck with a cassette for constitutive expression of the M. smegmatis lysC(T3 1I)-asd operon. MA-1907 was generated by similar 5 transformation of MB4276 into MA-0933. MA-2028 and MA-2025 were constructed by transformation of the respective parents with MB4278, an episomal plasmid for inducible expression of a synthetic C. glutanicum inetAYH operon (see Example 3). Parent strains MA 1906 and MA-1907 produce lysine or lysine and homoserine, respectively; methionine and methionine pathway intermediates are also produced by these strains. The scale for lysine and 10 homoserine is on the left y-axis; the scale for methionine and 0-acetylhomoserine is on the right y-axis. With IPTG induction, MA-2028 showed a decrease in lysine levels and an increase in methionine levels. MA-2025 also displayed an IPTG-dependent decrease in lysine production, together with increased production of methionine and 0-acetylhomoserine. Strain MA- 1743 is another example of how combinatorial engineering can be employed to 15 generate strains that produce methionine. MA-1743 was generated by transformation of MA 1667 with metA YH expression plasmid MB4278. MA-1667 was constructed by first engineering strain MA-0422 (see Example 15) with plasmid MB4084 to delete thrB, and next using plasmid MB4286 to both delete the mcbR locus and replace mcbR with an expression cassette containing trcRBS-T. fusca metA. In this example and in other examples where trcRBS has been integrated 20 at single copy, expression does not appear to be as tightly regulated as seen with the episomal plasmids (as judged by amino acid production). Thismay be due to decreased levels of the lacIq inhibitor protein. IPTG induction of strain MA- 1743 elicits production of methionine and pathway intermediates, including 0-acetylhomoserine (Figure 28; the scale for lysine and homoserine is on the left y-axis; the scale for methionine and O-acetylhomoserine is on the right 25 y-axis). Strains MA- 1688 and MA- 1790 are two additional strains that were engineered with multiple genes, including the MB4278 metA YH expression plasmid (see Figure 29; the scale for lysine and homoserine is on the left y-axis; the scale for methionine and O-acetylhomoserine is on the right y-axis). Transforming MA-0569 with MB4278 generated MA-1688. MA-0569 was 30 constructed by sequentially using MB4192 and MB4165 to first delete the hom-thrB locus and integrate the gpd- S. coelicolor hom(G362E) expression cassette and then delete mcbR. MA 1790 construction required several steps. First, a NTG mutant derivative of MA-0428 was identified based on its ability to allow for growth of a Salmonella metE mutant. In brief, a population of mutagenized MA-0428 cells was plated onto a minimal medium containing 35 threonine and a lawn (>106 cells of the Salmonella metE mutant). The Salmonella metE mutant requires methionine for growth. After visual inspection, the corynebacteria colonies (e.g. MA 121 WO 2004/108894 PCT/US2004/017513 0600) surrounded by a halo of Salnonella growth were isolated and subjected to shake flask analysis. Strain MA-600 was next mutagenized to ethionine resistance as described above, and one resulting strain was designated MA-0993. The mcbR locus was then deleted from MA-0993 using plasmid MB4165, and MA-1421 was the product of this manipulation. Transformation of 5 MA-1421 with MB4278 generated MA-1790. Figure 29 shows that IPTG induction stimulates methionine production in both MA-1688 and MA-1790, and decreases in lysine and homoserine titers. Figure 30 shows the metabolite levels of strain MA-1668 and its parent strains. The scale for lysine and homoserine is on the left y-axis; the scale for methionine and O-acetylhomoserine is 10 on the right y-axis. Strain MA-1668 was generated by transformation of MA-0993 with plasmid MB4287. Manipulation with MB4287 results in deletion of the mcbR locus and replacement with C. glutamicuin metA(K233A)-metB. Strain MA-1668 produces approximately 2 g/L methionine, with decreased levels of lysine and homoserine relative to its progenitor strains. Strain MA- 1668 is still amenable to further rounds of molecular manipulation. 15 Table 15 lists the strains used in these studies. The '::' nomenclature indicates that the expression construct following the '::' is integrated at the named locus prior to the '::'. EthR6 and EthR10 represent independently isolated ethionine resistant mutants. The Mcf3 mutation confers the ability to enable a Salmonella metE mutant to grow (see example 19). The Mms13 mutation confers methionine methylsulfonium chloride resistance (see example 15). 20 Table 15. Strains used in studies described herein. Name Strain Genotype MA-0002 is ATCC 13032 MA-0003 is ATCC 13869 MA-0008 laclq-trc-S. coelicolor lysC-asd(Al9lV) (episomal) MA-0014 laclq-trc-M. smegmatis lysC-asd (episomal) 122 WO 2004/108894 PCT/US2004/017513 MA-0016 laclq-trc-M. smegmatis lysC (G345D)-asd (episomal) MA-0019 laclq-trc-S. coelicolor lysC (S314I)-asd(A191V) (episomal) MA-0022 laclq-trc-M. smegmatis lysC (T31 1I)-asd (episomal) MA-0025 laclq-trc-M. smegmatis lysC (S301Y)-asd (episomal) MA-0331 dhon-AthrB NIA-0333 laclq-trcRBS-M. smegmatis lysC (S 301Y)-asd (episomal) MA-0334 laclq-trcRBS-M. smeginatis lysC (T3 1 1I)-asd (episomal) MA-0336 laclq-trcRBS-M. smegmatis lysC (G345D)-asd (episomal) MA-0361 gpd-M. smegmatis lysC (T3 1 1I)-asd (episomal) MA-0362 gpd-M. smegmatis lysC (G345D)-asd (episomal) MA-0384 dhomr-AthrB+rplM-S. coelicolor hom (G362E;G43S) (episomal) A-0386 dhoin-AthrB+gpd-S. coelicolor horn (G362E;G43S) (episomal) MA-03 89 dhoin-AthrB+lacIq-trcRBS-S. coelicolor hom (G362EG43S;K19N) (episomal) MA-0422 EthR6 MA-0428 hom-AthrB::gpd-S. coelicolor hom (G362E;G43S) dhon-AthrB+gpd-S. coelicolor hom (G362E;G43 S)+laclq-trcRBS-C. MA-0442 glutamicun metA-RBS-C. glutamicun netY (episomal) dhom-AthrB+gpd-S. coelicolor hom (G362E;G43S)+Iaclq-trcRBS-C. MA-0449 glutainicun metY-RBS-C. glutamicun metA (episomal) dhom-AthrB::gpd-S. coelicolor hon (G362E;G43 S)+gpd-T. fusca metY-RBS-T. MA-0456 fusca metA (episomal) 123 WO 2004/108894 PCT/US2004/017513 MA-0463 Jhom-AthrB::gpd-M. smegmatis lysC (T3111)-asd MA-0466 Ahom-AthrB+laclq-trcRBS-E. chiysantheini ppc (episomal) MA-0472 Jhom-JthrB+gpd-S. coelicolor dapA (episomal) MA-0477 4hom-AthrB+laclq-trcRBS-S. coelicolor dapA (episomal) MA-0481 Jhom-AthrB+gpd-E. chrysanthemni dapA (episomal) MA-0482 Jhom-AthrB+lacq-trcRBS-E. chrysanthemi dapA (episomal) dhom-AthrB::gpd-M. smegmatis lysC (T311I)-asd+laclq-trcRBS-E. MA-0486 hnysantheini ppc (episomal) dhom-AthrB::gpd-M smegmatis lysC (T31 1I)-asd+gpd-S. coelicolor dapA MA-0492 (episomal) Jhom-AthrB::gpd-M smegmatis lysC (T31 1I)-asd+lacIq-trcRBS- S. coelicolor MA-0497 dapA (episomal) dhom-AthrB::gpd-M. smegmatis lysC (T31 11)-asd+gpd- E. chrysanthemi dapA MA-0501 (episomal) Jhom-AthrB::gpd-M. smeginatis lysC (T3 11I)-asd+laclq-trcRBS-E. MA-0502 chrysanthemi dapA (episomal) MA-0569 JmcbR+Ahom-AthrB::gpd-S. coelicolor hom (G362E;G43S) Ahon-AthrB+gpd-S. coelicolor hom (G362E;G43 S)+laclq-trcRBS-T. fusca -0570 metY-RBS-T fusca metA (episomal) dhom-A thrB+gpd-S. coelicolor hom (G362;G43S)+gpd-T. fusca metA MA-0578 (episomal) Jhorn-A thrB+gpd-S. coelicolor hom (G362E;G43 S)+laclq-trcRBS-T. fusca A-0579 netA (episomal) MA-0600 Jhorn-A thrB+gpd-S. coelicolor hom (G362E;G43S)+Mcf3 MA-0622 mcbR+EthR6 124 WO 2004/108894 PCT/US2004/017513 MA-0641 dmcbR+EthR6+gpd-C. glutamicum metA-RBS-C. glutamicun metY (episomal) MA-0699 rcbR+EthR6+Ahom-AthrB::gpd-S. coelicolor hom (G362E) AmcbR+EthR6+laclq-trcRBS- C. glutamicum metA (K233A)-PBS-C. MA-0721 glutamicum metY (episomal) AmcbR+EthR6+laclq-trcRBS-C. glutamicum metA-RBS-C. glutamicumn metY MA-0725 (D231A) (episomal) AmcbR-+EthR6+laclq-trcRBS-C. glutanicum mnetA-RBS-C. glutamicum metY MA-0727 (G232A) (episomal) MA-0933 dthrB+AmcbR+EthR6 NIA-0993 Ahom-AthrB::gpd-S. coelicolor hom (G362E;G43 S)+McJ3+EthR10 NIA-1162 AthrB+AncbR+EthR6+laclq-trcRBS-M. smegmatis lysC (T31 1)-asd (episomal) A-1351 JthrB+AmcbR+EthR6+laclq-trcRBS-T. fusca metA (episomal) MA-1378 dthrB+AncbR+EthR6+Mnsl3+laclq-trcRBS-M smegmnatis lysC (T3 1 1I)-asd MA-1421 dhom-AthrB::gpd S. coelicolor hom (G362E;G43S)+AncbR+Mcf3+EthRl 0 MA-1514 JthrB+AmcbR+EthR6+Mnsl3 MA-1559 JthrB+AmcbR+EthR6+Mmrsl3+lacIq-trcRBS-T. fusca metA (episomal) MA-1667 JthrB+EtzR6+AmcbR::lacIq-trcRBS-T. fusca metA (episomal) Jhom-AthrB::gpd-S. coelicolor hom (G362E;G43 S)+AmcbR::lacIq-trcRBS MA-1668 C.glutanicun metA(K233A)-RBS-C. glutanicumn netB+Mcf3+EthR10 4mcbR+Ahom-AthrB::gpd-S. coelicolor hom (G362E;G43 S)+laclq-trcRBS-C. glutamicum metA-RBS-C. glutanicumn metY-RBS-C. glutamicum metH MA-1688 (episomal) MA-1743 thrB+AmcbR::lacIq-trcRBS-T fusca metA+EthR6+lacIq-trcRBS-C. 125 WO 2004/108894 PCT/US2004/017513 glutanicum netA-RBS-C. glutamicum metY-RBS-C. glutanicum metH (episomal) Ahom-AthrB::gpd-S. coelicolor hom (G362E;G43S)+AmcbR+McJ3+EthRlO+laclq-trcRBS-C. glutamicum metA MA-1790 RBS-C. glutamicun-netY-RBS-C. glutamicum-nietH (episomal) MA-1906 AmcbR+EthR6+Apck.:gpd-M. smegmatis lysC (T31 1I)-asd MA-1907 imcbR+EthR6+Apck::gpd-M. smegmatis lysC (T31 1I)-asd+AthrB dmcbR+EthR6+Apck::gpd-M. smegmatis lysC (T31 1I)-asd+ AthrB+ laclq trcRBS-C. glutamicun netA-RBS-C. glutamicum metY-RBS-C. glutamicum MA-2025 metH (episomal) JmcbR+EthR6+Apck:gpd-M. smegmatis lysC (T311 I)-asd+laclq-trcRBS-C. glutamicum metA-RBS-C. glutanicun metY-RBS-C. glutanicum metH A-2028 (episomal) 126 WO 2004/108894 PCT/US2004/017513 Table 16. Amino acid sequences of exemplary heterologous proteins for amino acid production in Escherichia coli and coryneform bacteria. The NC number under the Gene column corresponds to the Genbank@ protein record for the corresponding Corynebacterium 5 glutamicun gene. Gene Organism GenBank@ Amino Acid Sequence SEQ Protein ID ID NO: IysC Mycobacterium CAA78984 MALVVQKYGGSSVADAERIRRVAERIVETKKAGNDVVVVVSA I smegmatis MGDTTDDLLDLARQVSPAPPPREMDMLLTAGERISNALVAMA IESLGAQARSFTGSQAGVITTGTHGNAKIIDVTPGRLRDALD EGQIVLVAGFQGVSQDSKDVTTLGRGGSDTTAVAVAAALDAD VCEIYTDVDGIFTADPRIVPNARHLDTVSFEEMLEMAACGAK VLMLRCVEYARRYNVPIHVRSSYSDKPGTIVKGSIEDIPMED AILTGVAHDRSEAKVTVVGLPDVPGYAAKVFRAVAEADVNID MVLQNISKIEDGKTDITFTCARDNGPRAVEKLSALKSEIGFS QVLYDDHIGKVSLIGAGMRSHPGVTATFCEALAEAGINIDLI STSEIRISVLIKDTELDKAVSALHEAFGLGGDDEAVVYAGTG R IysC Amycolatopsis AAD49567 MALVVQKYGGSSLESADRIKRVAERIVATKKAGNDVVVVCSA 2 mediterranei MGDTTDELLDLAQQVNPAPPEREMDMLLTAGERISNSLVAMA IAAQGAEAWSFTGSQAGVVTTSVHGNARIIDVTPSRVTEALD QGYIALVAGFQGVAQDTKDITTLGRGGSDTTAVALAAALNAD VCEIYSDVDGVYTADPRVVPDAKKLDTVTYEEMLELAASGSK ILHLRSVEYARRYGVPIRVRSSYSDKPGTTVTGSIEEIPVEQ ALITGVAHDRSEAKITVTGVPDHTGAAARIFRVIADAEIDID MVLQNVSSTVSGRTDITFTLSKANGAKAVKELEKVQAEIGFE SVLYDDHVGKVSVVGAGMRSHPGVTATFCEALAEAGVNIEII NTSEIRISVLIRDAQLDDAVRAIHEAFELGGDEEAVVYAGSG R IysC Streptomyces CAB45482 MGLVVQKYGGSSVADAEGIKRVAKRIVEAKKNGNQVVAVVSA 3 coeicolor MGDTTDELIDLAEQVSPIPAGRELDMLLTAGERISMALLAMA IKNLGHEAQSFTGSQAGVITDSVHNKARIIDVTPGRIRTSVD EGNVAIVAGFQGVSQDSKDITTLGRGGSDTTAVALAAALDAD VCEIYTDVDGVFTADPRVVPKAKKIDWISFEDMLELAASGSK VLLHRCVEYARRYNIPIHVRSSFSGLQGTWVSSEPIKQGEKH VEQALISGVAHDTSEAKVTVVGVPDKPGEAAAIFRAIADAQV NIDMVVQNVSAASTGLTDISFTLPKSEGRKAIDALEKNRPGI GFDSLRYDDQIGKISLVGAGMKSNPGVTADFFTALSDAGVNI ELISTSEIRISVVTRKDDVNEAVRAVHTAFGLDSDSDEAVVY GGTGR IysC Thermobifida ZP_00057166 MNLRSLDWLVDYREPDSSGAPTVALIVQKYGGSSVADADAIK 4 fusca RVAERIVAQKKAGYDVVVVVSAMGDTTDELLDLAKQVSPLPP GRELDMLLTAGERISMALVAMAIGNLGYEARSFTGSQAGVIT TSLHGNAKIIDVTPGRIRDALAEGAI CIVAGFQGVSQDSKDI TTLGRGGSDTTAVALAAALNADLCEIYTDVDGVFTADPRIVP SARRIPQISYEEMLEMAASGAKILHLRCVEYARRYNIPLHVR SSFSQKPGTWVVSEVEETEGMEQPIISGVAHDRSEAKITVVG VPDRVGEAAAIFKALADAE INVDMIVQNVSAASTSRTDISFT 127 WO 2004/108894 PCT/US2004/017513 LPADSGQNALAALKKIQDKVGFESLLYNDRIGKVSLIGAGMR SYPGVTARFFDAVAREGINIEMISTSEIRISIVVAQDDVDAA VAAAHREFQLDADQVEAVJYGGTGR lysO Erwinia MSANTDNSLT IAKFGGTSVADFDATMNRSADIVLSDAQvRvvv 5 chrysanthemi LSASAGVTNLLVALAEGLPPSERTAQLEKLRQIQYAI IDRLN QPAVIREEIDRMLDNVARLSEAAALATSNALTDELVSHGELI STLLFVEILRERNVAAEWFDVRKIMRTNDRFGRAEPDCDALG ELTRSQLTPRLAQGLI ITQGFIGSEAKGRTTTLGRGGSDYTA AJLLGEALHASRIDIWTDVPGIYTTDPRVVPSAHRIDQITFEE AAEMATFGAKVLHPATLLPAVRSDI PVFVGS SKDPAAGGTLV CNNTENPPLFRALATLRRKQTLLTLHSLNMLHARGFLAEVFS I LAHNISVDLITTSEVNVALTLDTTGSTSTGDSLLSSALLTE LSSLCRVEVEENMSLVALIGNQLSQACGVGKEVFGVLEPFNI RIJICYGASSHNLCFLVPSSDAEQVVQTL~HHNLFE IysC She waneila AAN56424 MLEKRKLSGSKLFVKKFGGTSVGSIERIEVVAEQIAKSAHSG 6 oneidensis EQQVLVLSAMAGETNRLFALAAQIDPRASAP-ELDMLVSTGEQ ISIALMAMALQRRGIKAPRSLTDQVQIHTNSQFGRAS TESVD TAYLTSLLEQGIVPIVAGFQGTDPNGDVTTLGRGGSDTTAVA LAAALRADECQIFTDVSGVFTTDPNIDSSARRLDVIGFDVML EMAKLGAKVLjHPDSVEYAQRFKVPLRVLS SFEAGQGTLIQFG DESELAAASVQGIAINKALATLTIEGLFTSSERYQALLACL ARLEVDVEFITPLKLNEISPVESVS FMLAEAKVDILLHELEV LSESLDLGQLIVERQRAKVSLVGKGLQAKVGL.LTKMLDVLGN ETIHAKLLSTSESKLSTVIDERDLHKAkVRALHHAFELNKV IysC Corynebacieriu CAD89081I MALVVQKYGGS SLESAERIRNVAERIVATKKAGNDVVVVCSA 202 m glutamicum MGDTTDELLELAAAVNPVPPA1REMDMLLTAGERISNALVAMA IESLGAEAQS FTGSQAGVLTTERHGNARIVDVTPGRVREALD EGKICIVAGFQGVNKETRDVTTLGRGGSDTTAVALAAAJNAl VCEIYSDVDGVYT1ADPRIVPNAQKLEKLSFEEMLELAAVGSK ILVLRSVEYZARAFNVPLRVRS SYSNDPGTLTAGSMEDIPVEE AVLTGVATDKSEAKVTVLGI SDKPGEAAKVFRAILADAEINID MVLQNVS SVEDGTTDITFTCPRSDGRRAMEILKKLQVQGNWT NVLYDDQVGKVSILVGAGMKSHPGVTAEFMEALRDVNVNIELI STSEIRISVLIREDDLDAAARATJHEQFQLGGEDEAVVYAGTG P. asparto Escherichia coi AAA24095 MSEIVVSKFGGTSVADFDAMNRSADIVLiSDANVRLVVLSASA 203 kinase GITNILLVALAEGLjEPGERFEKLDAIRNIQFAILERLRYPNVI III REEIERLLENITVLABAAALATSPALTDELVSHGELMSTLLF VE ILRERD VQAQ WFDVRKVMRTNDRFGRAEPD IAALAELAAL QLLPRLNEGLVITQGFIGSENKGRTTTLGRGGSDYTAALJLAE ATJHASRVDIWTDVPGIYTTDPRVVSAAKRIDE IAFAEAAEMA TFGAKVLHPATLLPAVRSDIPVFVGS SKDPRAGGTLVCNKTE NPPLFR2XLALRRNQTLLTJHSLNMLHSRGFJAEVFGILARHN I SVDLITTSEVSVALTLDTTGSTSTGDTLLTQSLLMELSAL~C RVEVEEGL1ALVALIGNDLSKACGVGKEVFGVLEPFNIRMI CY GASSHJLCFLVPGEDAEQVVQKIHSNLFE asd Corynebacteriu CAA40504 MTTIAWJTGATGQVGQVMRTLLEERNFPADTVRFFAS PRSAGR 204 m glutamicum KIEFRGTEIEVEDITQATEESLKDIDVALFSAGGTASKQYAP LFAAAGATVVDN~S SAWRKDDEVPLIVSEVTPSDKDSJVKGI I 1ANPNCTTMAAMPVLKPLHDAAGLVKLHVSSYQAVSGSGLAGV ETLAKQVAAVGDHNVEFVHDGQAADAGDVGPYVSPIAYNVLP FAGNLVDDGTFETDEEQKLRNESRKILGLPDLKVSGTCVRVP VFTGBITLTIHAEFDKZUITVDQAQEILGAASGVKLVDVPTPLAI 128 WO 2004/108894 PCT/US2004/017513 AAGIDESLVGRIRQDSTVDDNRGLVLVVSGDNLRKGAALNTI QIAELLVK asd Escherichia coli P00353 MNYVGFIGWRGMVGSVLMQRMVEERDFDAIRPVFFSTSQLGQ 205 AAPSFGGTTGTLQDAFDLEALKALDIIVTCQGGDYTNEIYPK LRESGWQGYWIDAASSLRMKDDAIIILDPVNQDVITDGLNNG IRTFVGGNCTVSLMLMSLGGLFANDLVDWVSVATYQAASGGG ARHMRELLTQMGHLYGHVADELATPSSAILDIERKVTTLTRS GELPVDNFGVPLAGSLIPWIDKQLDNGQSREEWKGQAETNKI LNTSSVIPVDGLCVRVGALRCHSQAFTIKLKKDVSIPTVEEL LAAHNPWAKVVPNDREITMRELTPAAVTGTLTTPVGRLRKLN MGPEFLSAFTVGDQLLWGAAEPLRRMLRQLA ppc Thermobifida ZP_00058586 MTRDSARQEMPDQLRRDVRLLGEMLGTVLAESGGQDLLDDVE 7 fusca RLRRAVIGAREGTVEGKEITELVASWPLERAKQVARAFTVYF HLVMLAEEHHRMRALRERDDAATPQRESLAAAVHSIREDAGP ERLRELIAGMEFHPVLTAHPTEARRRAVSTAIQRISAQLERL HAAHPGSGAEAEARRRLLEEIDLLWRTSQLRYTKMDPLDEVR TAMAAFDETIFTVIPEVYRSLDRALDPEGCGRRPALAKAFVR YGSWIGGDRDGNPFVTHEVTREAITIQSEHVLRALENACERI GRTHTEYTGLTPPSAELRAALSSARAAYPRLMQEIIKRSPNE PHRQLLLLAAERLRATRLRNADLGYPNPEAFLADLRTVQESL AAAGAVRQAYGELQNLIWQAETFGFHLAELEIRQHSAVHAAA LKEIRAGGELSERTEEVLATLRVVAWIQERFGVEACRRYIVS FTQSADDIAAVYELAEHAMPPGKAPILDVIPLFETGADLDAA PQVLDGMLRLPAVQRRLEQTGRRMEVMLGYSDSAKDVGPVSA TLRLYDAQARLAEWAREHDIKLTLFHGRGGALGRGGGPANRA VLAQAPGSVDGRFKVTEQGEVIFARYGQRAIAHRHIEQVGHA VLMASTESVQRRAAEAAARFRGMADRIAEAAHAAYRALVDTE GFAEWFSRVSPLEELSELRLGSRPARRSAARGLDDLRAIPWV FAWTQTRVNLPGWYGLGSGLAAVDDLEALHTAYKEWPLFASL LDNAEMSLAKTDRVIABRYLALGGRPELTEQVLAEYDRTREL VLKVTRHTRLLENRRVLSRAVDLRNPYVDALSHLQLRALEAL RTGEADRLSEEDRNHLERLLLLSVNGVAAGLQNTG ppc Mycobacterium CAC30086 MVEFSDAILEPIGAVQRTRVGREATEPMRADIRLLGTILGDT 8 Ieprae (can be LREQNGDEVFDLVERVRVESFRVRRSEIDRADMARMFSGLDI used to clone M. HLAIPIIRAFSHFALLANVAEDIHRERRRHIHLDAGEPLRDS smegmatis SLAA TYAKLDLAKLDSATVADALTGAVVSPVITAHPTETRRR gene) TVFVTQRRITELMRLHAEGHTETADGRSIERELRRQILTLWQ TALIRLARLQISDEIDVGLRYYSAALFHVIPQVNSEVRNALR ARWPDAELLSGPILQPGSWIGGDRDGNPNVTADVVRRATGSA AIYTVVAHYLAELTHLEQELSMSARL ITVTPELATLAASCQDA ACADEPYRRALRVIRGRLSSTAAHILDQQPPNQLGLGLPPYS TPAELCADLDTIEASLCTHGAALLADDRLALLREGVGVFGFH LCGLDMRQNSDVHEEVVAELLAWAGMHQDYSSLPEDQRVKLL VAELGNRRPLVGDRAQLSDLARGELAVLAAAAHAVELYGSAA VPNYIISMCQSVSDVLEVAILLKETGLLDASGSQPYCPVGIS PLFETIDDLHNGAAILHAMLELPLYRTLVAARGNWQEVMLGY SDSNKDGGYLAANWAVYRAELALVDVARKTGIRLRLFHGRGG TVGRGGGPSYQAILAQPPGAVNGSLRLTEQGEVIAAKYAEPQ IARRNLESLVAATLESTLLDVEGLGDAAESAYAILDEVAGLA RRSYAELVNTPGFVDYFQASTPVSEIGSLNIGNRPTSRKPTT SIADLRAIPWVLAWSQSRVMLPGWYGTGSAFQQWVAAGPESE SQRVEMLHDLYQRWPFFRSVLSNMAQVLAKSDLGLAARYAEL VVDEALRRRVFDKADEHRRTIAIHKLITGHDDLLADNPALA 129 WO 2004/108894 PCT/US2004/017513 RSVFNRFPYLEPLNHLQVELLRRYRSGHDDEMVQRGdILLTMN GLASALRNSG ppc Streptomyces Q9RNU9 MSSADDQTTTTTSSELRADIRRLGDLLGETLVRQEGPELLEL 9 coellcolor VEKVRRLTREDGEAAAELLRGTEL-ETAAKLVRAFSTYFHLAN VTEQVHRGRELGAKR2AAEGGLLARTADRLKD)ADPEHLRETVR NLNVRPVFTAHPTEAARRSVLNKLRRIAALjLDTPVNESDRRR LDTRLAENIDLVWQTDELRVVP-PEPADEARSAIYYIJDELHLG AVGDVLED)LTAELERAGVKLPDDTRPLTFGTWIGGDRDGNPN VTPQVTWDVLILQHEHGINDALEMIDELRGFLaSNS IRYAGAT EELLASLQADLERLPEI SPRYKRLNAEEPYRLKATC IRQKLE NTKQRLAKGTPHEDGRDYLGTAQLIDDLRIVQTSLREHRGGL FADGRLARTIRTLAAFGLQLATMDVREHADAHHHALGQLFDR LGEESWRYADMPPEYRTKLLAKELRSRRPLAPSAVDAPGE KTLGVFQTVRPRALEVFGPEVILESYI £SMCQGADDVFAAVLA REAGLIDLHAGWAKIGIVPLLETTDELKAADT ILEDLLADPS YRRLVALRGDVQEVMLGYSDS SKFGGITTSQWEIHRAQRRLR DV2AHRYGVRLRLFHGRGGTVGRGGGPTHDAILAQPWGTLEGE IKVTEQGEVI SDKYLIPALARENLELTVAATLQASALHTAPR QSDEAILARWDAAMDVVSDAAHTAYRHLVEDPDLPTYFLASTP VDQLADLHLGSRPSRRPGSGVSLDGLRAIPWVFGWTQSRQIV PGWYGVGSGLKALREAGLDTVLDEMHQQWHFFRNFI SNVEMT IAKTDLRIAQHYVDTLVPDELKHIVFDTIKAEHELTVAEVJRV TGESELLDADPVLKQTFTIRDAYLDP ISYLQVALLGRQP.EAA AANEDPDPLLARALLLTVNGVAAGLPRNTG ppc Erwinia MNEQYSANRSNVSMLGKLLGDTIKDALGANILERVETIRKLS 10 chrysanthemi KA9RAGSETHRQELLTTLQNLSNDELLPVAPRAFSQFLNLTNT AEQYNS ISPHGEAASNPEALATVFRSL~KSPRDNLSDKDIRDAV ESLS IELVLTAHPTEITRRTIZHKLVEVNTCLKQILDHDDLAD YERHQIMRRLRQLJIAQYWHTDEIRKIRPTPVDEAKWGFAVVE NSLWEGVPAFLRELDEQMGKELGYRLPVDSVPVRFTSWAGGD RDGNPNVTSEVTRRVLLLSRWKAADLFLRDVQVL~VSELSMTT CTPELhQQLAGGDEVQEYRELMKALRAQL~TATLiDYLDARLKD EQRMPPKDLLVTNEQLWEPLYACYQSLHACGMGI IADGQLLD TTRRVRCFGVPLVRIDVRQESTRHTDALAEITRYLGLGDYES WSESDKQAFLIRELNSKRPLLPRQWEPSIADTQEVLETCRVIA ETPRDS IAAYVISMARTPSDVLAVHLLLKEAGCPYALPVAFL FETLDDLNNADSVMIQLLNIDWYRGFIQGKQMVMIGYSDSAK DAGVMAASWAQYRAQDALIKTCEKYGIALTLFHGRGGS IGRG GAPAHAALLSQPPGSLKGGLRVTEQGEMIRFKFGLPEVTIS S LSLYTSAILE2ANLLPPPEPKQEWHHIMNELSRIS CDMYRGYV REN~PDFVPYFAATPELELGKLPLGSRPAKRRPNGGVESLRA I PWIFAWTQNRLMLPAWLGAGAALQKVIDDGHQNQLEAMCRD WPFFSTRIGMLEMVFAKADLWLAEYYDQRLVDEKLWSL~GKQL REQLERD IKAVLTISNDDHLMADLPWIAES IALRNVYTDPLN VLQAELLHRSRQQETLDPQVEQALMVTIAGVAAGMRNTG pPC Coryne- P12880 MTDFLRDDIRFLGQILGEVTAEQEGQEVYELVEQARLTSFDI 206 bacterium AKGNAEMDSLVQVFDGITPAKATPIARAFSHFALLANLiAEDL glutamictim YDEELREQATJDAGDTPPDSTLDATWLKJNEGNVGAEAVADVJ RNAEVAPVLTAHPTETRRRTVFDAQKWITTHMRERHALQSAE PTARTQSKLDEIEKNIRRRITILWQTALIRVARPRIEDEIEV GLRYYKLSLLEEIPRINRDVAVEL~RERFGEGVPLKPVVKPGS WIGGDHDGNPYVTABTVEYSTHRAAETVLKYYARQJHSLEHE LSLSDRMNKVTPQLLALADAGHNJJVPSRVDEPYRRAVHGVRG 1__ 130 WO 2004/108894 PCT/US2004/017513 RILATTAELIGEDAVEGVWFKVFTPYASPEEFLNDALTIDHS IRESKJVLIADDRLSVLISAIESFGFNLYALDLRQ\SESYED VLTELFERAQVTANYRELSEAEKLEVLLKELRSPRPLIPHGS DEYSEVTDRELGI ERTAS EAVKKFGPRMVPHCI ISMAS SVTD VLEPMVLLKEFGLIAPANGDNPRGTVDVIPLFETIEDLQAGAG ILDELWKIDLYRNYLLQRDNVQEVMLGYSDSNKDGGYFSANW ALYDAELQLVELCRSAGVKLRLFHGRGGTVGRGGGPSYDAIL AQPRGAVQGSVRITEQGEI ISAKYGNPETARRNLEALVSATL EASLLDVSELTDHQRAYDIMSEISELSLKKYASLVHEDQGFI DYFTQSTPLQEIGSLNIGSRPSSRKQTSSVEDLRAIPWVLSW SQSRVMLPGWFGVGTALEQWIGEGEQATQRIAELQTLNESWP FFTSVLDNMAQVMSKAELRLAKLYIADLIPDTEVAERVYSVIR EEYFLTKKMFCVITGSDDLLDDNPLLARSVQRRYPYLLPLNV IQVEMMRRYRKGDQSEQVSRNIQLTMNSGLSTALRNSG pPC Escherichia coi P00864 MNEQYSALRSNVSMLGKVLGETIKDALGEHILERVETIRKLS 207 KSSRAGNDANRQELLTTLQNLSNDEL~LPVARAFSQFLNLANT AEQYHS ISPKGEAASNPEVTARTLRKLKNQPELSEDTIKKALV ESLSLELVLTAHPTE ITRRTLIIKMVEVNACL-KQLDNKDIAD YEHNQLMRRLRQLIAQSWHTDE IRKLRPS PVDEAKWGFAVVE NSLWQGVPNYLRELNEQLEENLGYKLPVEFVPVRFTSWMGGD RDGNPNVTADITRHVLLLSRWKATDLFLKDIQVLVSELSMVE ATPELLALVGEEGAABPYRYLMKNLRSRLMATQAWLEARLKG EELPKPEGLLTQNEELWEPLYACYQSLQACGMGI IANGDLhLD TLRRVKCFGVPLVRIDIZRQESTRHTEALGELTRYLGTGDYES WSEADKQAFLIRELNSKRPLLPRNWQPSAETREVLDTCQVIA EAPQGS IAAYVISMAKTPSDVLAVHLLLKEAGIGFAMPVAPL FETLDDLNNANDVMTQLLNIDWYRGL TQGKQMVMIGYSDSAK DAGVMAASWAQYQAQDALKTCEKAGIEL~TLFHGRGGS IGRG GAPAHAALLSQPPGSTLKGGLRVTEQGEMIRFKYGLiPEITVSS LSLYTGAILEANLLPPPEPKESWRRIMDELSVISCDVYRGYV RENKDFVPYFRSATPEQELGKLPLGSRPAKRRPTGGVESLRA IPWI FAWTQNRLMLPAWLGAGTAIJQKVVEDGKQSELEAMCRD WPFFSTRLGMLEMVFAKADLWLAEYYDQRLVDKALWPLGKEL RNLQEEDIKVVLAIANDSHLMADLPWIAES IQLRNIYTDPL-N VLQAELIHSRQAEKEGQEPDPRVEQALMVTIAGIAAGMRNT G pyc Streptomyces CAB59603 MFRKVLVANRGE IAIRAFPAGYELGARTVAVFPHEDRNSLHR 12 coelicolor LKADEAY E IGEQGHP VRAYLSVEE IVRA1ARRAGADAVYPGYG FLSENPELARACEEAGITFVGPSARILELTGNKAAVAAARE AGVPVLGS SAPSTDVDELVRAADDVGFPVFVKAVAGGGGRGM RRVEEPAQLREAIEAASREAASAFGDSTVFLEKAVVEPRHIE VQILADGEGDVIHLFERDCSVQRRHQKVIELAPAPNLDPALR ERICADAVNFARQTGYRNAGTVEFLVDRDGNHVFIEMNPRIQ VEHTVTEEVTDVDLVQS QLRIAAGQTLADLGLAQENI TLRGA AT.QCRTTEDPANGFRPDTGQISAYRS PGGSGIRLDGGTTHA GTEISAHFDSMILVKLSCRGRDFTTAVNRARPAVAEFRIRGVA TNIPFLQAVLDDPDFQAGRVTTSFIEQRPHILLTARHSADRGT KILLTYILADVTVNKPHGERPELVDPLTKLPTASAGEPPAGSRQ LLAELGPEGFARRLRES STIGVTDTTFRDAHQSLLATRVRTK DMLAVAPVVARTLPQL~LSLECWGGATYDVALRFLAEDPWERL AALREAVPNLCLQMLLRGRNTVGYTPYPTEVTDAFVQEAAAT GIDIFRI FDALNDVEQMRPAIEAVRQTGSAVAEVALCYTADL SDPSERLYTLDYYLRLAEQIVN\AGAVLAVKDMAGLLRAPAAI 131 WO 2004/108894 PCT/US2004/017513 ATLVSALRREFDLPVHLHTHDTTGGQLATYLAAIQAGADAVD GAVASMAGTTSQPSLSAIVAATDHTERPTGLDLQAVGDLEPY WESVRKVYAPFEAGLASPTGRVYHHEIPGGQLSNLRTQAVAL GLGDRFEDIEAMYAAADRMLGRLVKVTPSSKVVGDLALHLVG AGVSPADFEQDPDRFDIPDSVVGFLRGELGTPPGGWPEPFRS KALRGRAEARPLAELSEDDRDGLGKDRRATLNRLLFPGPARE FDTHRASYGDTSILDSKDFFYGLRPGKEYTVDLDPGVRLLIE LQAVGDADERGMRTVMSSLNGQLRPIQVRDRSAATDVPVTEK ADRANPGHVAAPFAGVVTLAVAEGDEVEAGATVATIEAMKME ASITAPKSGTVTRLAINRIQQVEGGDLLVQLA pyc Mycobacterium AAG3041 1.1 MISKVLVANRGEIAIRAFRAAYEMGIATVAVYPYEDRNSLHR 13 smegmatis LKADESYQIGEVGHPVRAYLSVDEIIRVAKHSGADAVYPGYG FLSENPDLAAKCAEAGITFVGPSAEVLQLTGNKARAIAAARA AGLPVLSSSEPSSSVDELMAAAADMEFPLFVKAVSGGGGRGM RRVTDRESLAEAIEAASREAESAFGDASVYLEQAVLNPRHIE VQILADGAGNVMHLFERDCSVQRRHQKVVELAPAPNLSDELR QQICADAVAFARQIGYSCAGTVEFLLDERGHHVFIECNPRIQ VEHTVTEEITDVDLVSSQLRIAAGETLADLGLSQDRLVVRGA AMQCRITTEVPANGFRPDTGRITAYRSPGGAGIRLDGGTNLG AEISAHFDSMLVKLTCRGRDFSAAASRARRALAEFRIRGVST NIPFLQAVIDDPDFRAGRVTTSFIDDRPHLLTSRSPADRGTR ILNYLADITVNKPHGERPSTVYPQDKLPPLDLQAPPPAGSKQ RLVELGPEGFAGWLRESKAVGVTDTTFRDAHQSLLATRVRTT GLLMVAPYVARSMPQLLSIECWGGATYDVALRFLKEDPWERL AALRESVPNICLQMLLRGRNTVGYTPYPELVTSAFVEEAAAT GIDIFRIFDALNNVESMRPAIDAVRETGSTIAEVAMCYTGDL SDPAENLYTLDYYLKLAEQIVEAGAHVLAIKDMAGLLRAPAA HTLVSALRSRFDLPVHVHTHDTPGGQLATYLAAWSAGADAVD GASAPMAGTTSQPALSSIVAAAAHTQYDTGLDLRAVCDLEPY WEAVRKVYAPFESGLPGPTGRVYTHEIPGGQLSNLRQQAIAL GLGDRFEEIEANYAAADRVLGRLVKVTPSSKVVGDLALALVG AGITAEEFAEDPAKYDIPDSVIGFLRGELGDPPGGWPEPLRT KALQGRGPARPVEKLTADDEALLAQPGPKRQAALNRLLFPGP TAEFEAHRETYGDTSSLSANQFFYGLRYGEEHRVQLERGVEL LIGLEAISEADERGMRTVMCIINGQLRPVLVRDRSIASEVPA AEKADRNNADHIAAPFAGVVTVGVAEGDSVDAGQTIATIEAM KMEAAITAPKAGTVARVAVAATAQVEGGDLLVVVS pyc- Coryne- CAA70739 MSTHTSSTLPAFKKILVANRGEIAVRAFRAALETGAATVAIY 208 bacterium PREDRGSFHRSFASEAVRIGTEGSPVKAYLDIDEIIGAAKKV glutamicum KADAIYPGYGFLSENAQLARECAENGITFIGPTPEVLDLTGD KSRAVTAAKKAGLPVLAESTPSKNIDE IVKSAEGQTYPIFVK AVAGGGGRGMRFVASPDELRKLATEASREAEAAFGDGAVYVE RAVINPQHIEVQILGDHTGEVVHLYERDCSLQRRHQKVVEIA PAQHLDPELRDRICADAVKFCRSIGYQGAGTVEFLVDEKGNH VFIEMNPRIQVEHTVTEEVTEVDLVKAQMRLAAGATLKELGL TQDKIKTHGAALQCRITTEDPNNGFRPDTGTITAYRSPGGAG VRLDGAAQLGGEITAHFDSMLVKMTCRGSDFETAVARAQRAL AEFTVSGVATNIGFLRALLREEDFTSKRIATGFIADHPHLLQ APPADDEQGRILDYLADVTVNKPHGVRPKDVAAPIDKLPNIK DLPLPRGSRDRLKQLGPAAFARDLREQDALAVTDTTFRDAHQ SLLATRVRSFALKPAAEAVAKLTPELLSVEAWGGATYDVAMR FLFEDPWDRLDELREAMPNVNIQMLLRGRNTVGYTPYPDSVC RAFVKEAASSGVDIFRI FDALNDVSQMRPAIDAVL ETNTAVA 132 WO 2004/108894 PCT/US2004/017513 EVAMAYSGDLSDPNEKLYTLDYYLKMAEEIVKSGAHILAIKD MAGLLRPAAVTKLVTALRREFDLPVHVHTHDTAGGQLATYFA AAQAGADAVDGASAPLSGTTSQPSLSAIVAAFAHTRRDTGLS LEAVSDLEPYWEAVRGLYLPFESGTPGPTGRVYRHEIPGGQL SNLRAQATALGLADRFELIEDNYAAVNEMLGRPTKVTPSSKV VGDLALHLVGAGVDPADFAADPQKYDIPDSVIAFLRGELGNP PGGWPEPLRTRALEGRSEGKAPLTEVPEEEQAHLDADDSKER RNSLNRLLFPKPTEEFLEHRRRFGNTSALDDREFFYGLVEGR ETLIRLPDVRTPLLVRLDAISEPDDKGMRNVVANVNGQIRPM RVRDRSVESVTATAEKADSSNKGHVAAPFAGVVTVTVAEGDE VKAGDAVAIIEAMKMEATITASVDGKIDRVVVPAATKVEGGD LIVVVS dapA Thermobifida ZP_00058970 MVGSTTPNAPFGQMLTAMITPMLDNGEVDYDGVARLATYLVD 14 fusca EQRNDGLIVNGTTGESATTSDEEKERILRTVIDAVGDRATIV AGAGSNDTRHSIELARTAERAGADGLLLVTPYYNRPPQEGLL RHFTAIADATGLPIMLYDIPGRTGTPIDSETLVRLAEHPRIV ANKDAKDDLGASSWVMSRTDLAYYSGSDMLNLPLLSIGAAGF VSVVGHVVGSELHDMIDAYRAGDVARALDIHRRLIPVYRGMF RTQGVITTKAVLAMFGLPAGVVRAPLLDASPELKELLREDLA MAGVKGPTGLASAHEDAASGREAERLTEGTA dapA Mycobacterium CAC30464 MTTVGFDVPARLGTLLTAMVTPFDADGSVDTAAATRLANRLV 15 leprae (can be DAGCDGLVLSGTTGESPTTTDDEKLQLLRVVLEAVGDRARVI used to clone M. AGAGSYDTAHSVRLVKACAGEGAHGLLVVTPYYSKPPQTGLF smegmatis AHFTAVADATELPVLLYDIPGRSVVPIEPDTIRALASHPNIV gene) GVKEAKADLYSGARIMADTGLAYYSGDDALNLPWLAVGAIGF ISVISHLAAGQLRELLSAFGSGDITTARKINVAIGPLCSAMD RLGGVTMSKAGLRLQGIDVGDPRLPQMPATAEQIDELAVDMR AASVLR dapA Mycobacterium CAA1 5549 MTTVGFDVRLGTLLTANVTPFSGDGSLDTATAARLAHLV 16 tuberculosis DQGCDGLVVSGTTGESPTTTDGEKIELLRAVLEAVGDARVI (can be used to AGAGTYDTAHSIRLAKACAAEGAHGLLVVTPYYSKPPQRGLQ clone M. AHFTAVADATELPMLLYDIPGRSAVPIEPDTIRALASHPNIV smegmatis GVKDAKADLHSGAQIMADTGLAYYSGDDALNLPWLAMGATGF gene) ISVIAHLAAGQLRELLSAFGSGDIATARKINIAVAPLCNAMS RLGGVTLSKAGLRLQGIDVGDPRLPQVAATPEQIDALAADMR AASVLR dapA Streptomyces CAA20295 MAPTSTPQTPFGRVLTAMVTPFTADGALDLDGAQRLAAHLVD 17 coelicolor AGNDGLIINGTTGESPTTSDAEKADLVRAVVEAVGDRAHVVA GVGTNNtQHSIELARAAERVGAHGLLLVTPYYNKPPQEGLYL HFTAIADAAGLPVMLYDIPGRSGVPINTETLVRLAEHPRIVA NKDAKGDLGRASWAIARSGLAWYSGDDMLNLPLLAVGAVGFV SVVGHVVTPELRAMVDAHVAGDVQKALEIHQKLLPVFTGMFR TQGVMTTKGALALQGLPAGPLRAPMVGLTPEETEQLKIDLAA GGVQL dapA Erwinia MFTGSIVALVTPMDDKGAVDRASLKKLIDYHVASGTSAIVSV 18 chrysanthemi GTTGESATLSHDEHGDVVMLTLELSDGRIPVIAGTGANSTAE AISLTQRFNDTGVAGCLTVTPYYNKPTQNGLFLHFKAIAEHT DLPQILYNVPSRTGCDMLPETVARLSEIKNIVAIKEATGNLS RVSQIQELVHEDFILLSGDDASSLDFMQLGGDGVISVTANIA AREMAALCELAAQGNFVEARRLNQRLMPLHQKLFVEPNPIPV KWACKALGLMATDTLRLPMTPLTDAGRDVMEQAMKQAGLL dapA Coryne- C40626 MSTGLTAKTGVEHFGTVGVAMVTPFTESGDIDIAAGREVAAY 126 bacterium LVDKGLDSLVLAGTTGESPTTTAAEKLE 133 WO 2004/108894 PCT/US2004/017513 glutamicum LLKAVREEVGDRAKLIAGVGTNNTRTSVELAEAAASAGADGL LVVTPYYSKPSQEGLLAHFGAIAAATEV PICLYDIPGRSGIPIESDTMRRLSELPTILAVKDAKGDLVAA TSLIKETGLAWYSGDDPLNLVWLALGGS GFISVIGHAAPTALRELYTSFEEGDLVRARE TNAKLSPLVAA QGRLGGVSLAKAALRLQGINVGDPRLPI MAPNEQELEALREDMKKAGVL dapA Escherichia coli NP_416973 MFTGSIVATVTPMDEKGNVCRASLKKLIDYHVASGTSAIVSV 127 GTTGESATLNHDEHADVVMMTLDLADGR IPVIAGTGANATAEAISLTQRFNDSGIVGCLTVTPYYNRPSQ EGLYQHFKAIAEHTDLPQILYNVPSRTGCDLLPETVGRLAKV KNIIGIKEATGNLTRVNQIKELVSDDFVLLSGDDASALDFMQ LGGHGVISVTANVAARDMAQMCKLAAEGHFAEARVINQRLMP LHNKLFVEPNPIPVKWACKELGLVATDTLRLPMTPITDSGRE TVRAALKHAGLL hom Streptomyces CAC3391 8 MRTRPLKVALLGCGVVGSKVARIMTTHAADLAARIGAPVELA 19 coelicolor GVAVRRPDKVREGIDPALVTTDATALVKRGDIDVVVEVIGGI EPARTLITTAFAHGASVVSANKALIAQDGAALHAAADEHGKD LYYEAAVAGAIPLIRPLRESLAGDKVNRVLGIVNGTTNFILD AMDSTGAGYQEALDEATALGYAEADPTADVEGFDAAAKAAIL AGIAFHTRVRLDDVYREGMTEVTAADFASAKEMGCTIKLLAI CERAADGGSVTARVHPAMIPLSHPLANVREAYNAVFVESDAA GQLMFYGPGAGGSPTASAVLGDLVAVCRNRLGGATGPGESAY AALPVSPMGDVVTRYHISLDVADKPGVLAQVATVFAEHGVSI DTVRQSGKDGEASLVVVTHRASDAALGGTVEALRKLDTVRGV ASIMRVEGE hom Mycobacterum AAD32592 MSKKPIGVAVLGLGNVGSEVVRIIADSADDLAARIGAPLELR 20 smegmatis GVGVRRVADDRGVPTELLTDDIDALVSRDDVDIVVEVMGPVE PARKAILSALEQGKSVVTANKALMAMSTGELAQAAEKAHVDL YFEAAVAGAIPVIRPLTQSLAGDTVRRVAGIVNGTTNYILSE MDSTGADYTSALADASALGYAEADPTADVEGYDAAAKAAILA SIAFHTRVTADDVYREGITTVSAEDFASARALGCTIKLLAIC ERLTSDEGKDRVSARVYPALVPLTHPLAAVNGAFNAVVVEAE AAGRLMFYGQGAGGAPTAFAVMGDVVMAARNRVQGGRGPRES KYAKLPIAPIGFIPTRYYVNMNVADRPGVLSAVAAEF hom Thermobifida ZP_00058460 MRRPEPAGAADRGRTRPRHRRTGGHHPLRGRHGQGRGGDPHL 21 fusca CQCRRRYERQHPHRAVRCGVHLCAGLAAQRRRADAVPPGRQA LRERRHRRARPLPPCRPASRRPGSSGRHRRLLLLHGQQLQPR APACRGRGPREERPRPGATGNRRRPVAAGRRLSSGRRRSGHH DEVLDTDNERRNGSHPLMALKVALLGCGVVGSQVVRLLNEQS RELAERIGTPLEIGGIAVRRLDRARGTGVDPDLLTTDAMGLV TRDDIDLVVEVIGGIEPARSLILAAIQKGKSVVTANKALLAE DGATIHAAAREAGVDVYYEASVAGAIPLLRPLRDSLAGDRVN RVLGIVNGTTNYILDRMDSLGAGFTESLEEAQALGYAEADPT ADVEGFDAAAKAAILARLAFHTPVTAADVHREGITEVSAADI ASAKAMGCVVKLLAICQRSDDGSSIGVRVHPVMLPREHPLAS VKGAYNAVFVEAESAGQLMFYGAGAGGVPTASAVLGDLVAVA RNRLARTFVADGRADAKLPVHPMGETITSYHVALDVADRPGV LAGVAKVFAANGVSIKHVRQEGRGDDAQLVLVSHTAPDAALA RTVEQLRNHEDVRAVASVMRVETFDNER hom Coryne- CAA68614 MTSASAPSFNPGKGPGSAVGIALLGFGTVGTEVMRLMTEYGD 209 bacterium ELAHRIGGPLEVRGIAVSDISKPREGVAPELLTEDAFALIER glutamicum EDVDIVVEVIGGIEYPREVVLAALKAGKSVVTANKALVAAHS 134 WO 2004/108894 PCT/US2004/017513 AELADAAEAANVDLYFEAAVAGAIPVVGPLRRSLAGDQIQSV MGIVNGTTNFILDAMDSTGADYADSLAEATRLGYAEADPTAD VEGHDAASKAAILASIAFHTRVTADDVYCEGISNISAADIEA AQQAGHTIKLLAICEKFTNKEGKSAISARVHPTLLPVSHPLA SVNKSFNAIFVEAEAAGRLMFYGNGAGGAPTASAVLGDVVGA ARNKVHGGRAPGESTYANLPIADFGETTTRYHLDMDVEDRVG VLAELASLFSEQGISLRTIRQEERDDDARLIVVTHSALESDL SRTVELLKAKPVVKAINSVIRLERD metL Escherichia coll CAA23585 SVIAQAGAKGRQLHKFGGSSLADVKCYLRVAGIMAEYSQPDD 210 (bifuncti MMVVSAAGSTTNRLISWLKLSQTDRLSAHQVQQTLRRYQCDL onal; ISGLLPAEEADSLISAFVSDLERLAALLDSGINDAVYAEVVG contain HGEVWSARLMSAVLNQQGLPAAWLDAREFLRAERAAQPQVDE s hom GLSYPLLQQLLVQHPGKRLVVTGFISRNNAGETVLLGRNGSD activity) YSATQIGALAGVSRVTIWSDVAGVYSADPRKVKDACLLPLLR LDEASELARLAAPVLHARTLQPVSGSEIDLQLRCSYTPDQGS TRIERVLASGTGARIVTSHDDVCLIEFQVPASQDFKLGHKEI DQILKRAQVRPLAVGVHNDRQLLQFCYTSEVADSALKILDEA GLPGELRLRQGLALVAMVGAGVTRNPLHCHRFWQQLKGQPVE FTWQSDDGISLVAVLRTGPTESLIQGLHQSVFRAEKRIGLVL FGKGNiGSRWLELFAREQSTLSARTGFEFVLAGVVDSRRSLL SYDGLDASRALAFFNDEAVEQDEESLFLWMRAHPYDDLVVLD VTASQQLADQYLDFASHGFHVISANKLAGASDSNKYRQIHDA FEKTGRHWLYNATVGAGLPINHTVRDLIDSGDTILSISGIFS GTLSWLFLQFDGSVPFTELVDQAWQQGLTEPDPRDDLSGKDV SRKLVILAREAGYNIEPDQVRVESLVPAHCEGGSIDHFFENG DELNEQMVQRLEAAREMGLVLRYVARFDANGKARVGVEAVRE DHPLRSLLPCDNVFAIESRWYRDNPLVIRGPGAGRDVTAGAI QSDINRLAQLL thrA Escherichia coli AAA97301 MRVLKFGGTSVANAERFLRVADILESNARQGQVATVLSAPAK 211 (bifuncti ITNHLVAMIEKTISGQDALPNISDAERIFAELLTGLAAAQPG onal; FPLAQLKTFVDQEFAQTKHVLHGTSLLGQCPDSINAALICRG contain EKMS IAIMAGVLEARGHNVTVIDPVEKLLAVGHYLESTVDIA shorn ESTRRIAASRIPADHMVLMAGFTAGNEKGELVVLGRNGSDYS activity) AAVLAACLRADCCE IWTDVDGVYTCDPRQVPDARLLKSMSYQ EAMELSYFGAKVLHPRTITPIAQFQIPCLIKNTGNPQAPGTL IGASRDEDELPVKGISNLNNMAMFSVSGPGMKGMVGMAARVF AAMSRARISVVLITQSSSEYSISFCVPQSDCVRAERAMQEEF YLELKEGLLEPLAVTERLAIISVVGDGMRTLRGISAKFFAAL ARANINIVAIAQGSSERSISVVVNNDDATTGVRVTHQMLFNT DQVIEVFVIGVGGVGGALLEQLKRQQSWLKNKHIDLRVCGVA NSKALLTNVHGLNLENWQEELAQAKEPFNLGRLIRLVKEYHL LNPVIVDCTSSQAVADQYADFLREGFHVVTPNKKANTSSMDY YHQLRYAAEKSRRKFLYDTNVGAGLPVIENLQNLLNAGDELM KFSGILSGSLSYIFGKLDEGMSFSEATTLAREMGYTEPDPRD DLSGMDVARKLL ILARETGRELELADIEIEPVLPAEFNAEGD VAAFMANLSQLDDLFAARVAKARDEGKVLRYVGNIDEDGVCR VKIAEVDGNDPLFKVKNGENALAFYSHYYQPLPLVLRGYGAG NDVTAAGVFADLLRTLSWKLGV metA Mycobacterium CAAI7113 MTISDVPTQTLPAEGEIGLIDVGSLQLESGAVIDDVCIAVQR 22 tuberculosis WGKLSPARDNVVVVLHALTGDSHITGPAGPGHPTPGWWDGVA (can be used to GPGAPIDTTRWCAVATNVLGGCRGSTGPSSLARDGKPWGSRF clone M. PLISIRDQVQADVAALAALGITEVAAVVGGSMGGARALEWVV smegmatis GYPDRVRAGLLLAVGARATADQIGTQTTQIAAIKADPDWQSG gene) DYHETGRAPDAGLRLARRFAHLTYRGEIELDTRFANHNQGNE 135 WO 2004/108894 PCT/US2004/017513 DYHETGRAPDAGLRLARRFAHLTYRGEIELDTRFANHNQGNE DPTAGGRYAVQSYLEHQGDKLLSRFDAGSYVILTEALNSHDV GRGRGGVSAALRACPVPVVVGGITSDRLYPLRLQQELADLLP GCAGLRVVESVYGHDGFLVETEAVGELIRQTLGLADREGACR R metA Mycobacterium CAB10992 MTISKVPTQKLPAEGEVGLVDIGSLTTESGAVIDDVCIAVQR 23 leprae (can be WGELSPTRDNVVMVLHALTGDSHITGPAGPGHPTPGWWDWIA used to clone M. GPGAPIDTNRWCAIATNVLGGCRGSTGPSSLARDGKPWGSRF smegmatis PLISIRDQVEADIAALAAMGITKVAAVVGGSMGGARALEWII gene) GHPDQVRAGLLLAVGVRATADQIGTQTTQIAAIKTDPNWQGG DYYETGRAPENGLTIARRFAHLTYRSEVELDTRFANNNQGNE DPATGGRYAVQSYLEHQGDKLLARFDAGSYVVLTETLNSHDV GRGRGGIGTALRGCPVPVVVGGITSDRLYPLRLQQELAEMLP GCTGLQVVDSTYGHDGFLVESEAVGKLIRQTLELADVGSKED ACSQ metA Thermobifida ZP_00058188 MSHDTTPPLPATGAWREGDPPGDRRWVELSEPLPLETGGELP 24 fusca GVRLAYETWGSLNEDRSNAVLVLHALTGDSHVVGPEGPGHPS PGWWEGIIGPGLALDTDRYFVVAPNVLGGCQGSTGPSSTAPD GRPWGSRFPRITIRDTVRAEFALLREFGIHSWAAVLGGSMGG MRALEWAATYPERVRRLLLLASPAASSAQQIAWAAPQLHAIR SDPYWHGGDYYDRPGPGPVTGMGIARRIAHITYRGATEFDER FGRNPQDGEDPMAGGRFAVESYLDHHAVKLARRFDAGSYVVL TQAMNTHDVGRGRGGVAQALRRVTARTMVAGVSSDFLYPLAQ QQELADGIPGADEVRVIESASGHDGFLTEINQVSVLIKELLA Q metA Corynebacteriu AAC06035 MPTLAPSGQLEIQAIGDVSTEAGAIITNAEIAYHRWGEYRVD 212 m glutamicum KEGRSNVVLIEHALTGDSNAADWWADLLGPGKAINTDIYCVI CTNVIGGCNGSTGPGSMHPDGNFWGNRFPATSIRDQVNAEKQ FLDALGITTVAAVVLLGGSMGGARTLEWAAMYPETVGAAAVL AVSARASAWQIGIQSAQIKAIENDHHWHEGNYYESGCNPATG LGAARRIAHLTYRGELEIDERFGTKAQKNENPLGPYRKPDQR FAVESYLDYQADKLVQRFDAGSYVLLTDALNRHDIGRDRGGL NKALESIKVPVLVAGVDTDILYPYHQQEHLSRNLGNLLAMAK IVSPVGHDAFLTESRQMDRIVRNFFSLISPDEDNPSTYIEFY I metA Escherichia coli NP 418437 MPIRVPDELPAVNFLREENVFVMTTSRASGQEIRPLKVLILN 213 LMPKKIETENQFLRLLSNSPLQVDIQLLRIDSRESRNTPAEH LNNFYCNFEDIQDQNFDGLIVTGAPLGLVEFNDVAYWPQIKQ VLEWSKDHVTSTLFVCWAVQAALNILYGIPKQTRTEKLSGVY EHHILHPHALLTRGFDDSFLAPHSRYADFPAALIRDYTDLEI LAETEEGDAYLFASKDKRIAFVTGHPEYDAQTLAQEFFRDVE AGLDPDVPYNYFPHNDPQNTPRASWRSHGNLLFTNWLNYYVY QITPYDLRHMNPTLD metA T. fusca n/a MSHDTTPPLPATGAWREGDPPGDRRWVELSEPLPLETGGELPGVRL F269A AYETWGSLNEDRSNAVLVLHALTGDSHVVGPEGPGHPSPGWWEGII GPGLALDTDRYFVVAPNVLGGCQGSTGPSSTAPDGRPWGSRFPRIT IRDTVRAEFALLREFGIHSWAAVLGGSMGGMRALEWAATYPERVRR LLLLASPAASSAQQIAWAAPQLHAIRSDPYWHGGDYYDRPGPGPVT GMGIARRIAHITYRGATEFDERFGRNPQDGEDPMAGGRAAVESYLD HHAVKLARRFDAGSYVVLTQAMNTHDVGRGRGGVAQALRRVTARTM VAGVSSDFLYPLAQQQELADGIPGADEVRVIESASGHDGFLTEINQ VSVLIKELLAQ metY T. fusca n/a MALRPDRSIMTAEDTTPESTAADKWSFETKQIHAGAAPDPATNARA F379A TPIYQTTSYVFRDTQHGADLFSLAEPGNIYTRIMNPTQDVLEKRVA ALEGGVAAVAFASGSAAITAAVLNLAGAGDHIVSSPSLYGGTYNLF 136 WO 2004/108894 PCT/US2004/017513 RYTLPKLGIEVTFIKDQDDLDEWRAAARDNTKLFFAETLPNPANNV LDVRAVADVAHEVGVPLMVDNTVPTPYLQRPIDHGADIVVHSATKF LGGHGTTIAGIVVDAGTFDFGAHGDRFPGFVEPDPSYHGLKYWEAL GPGAYAAKLRVQLLRDTGAAISPFNSFLILQGIETLSLRMERHVAN AQALAEWLESRDEVAKVYYPGLPSSPYYEAAKKYLPKGAGAIVSFE LHGGIEAGRAAVDGTELFSQLVNIGDVRSLIVHPASTTHSQLTPEE QLASGVTPGLVRLSVGLEHVDDLRADLEAGLRAAKAYQ metY C glutamicum N/a MPKYDNSNADQWGFETRSIHAGQSVDAQTSARNLPIYQSTAFVFDS 0232A AEHAKQRFALEDLGPVYSRLTNPTVEALENRIASLEGGVHAVAFSS GQAATTNAILNLAGAGDHIVTSPRLYGTETLFLITLNRLGIDVSF VENPDDPESWQAAVQPNTKAFFGETFANPQADVLDIPAVAEVAHRN SVPLIIDNTIATAALVRPLELGADVVVASLTKFYTGNGSGLGGVLI DAGKFDWTVEKDGKPVFPYFVTPDAAYHGLKYADLGAFAFGLKVRV GLLRDTGSTLSAFNAWAAVQGIDTLSLRLERHNENAIKVAEFLNNH EKVEKVNFAGLKDSPWYATKEKLGLKYTGSVLTFEIKGGKDEAWAF IDALKLHSNLANIGDVRSLVVHPATTTHSQSDEAGLARAGVTQSTV RLSVGIETIDDIIADLEGGFAAI metY T.fusca n/a MALRPDRSIMTAEDTTPESTAADKWSFETKQIHAGAAPDPATNARA G240A TPIYQTTSYVFRDTQHGADLFSLAEPGNIYTRIMNPTQDVLEKRVA ALEGGVAAVAFASGSAAITAAVLNLAGAGDHIVSSPSLYGGTYNLF RYTLPKLGIEVTFIKDQDDLDEWRAAARDNTKLFFAETLPNPANNV LDVRAVADVAHEVGVPLMVDNTVPTPYLQRPIDHGADIVVHSATKF LGGHGTTIAAIVVDAGTFDFGAHGDRFPGFVEPDPSYHGLKYWEAL GPGAYAAKLRVQLLRDTGAAISPFNSFLILQGIETLSLRMERHVAN AQALAEWLESRDEVAKVYYPGLPSSPYYEAAKKYLPKGAGAIVSFE LHGGTEAGRAFVDGTELFSQLVNIGDVRSLIVHPASTTHSQLTPEE QLASGVTPGLVRLSVGLEHVDDLRADLEAGLRAAKAYQ metA T fusca n/a MSHDTTPPLPATGAWREGDPPGDRRWVELSEPLPLETGGELPGVRL G81lA AYETWGSLNEDRSNAVLVLHALTGDSHVVGPEGPAHPSPGWWEGII GPGLALDTDRYFVVAPNVLGGCQGSTGPSSTAPDGRPWGSRFFRIT IRDTVRAEFALLREFGIHSWAAVLGGSMGGMRALEWAATYPERVRR LLLLASPAASSAQQIAWAAPQLHAIRSDPYWHGGDYYDRPGPGPVT GMGIARRIAHITYRGATEFDERFGRNPQDGEDPMAGGRFAVESYLD HHAVKLARRFDAGSYVVLTQAMNTHDVGRGRGGVAQALRRVTARTM VAGVSSDFLYPLAQQQELADGIPGADEVRVIESASGHDGFLTEINQ VSVLIKELLAQ metA C. glutanicum n/a MPTLAPSGQLEIQAIGDVSTEAGAIITNAEIAYHRWGEYRVDKEGR K233A SNVVLIEHALTGDSNAADWWADLLGPGKAINTDIYCVICTNVIGGC NGSTGPGSMHPDGNFWGNRFPATSIRDQVNAEKQFLDALGITTVAA VLGGSMGGARTLEWAAMYPETVGAAAVLAVSARASAWQIGIQSAQI KAIENDHHWHEGNYYESGCNPATGLGAARRIAHLTYRGELEIDERF GTAAQKNENPLGPYRKPDQRFAVESYLDYQADKLVQRFDAGSYVLL TDALNRHDIGRDRGGLNKALESIKVPVLVAGVDTDILYPYHQQEHL SRNLGNLLAMAKIVSPVGHDAFLTESRQMDRIVRNFFSLISPDEDN PSTYIEFYI metY Thermobifida ZP_00058187 MALRPDRSIMTAEDTTPESTAADKWSFETKQIHAGAAPDPAT 25 fusca NARATPIYQTTSYVFRDTQHGADLFSLAEPGNIYTRIMNPTQ DVLEKRVAALEGGVAAVAFASGSAAITAAVLNLAGAGDHIVS SPSLYGGTYNLFRYTLPKLGIEVTFIKDQDDLDEWRAAARDN TKLFFAETLPNPANNVLDVRAVADVAHEVGVPLMVDNTVPTP YLQRPIDHGADIVVHSATKFLGGHGTTIAGIVVDAGTFDFGA HGDRFPGFVEPDPSYHGLKYWEALGPGAYAAKLRVQLLRDTG AAISPFNSFLILQGIETLSLRMERHVANAQALAEWLESRDEV AKVYYPGLPSSPYYEAAKKYLPKGAGAIVSFELHGGIEAGRA FVDGTELFSQLVNIGDVRSLIVHPASTTHSQLTPEEQLASGV TPGLVRLSVGLEHVDDLRADLEAGLRAAKAYQ metY Mycobacterium CAM 7112 MSADSNSTDADPTAHWSFETKQIHAGQHPDPTTNARALPIYA 26 tuberculosis TTSYTFDDTAHAAALFGLE IPGNIYTRIGNPTTDVVEQRIAA LEGGVAALFLSSGQAAETFAILNLAGAGDHIVSSPRLYGGTY NLFHYSLAKLGIEVSFVDDPDDLDTWQAAVRPNTKAFFAETI 137 WO 2004/108894 PCT/US2004/017513 SNPQIDLLDTPAVSEVAHRNGVPLIVDNTIATPYLIQPLAQG AIVVHSATKYLGGAAIAGVIVDGGNFDWTQGRFPGFTTP DPSYHGVVFAELGPPAFALKARVQLLRDYGSAAS PFNAFLVA QGLETLSLRIERHVANAQRVAEFLAARDDVLSVNYAGLPS SP WHEPAKRLAPKGTGAVLS FELAGGIEAGKAFVNALKLHSHVA NTGDVRSLVIHPASTTHAQLSPAEQLATGVSPGLVRLAVGIE GIDDILADLELGFAAARRFSADPQSVAAF metY M sieginatis MVDGFTLRRPQGKRGSAGSGPRETGKPDGGQPCVVVREPFTPT RGVHLYVRTRVRLALGAGRPAAFTPHSPPSSRRRPSMTTPDP TENWSFETKQIHAGQSPDSATHAPRALP IYQTTSYTFDDTSHA ALFGLEVPGNIYTRIGNPTTDVVEQRIAALEGGVAALFLS S GQAAETFAILNIAKAGDHIVS SPRLYGGTYNLLHYTLPKLGI ETTFVENPDDLESWRAAVRPNTKAFFAETI SNPQIDILDIPN VAAIAHEAGVPLIVDNTIATPYLIQPIAHGAD IVVHSATKYL GGHGSAIAGVIVDGGTFDWTNGKFPGFTEPDPSYHGVVFAEL GAPAYALKARVQLLRDLGSAAAPFNAFLTAQGLETLSLRVER HVANAQKVAEFLENHPDVSSVNYAGLPSSPWYELGRKLAPKG TGAVLAFELSGGLEAGKAFVNALTLHSHVANIGDVRSLVIHP ASTTHQQLSPEEQLSTGVTPGLVRLAVGLEGIDDI IADLEQG FAAARPFSGAAQTAQTV metY Corynebacteriu AAG49653 MPKYDNSNADQWGFETRS IHAGQSVDAQTSARNLPIYQSTAF 214 m glutamicum VFDSAEHAKQRFAILEDLGPVYSRLTNPTVEALENRIASLEGG VHAXTAFS SGQAATTNAILNLAGAGDHIVTSPRLYGGTETLFL ITLNRLGIDVSFVENPDDPESWQAAVQPNTKAFFGETFANPQ ADVLDIPAVAEVAHRNSVP~I IDNTIATAALVP.PLELGADVV VASLTKFYTGNGSGLGGVLIDGGKFDWTVEKDGKPVFPYFVT PDAAYHGLKYADLGAPAFGLKVRVGLLRDTGSTLSAFNAWAA VQGIDTLSLRLERHNENAIKVAEFLNNHEKVEKVNFAGLKDS PWYATKEKLGLKYTGSVTTFEIKGGKDE-AWAFIDALKLHSNL ANIGDVRSLVVHPATTTHSQSDEAGLARAGVTQSTVRLSVGI ETJIDDIIADLEGGFAAI MetY C glutainicutn N/a MPKYDNSNADQWGFETRS IHAGQSVDAQTSARNLPIYQSTAFVFDS D231A AEHAKQREALEDLGPVYSRLTNPTVEALENRIASLEGGVHAVAFSS GQAATTNAILNLAGAGDHIVT SPRLYGGTETLFLITLNRLGI DVSF VENPDDPESWQAAVQFNTKAFFGETFANPQADVLDI PAVAEVAHRN SVPLII DNT IATAALVRPLFLGADVVVASLTKFYTGNGSGLGGVLI AGGKFDWTVEKDG PVFPYFVTPDAAYHGL<YADLGAPAFGL<VRV GLLRDTGSTLSAFNAWAAVQGIDTLSLRLERHNENAIKVAEFLNNH E1(VEIVNFAGLKDS PWYATKEKLGLKYTGSVLTFEIIEGGKDEAWAF IDALKLHSNLANIGDVRSLVVTIPATTTHSQSDEAGLARAGVTQSTV RLSVGIETIDDIIADLEGGFAAI ___ metY T. fusca n/a MALRPDRS IMTAEDTTPESTAADKWSFETKQIHAGAAPDPATNARA D244A TPIYQTTSYVFRDTQHGADLFSLAEPGNIYTRIM~NPTQDVLEKRVA ALEGGVAAVAFASGSAATTAAVLNLAGAGDHIVSS PSLYGGTYNLF RYTLPKLGIEVTFIKDQDDLDEWRZAAARDNTKLFFAETLPNPANNV LDVRAVADVAHEVGVPLMVDNTVPTPYLQRPI DHGADIVVHSATKF LGGHGTTIAGIVVAAGT FDFGAHGDRFFGFVEPDPSYHGLKYWEAL GPGAYAAKLRVQLLRDTGAAI &PFNS FLILQGIETLSLRD4ERHVAN AQALAEWLE SRDEVAKVYYPGLPSSPYYEAAKKYLPKGAGATVS FE LHGGIEAGRAFVDGTELFSQLVNIGDVRSLIVHPASTTHSQLTPEE QLASGVTPGLVRLSVGLEHVDDLRADLEAGLRAAKAYQ MetA T' fusca n/a MSHDTTPPLPATGAWREGDPGDRRWVELSEPLPLETGGEL2GVRL D287A AYETWGSLNEDRSNAVLVLHALTGDSHVVGPEGPGHPSPGWWEGI GPGLALDTDRYFVVAPNVLGGCQGSTGPS STAPDGRPWGSRFPRIT IRDTVRAEFALLREFGIHSWAAVLGGSMGGMRALEWAATYPSRVRR LLLLASPAAS SAQQIAWAAPQLHAIRSDPYWHGGDYYDRPGPGPVT GMGIARRIAHITYRGATEFDERFGRNPQDGEDPMAGGRFAVESYLD EHHAVKLARRFAAGSYVVLTQAM4NTHDVGRGRGGVAQALRRVTARTMI 138 WO 2004/108894 PCT/US2004/017513 VAGVSSDFLYPLAQQQELADGIPGADEVRVIESASGHDGFLTEINQ VSVLIKELLAQ metY T. fusca n/a MALRPDRSIMTAEDTTPESTAADKWSFETKQIHAGAAPDPATNARA D394A TPIYQTTSYVFRDTQHGADLFSLAEPGNIYTRIMNPTQDVLEKRVA ALEGGVAAVAFASGSAAITAAVLNLAGAGDHIVSSPSLYGGTYNLF RYTLPKLGIEVTFIKDQDDLDEWRAAARDNTKLFFAETLPNPANNV LDVRAVADVAHEVGVPLMVDNTVPTPYLQRPIDHGADTVVHSATKF LGGHGTTIAGIVVDAGTFDFGAHGDRFPGFVEPDPSYHGLKYWEAL GPGAYAAKLRVQLLRDTGAAISPFNSFLILQGIETLSLRMERHVAN AQALAEWLESRDEVAKVYYPGLPSSPYYEAAKKYLPKGAGAIVSFE LHGGIEAGRAFVDGTELFSQLVNIGAVRSLIVHPASTTHSQLTPEE QLASGVTPGLVRLSVGLEHVDDLRADLEAGLRAAKAYQ metK Mycobacterium CAB02194 MSEKGRLFTSESVTEGHPDKICDAISDSVLDALLAADPRSRV 27 tuberculosis AVETLVTTGQVHVVGEVTTSAKEAFADITNTVRARILEIGYD (can be used to SSDKGFDGATCGVNIGIGAQSPDIAQGVDTAHEARVEGAADP clone M. LDSQGAGDQGLMFGYAINATPELMPLPIALAHRLSRRLTEVR snegmatis KNGVLPYLRPDGKTQVTIAYEDNVPVRLDTVVISTQHAADID gene) LEKTLDPDIREKVLNTVLDDLAHETLDASTVRVLVNPTGKFV LGGPMGDAGLTGRKIIVDTYGGWARHGGGAFSGKDPSKVDRS AAYAMRWVAKNVVAAGLAERVEVQVAYAIGKAAPVGLFVETF GTETEDPVKIEKAIGEVFDLRPGAIIRDLNLLRPIYAPTAAY GHFGRTDVELPWEQLDKVDDLKRAI_ metK Mycobacterium CAC30052 MSEKGRLFTSESVTEGHPDKICDAISDSILDALLAEDPCSRV 28 leprae (can be AVETLVTTGQVHVVGEVTTLAKTAFADISNTVRERILDIGYD used to clone M. SSDKGFDGASCGVNIGIGAQSSDIAQGVNTAHEVRVEGAADP smegmatis LDAQGAGDQGLMFGYAINDTPELMPLPIALAHRLARRLTEVR gene) KNGVLPYLRSDGKTQVTIAYEDNVPVRLDTVVISTQHAAGVD LDATLAPDIREKVLNTVIDDLSHDTLDVSSVRVLVNPTGKFV LGGPMGDAGLTGRKIIVDTYGGWARHGGGAFSGKDPSKVDRS AAYAMRWVAKNIVAAGLAERIEVQVAYAIGKAAPVGLFVETF GTEAVDPAKIEKAIGEVFDLRPGAIIRDLHLLRPIYAQTAAY GHFGRTDVELPWEQLNKVDDLKRAI metK Thermobifida ZP_00057715 MSRRLFTSESVTEGHPDKIADQISDAILDSMLRDDPHSRVAV 29 fusca ETLITTGLVHVAGEVTTSTYVDIPTIIREKILEIGYDSSAKG FDGASCGVSVSIGGQSPDIAQGVDNAYEAREEEIFDDLDRQG AGDQGLMFGYAPELMPLPITLAHALSQRLAEVRRDGTIPYLR PDGKTQVTVEYDGNRNNETPVRLDTVVVSSQHAPDIDLRELL TPDIKEHVVDPVVARYNLEADNYRLLVNPTGRFEIGGPMGDA GLTGRKIIVDTYGGYARHGGGAFSGKDPSKVDRSAAYATRWV AKNIVAAGLADRVEVQVAYAIGKAHPVGVFLETFGTEKVAPE QLEKAVLEVFDLRPAAIIRDLDLLRPIYSQTSVYGHFGRELP DFTWERTDRVDALKAAVGA metK Streptomyces CAB76898 MSRRLFTSESVTEGHPDKIADQISDTILDALLREDPTSRVAV 30 coelicolor ETLITTGLVHVAGEVTTKAYADIANLVRGKILEIGYDSSKKG FDGASCGVSVSIGAQSPDIAQGVDTAYENRVEGDEDELDRQG AGDQGLMFGYASDETPTLMPLPVFLAHIRLSKRLSEVRKNGTI PYLRPDGKTQVTIEYDGDKAVRLDTVVVSSQHASDIDLESLL APDIKEFVVEPELKALLEDGIKIDTENYRLLVNPTGRFEIGG PMGDAGLTGRKIIIDTYGGMARHGGGAFSGKDPSKVDRSAAY AMRWVAKNVVAAGLAARCEVQVAYAIGKAEPVGLFVETFGTA KVDTEKIEKAIDEVFDLRPAAIIRALDLLRPIYAQTAAYGHF GRELPDFTWERTDRVDALREAAGL metK Coryne- BAB98996 MAQPTAVRLFTSESVTEGHPDKICDAISDTILDALLEKDPQS 215 bacterium RVAVETVVTTGIVHVVGEVRTSAYVEIPQLVRNKLIEIGFNS glutamicum SEVGFDGRTCGVSVSIGEQSQEIADGVDNSDEARTNGDVEED 139 WO 2004/108894 PCT/US2004/017513 DRAGAGDQGLMFGYATNETEEYMPLPIALAHRLSRRLTQVRK EGIVPHLRPDGKTQVTFAYDAQDRPSHLDTVVISTQHDPEVD RAWLETQLREHVIDWVIKDAGIEDLATGEITVLINPSGSFIL GGPMGDAGLTGRKI IVDTYGGMARHGGGAFSGKDPSKVDRSA AYAMRWVAKNIVAAGLADRAEVQVAYAIGRAKPVGLYVETFD TNKEGLSDEQIQAAVLEVFDLRPAAI IRELDLLRPIYADTAA YGHFGRTDLDLPWEAIDRVDELRAALKLA metK Escherichia coli AAA69109 MAKHLFTSESVSEGHPDKIADQISDAVLDAILEQDPKARVAC 216 ETYVKTGMVLVGGEITTSAWVDIEEITRNTVREIGYVHSDMG FDANSCAVLSAIGKQSPDINQGVDRADPLEQGAGDQGLMFGY ATNETDVLMPAPITYAHRLVQRQAEVRKNGTLPWLRPDAKSQ VTFQYDDGKIVGIDAVVLSTQHSEEIDQKSLQEAVMEEIIKP ILPAEWLTSATKFFINPTGRFVIGGPMGDCGLTGRKIIVDTY GGMARHGGGAFSGKDPSKVDRSAAYAARYVAKNIVAAGLADR CEIQVSYAIGVAEPTSIMVETFGTEKVPSEQLTLLVREFFDL RPYGLIQMLDLLHPIYKETAAYGHFGREHFPWEKTDKAQLLR DAAGLK metC Mycobacterium CAA 6256 QDSIFNLLTEEQLRGRNTLKWNYFGPDVVPLWLAENDFPTA 59 tuberculosis (use PAVLDGVRACVDNEEFGYPPLGEDSLPRATADWCRQRYGWCP this to clone M. RPDWVRVVPDVLKGMEVVVEFLTRPESPVALPVPAYMPFFDV smegmatis LHVTGRQRVEVPMVQQDSGRYLLDLDALQAAFVRGAGSVIIC gene) TPNNPLGTAFTEAELRAIVDIAARHGARVIADEIWAPVVYGS RHVAAASVSEAAAEVVVTLVSASKGWNLPGLMCAQVILSNRR DAHDWDRINMLHRMGASTVGIRANIAAYHHGESWLDELLPYL RDHLARALPELAPGVEVNAPDGTYLSWVDFRALALPSEP EYLLSKAKVALSPGIPFGAAVGSGFARLNFATTRAILDRAI EAIAAALRDIID metC Bifidobacterium ZP00121229 VISMNNIPQSTTVSNATADVSCFDANHIDVTTIEDLKQVGSDK s0 longum WTRYPGCIGAFIAEMDYGLAPCVAEAIEEATERGALGYIPDP WKKEVARSCAAWQRRYGWDVDPTCIRPVPDVLEAFEVFLREI \RAGNSIVVPTPAYMPFLSVPRLYGVEVLEIPMLCAGASESS RNDEWLFDFDAIEQAFANGCHAFVLCNPHNPIGKVLTREEM LRLSDLAAKYNVRIFSDEIHAPFVYQGHTHVPFASINRQTAM QAFTSTSASKSFNIPGTKCAQVILTNPDDLELWMRNAEWSEH QTATIGAIATTAAYDGGAAWFEGVMAYIERNIALVNEQMRTR FAKVRYVEPQGTYIAWLDFSPLGIGDPANYPFKKANVALTDG RECGEVGRGCVRMNFAMPYPLLEECFDRMAAALEADGLL metC Lactobacillus CAD65601 [QYDFNKVINRRGTYSTQWDYIQDRFGRSDILPFSISDTDFP 61 olantarum VPVGVQEALEQRIKHPIYGYTRWNNEDYKNSIINWFSSQNQV TINPDWILYSPSVVFSIATFIRMKSAVGESVAVFTPMYDAFY IVIEDNQRVLAPVRLGSAQQDYSIDWDTLKAVLKQTATKILL LTNPHNPTGKVFSDDELKHIVALCQQYNVFIISDDIHKDIVY QKAAYTPVTEFTTKNVLCCSATKTFNTPGLIGAYLFEPEAE LREMFLCELKQKNALSSASILGIESQMAAYNTGSDYLVQLIT YLQNNFDYLSTFLKSQLPEIRFKQPEATYLAWMDVSQLGLTA EKLQDKLVNTGRVGIMSGTTYGDSHYLRMNIACPISKLQEGL KRMEYGIRS metC Coryne- K69425 MRFPELEELKNRRTLKWTRFPEDVLPLWVAESDFGTCPQLKE 17 bacterium AMADAVEREVFGYPPDATGLNDALTGFYERRYGFGPNPESVF glutamicum AIPDVVRGLKLAIEHFTKPGSAIIVPLPAYPPFIELPKVTGR QAIYIDAHEYDLKEIEKAFADGAGSLLFCNPHNPLGTVFSEE YTRELTDIAAKYDARIIVDEIHAPLVYEGTHVVAAGVSENAA lTCITITATSKAWNTAGLKCAQIFFSNEADVKAWKNLSDITR 140 WO 2004/108894 PCT/US2004/017513 DGVS ILGLIAAETVYNEGEEFLDES IQILKDNRDFAAAELEK LGVKVYAPDSTYLMWLDFAGTKIEEAPSKILREEGKVMLNDG AFGGFTTCARLNFACSRETLEEGLRRIASVL metC Escherichia co/g P06721 MAKKLDTQLVNAGRSKKYTLGAVNSVIQRASSLVFDSVEAK 218 KHATRNRANGELFYGRRGTLTHFSLQQAMCELEGGAGCVLFP CGAAAVANS ILAFIEQGDHVLMTNTAYEPSQDFCSKILSKLG VTTSWFDPLIGADIVKHLQPNTKTVFLESPGS ITMEVHDVPA IVAAVRSVVPDAITMIDNTWAAGVLFKALDFGIDVS IQAATK YLVGHSDAMIGTAVCNARCWEQLRENAYLMGQMVDADTAYIT SRGLRTLGVRLRQHHES SLKVAEWLAEHPQVARVNHPAJPGS KGHEFWKRDFTGS SGLFSFVLKKKLNNEEILANYLDNFSLFSM AYSWGGYESLILANQPEHIAAIRPQGE IDFSGTLIRLHIGLE DVDDLIADLDAGFARIV pck C. glutamicum MTTAAIRGLQGEAPTKNKELLNWIADAVELFQPEAVVFVDGS QAEWDRMAEDLVEAGTLIKLNEEKRPNSYLARSNPSDVARVE SRTFICSEKEEDAGPTNNWAPPQAMAKDEMSKHYAGSMKGRTM YVVPFCMGPISDPDPKLGVQLTDSEYVVMSMRIMTRMGIEAJ DKIGANGSFVRCLHSVGAPLEPGQEDVAWPCNDTKYITQFPE TKE IWSYGSGYGGNAILAKKCYALRIASVI4AREEGWMAEHML ILKLINPEGKAYHIAAAFPSACGKTNLAMITPTIPGWTAQVJ DDIAWLKLREDGLYAVNPENGFFGVAPGTNYASINPIAMKTM EPGNTLFTNVALTDDGDTWWEGMDGDAPAHLIDWMGNSDWTPE SDENA1.\IPNSRYCVAIDQSPAAAPEFNDWEGVKIDAIL-FGGR RTVPLVTQTYDWEHGTMVGALLASGQTAASAEAKVGTLaRH DPMANLPFIGYNAGEYLQNWIDMGNKGGDKMPS IFLVNWFRR GEDGRFLWPGFGDNSRVLKWVIDRIEGHVGADETVVGHTAKA EDLDLDGLDTPIEDVKEALTAPAEQWANDVEDNAEYLTFLGP RVPAE VHSQFDAL KARl SAAHA pck E. co/i MRVNNGLTPQELEAYGISDVHDIVYNPSYDLLYQEELDPSLT GYERGVLTNLGAVAVDTGI FTGRSPKDKYIVRDDTTRDTFWW AKGKGKNDNKPLSPETWQHLKGLVTRQLSGKRLFVVDAFCG APDTRLSVRFITEVAWQAHFVKNMFIRPSDEELAGFKPDFI VGAKCTNlPQWKEQGLNsSENFVAFNLTERMQLIGGTWYGGE MKKGMFSMMNYLLPLKGIASMHCSAN~VGEKGDVAVFFGLSGT KTTLSTDPKRRLIGDDEHGWDDDGVFNFEGGCYAKTIKLSK EAEPEIYNAIRRDALLENVTVREDGTIDFDDGSKTENTRVSY PIYHIDNIVKPVSKAGHATKVIFLaTADAFGVLPPVSRLTADQ TQYHFLSGFTAKLAGTERGITEPTPTFSACFGAAFLSLHPTQ YAEVLVKRMQAAGAQAYLVNTGWNGTGKRIS IKDTRAI IDAI LNGSLDNAETFTLPMFNLAIPTEL~PGVDTKILDPRNTYAS PE QWQEKAETLAKLFIDNFDKYTDTPAGAALVA4GPKL___ dh Streptomycesco CAB82051 PAVPERAPVTTRSETQSTLDHLLiTE IELRNPAQPEFHQAAH 2 alicolor EVLETLAPVVAARPEYAEPGLIERLVEPERQVMFRVPWQDDQ GRVRVNRGFRVEFNSALGPYKGGLRFHPSVNLGVIKFLGFEQ IFKNALTGLGIGGGKGGSDFDPHGRSDAEVMFRFCQSFMTELY HIGEHTDVPAGDIGVGGRE IGYLFGQYRRITNRWESGVLTG KGQGWGGSLIRPEATGYGNVIJFAAAMLRERGEDLEGQTAVVS GSGNVAIYTIEKLTALGANAVTCSDSSGYVVDEKGIDLDLLK QIKEVERGRVDAYAERRGASARFVPGGSVWDVPADLALPSAT QNELDENAAATLVRNGVKAVSEGANMPTTPEAVHLLQKAGVA FGPGKA-ANAGGVAVSALEMAQNRARTSWTAARVEEEJADIMT SIHTTCHETAERYDAPGDYVTGANIAGFERVADAMLAQGVI dh The rmobifida P_00057948 MRPEPEATMSANLDEKLSPIYEEILRRNPGEVEFHQAVREVL P3 141 WO 2004/108894 PCT/US2004/017513 fusca ECLGPVVAKNPDISHAKIIERLCEPERQLIFRVPWMDDSGEI HVNRGFRVEFSSSLGPYKGGLRFHPSVNLSIIKFLGFEQIFK NSLTGLPIGGAKGGSDFDPKGRSDAEIMRFCQSFMTELYRHL GEHTDVPAGDIGVGQREIGYLFGQYKRITNRYESGVFTGKGL SWGGSQVRREATGYGCVLFTAEMLRARGDSLEGKRVSVSGSG NVAIYAIEKAQQLGAHVVTCSDSNGYVVDEKGIDLELLKQVK EVERGRVSDYAKRRGSHVRYIDSSSSSVWEVPCDIALPCATQ NELTGRDAITLVRNGVGAVAEGANMPTTPEGIRVFAEAGVAF APGKAANAGGVATSALEMQQNASRDSWSFEYTEKRLAEIMRH IHDTCYETAERYGRPGDYVAGANIAAFEIVAEAMLAQGLI dh Lactobacillus CAD63684 MSQATDYVQHVYQVIEHRDPNQTEFLEAINDVFKTITPVLEQ 4 lantarum HPEYIEANILERLTEPERIIQFRVPWLDDAGHARVNRGFRVQ FNSAIGPYKGGLRLHPSVNLSIVKFLGFEQIFKNALTGLPIG GGKGGSDFDPKGKSDNEIMRFCQSFMTELSKYIGLDTDVPAG DIGVGGREIGFLYGQYKRLRGADRGVLTGKGLNYGGSLARTE ATGYGLAYYTNEMLKANQLSFPGQRVAISGAGNVAIYAIQKV EELGGKVITCSDSNGYVIDENGIDFKIVKQIKEVERGRIKDY ADRVASASYYEGSVWDAQVAYDIALPCATQNEISGDQAKNLI ANGAKVVAEGANMPSSPEAIATYQAASLLYGPAKAANAGGVA VSALEMSQNSMRLSWTFEEVDNRLKQIMQDIFAHSVAAADEY RVSGDYLSGANIAGFTKVADAMLAQGLV dh Coyne- CAA42048 MTVDEQVSNYYDMLLKRNAGEPEFHQAVAEVLESLKLVLEKD 219 bacterium PHYADYGLIQRLCEPERQLIFRVPWVDDQGQVHVNRGFRVQF glutamicum NSALGPYKGGLRFHPSVNLGIVKFLGFEQIFKNSLTGLPIGG GKGGSDFDPKGKSDLEIMRFCQSFMTELHRHIGEYRDVPAGD IGVGGREIGYLFGHYRRMANQHESGVLTGKGLTWGGSLVRTE ATGYGCVYFVSEMIKAKGESISGQKIIVSGSGNVATYAIEKA QELGATVIGFSDSSGWVHTPNGVDVAKLREIKEVRRARVSVY ADEVEGATYHTDGSIWDLKCDIALPCATQNELNGENAKTLAD MGCRFVAEGANMPSTPEAVEVFRERDIRFGPGKATPEAVEVF RERDIRFGPGKAVNVGGVATSALEMQQNASRETCAETAAEYG RENDYVVGANIAGFKKVADAMLAQGVI gdh Escherichia coli BAA 5550 MDQTYSLESFLNHVQKRDPNQTEFAQAVREVMTTLWPFLEQN 220 PKYRQMSLLERLVEPERVIQFRVVWVDDRNQIQVNRAWRVQF SSAIGPYKGGMRFHPSVNLS ILKFLGFEQTFKNALTTLPMGG KGGSDFDPKGKSEGEVMRFCQALMTELYRHLGADTDVPAGD IGVGGREVGFMAGMMKKLSNNTACVFTGKGLSFGGSL IRPEA TGYGLVYFTEAMLKRHGMGFEGMRVSVSGSGNVAQYAIEKAM EFGARVITASDSSGTVVDESGFTKEKLARLIEIKASRDGRVA DYAKEFGLVYLEGQQPWSLPVDIALPCATQNELDVDAAHQLI ANGVKAVAEGANMPTTIEATELFQQAGVLFAPGKAANAGGVA TSGLEMAQNAARLGWKAEKVDARLHHIMLDIHHACVEHGGEG EQTNYVQGANIAGFVKVADAMLAQGVI ddh Bacillus BAB07799 MSAIRVGIVGYGNLGRGVEFAISQNPDMELVAVFTRRDPSTV 65 sphaericus SVASNASVYLVDDAEKFQDDIDVMILCGGSATDLPEQGPHFA QWFNTIDSFDTHAKIPEFFDAVDAAAQKSGKVSVISVGWDPG LFSLNRVLGEAVLPVGTTYTFWGDGLSQGHSDAVRRIEGVKN AVQYTLPIKDAVERVRNGENPELTTREKHARECWVVLEEGAD APKVEQEIVTMPNYFDEYNTTVNFISEDEFNANHTGMPHGGF VIRSGESGANDKQILEFSLKLESNPNFTSSVLVAYARAAHRL SQAGEKGAKTVFDI PFGLLSPKSAAQLRKELL tsR1 Thermobifida P_00058587 MATQAPEPLPADQIDIRTTAGKLADLQRRRYEAVHAGSERAV 6 fusca AKQHAKGKMTARERIDALLDPGSFVEFDAFARHRSTNFGLEK 142 WO 2004/108894 PCT/US2004/017513 NRPYGDGVVTGYGTIDGRPVAVFSQDVTVFGGSLGEVYGEKI VKVLDHALKTGCPVIGINEGGGARIQEGVVALGLYAEIFKRN THASGVIPQISLVMGAAAGGHVYSPALTDFIVMVDQTSQMFI TGPDVIKTVTGEDVTMEELGGARTHNTKSGVAHYMASDEHDA LEYVKALLSYLPSNNLDEPPVEPVQVTLEVTEEDRELDTFIP DSANQPYDMRRVIEHIVDDGEFLEVHELFAQNIIVGFGRVEG HPVGVVANQPMNLAGCLDIDASEKAARFVRTCDAFNIPVLTL VDVPGFLPGTDQEFGGIIRRGAKLLYAYAEATVPLVTIITRK AFGGAYDVMGSKHLGADINLAWPTAQIAVMGAQGAVNILHRR TLAAADDVEATRAQLIAEYEDTLLNPYSAAERGYVDSVIMPS ETRTSVIKALRALRGKRKQLPPKKHGNIPL tsR1 Streptomyces AAD28194 MSEPEEQQPDIHTTAGKLADLRRRIEEATHAGSARAVEKQHA 7 coelicolor KGKLTARERIDLLLDEGSFVELDEFARHRSTNFGLDANRPYG DGVVTGYGTVDGRPVAVFSQDFTVFGGALGEVYGQKIVKVMD FALKTGCPVVGINDSGGARIQEGVASLGAYGEIFRRNTHASG VIPQISLVVGPCAGGAVYSPAITDFTVMVDQTSHMFITGPDV IKTVTGEDVGFEELGGARTHNSTSGVAHHMAGDEKDAVEYVK QLLSYLPSNNLSEPPAFPEEADLAVTDEDAELDTIVPDSANQ PYDMHSVIEHVLDDAEFFETQPLFAPNILTGFGRVEGRPVGI VANQPMQFAGCLDITASEKAARFVRTCDAFNVPVLTFVDVPG FLPGVDQEHDGIIRRGAKLIFAYAEATVPLITVITRKAFGGA YDVMGSKHLGADLNLAWPTAQIAVMGAQGAVNILHRRTIADA GDDAEATRARLIQEYEDALLNPYTAAERGYVDAVIMPSDTRR EIVRGLRQLRTKRESLPPKKHGNIPL tsR1 Mycobacterium CAB07063 TSVTDRSAHSAERSTEHTIDIHTTAGKLAELHKRREESLHP 8 tuberculosis (use VGEDAVEKVHAKGKLTARERIYALLDEDSFVELDALAKHRST this to clone M. NFNLGEKRPLGDGVVTGYGTIDGRDVCIFSQDATVFGGSLGE megmatis VYGEKIVKVQELAIKTGRPLIGINDGAGARIQEGVVSLGLYS gene) IFRNNILASGVIPQISLIMGAAAGGHVYSPALTDFVIMVDQ TSQMFITGPDVIKTVTGEEVTMEELGGAHTHMAKSGTAHYAA SGEQDAFDYVRELLSYLPPNNSTDAPRYQAAAPTGPIEENLT DEDLELDTLIPDSPNQPYDMHEVITRLLDDEFLEIQAGYAQN IVVGFGRIDGRPVGIVANQPTHFAGCLDINASEKAARFVRTC DCFNIPIVMLVDVPGFLPGTDQEYNGIIRRGAKLLYAYGEAT VPKITVITRKAYGGAYCVMGSKDMGCDVNLAWPTAQIAVMGA SGAVGFVYRQQLAEAAANGEDIDKLRLRLQQEYEDTLVNPYV AAERGYVDAVIPPSHTRGYIGTALRLLERKIAQLPPKKHGNV PL tsR1 Mycobacterium AAA85917 TSVTDHSAISMERAAEHTINIHTTAGKLAELHKRTEEALHP 9 leprae (use this VGAAAFEKVHAKGKFTARERIYALLDDDSFVELDALARHRST to clone M. NFGLGENRPVGDGVVTGYGTIDGRDVCIFSQDVTVFGGSLGE megmatis YGEKIVKVQELAIKTGRPLIGINDGAGARIQEGVVSLGLYS gene) RIFRNNILASGVIPQISLIMGAAAGGHVYSPALTDFVVMVDQ TSQMFITGPDVIKTVTGEDVTMEELGGAHTHMAKSGTAHYVA SGEQDAFDWVRDVLSYLPSNNFTDAPRYSKPVPHGSIEDNLT AKDLELDTLIPDSPNQPYDMHEVVTRLLDEEEFLEVQAGYAT NIVVGLGRIDDRPVGIVANQPIQFAGCLDINASEKAARFVRV CDCFNIPIVMLVDVPGFLPGTEQEYDGIIRRGAKLLFAYGEA TVPKITVITRKAYGGAYCVMGSKNMGCDVNLAWPTAQIAVMG ASGAVGFVYRKELAQAAKNGANVDELRLQLQQEYEDTLVNPY IAAERGYVDAVIPPSHTRGYIATALHLLERKIAHLPPKKHGN IPL tsR1 Coryne- NP_599940 MTISSPLIDVANLPDINTTAGKIADLKARRAEAHFPMGEKAV 21 143 WO 2004/108894 PCT/US2004/017513 bacterium EKVEAAGRLTARERLDYLLDEGSF IETDQLARHRTTAFGLGA glutamicum KRPATDGIVTGWGTIDGREVCI FSQDGTVFGGALGEVYGEKM IKIMELAIDTGRPLIGLYEGAGARIQDGAVSLDFISQTFYQN IQASGVIPQI SVIMGACAGGNAYGPALTDFVVMVDKTSKMFV TGPDVIKTVTGEEITQEELGGATTHMVTAGNSHYTAATDEEA TDWVQDLVSFLPSNNRSYAPMEDFDEEEGGVEENITADDLKL DElIPDSATVPYDVRDVIECILTDDGEYLEIQADRAENVVIAF GRIEGQSVGFVANQPTQFAGCLDIDSSEKAARFVRTCDAFNI P IVMLVDVFGFLPGAGQEYGGILRRGAKLLYAYGEATVPKIT VTMRKAYGGAYCVMGSKGLGSDINLAWPTAQIAVMGAAGAVG FIYRKELMAADAKGLDTVALAKSFEREYEDHMLNPYHAAERG LIDAVILPSETRGQISRNLRLLKHKNVTRPARKHGNMPL metH The rmobifida ZP_00059561 SARLSFREVLGSRVLVADGAMGTMLQTYDLSMDDFEGHEGC 70 fusca NEVLNITRPDVVRE IHEAYLQAGV]JCVETNTFGANFGNLGEY GIAERTYELAEAGARLAREAADAYTTADHVRYVLGSVGPGTK LPTLGHA.PYA.VLRDHYEQCARGLIDGGVDAIVIETCQDLLQA KAAIVGARRARKAAGTDTPI IVQVTTETTGTMLVGSEIGAAL TSLEPLGVDMIGLNCATGPAEMSEHLRYLSHHSRI PLSCMPN AGLPELGADGAVYPLQPHELTEAHDTF IREFGLALVGGCCGT TPEHLAQVVERVQGRGVPDRKPHVEPAAASIYQSVPFRQDTS YLAIGERTNANGSKAFREAMLAERYDDCVEIARQQIRDGAHM LDLCVDYVGRDGVRDMRELASRLATASTLPLVLDSTEVAVLE AGLEMLjGGRAVLNSVNYEDGDGPDSRFAKVAALAVEHGAAMM ATIDEQGQARTAERKVEVAERLIRQLTTEYGIRKHDI IVDC LTFTIATGQEESRRDAIJETIEAIRELKRRHPDVQTTLGVSNV SFGLNPAARIVLNSVFLHECVQAGLDSAIVHASKILPINRIP EEQRQVALDMIYDRRTDDYDPLQRFLQLFEGVDAQAMRASRE EELALPLWERLERRIVDGEAAGMEADLDEALTQRSALDT TN TTLLAGMKTVGDLFGSGQMQLPFVLKSAEVMKAAVAYLEPHM EKVDGDLGKGRTVLATVKGDVHD TGKNLVlI ILSNNGYEVIN TJGTKQPI SATLEAAERHRADVIGMSGLLVKSTVVMRENLEEM MARGVADRYPVLLGGAALTRSYVEQDLAE IFKGEVRYARDAF EGLKLMDAIMAVKRGVKGAKLPPILRTRRVKRGAQLTVTEPEK PTRSDVATDNPVPTPPFWGDRICKGI PLADYAAFLDERATF MGQWGLRGSRGDGPTYEELVETEGRPRLRMWL~DRIQTEGWLE PAVVYGYYRCYSEGNDLVVLGEDENELTRFTFPRQRRDRHLC LADFFRPKESGELDTVAFQVVTVGSTI SKATAELFEKNAYRD YLELHGLSVQLTEALAEYWHTRVRAEIJGFAGEDPDPADLDAY FKLGYRGARFSLGYGACPNLEDRAKIVALLRPERVGVTLSEE FQLVPEQSTDAIVVHHPEAKYFNV metH Streptomyces CAC1 8788 MSSPSTPPADTRTRVSALREALATRVVVADGAGTMLQN 71 coelicolor PTLDDFQQLEGCNEVLNLTRPD IVRSVHEEYF2AAGVDCVETN TFGAJ SALGEYDIPERVHELSEAGARVAREVADEFGARDGR QRWVLGSMGPGTKLPTLGHAPYTVLRDAYQRNAEGLVAGGAl ALLVETTQDLLQTKASVLGARR-ALDVLGLDLPLIVSVTVETT GTMLLGSE IGAALTALEPLGIDMIGLNCATGPAEMSEHLRYL AHSRIPLTCMPNAGLPVLGKDGAYPLTAPELADAflETFVR EYGLSLVGGCCGTTPEHLRQVVERVRDTAPTARDPRPEPGAA SLYQTVPFRQDTSYLAIGERTNANGSKKFREAMLDGRWDDCV EMARDQIREGAHMLDLCVDYVGRDGVADMEELAGRFATASTL P IVLDSTEVDVIRAGLEKLGGRAVINSVNYEDGAGPESRFAR VTKLAREHGALIALTIDEVGQARTAEI(KVEIAERLIDDLTG WGIHESDILVDCLTFTICTGQEESRKDGLATIEGIRELKRRI 144 WO 2004/108894 PCT/US2004/017513 EPDVQTTLGLSNISFGLNPAARILLNSVFLDECVKAGLDSAI VHASKILPIARFDEEQVTTALDLIYDRRREGYDPLQKLMQLF EGATAKSLKASKAEELAALPLEERLKRRIIDGEKNGLEQDLD EALRERPALEIVNDTLLDGMKVVGELFGSGQMQLPFVLQSAE VMKTAVAHLEPHMEKTDDDGKGTIVLATVRGDVHDIGKNLVD IILSNNGYNVVNLGIKQPVSAILEAADEHRADVIGMSGLLVK STVIMKENLEELNQRKLAADYPVILGGAALTRAYVEQDLHEI YDGEVRYARDAFEGLRLMDALIGIKRGVPGAKLPELKQRRVR AATVEIDERPEEGHVRSDVATDNPVPTPPFRGTRVVKGIQLK EYASWLDEGALFKGQWGLKQARTGEGPSYEELVESEGRPRLR GLLDRLQTDNLLEAAVVYGYFPCVSKDDDLIVLDDDGNERTR FTFPRQRRGRRLCLADFFRPEESGETDVVGFQVVTVGSRIGE ETARMFEANAYRDYLELHGLSVQLAEALAEYWHARVRSELGF AGEDPAEMEDMFALKYRGARFSLGYGACPDLEDRAKIAALLE PERIGVHLSEEFQLHPEQSTDAIVIHHPEAKYFNAR metH Mycobacterium CABI0719 TAADKHLYDTDLLDVLSQRVMVGDGAMGTQLQAADLTLDDF 72 tuberculosis (use GLEGCNEILNETRPDVLETIHRNYFEAGAnAVETNTFGCTL this to clone M. SNLGDYDIADRIRDLSQKGTAIARRVADELGSPDRRYVLGS megmatis MGPGTKLPTLGHTEYAVIRDAYTEAALGMLDGGADAILVETC ene) QDLLQLKAAVLGSRRAMTRAGRHIPVFAHVTVETTGTMLLGS EIGAALTAVEPLGVDMIGLNCATGPAEMSEHLRHLSRHARIP VSVMPNAGLPVLGAKGAEYPLLPDELAEALAGFIAEFGLSLV GGCCGTTPAHIREVAAAVANIKRPERQVSYEPSVSSLYTAIP FAQDASVLVIGERTNANGSKGFREAMIAEDYQKCLDIAKDQT RDGAHLLDLCVDYVGRDGVADMKALASRLATSSTLPIMLDST ETAVLQAGLEHLGGRCAINSVNYEDGDGPESRFAKTMALVAE HGAAVVALTIDEEGQARTAQKKVEIAERLINDITGNWGVDES SILIDTLTFTIATGQEESRRDGIETIEAIRELKKRHPDVQTT LGLSNISFGLNPAARQVLNSVFLHECQEAGLDSAIVHASKIL PMNRIPEEQRNVALDLVYDRRREDYDPLQELMRLFEGVSAAS SKEDRLAELAGLPLFERLAQRTVDGERNGLDADLDEAMTQKP PLQIINEHLLAGMKTVGELFGSGQMQLPFVLQSAEVMKAAVA YLEPHMERSDDDSGKGRIVLATVKGDVHDIGKNLVDIILSNN YEVVNIGIKQPIATILEVAEDKSADVVGMSGLLVKSTVVMK ENLEEMNTRGVAEKFPVLLGGAALTRSYVENDLAEIYQGEVH YARDAFEGLKLMDTIMSAKRGEAPDENSPEAIKAREKEAERK ARHQRSKRIAAQRKAAEEPVEVPERSDVAADIEVPAPPFWGS RIVKGLAVADYTGLLDERALFLGQWGLRGQRGGEGPSYEDLV ETEGRPRLRYWLDRLSTDGILAHAAVVYGYFPAVSEGNDIVV LTEPKPDAPVRYRFHFPRQQRGRFLCIADFIRSRELAAERGE VDVLPFQLVTMGQPIADFANELFASNAYRDYLEVHGIGVQLT EALAEYWHRRIREELKFSGDRAMAAEDPEAKEDYFKLGYRGA RFAFGYGACPDLEDRAKMMALLEPERIGVTLSEELQLHPEQS TDAFVLHHPEAKYFNV metH Mycobacterium AAA17182.1 MRVTAANQHQYDTDLLETLAQRVMVGDGAMGTQLQDAELTLD 73 feprae (use this DFRGLEGCNEILNETRPDVLETIHRRYFEAGADLVETNTFGC to clone M. NLSNLGDYDIADKIRDLSQRGTVIARRVADELTTPDHKRYVL smegmatis GSMGPGTKLPTLGHTEYRVVRDAYTESALGMLDGGADAVLVE gene) TCQDLLQLKAAVLGSRRAMTQAGRHIPVFVIIVTVETTGTMLL GSEIGAALAAVEPLGVDMIGLNCATGPAEMSEHLRHLSKHAR IPVSVMPNAGLPVLGAKGAEYPLQPDELAEALAGFIAEFGLS LVGGCCGTTPDHIREVAAAVARCNDGTVPRGERHVTYEPSVS SLYTAIPFAQKPSVLMIGERTNANGSKVFREAMIAEDYQKCLI 145 WO 2004/108894 PCT/US2004/017513 DIAKDQTRGGAHLLDLCVDYVGRNGVADMKALAGRLATVSTL PIMLDSTEIPVLQAGLEHLGGRCVINSVNYEDGDGPESRFVK TMELVAEHGAAVVALTIDEQGQARTVEKKVEVAERLINDITS NWGVDKSAILIDCLTFTIATGQEESRKDGIETIDAIRELKKR EPAVQTTLGLSNISFGLNPSARQVLNSVFLHECQEAGLDSAI VHASKILPINRI PEEQRQAALDLVYDRRREGYDPLQKLMWLF KGVS SPSSKETREAELAKLPLFDRLAQRIVDGERNGLDVDLD EAMTQKPPLA TINENLLDGMKTVGELFGSGQMQLPFVLQSAE VMKAAVAYLEPHMEKSDCDFGKGLAKGRIVLATVKGDVHDIG KNLVDIILSNNGYEVVNLGIKQPITNILEVAEDKSADVVGMS LLVKSTVIMKENLEEMNTRGVAEKFPVLLGGAALTRSYVEN DLAEVYEGEVHYARDAFEGLKLMDTIMSAKRGEALAPGSPES LAAEADRNKETERKARHERSKRIAVQRKAAEEPVEVPERSDV PSDVEVPAPPFWGSRIIKGLAVADYTGFLDERALFLGQWGLR GVRGGAGPSYEDLVQTEGRPRLRYWLDRLSTYGVLAYAAVVY GYFPAVSEDNDIVVLAEPRPDAEQRYRFTFPRQQRGRFLCIA DFIRSRDLATERSEVDVLPFQLVTMGQPIADFVGELFVSNSY RDYLEVHGIGVQLTEALAEYWHRRIREELKFSGNRTMSADDP EAVEDYFKLGYRGARFAFGYGACPDLEDRIKMMELLQPERIG VTISEELQLHPEQSTDAFVLHHPAAKYFNV metH Lactobacillus CAD63851 MKFKQALQQRVLVADGAMGTLLYGNYGINSAFENLNLTHPDT 74 lantarum ILRVHRSYTRAGADIIQTNTYAANRLKLTRYDLQDQVTTINQ AAVKIAATAREHADHPVYILGTIGGLAGDTDATVQRATPATI SVTEQLTALLATNQLDGILLETYYDLPELLAALKIVKAHT DLPVITNVSMLAPGVLRNGTSFTDAIVQLNAAGADVIGTNCR LGPYYLAQSFENLAIPANVKLAVYPNAGLPGTDQDGAVVYDG EPSYPEEYAERFRQLGLNIIGGCCGTTPLHTSATVRGLSNRS IVAHDQPATKPQPPTLVTTKSQHRFLQKVATQKTALVELDPP RDFDTTKFFRGAERLKAAGVDGITLSDNSLATVRIANTTIAA QLKLNYGITPIVHLTTRDHNLIGLQSEIMGLHSLGIEDILAI TGDPAKLGDFPGATSVSDVRSVELMKLIKQFNSGIGPTGKSL KEASDFRVAGAFNPNAYRTSISTKSISRKLSYGCDYIITQPV YDLANVDALADALAANHVNVPVFVGVMPLVSRRNAEFLHHEV HGIRIPEPILTRMAEAEQTGNERAVGIAIAKELIDGICARFN GVHIVTPFNRFKTVIELVDYIQQKNLIKVQ metH Coryne- CAD26709 MSTSVTSPAHNNAHSSEFLDALANHVLIGDGAMGTQLQGFDL 222 bacterium DVEKDFLDLEGCNEILNDTRPDVLRQIHRAYFEAGADLVETN glutamicum TFGCNLPNLADYDIADRCRELAYKGTAVAREVADEMGPGRNG MRRFVVGSLGPGTKLPSLGHAPYADLRGHYKEAALGIIDGGG DAFLIETAQDLLQVKAAVHGVQDAMAELDTFLPIICHVTVET TGTMLMGSEIGAALTALQPLGIDMIGLNCATGPDEMSEHLRY LSKHADIPVSVMPNAGLPVLGKNGAEYPLEAEDLAQALAGFV SEYGLSMVGGCCGTTPEHIRAVRDAVVGVPEQETSTLTKIPA GPVEQASREVEKEDSVASLYTSVPLSQETGISMIGERTNSNG SKAFREAMLSGDWEKCVDIAKQQTRDGAHMLDLCVDYVGRDG TADMATLAALLATSSTLPIMIDSTEPEVIRTGLEHLGGRSIV MSVNFEDGDGPESRYQRIMKLVKQHGAAVVALTIDEEGQART HKVRIAKRLIDDITGSYGLDIKDIVVDCLTFPISTGQEET RRDGIETIEAIRELKKLYPEIHTTLGLSNISFGLNPAARQVL NSVFLNECIEAGLDSAIAHSSKILPMNRIDDRQREVALDMVY DRRTEDYDPLQEFMQLFEGVSAADAKDARAEQLAAMPLFERL AQRIIDGDKNGLEDDLEAGMKEKSPIAIINEDLLNGMKTVGE PFGSGQMQLPFVLQSAETMKTAVAYLEPFMEEEAEATGSAQA 146 WO 2004/108894 PCT/US2004/017513 EGKGKIVVATVKGDVHDIGKNLVDIILSNNGYDVVNLGIKQP LSAMLEAAEEHKADVIGMSGLLVKSTVVMKENLEEMNNAGAS NYPVILGGAALTRTYVENDLNEVYTGEVYYARDAFEGLRLMD EVMAEKRGEGLDPNSPEAIEQAKKKAERKARNERSRKIAAER KANAAPVIVPERSDVSTDTPTAAPPFWGTRIVKGLPLAEFLG LDERALFMGQWGLKSTRGNEGPSYEDLVETEGRPRLRYWLD RLKSEGILDHVALVYGYFPAVAEGDDVVILESPDPHAAERMR FSFPRQQRGRFLCIADFIRPREQAVKDGQVDVMPFQLVTMGN PIADFANELFAANEYREYLEVHGIGVQLTEALAEYWHSRVRS ELKLNDGGSVADFDPEDKTKFFDLDYRGARFSFGYGS CPDLE DRAKLVELLEPGRIGVELSEELQLHPEQSTDAFVLYHPEAKY FNV metH Escherichia colI P13009 MSSKVEQLRAQLNERILVLDGGMGTMIQSYRLNEADFRGERF 223 ADWPCDLKGNNDLLVLSKPEVIAAIHNAYFEAGADIIETNTF NSTTIAMADYQMESLSAEINFAAAKLARRCADEWTARTPEKP RYVAGVLGPTNRTASISPDVNDPAFRNITFDGLVAAYRESTK ALVEGGADLILIETVFDTLNAKAAVFAVKTEFEALGVELPIM ISGTITDASGRTLSGQTTEAFYNSLRHAEALTFGLNCALGPD ELRQYVQELSRIAECYVTAHPNAGLPNAFGEYDLDADTMAKQ IREWAQAGFLNIVGGCCGTTPQHIAAMSRAVEGLAPRKLPEI PVACRLSGLEPLNIGEDSLFVNVGERTNVTGSAKFKRLIKEE KYSEALDVARQQVENGAQIIDINMDEGMLDAEAAMVRFLNLI AGEPDIARVPIMIDSSKWDVIEKGLKCIQGKGIVNSISMKEG VDAFIHHAKLLRRYGAAVVVMAFDEQGQADTRARKIEICRRA YKILTEEVGFPPEDIIFDPNIFAVATGIEEHNNYAQDFIGAC EDIKRELPHALISGGVSNVSFSFRGNDPVREAIHAVFLYYAI RNGMDMGIVNAGQLAIYDDLPAELRDAVEDVILNRRDDGTER LLELAEKYRGTKTDDTANAQQAEWRSWEVNKRLEYSLVKGIT EFIEQDTEEARQQATRPIEVIEGPLMDGMNVVGDLFGEGKMF LPQVVKSARVMKQAVAYLEPFIEASKEQGKTNGKMVIATVKG VHDIGKNIVGVVLQCNNYEIVDLGVMVPAEKILRTAKEVNA DLIGLSGLITPSLDEMVNVAKEMERQGFTIPLLIGGATTSKA HTAVKIEQNYSGPTVYVQNASRTVGVVAALLSDTQRDDFVAR TRKEYETVRIQHGRKKPRTPPVTLEAARDNDFAFDWQAYTPP VAHRLGVQEVEASIETLRNYIDWTPFFMTWSLAGKYPRILED EVVGVEAQRLFKDANDMLDKLSAEKTLNPRGVVGLFPANRVG DDIEIYRDETRTHVINVSHHLRQQTEKTGFANYCLADFVAPK LSGKADYIGAFAVTGGLEEDALADAFEAQHDDYNKIMVKALA DRLAEAFAEYLHERVRKVYWGYAPNENLSNEELIRENYQGIR PAPGYPACPEHTEKATIWELLEVEKHTGMKLTESFAMWPGAS VSGWYFSHPDSKYYAVAQIQRDQVEDYARRKGMSVTEVERWL APNLGYDAD metE Mycobacterium CAB09044 TQPVRRQPFTATITGSPRIGPRRELKRATEGYWAGRTSRSE 75 tuberculosis (use LEAVAATLRRDTWSALAAAGLDSVPVNTFSYYDQMLDTAVLL this to clone M. GALPPRVSPVSDGLDRYFAAARGTDQIAPLEMTKWFDTNYHY megmatis LVPEIGPSTTFTLHPGKVLAELKEALGQGIPARPVIIGPITF gene) LLLSKAVDGAGAPIERLEELVPVYSELLSLLADGGAQWVQFD EPALVTDLSPDAPALAEAVYTALCSVSNRPAIYVATYFGDPG AALPALARTPVEAIGVDLVAGADTSVAGVPELAGKTLVAGVV DGRNVWRTDLEAALGTLATLLGSAATVAVSTSCSTLHVPYSL EPETDLDDALRSWLAFGAEKVREVVVLARALRDGHDAVADEI ASSRAAIASRKRDPRLHNGQ IRARIEAIVASGAHRGNAAQRR ASQDARLHLPPLPTTTIGSYPQTSAIRVARAALRAGEIDEAE 147 WO 2004/108894 PCT/US2004/017513 YVRRMRQEITEVIALQERLGLDVLVHGEPERNDMVQYFAEQL AGFFATQNGWVQSYGSRCVRPPILYGDVSRPRAMTVEWITYA QSLTDKPVKGMLTGPVTILAWSFVRDDQPLADTANQVALAIR DETVDLQSAGIAVIQVDEPALRELLPLRRADQAEYLRWAVGA FRLATSGVSDATQIHTHLCYSEFGEVIGAIADLDADVTSIEA ARSHMEVLDDLNAIGFANGVGPGVYDIHSPRVPSAEEMADSL RAALRAVPAERLWVNPDCGLKTRNVDEVTASLHNMVAAAREV RAG metE Mycobacterium CAB08123 DELVTTQSFTATVTGSPRIGPRRELKRATEGYWAKRTSRSE 6 leprae (use this LESVASTLRRDMWSDLAAAGLDSVPVNTFSYYDQMLDTAFML to clone M. GALPARVAQVSDDLDQYFALARGNNDIKPLEMTKWFDTNYHY megmatis LVPEIEPATTFSLNPGKILGELKEALEQRIPSRPVIIGPVTF gene) LLLSKGINGGGAPIQRLEELVGIYCTLLSLLAENGARWVQFD EPALVTDLSPDAPALAEAVYTALGSVSKRPAIYVATYFGNPG ASLAGLARTPIEAIGVDFVCGADTSVAAVPELAGKTLVAGIV DGRNIWRTDLESALSKLATLLGSAATVAVSTSCSTLHVPYSL EPETDLDDNLRSWLAFGAEKVAEVVVLARALRDGRDAVADEI AASNAAVASRRSDPRLHNGQVRARIDSIVASGTHRGDAAQRR TSQDARLHLPPLPTTTIGSYPQTSAIRKARAALQDAEIDEAE YISRMKKEVADAIKLQEQLGLDVLVHGEPERNDMVQYFAEQL GGFFATQNGWVQSYGSRCVRPPILYGDVSRPHPMTIEWITYA QSLTDKPVKGMLTGPVTILAWSFVRDDQPLADTANQVALAIR DETVDLQSAGIAIIQVDEPALRELLPLRRADQDEYLCWAVKA FRLATSGVADSTQIHTHLCYSEFGEVIGAIADLDADVTSIEA ARSHMEVLDDLNAVGFANSIGPGVYDIHSPRVPSTDEIAKSL RAALKAIPMQRLWVNPDCGLKTRSVDEVSASLQNMVAAARQV RAGA metE Streptomyces CAC44335 MTAKSAAAAARATVYGYPRQGPNRELKKAIEGYWKGRVSAPE 7 coelicolor LRSLAADLRAANWRRLADAGIDEVPAGDFSYYDHVLDTTVMV GAIPERHRAAVAADALDGYFAMARGTQEVAPLEMTKWFDTNY HYLVPELGPDTVFTADSTKQVTELAEAVALGLTARPVLVGPV TYLLLAKPAPGAPADFEPLTLLDRLLPVYAEVLTDLRAAGAE WVQLDEPAFVQDRTPAELNALERAYRELGALTDRPKLLVASY FDRLGDALPVLAKAPIEGLALDFTDAAATNLDALAAVGGLPG KRLVAGVVNGRNIWINDLQKSLSTLGTLLGLADRVDVSASCS LLHVPLDTGAERDIEPQILRWLAFARQKTAE IVTLAKGLAQG TDAITGELAASRADMASRAGSPITRNPAVRARAEAVTDDDAR RSQPYAERTAAQRAHLGLPPLPTTTIGSFPQTGEIRAARADL RDGRIDIAGYEERIRAE IQEVISFQEKTGLDVLVHGEPERND MVQYFAEQLTGYLATQHGWVQSYGTRYVRPP ILAGDISRPEP MTVRWTTYAQSLTEKPVKGMLTGPVTMLAWSFVRDDQPLGDT ARQVALALRDEVNDLEAAGTSVIQVDEPALRETLPLRAADHT AYLAWATEAFRLTTSGVRPDTQIHTHMCYAEFGDIVQAIDDL DADVISLEAARSHMQVAHELATHGYPREAGPGVYDIHSPRVP SAEEAAALLRTGLKAIPAERLWVNPDCGLKTRGWPETRASLE TLVATARTLRGELSAS metE Coryne- CAD26711 MTSNFSSTVAGLPRIGAKRELKFALEGYWNGSIEGRELAQTA 24 bacterium RQLVNTASDSLSGLDSVPFAGRSYYDAMLDTAAILGVLPERF glutamicum DDIADHENDGLPLWIDRYFGAARGTETLPAQAMTKWFDTNYH YLVPELSADTRFVLDASALIEDLRCQQVRGVNARPVLVGPLT FLSLARTTDGSNPLDHLPALFEVYERLIKSFDTEWVQIDEPA LVTDVAPEVLEQVRAGYTTLAKRDGVFVNTYFGSGDQALNTL AGIGLGAIGVDLVTHGVTELAAWKGEELLVAGIVDGRNIWRT 148 WO 2004/108894 PCT/US2004/017513 DLCAALASLKRLAARGPIAVSTSCSLLHVPYTLEAENIEPEV RDWLAFGSEKITEVKLLADALAGNIDAAAFDAASAAIASRRT SPRTAP ITQELPGRSRGSFDTRVTLQEKSLELPALPTTTIGS FPQTPS IRSARARLRKES ITLEQYEEAMREE IDLVIAKQEEL GLDVLVHGEPERNDMVQYFSELLDGFLSTANGWVQSYGSRCV RPPVLFGNVSRPAPMTVKWFQYAQSLTQKHVKGMLTGPVTIL AWSFVRDDQPLATTADQVALALRDE INDLIEAGAKIIQVDEP AIRELLPLRDVDKPAYLQWSVDSFRLATAGAPDDVQIHTHMC YSEFNEVISSVIALDADVTTIEAARSDMQVLAALKSSGFELG VGPGVWDIHSPRVPSAQEVDGLLEAALQSVDPRQLWVNPDCG LKTRGWPEVEASLKVLVESAKQAREKIGATI metE Escherichia coll Q8FBM1 MTILNHTLGFPRVGLRRELKKAQESYWAGNSTREELLAVGRE 225 LRARHWDQQKQAGIDLLPVGDFAWYDHVLTTSLLLGNVPPRH QNKDGSVDIDTLFRIGRGRAPTGEPAAAAEMTKWFNTNYHYM VPEFVKGQQFKLTWTQLLEEVDEALALGHKVKPVLLGPITYL WLGKVKGEQFDRLSLLNDILPVYQQVLAELAKRGIEWVQIDE PALVLELPQAWLDAYKPAYDALQGQVKLLLTTYFEGVTPNLD TITALPVQGLHVDLVHGKDDVAELHKRLPSDWLLSAGLINGR IVWRADLTEKYAQIKDIVGKRDLWVASSCSLLHSPIDLSVET RLDAEVkSWFAFALQKCHELALLRDALNSGDTAALAEWSAPI QARRHSTRVHNPAVEKRLAAITAQDSQRANVYEVRAEAQRAR FKLPAWPTTTIGSFPQTTEIRTLRLDFKKGNLDANNYRTGIA EHIKQAIVEQERLGLDVLVHGEAERNDMVEYFGEHLDGFVFT QNGWVQSYGSRCVKPPIVIGDVSRPAPITVEWAKYAQSLTDK PVKGMLTGPVTILCWSFPREDVSRETIAKQIALALRDEVADL EAAGIGIIQIDEPALREGLPLRRSDWDAYLQWGVEAFRINAA VAKDDTQIHTHMCYCEFNDIMDSIAALDADVITIETSRSDME LLESFEEFDYPNEIGPGVYDIHSPNVPSVEWIEALLKKAAKR IPAERLWVNPDCGLKTRGWPETRAALANMVQAAQNLRRG IyA Streptomyces CAA20173 MSLLNTPLHELDPDVAAAVDAELDRQQSTLEMIASENFAPVA 78 coelicolor VMEAQGSVLTNKYAEGYPGRRYYGGCEHVDVVEQIAIDRVKA LFGAEHANVQPHSGAQANAAAMFALLKPGDTIMGLNLAHGGH LTHGMKINFSGKLYNVVPYHVGDDGQVDMAEVERLAKETKPK LIVAGWSAYPRQLDFAAFRKVADEVGAYLMVDMAHFAGLVAA GLHPNPVPHAHVVTTTTHKTLGGPRGGVILSTAELAKKINSA VFPGQQGGPLEHVVAAKAVAFKVAASEDFKERQGRTLEGARI LAERLVRDDAKAAGVSVLTGGTDVHLVLVDLRDSELDGQQAE DRLHEVGITVNRNAVPNDPRPPMVTSGLRIGTPALATRGFTA EDFAEVADVIAEALKPSYDAEALKARVKTLADKHPLYPGLNK IyA Thermobifida ZP00058615 MKVRKLMTAQSTSLTQSLAQLDPEVAAAVDAELARQRDTLEM 79 fusca IASENFAPRAVLEAQGTVLTNKYAEGYPGRRYYGGCEHVDVI EQLAIDRAKALFGAEHANVQPHSGAQANTAVYFALLQPGDTI LGLDLAHGGHLTHGMRINYSGKILNAVAYHVRESDGLIDYDE VEALAKEHQPKLIIAGWSAYPRQLDFARFREIADQTGALLMV DMAHFAGLVAAGLHPNPVPYADVVTTTTHKTLGGPRGGLILA KEELGKKINSAVFPGMQGGPLQHVIAAKAVALKVAASEEFAE RQRRTLSGAKILAERLTQPDAAEAGIRVLTGGTDVHLVLVDL VNSELNGKEAEDRLHEIGITVNRNAVPNDPRPPMVTSGLRIG TPALATRGFGDADFAEVADIIAEALKPGFDAATLRSRVQALA AKHPLYPGL yA Mycobacterium AAK45383 MSAPLAEVDPDIAELLAKELGRQRDTLEMIASENFAPRAVLQ 80 tuberculosis (use AQGSVLTNKYAEGLPGRRYYGGCEHVDVVENLARDRAKALFG this to clone M. AEFANVQPHSGAQANAAVLHALMSPGERLLGLDLANGGHLTH smegmatis _MRLNFSGKLYENGFYGVDPATHLIDMDAVRATALEFRPKVI 149 WO 2004/108894 PCT/US2004/017513 gene) 3MRLNFSGKLYENGFYGVDPATHLIDMDAVRATALEFRPKVI IAGWSAYPRVLDFAAFRSIADEVGAKLLVDMAHFAGLVAAGL IPSPVPHADVVSTTVHKTLGGGRSGLIVGKQQYAKAINSAVF PGQQGGPLMHVIAGKAVALKIAATPEFADRQRRTLSGARIIA RLMAPDVAKAGVSVVSGGTDVHLVLVDLRDSPLDGQAAEDL LHEVGITVNRNAVPNDPRPPMVTSGLRIGTPALATRGFGDTE FTEVADIIATALATGSSVDVSALKDRATRLARAFPLYDGLEE WSLVGR IyA Mycobacterium CAB39828 APLAEVDPDIAEILGKELGRQRDTLEMIASENFVPRSVLQ 8 eprae (use this QGSVLTNKYAEGLPGRRYYDGCEHVDVVENIARDRAKALFG to clone M. FANVQPHSGAQANAAVLHALMSPGERLLGLDLANGGHLTH megmatis 3MRLNFSGKLYETGFYGVDATTHLIDMDAVRAKALEFRPKVL gene) IAGWSAYPRILDFAAFRSIADEVGAKLWVDMAHFAGLVAVGL IPSPVPHADVVSTTVHKTLGGGRSGLILGKQEFATAINSAVF PGQQGGPLMHVIAGKAVALKIATTPEFTDRQQRTLAGARILA JRLTAADVTKAGVSVVSGGTDVHLVLVDLRNSPFDGQAAEDL LHEVGITVNRNVVPNDPRPPMVTSGLRIGTPALATRGFGEAE FTEVADIIATVLTTGGSVDVAALRQQVTRLARDFPLYGGLED WSLAGR glyA Lactobacillus CAD64690 MNYQEQDPEVWAAISKEQARQQHNIELIASENIVSKGVRAAQ 2 plantarum GSVLTNKYSEGYPGHRFYGGNEYIDQVETLAIERAKKLFGAE YANVQPHSGSQANAAAYMALIQPGDRVMGMSLDAGGHLTHGS SVNFSGKLYDFQGYGLDPETAELNYDAILAQAQDFQPKLIVA 3ASAYSRLIDFKKFREIADQVGALLMVDMAHIAGLVAAGLHP NPVPYADVVTTTTHKTLRGPRGGMILAKEKYGKKINSAVFPG NQGGPLDHVIAGKAIALGEDLQPEFKVYAQHIIDNAKAMAKV FNDSDLVRVISGGTDNHLMTIDVTKSGLNGRQVQDLLDTVYI TVNKEAIPNETLGAFKTSGIRLGTPAITTRGFDEADATKVAE LILQALQAPTDQANLDDVKQQAMALTAKHPIDVD IyA Coryne- K60516 MTDAHQADDVRYQPLNELDPEVAAAIAGELARQRDTLEMIAS 226 bacterium ENFVPRSVLQAQGSVLTNKYAEGYPGRRYYGGCEQVDIIEDL Iutamicum ARDRAKALFGAEFANVQPHSGAQANAAVLMTLAEPGDKIMGL SLAHGGHLTHGMKLNFSGKLYEVVAYGVDPETMRVDMDQVRE IALKEQPKVIIAGWSAYPRHLDFEAFQSIAAEVGAKLWVDMA FAGLVAAGLHPSPVPYSDVVSSTVHKTLGGPRSGIILAKQE YAKKLNSSVFPGQQGGPLMHAVAAKATSLKIAGTEQFRDRQA RTLEGARILAERLTASDAKAAGVDVLTGGTDVHLVLADLRNS QMDGQQAEDLLHEVGITVNRNAVPFDPRPPMVTSGLRIGTPA LATRGFDIPAFTEVADIIGTALANGKSADIESLRGRVAKLAA DYPLYEGLEDWTIV glyA Escherichia coli P00477 MLKREMNIADYDAELWQAMEQEKVRQEEHIELIASENYTSPR 27 VMQAQGSQLTNKYAEGYPGKRYYGGCEYVDIVEQLAIDRAKE LFGADYANVQPHSGSQANFAVYTALLEPGDTVLGMNLAHGGH LTHGSPVNFSGKLYNIVPYGIDATGHIDYADLEKQAKEHKPK MIIGGFSAYSGVVDWAKMREIADSIGAYLFVDMAHVAGLVAA OVYPNPVPHAHVVTTTTHKTLAGPRGGLILAKGGSEELYKKL KSAVFPGGQGGPLMHVIAGKAVALKEAMEPEFKTYQQQVAKN AKAMVEVFLERGYKVVSGGTDNHLFLVDLVDKNLTGKEADAA LGRANITVNKNSVPNDPKSPFVTSGIRVGTPAITRRGFKEAE AKELAGWMCDVLDS INDEAVIERIKGKVLDICARYPVYA metF Thermobifida P_00056753 MASRAASTGSHSAPISSSSGRRLATKAASSASTRGRTKATGD 83 fusca KCEELIRAGYRLFRRPSSPRHTQTPPIWSITVGDMLGSPTPR PAPRPRRISELLARKEPTFSFEFFPPKTPEGERMLWRAIREI 150 WO 2004/108894 PCT/US2004/017513 EALRPSFVSVTYGAGGSTRDRTVNVTEKIATNTTLLPVAHIT AVNHSVRELRHL IGRFAAAGVCNMLALRGDPPGDPLGEWVKH PEGLTHAEELVRLIKESGDFCVGVAAFPYKHPRSPDVETDTD FFVRKCRAGADYAITQMFFEAEDYLRLRDRVAARGCDVPI IP E IMPVTKFSTIARSEQLSGAPFPRRLAEEFERVADDPEAVRA LGIEHATRLCERLLAEGAPGIHFITFNRSTATREVYHRLVGA TQPAAVAALP metF Streptomyces CAB52012 MALGTASTRTDRARTVRDILATGKTTYSFEFSAPKTPKGERN 84 coelicolor LWSALRRVEAVAPDFVSVTYGAGGSTRAGTVRETQQIVADTT LTPVAHLTAVDHSVAELRNIIGQYADAGIRNMLAVRGDPPGD PNADWIAHPEGLTYAAELVRLIKESGDFCVGVAAFPEMHPRS ADWDTDVTNFVDKCRAGADYAITQMFFQPDSYLRLRDRVAAA GCATPVIPEVMPVTSVKMLERLPKLSNASFPAELKERILTAK DDPAAVRSIGIEFATEFCARLLAEGVPGLHFITLNNSTATLE IYENLGLHHPPRA metE Coryne- CAD26762 MVEVNKCQRQSQQNTLITLRYPGMSLTNIPASSQWAISDVLK 228 bacterium RPSPGRVPFSVEFMPPRDDAAEERLYRAAEVFHDLGASFVSV glutamicum TYGAGGSTRERTSRIARRLAKQPLTTLVHLTLVNHTREEMKA ILREYLELGLTNLLALRGDPPGDPLGDWVSTDGGLNYASELI DLIKSTPEFREFDLGIASFPEGHFRAKTLEEDTKYTLAKLRG GAEYSITQMFFDVEDYLRLRDRLVAADPIHGAKPIIPGIMPI TELRSVRRQVELSGAQLPSQLEESLVRAANGNEEANKDEIRK VGIEYSTNMAERLIAEGAEDLHFMTLNFTRATQEVLYNLGMA PAWGAEHGQDAVR metF Escherichia coli NP_418376 MSFFHASQRDALNQSLAEVQGQINVSFEFFPPRTSEMEQTLW 229 TSIDRLSSLKPKFVSVTYGANSGERDRTHSIIKGIKDRTGLE AAPHLTCIDATPDELRTIARDYWNNGIRHIVALRGDLPPGSG KPEMYASDLVTLLKEVADFDISVAAYPEVHPEAKSAQADLLN LKRKVDAGANRAITQFFFDVESYLRFRDRCVSAGIDVEIIPG ILPVSNFKQAKKFADMTNVRIPAWMAQMFDGLDDDAETRKLV GANIAMDMVKILSREGVKDFHFYTLNRAEMSYAICHTLGVRP GL cysE Mycobacterium AAK46690 MLTAMRGDIRAARERDPAAPTALEVIFCYPGVHAVWGHRLAH 5 tuberculosis (use WLWQRGARLLARAAAEFTRILTGVD IHPGAVIGARVF IDHAT this to clone M. GVVIGETAEVGDDVTIYHGVTLGGSGMVGGKRHPTVGDRVII smegmatis GAGAKVLGPIKIGEDSRIGANAVVVKPVPPSAVVVGVPGQVI gene) GQSQPSPGGPFDWRLPDLVGASLDSLLTRVARLDALGGGPQA AGVIRPPEAGIWHGEDFSI cysE Mycobacterium CABI1413 MFAAIRRDIQAARQRDPAQPTVLEVICCYPGVHAVWGHRISH 86 !eprae (use this WLWNRRARLAARAFAELTRILTGVDIHPGAVLGAGLFIDHAT to clone M. GVVIGETAEVGDDVTIFHGVTLGGTGRETGKRHPTIGDRVTI smegmatis GAGAKVLGAIKIGEDSRIGANAVVVKEVPASAVAVGVPGQII gene) SSDSPANGDDSVLPDFVGVSLQSLLTRVAKLEAEDGGSQTYR VIRLPEAGVWHGEDFSI ysE Lactobacillus CAD62911 MFQTARAILNRDPAAINLRTVMLTYPGIHALAWYRVAHYFET 87 olantarum HRLPLLAALLSQHAARHTGILIHPAAQIGHRVFFDHGIGTVI GATAVIEDDVTILHGVTLGARKTEQAGRRHPYVCRGAFIGAH AQLLGPITIGANSKIGAGAIVLDSVPAHVTAVGNPAHLVATQ LHAYHEATSNQA cysE Coryne- CAD34661 MLSTIKMIREDLANAREHDPAARGDLENAVVYSGLHAIWAHR 230 bacterium VANSWWKSGFRGPARVLAQFTRFLTGIEIHPGATIGRRFFID glutamicum HGMGIVIGETAEIGEGVMLYHGVTLGGQVLTQTKRHPTLCDN VTVGAGAKILGPITIGEGSAIGANAVVTKDVPAEHIAVGIPA 151 WO 2004/108894 PCT/US2004/017513 VARPRGKTEKIKLVDPDYYI ysE Escherichia coil NP_418064 VSCEELEIVWNNIKAEARTLADCEPMLASFYHATLLKHENLG 231 SALSYMLANKLSSPIMPAIAIREVVEEAYAADPEMIASAACD IQAVRTRDPAVDKYSTPLLYLKGFHALQAYRIGHWLWNQGRR ALAIFLQNQVSVTFQVDIHPAAKIGRGIMLDHATGIVVGETA VIENDVSILQSVTLGGTGKSGGDRHPKIREGVMIGAGAKILG MIEVGRGAKIGAGSVVLQPVPPHTTAAGVPARIVGKPDSDKP SMDMDQHFNGINHTFEYGDGI serA Mycobacterium CAM 6081 SLPVVLIADKLAPSTVAALGDQVEVRWVDGPDRDKLLAAVP 8 tuberculosis (use EADALLVRSATTVDAEVLAAAPKLKIVARAGVGLDNVDVDAA this to clone Mvi. TARGVLVVNAPTSNIHSAAEHALALLLAASRQIPAADASLRE smegmatis TWKRSSFSGTEIFGKTVGVVGLGRIGQLVAQRIAAFGAYVV ene) AYDPYVSPARAAQLGIELLSLDDLLARADFISVHLPKTPETA LIDKEALAKTKPGVIIVNAARGGLVDEAALADAITGGHVRA AGLDVFATEPCTDSPLFELAQVVVTPHLGASTAEAQDRAGTD 7AESVRLALAGEFVPDAVNVGGGVVNEEVAPWLDLVRKLGVL AGVLSDELPVSLSVQVRGELAAEEVEVLRLSALRGLFSAVIE DAVTFVNAPALAAERGVTAEICKASESPNHRSVVDVRAVGAD 3SVVTVSGTLYGPQLSQKIVQINGRHFDLRAQGINLIIHYVD RPGALGKIGTLLGTAGVNIQAAQLSEDAEGPGATILLRLDQD VPDDVRTAIAAAVDAYKLEVVDLS serA Mycobacterium CAB16440 DLPVVLIADKIAQSTVAALGDQVEVRWVDGPDRTKLLAAVP 9 leprae (use this EADALLVRSATTVDAEVLAAAPKLKIVARAGVGLDNVDVDAA to clone M. TARGVLVVNAPTSNIHSAAEHALALLLAASRQIAEADASLRA megmatis EIWKRSSFSGTEIFGKTVGVVGLGRIGQLVAARIAAFGAHVI gene) AYDPYVAPARAAQLGIELMSFDDLLARADFISVHLPKTPETA LIDKEALAKTKPGVIIVNAARGGLVDEVALADAVRSGHVRA AGLDVFATEPCTDSPLFELSQVVVTPHLGASTAEAQDRAGTD VAESVRLALAGEFVPDAVNVDGGVVNEEVAPWLDLVCKLGVL VAALSDELPASLSVHVRGELASEDVEILRLSALRGLFSTVIE DAVTFVNAPALAAERGVSAEITTGSESPNHRSVVDVRAVASD 3SVVNIAGTLSGPQLVQKIVQVNGRNFDLRAQGMNLVIRYVD QPGALGKIGTLLGAAGVNIQAAQLSEDTEGPGATILLRLDQD VPGDVRSAIVAAVSANKLEVVNLS serA Thermobifida ZP00057280 MAATAVEPTRTPSKEFVVPKPVVLVAEELSPAGIALLEEDFE 90 fusca VRHVNGADRSQLLPALAGVDALIVRSATKVDAEVLAAAPSLK VVARAGVGLDNVDVEAATKAGVLVVNAPTSNIISAAEQAINL LLATARNTAAAHAALVRGEWKRSKYTGVELYDKTVGIVGLGR IGVLVAQRLQAFGTKLIAYDPFVQPARAAQLGVELVELDELL ERSDFITIHLPKTKDTIGLIGEEELRKVKPTVRIINAARGGI VDETALYHALKEGRVAGAGLDVFAKEPCTDSPLFELENVVVA PHLGASTHEAQEKAGTQVARSVKLALAGEFVPDAVNIQGKGV AEDIKPGLPLTEKLGRILAALADGAITRVEVEVRGEIVAHDV KVIELAALKGLFTDIVEEAVTYVNAPLVAKERGIEVSLTTEE ESPDWRNVITVRAILSDGQRVSVSGTLTGPRQLEKLVEVNGY TMEIAPSEHMAFFSYHDRPGVVGVVGQLLGQAQVNIAGMQVS RDKEGGAALIALTVDSAIPDETLETISKEIGAEISRVDLVD erA Streptomyces CAB37591 MSSKPVVLIAEELSPATVDALGPDFEIRHCNGADRAELLPAI 91 coelicolor ADVDAILVRSATKVDAEAVAAAKKLKVVARAGVGLDNVDVSA ATKAGVMVVNAPTSNIVTAAELACGLIVATARNIPQANAALK NGEWKRSKYTGVELAEKTLGVVGLGRIGALVAQRMSAFGMKV VAYDPYVQPARAAQMGVKVLSLDELLEVSDFITVHLPKTPET LGLIGDEALRKVKPSVRIVNAARGGIVDEEALYSALKEGRVA 152 WO 2004/108894 PCT/US2004/017513 GAGLDVYAKEPCTDSPLFEFDQVVATPHLGASTDEAQEKANGI AVAKSVRLALAGELVPDAVNVQGGVIAEDVKPGLPLAERLGR IFTALAGEVAVRLDVEVYGEITQHDVKVLELSALKGVFEDVV JETVSYVNAPLFAQERGVEVRLTTSSESPEHRNVVIVRGTLS JGEEVSVSGTLAGPKHLQKIVAIGEYDVDLALADHMVVLRYE JRPGVVGTVGRIIGEAGLNIAGMQVAPATVGGEALAVLTVDD TVPSGVLAEVAAEIGATSARSVNLV serA Lactobacillus CAD63373 MTKVFIAGQLPAQANTLLLQSQLVIDTYTGDNLISHAELIRR 92 lantarum VADADFLIIPLSTQVDQDVLDHAPHLKLIANFGAGTNNIDIA AAKRQIPVTNTPNVSAVATAESTVGLIISLAHRIVEGDHLM RTSGFNGWAPLFFLGHNLQGKTLGILGLGQIGQAVAKRLHAF 2MPILYSQHHRLPISRETQLGATFVSQDELLQRADIVTLHLP LTTQTTHLIDNAAFSKMKSTALLINAARGPIVDEQALVTALQ QHQIAGAALDVYEHEPQVTPGLATMNNVILTPHLGNATVEAR JGMATIVAENVIAMAQHQPIKYVVNDVTPA erA Coryne- BAB98677 MSQNGRPVVLIADKLAQSTVDALGDAVEVRWVDGPNRPELLD 232 bacterium AVKEADALLVRSATTVDAEVIAAAPNLKIVGRAGVGLDNVDI glutamicum PAATEAGVMVANAPTSNIHSACEHAISLLLSTARQIPAADAT LREGEWKRSSFNGVEIFGKTVGIVGFGHIGQLFAQRLAAFET TIVAYDPYANPARAAQLNVELVELDELMSRSDFVTIHLPKTK ETAGMFDAQLLAKSKKGQIIINAARGGLVDEQALADAIESGH IRGAGFDVYSTEPCTDSPLFKLPQVVVTPHLGASTEEAQDRA TDVADSVLKALAGEFVADAVNVSGGRVGEEVAVWMDLARKL GLLAGKLVDAAPVSIEVEARGELSSEQVDALGLSAVRGLFSG IIEESVTFVNAPRIAEERGLDISVKTNSESVTHRSVLQVKVI TGSGASATVVGALTGLERVEKITRINGRGLDLRAEGLNLFLQ YTDAPGALGTVGTKLGAAGINIEAAALTQAEKGDGAVLILRV ESAVSEELEAEINAELGATSFQVDLD erA Escherichia coli NP_417388 MAKVSLEKDKIKFLLVEGVHQKALESLRAAGYTNIEFHKGAL 233 DDEQLKESIRDAHFIGLRSRTHLTEDVINAAEKLVAIGCFCI 3TNQVDLDAAAKRGTPVFNAPFSNTRSVAELVIGELLLLLRG VPEANAKAHRGVWNKLAAGSFEARGKKLGIIGYGHIGTQLGI LAESLGMYVYFYDIENKLPLGNATQVQLSDLLNMSDVVSLH VPENPSTKNMMGAKEISLMKPGSLLINASRGTVVDIPALCDA LASKHLAGAAIDVFPTEPATNSDPFTSPLCEFDNVLLTPHIG GSTQEAQENIGLEVAGKLIKYSDNGSTLSAVNFPEVSLPLHG 3RRLMHIHENRPGVLTALNKIFAEQGVNIAAQYLQTSAQMGY VVIDIEADEDVAEKALQAMKAIPGTIRARLLY lysE Mycobacterium CAA98398 MNSPLVVGFLACFTLIAAIGAQNAFVLRQGIQREHVLPVVAL 93 tuberculosis (use CTVSDIVLIAAGIAGFGALIGAHPRALNVVKFGGAAFLIGYG this to clone M. LLAARRAWRPVALIPSGATPVRLAEVLVTCAAFTFLNPHVYL smegmatis DTVVLLGALANEHSDQRWLFGLGAVTASAVWFATLGFGAGRL gene) RGLFTNPGSWRILDGLIAVMMVALGISLTVT IysE Mycobacterium CAB00949 MMTLKVAIGPQNAFVLRQGIRREYVLVIVALCGIADGALIAA 94 tuberculosis (use GVGGFAALIHAHPNMTLVARFGGAAFLIGYALLAARNAWRPS this to clone M. GLVPSESGPAALIGVVQMCLVVTFLNPHVYLDTVVLIGALAN smegmatis EESDLRWFFGAGAWAASVVWFAVLGFSAGRLQPFFATPAAWR gene) ILDALVAVTMIGVAVVVLVTSPSVPTANVALII lysE Streptomyces CAB93746 MNNALTAAAAGFGTGLSLIVAIGAQNAFVLRQGVRRDAVLAV 95 coe/icolor VGICALSDAVLIALGVGGVGAVVVAWPGALTAVGWIGGAFLL CYGALAARRVFRPSGALRADGAAAGSRRRAVLTCLALTWLNP HVYLDTVFLLGSVAADRGPLRWTFGLGAAAASLVWFAALGFG ARYLGRFLSRPVAWRVLDGLVAATMIVLGVSLVAGA 153 WO 2004/108894 PCT/US2004/017513 lysE Lactobacillus CAD63877 MQVFLQGLLFGIVYIAPIGMQNLFVVSTAIEQPLQRALRVAL 96 olantarum IVIAFDTSLSLACFYGVGRLLQTTPWLELGVLLIGSLLVFYI 3WNLLRKKATAMGTLDADFSYKAAILTAFSVAWLNPQALIDG SVLLAAFRVSIPAALTHFFMLGVILASIIWFIGLTSLISKFK HLMQPRVLLWINRICGGIIILYGVQLLATFITKI lysE Coryno- CAA65324 MEIFITGLLLGASLLLSIGPQNVLVIKQGIKREGLIAVLLVC 234 bacterium LISDVFLFIAGTLGVDLLSNAAPIVLDIMRWGGIAYLLWFAV glutamicum KAAKDAMTNKVEAPQIIEETEPTVPDDTPLGGSAVATDTRNR VRVEVSVDKQRVWVKPMLMAIVLTWLNPNAYLDAFVFIGGVG AQYGDTGRWIFAAGAFAASLIWFPLVGFGAAALSRPLSSPKV WRWINVVJVAVVMTALAIKLMLMG metB Mycobacterium CAA1 7195 SEDRTGHQGISGPATRAIHAGYRPDPATGAVNVPIYASSTF 7 tuberculosis (use AQDGVGGLRGGFEYARTGNPTRAALEASLAAVEEGAFARAFS this to clone M. SGMAATDCALRAMLRPGDHVVIPDDAYGGTFRLIDKVFTRWD megmatis VQYTPVRLADLDAVGAAITPRTRLIWVETPTNPLLSIADITA ene) IAELGTDRSAKVLVDNTFASPALQQPLRLGADVVLHSTTKYI 3GHSDVVGGALVTNDEELDEEFAFLQNGAGAVPGPFDAYLTM RGLKTLVLRMQRHSENACAVAEFLADHPSVSSVLYPGLPSHP 3HEIAARQMRGFGGMVSVRMRAGRRAAQDLCAKTRVFILAES LGGVESLIEHPSAMTHASTAGSQLEVPDDLVRLSVGIEDIAD LLGDLEQALG metB Mycobacterium 63036 MSEDYRGHHGITGLATKAIHAGYRPDPATGAVNVPIYASSTF 98 eprae (use this AQDGVGELRGGFEYARTGNPMRAALEASLATVEEGVFARAFS to clone M. SGMAASDCALRVMLRPGDHVIIPDDVYGGTFRLIDKVFTQWN megmatis VDYTPVPLSDLDAVRAAITSRTRLIWVETPTNPLLSIADITS gene) IGELGKKHSVKVLVDNTFASPALQQPLMLGADVVLHSTTKYI GGHSDVVGGALVTNDEELDQAFGFLQNGAGAVPSPFDAYLTM RGLKTLVLRMQRHNENAITVAEFLAGHPSVSAVLYPGLPSHP GHEVAARQMRGFGGMVSLRMRAGRLAAQDLCARTKVFTLAES LGGVESLIEQPSAMTHASTTGSQLEVPDDLVRLSVGIEDVGD LLCDLKQALN metB Streptomyces CAD30944 MPMSDRHISQHFETLAIHAGNTADPLTGAVVPPIYQVSTYKQ 9 coelicolor DGVGGLRGGYEYSRSANPTRTALEENLAALEGGRRGLAFASG LAAEDCLLRTLLRPGDHVVIPNDAYGGTFRLFAKVATRWGVE WSVADTSDAAAVRAALTPKTKAVWVETPSNPLLGITDIAQVA QVARDAGARLVVDNTFATPYLQQPLALGADVVVHSLTKYMGG ESDVVGGALIVGDQELGEELAFHQNAMGAVAGPFDSWLVLRG TKTLAVRMDRHSENATKVADMLSRHARVTSVLYPGLPEHPGH EVAAKQMKAFGGMVSFRVEGGEQAAVEVCNRAKVFTLGESLG GVESLIEHPGRMTHASAAGSALEVPADLVRLSVGIENADDLL ADLQQA LG metB Thermobifida ZP00059348 MSYEGFETLAIHAGQEADAETGAVVVPIYQTSTYRQDGVGGL 100 fusca RGGYEYSRTANPTRTALEECLAALEGGVRGLAFASGMAAEDT LLRTIARPGDHLIIPNDAYGGTFRLVSKVFERWGVSWDAVDL SNPEAVRTAIRPETVAIWVETPTNPLLNIADIAALADIAHAA ALLVVDNTFASPYLQRPLSLGADVVVHSTTKYLGGHSDVVG GALVVADAELGERLAFHQNSMGAVAGPFDAWLTLRGIKTLGV RMDRHCANAERVVEALVGHPEVAEVLYPGLSDHPGHKVAVDQ MRAFGGMVSFRMRGGEEAALRVCAKTKVFTLAESLGGVESLI EHPGKMTHASTAGSLLEVPSDLVRLSVGIETVDDLVNDLLQA LEP metB Lactobacillus CAD62912 MKFETQLIHGGISEDATTGATSVPIYMASTFRQTKIGQNQYE 101 olantarum YSRTGNPTRAAVEALIATLEHGSAGFAFASGSAAINTVFSLF 154 WO 2004/108894 PCT/US2004/017513 SAGDHIIVGNDVYGGTFRLIDAVLKHFGMTFTAVDTRDLAAV EAAITPTTKAIYLETPTNPLLHITDIAAIAKLAQAHDLLS II DNTFASPYVQKPLDLGVDIVLHSASKYLGGHSDVIGGLVVTK TPALGEKIGYLQNAIGS ILAPQESWLLQRGMKTLALRMQAHL NAAKIFTYLKSHPAVTKIYYPGDPDNPDFS IAKQQMNGFGA MISFELQPGMNPQTFVEHLQVITLAESLGALESLIEIPALMT HGAIPRT IRLQNGIKDELIRLSVGVEASDDLLADLERGFASI QAD metB Coryne- D54070 MSFDPNTQGFTASIHAGYEPDDYYGSINTPIYASTTFAQNA 235 bacterium PNELRKGYEYTRVGNPTIVALEQTVAALEGAKYGRAFSSGMA glutamicum ATDILFRIILKPGDHIVLGNDAYGGTYRL IDTVFTAWGVEYT VVDTSVVEEVKAAIKDNTKLIWVETPTNPALGITD IEAVAKL TEGTNAKLVVDNTFASPYLQQPLKLGAHAVLHSTTKYIGGHS DVVGGLVVTNDQEMDEELLFMQGGIGP IPSVFDAYLTARGLK TLAVRMDRHCDNAEKIAEFLDSRPEVSTVLYPGLKNHPGHEV AAKQMKRFGGMISVRFAGGEEAAKKFCTSTKLICLAESLGGV ESLLEHPATMTHQSAAGSQLEVPRDLVRIS IGIEDIEDLLAD VEQALNNL metB scherichia coi NP_418374 MTRKQATIAVRSGLNDDEQYGCVVPPIHLSSTYNFTGFNEPR 236 AHDYSRRGNPTRDVVQRALAELEGGAGAVLTNTGMSAIHLVT TVFLKPGDLLVAPHDCYGGSYRLFDSLAKRGCYRVLFVDQGD EQALRAALAEKPKLVLVESPSNPLLRVVDIAKICHLAREVGA VSVVDNTFLSPALQNPLALGADLVLHSCTKYLNGHSDVVAGV VIAKDPDVVTELAWWANNIGVTGGAFDSYLLLRGLRTLVPRM ELAQRNAQAIVKYLQTQPLVKKLYHPSLPENQGHEIAARQQK GFGAMLSFELDGDEQTLRRFLGGLSLFTLAESLGGVESLISH AATMTHAGMAPEARAAAGISETLLRISTGIEDGEDLIADLEN FRAANKG utative Streptomyces CAB40862 MGIGAFWSVSFLLVLVPGADWAYAITAGLRHRSVLPAVGGM 102 hreonine coelicolor LSGYVLLTAVVAAGLATAVAGSPTVLTALTAAGAAYLIWLGA ifiux TTLARPAAPRAEEGDQGDGSGSLVGRAARGAGISGLNPKALL protein 1 LFLALLPQFAARDADWPFAAQIVALGLVHTANCAVVYTGVGA TARRILGARPAVATAVSRFSGAAMILVGALLLVERLLAQGPT threonine Coryne- NP_601855 DAASWVAFALALLVALAVPGPDLVLVLHSATRGIRTGVMTA 196 efflux bacterium GIMTGLMLHASLAIAGATALLLSAPGVLSAIQLLGAGVLLW protein glutamicum GTNMFRASQNTGESETAASQSSAGYFRGFITNATNPLLF FAAILPQFIGNGEDMKMRTLALCATVLGSGAWWLGTILV GIGLQKLPSADRI ITLVGGIAIFLIGAG3LLVNTAYGLIT hypotheti Streptomyces CAB42763 SVPGSVAQVTEAEEPKPQSDEARSAFRQPSGIAASIDGESS 103 al coelicolor TTSEFEIPQGFAVPRHAGTESBTTSEFSLPDGLEVPQAPPAD protein TEGSAFTMPSTHSAWTAPTAFTPASGFPAVSLTDVWQDRMR NCg12533 LRMPVAERPAPEPSQKHDDETGPAVPRVLDLTLRIGELLL related AGGEGAEDVEAAFAVCRSYGLDRCPNVTFTLLSISYQPSL VEDPVTASRTVRRRGTDYTRLiAAVFHLVDDLSDPDTNI SLEE AYRRLAEIRRNRHPYPTWVLTVASGLLAGGASLLVGGGLTVF FAAMFGSMLGDRLAWLCAGRGLPEFYQFAVAWPPGAMGVL TVTHVDVKASAVITGGLFALLPGRALVAGVQDGLTGFYITA SLEV YFFVSIVAGVLVVLYFGVQLGAELNPDAKLTGDE PFVQIAASMLLSLAFAILLQQERATVLAVTLNGGIAWCGA NYAGDISPVASTAAAAGLVGLFGQLMSRYRFASA PYTTAA IGPLLPGSATYFGLLGIAQGEVDSGLLSLSNAVALAMAIAIG LGGEISRLFLKVPGAASAAGRRAAKRTRGF 155 WO 2004/108894 PCT/US2004/017513 hypotheti Mycobacterium AAK48209 DQDRSDNTALRRGLRIALRGRRDPLPVAGRRSRTSGGIGDL 104 cal tuberculosis (use TRKVLDLTIRLAEVMLSSGSGTADVVATAQDVAQAYQLTDC protein this to clone M. VDITVTTIIVSALATTDTPPVTIMRSVRTRSTDYSRLAELD NCgl2533smegmatis RLVQRITSGGVAVDQAHEAMDELTERPHPYPRWLATAGAAGF related gene) ALGVAMLLGGTWLTCVLAAVTSGVIDRLGRLLNRIGTPLFFQ VFGAGIATLVAVAAYLIAGQDPTALVATGIVVLLSGMTLVG SMQDAVTGYMLTALARLGDALFLTAGIVVGILISLRGVTNAG IQIELHVDATTTLATPGMPLPILVAVSGAALSGVCLTIASYA PLRSVATAGLSAGLAELVLIGLGAAGFGRVVATWTAAIGVGF LATLISIRRQAPALVTATAGIMPMLPGLAVFRAVFAFAVNDT PDGGLTQLLEAAATALALGSGVVLGEFLASPLRYGAGRIGDL FRIEGPPGLRRAVGRVVRLQPAKSQQPTGTGGQRWRSVALEP TTADDVIDAGYRGDWPATCTSATEVR hypotheti Mycobacterium CAA 8059 DQDRSDNTALRRGLRIALRGRRDPLPVAGRRSRTSGGIDDL 105 a\ tuberculosis (use TRKVLDLTIRLAEVMLSSGSGTADVTATAQDVAQAYQLTDC protein this to clone M. VVDITVTTIIVSALATTDTPPVTIMRSVRTRSTDYSRLAELD NCg[2533smegmatis RLVQRITSGGVAVDQAHEAMDELTERPHPYPRWLATAGAAGF related gene) ALGVAMLLGGTWLTCVLAAVTSGVIDRLGRLLNRIGTPLFFQ VFGAGIATLVAVAAYLIAGQDPTALVATGIVVLLSGMTLVG SMQDAVTGYMLTALARLGDALFLTAGIVVGILISLRGVTNAG IQIELHVDATTTLATPGMPLPILVAVSGAALSGVCLTIASYA PLRSVATAGLSAGLAELVLIGLGAAGFGRVVATWTAAIGVGF GATLISIRRQAPALVTATAGIMPMLPGLAVFRAVFAFAVNDT PDGGLTQLLEAAATALALGSGVVLGEFLASPLRYGAGRIGDL FRIEGPPGLRRAVGRVVRLQPAKSQQPTGTGGQRWRSVALEP TTADDVDAGYRGDWPATCTSATEVR hypotheti Thermobifida ZP 000595 MISYGPVADRCRVGATSAAWGTSPPMSFPFLPLVSHPLPYVP 106 al fusca 3LDASFPDGACVPLGRGPSRGGERRMNQAPRRSDTSHSPTLL protein TRLRDWRASRGVLDLEAEEFEDEAPRPDPRAMDLVLRVGELL NCgl2533 LASGEATETVSDAMLSLAVAFELPRSEVSVTFTGITLSCHPG related GDEPPVTGERVVRRRSLDYHKVNELHALVEDAALGLLDVERA TARLHAIKRSRPHYPRWVIVAGLGLIASSASVMVGGGIIVAA TAFAATVLGDRAAGWLARRGVAEFYQMAVAALLAASTGMALL WVSEELELGLRANAVITGSIVALLPGRPLVSSLQDGISGAYV SAAARLLEVFFMLGAIVAGVGAVAYTAVRLGLYVDLDNLPSA GTSLEPVVLAAAAGLALAFAVSLVAPVRALLPIGAMGVLIWV CYAGLRELLAVPPVVGTGAGAVVVGVIGHWLARRTRRPPLTF IIPSIAPLLPGSILYRGLIEMSTGEPLAGVASLGEAVAVGLA LGAGVNLGGELVRAFSWGGLVGAGRRGRQAARRTRGGY hypotheti Lactobacillus CAD62758 MNKERKSVMPLSQRHHMTIPWKDFIRNEDVPAKHASLQERTS107 al plantarum IVGRVGILMLSCGTGAWRVRDAMNKIARSLNLTCSADIGLIS protein IQYTCFHHERSYTQVLSIPNTGVNTDKLNILEQFVKDFDAKY NCg12533 ARLTVAQVHAAIDEVQTRPKQYSPLVLGLAAGLACSGFIFLL related GGGIPEMICSFLGAGLGNYVRALMGKRSMTTVAGIAVSVAVA CLAYMVSFKIFEYNFQILAQHEAGYIGAMLFVIPGFPFITSM LDISKLDMRSGLERLAYAIMVTLTATLVGWLVATLVSFKPAD FLPLGLSPLAVLLLRLPASFCGVYGFSIMFNSSQKMAITAGF IGAIANTLRLELVDLTAMPPAAAAFCGALVAGLIASVVNRYN GYPRISLTVPSIVIMVPGLYIYRAIYSIGNNQIGVGSLWLTK AVLIIMFLPLGLFVARALLDHEWRHFD NCg12533 Coryne- NP_601823 MLSFATLRGRISTVDAAKAAPPPSPLAPIDLTDHSQVAGVMN 198 bacterium LAARIGDILLSSGTSNSDTKVQVRAVTSAYGLYYTHVDITLN p/utamicum TITIFTNIGVERKMPVNVFHVVGKLDTNFSKLSEVDRLIRSI 156 WO 2004/108894 PCT/US2004/017513 QAGATPPEVAEKILDELEQSPASYGFPVALLGWAMMGGAVAV ILGGGWQVSLIAFITAFTIIATTSFLGKKGLPTFFQNVVGGF IATLPASIAYSLALQFGLEIKPSQIIASGIVVLLAGLTLVQS LQDGITGAPVTASARFFETLLFTGGIVAGVGLGIQLSEILHV MLPAMESAAAPNYSSTFARIIAGGVTAAAFAVGCYAEWSSVI IAGLTALMGSAFYYLFVVYLGPVSAAAIAATAVGFTGGLLAR RFLIPPLIVAIAGITPMLPGLAIYRGMYATLNDQTLMGFTNI AVALATASSLAAGVVLGEWIARRLRRPPRFNPYRAFTKANEF SFQEEAEQNQRRQRKRPKTNQRFGNKR putative Thermobifida P 000569 MSGGVMADITRNRSSGLAFAIASALAFGGSGPVARPLIDAGL 108 membran fusca JPLHVTWLRVAGAALLLLPVAFRHHRTLRTRPALLLAYGVFP e protein KAGVQAFYFAAISRIPVGVALLIEFLGPVLVLLWTRLVRRIP NCg0580 VSRAASLGVALAVIGLGCLVEVWAGIRLDAVGLILALAAAVC related QATYFLLSDTARDDVDPLAVISYGALIATALLSLLARPWTLP 4GILAQNVGFGGLDIPALILLVWLALVATTIAYLTGVAAVRR LSPVVAGGVAYLEVVTSIVLAWLLLGEALSVAQLVGAAAVVT 3AFLAQTAVPDTSAAQGPETLPTAQDPAPQTGSAR putative Thermobifida ZP 000594 KNSDSPGQSAPGPFSRAAALVRAAGTAIPATWLVGVSILSVQ 109 membran fusca FGAGVAKNLFAVLPPSTVVWLRLLASALVLLCFAPPPLRGHS protein RTDWLVAVGFGTSLAVMNYAIYESFARIPLGVAVTIEFLGPL NCgIO580 AVAVAGSRRWRDLVWVVLAGTGVALLGWDDGGVTLAGVAFAA related LAGAAWACYILLSAATGRRFPGTSGLTVASVIGAVLVAPMGL AHSSPALLDPSVLLTGLAVGLLSSVIPYSLEMQALRRIPPGV FGILMSLEPAAAALVGLVLLGEFLTVAQWAAVACVVVASVGA TRSARL putative Thermobifida ZP 000580 WTLDLPLKRNDSSTNGAWTETENRRHSGGMILSFVSLVRHA 110 membran fusca [LRVPAPLLTVLSLVLLHMGSAGAVHLFAIAGPLEVTWLRLS e protein WAALLLFAVGGRPLLRAARAATWSDLAATAALGVVSAGMTLL NCgIO580 FSLALDRIPLGTAAAIEFLGPLTVSVLALRRRRDLLWIVLAV related AGVLLLTRPWHGEADLLGIAFGLGGAVCVALYIVFSQTVGSR LGVLPGLTLAMTVSALVTAPLGLPGAMAAADRHLVAATLGLA LIYPLLPLLLEMVSLQRMNRGTFGILVSVDPAIGLLIGLLLI GQVPVPLQVAGMALVVAAGLGATRGTSGRTRGGADPHATDGE PEDRTPDRPAPDDAGHHTTDPVTV putative Streptomyces CAB71821 MAATRPAVIALTALAPVSWGSTYAVTTEFLPPDRPLFTGLMR 111 protein AYRMPGGMAAVVGSVGPLLVVGLSALLLGQRPTTRSVLTGVA NCgI0580 AASGVSLVVLEAAGALDPLGVLAALAATASMSTGTVLAGRWG related RPEGVGPLALTGWQLTAGGLLLAPLALLVEGAPPALDGPAVG GYLYLALANTALAYWLWFRGIGRLSATQVTFLGPLSPLTAAV IGWAALGEALGPVQLAGTALAFGATLVGQTVPSAPRTPPVAA GAGPFSSASRNGRKDSMDLTGAALRR putative Streptomyces CAB95885 MPDGAPGGRFGALGPVGLVLAGGISVQFGAALAVSLMPRAGA 112 membran coelicolor LGVVTLRLAVAAVVMLLVCRPRLRGHSRADWGTVVVFGIAMA e protein MNGLFYQAVDRIPLGPAVTLEVLGPLALSVFASRRAMNLVW NCgIO580 AALALAGVFLLGGGGFDGLDPAGAAFALAAGAMWAAYIVFSA related RTGRRFPQADGLALAMAVGALLFLPLGIVESGSKLIDPVTLT LGAGVALLSSVLPYTLELLALRRLPAPTFAILMSLEPAIAAA AGFLILDQALTATQSAAIALVIAASMGAVRTQVGRRRAKALP E putative Streptomyces CAB46802 MMTTARTSPPAPWHRRPDLLAAGAATVTVVLWASAFVSIRSA 113 membran coelicolor GEAYSPGALALGRLLSGVLTLGAIWLLRREGLPPRAAWRGIA e protein ISGLLWFGFYMVVLNWGEQQVDAGTAALVVNVGPILIALLGA NCg10580 RLLGDALPPRLLTGMAVSFAGAVTVGLSMSGEGGSSLFGVVL 157 WO 2004/108894 PCT/US2004/017513 related RLLGDALPPRLLTGMAVSFAGAVTVGLSMSGEGGSSLFGVVL CLLAAVAYAGGVVAQKPALAHASALQVTTFGCLVGAVLCLPF AGQLVHEAAGAPVSATLNMVYLGVFPTALAFTTWAYALARTT AGRMGATTYAVPALVVLMSWLALGEVPGLLTLAGGALCLAGV AVSRSRRRPAAVPDRAAPTAEPRREDAGRA putative Streptomyces CAC32287 MPVHTSDSARGSRGKGIGLGLALASAVAFGGSGVAAKPLIEA 114 membran coe/icolor GLDPLHVVWLRVAGAALVMLPLAVRHRALPRRRPALVAGYGL protein FAVAGVQACYFAAISRIPVGVALLVEYLAPALVLGWVRFVQR NCgIO580 RPVTRAAALGVVLAVGGLACVVEVWSGLGFDALGLLLALGAA related CCQVGYFVLSDQGSDAGEEAPDPLGVIAYGLLVGAAVLTIVA RPWSMDWSVLAGSAPMDGTPVAAALLLAWIVLIATVLAYVTG IVAVRRLSPQVAGVVACLEAVIATVLAWVLLGEHLSAPQVVG GIVVLAGAFIAQSSTPAKGSADPVARGGPERELSSRGTST putative Erwinia S35974 MKLKDAFYAPCVWGTTYFVTTQFLPADKPLLAALIRALPAG 115 membran chrysanthemi IILILGKNLPPVGWLWRLFVLGALNIGVFFVMLFFAAYRLPG a protein GVVALVGSLQPLIVILLSFLLLTQPVLKKQMVAAVAGGIGIV NCgIO580 LLISLPKAPLNPAGLVASALATMSMASGLVLTKKWGRPAGMT related MLTFTGWQLFCGGLVILPVQMLTEPLPDLVTLTNLAGYLYLA IPGSLLAYFMWFSGLEANSPVIMSLLGFLSPLVALLLGFLFL QQGLSGAQLVGVVFIFSALIIVQDISLFSRRKKVKPLEQSDC VIK putative regulatory AAF74778 MKLKDFAFYAPCVWGTTYFVTTQFLPADKPLLAALIRALPAG 116 membran protein PecM IILILGKTLPPVGWLWRLFVLGALNIGVFFVMLFFAAYRLPG e protein /Pecto-bacterium GVVALVGSLQPLIVILLSFLLLTQPVLKKQMVAAVAGGIGIA NCgO580 chrysanthemil LLISLPKAPLNPAGLVASALATVSMASGLVLTKKWGRPAGMT related MLTFTGWQLFCGGLVILPVQMLTEPLPDVVTLTNLAGYFYLA IPGSLLAYFMWFSGIEANSPVMMSMLGFLSPLVALFLGFLFL QQGLSGAQLVGVVFIFSAIIIVQDVSLFSRRKKVKQLEQSDC AVK putative Lactobacillus CAD63826 MKRLVGTLCGIISAALFGLGGILAQPLLSEQVLTPQQIVLLR 117 membran olantarum LLIGGAMLLLYRNLFFKQARKSTKKIWTHWRILTRIMIYGIA protein GLCTAQIAFFSAINYSNAAVATVFQSTSPFILLVFTALKAKR NCgIO580 LPSLLAGMSLISALMGIWLIVESGFKTGLIKPEAIIFGLIAA related IGVILYTKLPVPLLNQIAAVDILGWALVIGGVIALIHTPLPN LVRFSKTQLLAVLIIVILATVVAYDLYLESLKLIDGFLATMT GLFEPISSVLFGMLFLHQILVPQALVGIILVVGAIMILNLPH HITAPVPSKTCQCTMSNQ putative Lactobacillus CAD62768 MKKIAPLFVGLGAISFGIPASLFKIARRQGVVNGPLLFWSFL 118 membran plantarum SAVVILGVIQILRRARLRNQQTNWKQIGLVIAAGTASGFTNT e protein FYIQALKLIPVAVAAVMLMQAVWISTLLGAVIHHRRPSRLQV NCg0580 VSIVLVLIGTILAAGLFPITQALSPWGLMLSFLAACSYACTM related QFTASLGNNLDPLSKTWLLCLGAFILIAIVWSPQLVTAPTTP ATVGWGVLIALFSMVFPLVMYSLFMPYLELGIGPILSSLELP ASIVVAFVLLDETIDWVQMVGVAIIITAVILPNVLNMRRVRP putative Lactobacillus CAD65468 MTTNRYMKGIMWAMLASTLWGVSGTVMQFVSQNQAIPADWFL 119 membran plantarum SVRTLSAGIILLAIGFVQQGTKIFKVFRSWASVGQLVAYATV protein GLMANMYTFYISIERGTAAAATILQYLSPLFIVLGTLLFKRE NCg10580 LPLRTDLIAFAVSLLGVFLAITKGNIHELAIPMDALVWGILS related GVTAALYVVLPRKIVAENSPVVILGWGTLIAGILFNLYHPIW IGAPKITPTLVTSIGAIVLIGTIFAFLSLLHSLQYAPSAVVS IVDAVQPVVTFVLSIIFLGLQVTWVEILGSLLVIVAIYILQQ YRSDPASD NCgO580 Coryne- NP_599841 MNKQSAAVLMVMGSALSLQFGAAIGTQLFPLNGPWAVTSLRL 01 158 WO 2004/108894 PCT/US2004/017513 bacterium FIAGLIMCLVIRPRLRSWTKKQWIAVLLLGLSLGGMNSLFYA glutamicum SIELIPLGTAVTIEFLGPLIFSAVLARTLKNGLCVALAFLGM ALLGIDSLSGETLDPLGVIFAAVAGIFWVCYILASKKIGQLI PGTSGLAVALIIGAVAVFPLGATHMGPIFQTPTLLILALGTA LLGSLIPYSLELSALRRLPAPIFS ILLSLEPAFAAAVGWILL QTPTALKWAAIILVIAASIGVTWEPKKMLVDAPLHSKCNAK RRVHTPS rug Streptomyces CAC32286 mSNAVSGLPVGRGLLYLIVAGVAWGTAGAAASLVYRASDLGP 120 permease coe/icolor VALSFWRCAMGLVLLLAVRPLRPRLRPRLRPRLRPAVREPFA NCgl2065 RRTLRAGVTGVGLAVFQTAYFAAVQSTGLAVATVVTLGAGPV related LIALGARLALGEQLGAGGAAAVAGALAGLLVLVLGGGSATVR LPGVLLALLSAAGYSVMTLLTRWWGRGGGADAAGTSVGAFAV TSLCLLPFALAEGLVPHTAEPVRLLWLLAYVAAVPTALAYGL YFAGAAVVRSATVSVIMLLEPVSAAALAVLLLGEHLTAATLA 3TLLMLGSVAGLAVAETRAAREARTRPAPA rug Streptomyces CAA1 9979 RNVLLSAAFVLCWSSGFIGAKLGAQTAATPTLLMWRFLPLAV 121 permease coelicolor ALVAAAAVSRAAWRGLTPRDAGRQIAIGALSQSGYLLSVYYA NCgl2065 IELGVSSGTTALIDGVQPLVAGALAGPLLRQYVSRGQWLGLW related GGLSGVATVTVADAGAAGAEVAWWAYLVPFLGMLSLVAATFL EGRTRVPVAPRVALTIHCATSAVLFSGLALGLGAAAPPAGSS FWLATAWLVVLPTFGGYGLYWLILRRSGITEVNTLMFLMAPV TAVWGALMFGEPFGVQTALGLAVGLAAVVVVRRGGGARRERP VRSGADRPAAGGPTADQPTNRPTDRPTAAGSTDRPTADRR drug Thermobifida ZP 000581 MSDFRKGVLYGASSYFMWGFLPLYWPLLTPPATAFEVLLHRM 122 permeasefusca IWSLVVTLVVLLVQRNWQWIRGVLRSPRRLLLLLASAALISL NCgl2065 TWGAFITAVTTGHTLQSALAYFINPLVSVALGLLVFKERLRP related 3QWAALLLGVLAVAVLTVDYGSLPWLALAMAFSFAVYGALKK FVGLDGVESLSAETAVLFLPALGGAVYLEVTGTGTFTSVSPL [ALLLVGAGVVTAAPLMLFGAAAHRIPLTLVGLLQFMVPVMH FLIAWLVFGEDLSLGRWIGFAVVWTALVVFVVDMLRHARHTP RPAPSAPVAEEAEETAAS rug Streptomyces CAC08293 MAGSSRSDQRVGLLNGFAAYGMWGLVPLFWPLLKPAGAGEIL 123 permease coelicolor AHRMVWSLAFVAVALLFVRRWAWAGELLRQPRRLALVAVAAA NCg12065 VITVNWGVYIWAVNSGHVVEASLGYFINPLVTIAMGVLLLKE related RLRPAQWAAVGTGFAAVLVLAVGYGQPPWISLCLAFSFATYG LVKKKVNLGGVESLAAETAIQFLPALGYLLWLGAQGESTFTT EGAGHSALLAATGVVTAIPLVCFGAAAIRVPLSTLGLLQYLA PVFQFLLGVLYFGEAMPPERWAGFGLVWLALTLLTWDALRTA RRTARALREQLDRSGAGVPPLKGAAAAREPRVVASGTPAPGA GDAPQQQQQQQQQQQQQQHGTRAGKP drug Lactobacillus CAD63209 MKKAYLYIAISTLMFSSMEIALKMAGSAFNPIQLNLIRFFIG 124 permeasepIantarum AIVLLPFALRALKQTGRKLVSADWRLFALTGLVCVIVSMSLY NCgI2065 QLAITVDQASTVAVLFSCNPVFALLFSYLILRERLGRANLIS related VVISVIGLLIIVNPAHLTNGLGLLLAIGSAVTFGLYSIISRY GSVKRGLNGLTMTCFTFFAGAFELLVLAWITKIPAVANGLTA IGLRQFAAIPVLVNVNLNYFWLLFFIGVCVTGGGFAFYFLAM EQTDVSTASLVFFIKPGLAPILAALILHEQILWTTVVGIVVI LIGSVVTFVGNRFRERDTMGAIEQPTAAATDDEHVIKAAHAV SNQEN NCgl2065Coryne- NP_601347 MNDAGLKTRNPVLAPILMVVNGVSLYAGAALAVGLFESFPPA 199 bacterium LVAWMRVAAAAVILLVLYRPAVRNFIGQTGFYAAVYGVSTLA glutamicum ITFYEAIARIPMGTAVAIEFLGPIAVAALGSKTLRDWAAL VLAGIGVIIISGAQWSANSVGVMFALAAALLWAAYIIAGNRI 159 WO 2004/108894 PCT/US2004/017513 AGDASSSRTGMAVGFTWASVLSLPLAIWWWPGLGATELTLIE VIGLALGLGVLSAVIPYGLDQTVLRMAGRSYFALLLAILPIS AALMGALALGQMLSVAELVGIVLVVIAVALRRPS predicted 19553330 NP_601332.1 MIFGVLAYLGWGMFPAFFPLLLPAGPFEILAHRILWTAVLMM 200 permease IILSFTSGWKELKSADRGTWLRIILSSLFIAGNWLIYVIAVN SGQVTEAALGYFINPLLSVVLGIVFFKEQLRKLQISAVVIAA AGVLVLTFLGDKPPYLAITLAFTFGIYGALKKQVKMSAASSL CAETLVLLPIAVIYLIGLEASGHSTFFNNGSGHMALLICSGL VTAVPLLMFALAAKAIPLSTVGMLQYLTPTMQMLWALFVVNE SVEPMRWFGFVFIWIAVTIYITDSLLKK hypotheti Thermobifida P 000582 NADTLLWSLLLGVIVVA IIPTVRNSSTAPPPGAVGT 125 al fusca LGAALTAAALGIAGSGTAPASEVPAGSGQVRTVDVVLGDMT mem bran VSPSHVTVAPGDSLVLRVRNEDTQVHDLVVETGARTPRLAPG protein DSATLQVGTVTEPIDAWCTVLGHSAAGMRMRIDTTDTADSAD NCg12829 SPDTPAGADSGPPAPLPLSAEMSDDWQPRDAVLPPAPDRTEH related EVEIRVTETELEVAPGVRQSVWTFGGDVPGPVLRGKVGDVFT VTFVNDGTMGHGIDFHASSLAPDEPMRTINPGERLTYRFRAE KAGAWVYHCSTSPMLQHIGNGMYGAVIIDPPDLEPVDREYLL VQGELYLGEPGSADQVARMRAGEPDAWVFNGVAAGYAHAPLT AEVGERVRIWVVAAGPTSGTSFHIVGAQFDTVYKEGAYLVRR 3DAGGAQALDLAVAQGGFVETVFPEAGSYPFVDHDMRHAENG ARGFFTITE NCg12829Coryne- NP_602117 IVLVIAGIIHPLLPEYRWVLIHLFTLGAITNSIVVWSQHFTE 197 bacterium KFLHLKLEESKRPAQLLKIRVLNVGIIVTIIGQMIGQWIVTS glutamicum VGATIVGGALAWHAGSLASQFRSAKRGQPFASAVIAYVASAC CLPFGAFAGALLSKELSGHLQERVLLTHTVINFLGFVGFAAL SLSVLFAAIWRTKIRHNFTPWSVGIMAVSLPIIVTGILLNN GYVAATGLAAYVAAWLLAMVGWGKASISNLSFSTSTSTTAPL WLVGTLVWLAVQAVMHDGELYHVEVPTIALVIGFGAQLLIGV MSYLLPSTMGGGASAVRTGTHILNTAGLFRWTLINGGLAIWL LTDNSWLRVVVSLLSIGALAVFVILLPKAVRAQRGVITKKRE PITPPEEPRLNQITAGISVLALILAAFGGLNPGVAPVASSNE DVYAVTITAGDMVFIPDVIEVPAGKSLEVTMLNEDDMVHDLK FANGVQTGRVAPGDEITVTVGDISEDMDGWCTIAGHRAQGMD LEVKVAAPN ggA Escherichia co/i AAA69090 FSYYFQGLALGAAMILPLGPQNAFVMNQGIRRQYHIMIALL 237 CAISDLVLICAGIFGGSALLMQSPWLLALVTWGGVAFLLWYG FGAFKTAMSSNIELASAEVMKQGRWKIIATMLAVTWLNPHVY LDTFVVLGSLGGQLDVEPKRWFALGTISASFLWFFGLALLAA WLAPRLRTAKAQRIINLVVGCVMWFIALQLARDGIAHAQALF S Table 17. Nucleotide sequences of exemplary heterologous proteins for amino acid 5 production in Escherichia coil and coryneform bacteria. Note: This table provides coding sequences of each gene. Some GenBank@ entries contain additional non-coding sequence associated with the gene. 160 WO 2004/108894 PCT/US2004/017513 Gene Organism GenBank@ NUCLEOTIDE SEQUENCE (CODING) SEQ ID Nucleotide ID NO: lysC Mycobacterium Z17372 GTGGCGCTCGTCGTACAGAAATACGGCGGATCCTCGGT 11 smegmatis GGCGGACGCCGAGAGGATCCGACGGGTCGCCGAGCGGA TCGTCGAGACCAAGAAGGCGGGCAACGACGTCGTCGTC GTCGTCTCCGCGATGGGTGACACCACCGATGACCTGCT GGACCTGGCGCGCCAGGTGTCGCCCGCGCCGCCGCCGC GCGAGATGGACATGCTGCTGACCGCCGGTGAGCGGATC TCCAACGCGCTGGTCGCGATGGCCATCGAATCGCTCGG CGCGCAGGCCCGGTCCTTCACCGGATCGCAGGCCGGTG TGATCACCACGGGCACGCACGGCAACGCCAAGATCATC GACGTCACCCCGGGCCGGTTGCGCGACGCGCTCGACGA GGGGCAGATCGTGCTGGTCGCCGGGTTCCAGGGCGTCA GCCAGGACAGCAAGGACGTCACCACGCTGGGACGCGGC GGTTCGGACACCACGGCCGTCGCCGTGGCTGCGGCACT CGATGCCGATGTCTGCGAGATCTACACCGACGTCGACG GCATCTTCACCGCGGACCCGCGCATCGTGCCCAACGCC CGCCACCTCGACACCGTCTCCTTCGAGGAGATGCTGGA GATGGCGGCCTGCGGCGCGAAAGTTCTGATGCTGCGCT GCGTCGAGTACGCCCGCCGCTACAACGTGCCCATCCAC GTCCGGTCGTCGTATTCGGACAAGCCCGGCACCATCGT CAAAGGATCGATCGAGGACATCCCCATGGAAGACGCCA TCCTGACCGGAGTAGCCCACGACCGCAGCGAGGCCAAG GTCACGGTGGTCGGTCTGCCCGACGTTCCCGGCTACGC CGCCAAGGTGTTCCGCGCGGTCGCCGAGGCCGACGTGA ACATCGACATGGTGCTGCAGAACATCTCGAAGATCGAG GACGGCAAGACCGACATCACGTTCACGTGTGCGCGTGA CAACGGCCCGCGGGCCGTAGAGAAGCTCTCGGCGCTCA AGAGCGAGATCGGTTTCAGCCAGGTGCTGTACGACGAC CACATCGGCAAGGTGTCGCTGATCGGCGCCGGTATGCG GTCGCATCCGGGCGTGACGGCCACGTTCTGCGAGGCGC TCGCGGAGGCCGGCATCAACATCGACCTGATCTCGACG TCGGAGATCCGTATCTCGGTGCTCATCAAGGACACCGA ACTGGACAAGGCGGTTTCGGCGCTGCACGAGGCGTTCG GCCTCGGCGGCGACGACGAAGCCGTGGTGTACGCGGGA ACGGGGCGCTGA lysO Amycolatopsis AF134837 GTGGCCCTCGTGGTCCAGAAGTACGGCGGATCGTCGCT 31 mediterranei GGAAAGTGCCGACCGGATCAAGCGCGTGGCGGAGCGGA TCGTCGCGACGAAGAAGGCGGGCAACGACGTCGTCGTC GTCTGCTCGGCGATGGGTGACACCACCGACGAGCTGCT CGACCTGGCGCAGCAGGTCAACCCGGCGCCGCCGGAGC GGGAGATGGACATGCTGCTCACCGCCGGTGAGCGCATC TCGAACTCGCTGGTCGCGATGGCGATCGCGGCCCAGGG CGCCGAGGCGTGGTCGTTCACCGGTTCGCAGGCCGGCG TCGTCACGACGTCGGTGCACGGCAACGCGCGCATCATC GACGTCACGCCGAGCCGGGTCACCGAGGCGCTCGACCA GGGGTACATCGCGCTGGTGGCGGGCTTCCAGGGCGTCG CGCAGGACACCAAGGACATCACCACGCTGGGCCGCGGC GGCTCGGACACCACCGCCGTCGCGCTGGCCGCCGCGCT GAACGCCGACGTCTGCGAGATCTACTCCGATGTGGACG GTGTGTACACGGCGGACCCGCGGGTGGTGCCGGACGCG' AAGAAGCTCGACACCGTCACGTACGAAGAGATGCTCGA GCTCGCCGCGAGCGGGTCGAAGATCCTGCACCTGCGTT CGGTCGAGTACGCGCGCCGCTACGGCGTCCCGATCCGA 161 WO 2004/108894 PCT/US2004/017513 GTCCGTTCTTCCTACAGCGACAAGCCGGGCACGACGGT GACCGGTTCTTATCGAGGAGATCCCCGTGGAACAAGCCC TGATCACCGGTGTGGCGCACGACCGCTCCGAAGCCAAG ATCACGGTCACCGGGGTGCCGGACCACACCGGCGCCGC GGCCCGGATCTTCCGCGTGATCGCCGACGCCGAGATCG ACATCGACATGGTGCTGCAGAACGTGTCCAGCACCGTC TCCGGCCGCACGGACATCACGTTCACGCTGTCGAAGGC CAACGGCGCCAAGGCCGTCAAGGAACTGGAGAAGGTCC AGGCGGAGATCGGCTTCGAGTCGGTCCTCTACGACGAC CACGTCGGCAACGTGTCGGTGGTCGGCGCCGGGATGCG CTCGCACCCGGGTGTCACGGCGACGTTCTGCGAAGCGC TGGCCGAGGCCGGCGTCAACATCGAAATCATCAACACC TCGGAGATCCGCATTTCGGTGCTGATCCGCGACGCGCA GCTCGACGACGCCGTGCGCGCGATCCACGAGGCATTCG AACTCGGCGGCGACGAAGAAGCCGTCGTCTACGCGGGG AGTGGTCGCTGA IysC Streptomyces AL9391 17.1 GTGGGCCTTGTCGTGCAGAAiGTACGGAGGCTCCTCCGT 32 coelicolor AGCCGATGCCGAGGGCATCAAGCGCGTCGCCAAGCGGA TCGTGGAAGCGAAGAAGAACGGCAACCAGGTGGTCGCC GTCGTTTCCGCGATGGGCGACACGACGGACGAGCTGAT CGATCTCGCCGAGCAGGTTTCCCCGATCCCTGCCGGGC GTGAACTCGACATGCTGCTGACCGCCGGGGAGCGTATC TCCATGGCGCTGCTGGCCATGGCGATCAA-AAACCTGGG CCACGAGGCCCAGTCGTTCACCGGCAGCCAGGCCGGAG TCATCACCGACTCGGTCCACAACAAGGCCCGGATCATC GACGTCACACCGGGTCGCATCCGCACCTCGGTCGACGA GGGCAACGTGGCCATCGTGGCCGGCTTCCAGGGCGTCA GCCAGGACAGCAZXGGACATCACCACGCTGGGCCGCGGC GGGTiCCGACACCACGGCCGTCGCCCTCGCCGCCGCGCT CGACGCGGACGTCTGCGAGATCTACACCGACGTCGACG GCGTGTTCACCGCCGACCCGCGCGTGGTGCCGAAGGCG AAGAAGATCGACTGGATCTCCTTCGAGGACATGCTGGA GCTCGCTGCCTCCGGCTCCAAGGTGCTGCTCCACCGTT GCGTGGAGTACGCCCGCCGGTACAACATCCCGATTCAC GTGCGGTCCAGCTTCAGCGGACTCCAGGGCACGTGGGT CAGCAGCGAGCCGATCAAGCAAGGGGAAAAGCACGTGG AGCAGGCCCTCATCTCCGGAGTCGCGCACGACACCTCC GAGGCCAAGGTCACGGTCGTCGGGGTGCCCGACAAGCC GGGCGAGGCGGCCGCGATCTTCCGCGCCATCGCCGACG CCCAGGTCAACATCGACATGGTCGTGCAGAACGTGTCC GCCGCCTCCACGGGCCTGACGGACATCTCGTTCACGCT CCCCAAGAGCGAGGGCCGCAAGGCCATCGACGCGCTGG AGAAGAACCGCCCGGGCATCGGCTTCGACTCGCTGCGC TACGACGACCAGATCGGCAAGATCTCGCTGGTCGGCGC CGGTATGAAGAGCAATCCGGGCGTCACCGCCGACTTCT TCACCGCGCTCTCCGACGCCGGGGTGAACATCGAGCTG ATCTCGACCTCCGAGATCCGCATCTCGGTCGTCACCCG CAAGGACGACGTGAACGAGGCCGTGCGCGCCGTGCACA CCGCCTTCGGGCTCGACTCCGACAGTGACGAGGCCGTG GTCTACGGGGGCACCGGGCGCTGA lysO Thermobifida NZAAAQOIO GTGAATCTCCGATCACTAGACTGGCTGGTCGATTACCG 33 fusca 000-23.1 TGAACCCGATTCCTCAGGAGCGCCGACCGTGGCTTTGA TCGTGCAAAAGTACGGCGGGTCGTCCGTCGCTGATGCG 162 WO 2004/108894 PCT/US2004/017513 GATGCCATTAAGCGGGTAGCCGAACGGATCGTCGCTCA GAAGAAAGCCGGAThCGACGTGGTCGTCGTGGTCTCCG CCATGGGCGACACCACTGACGAGCTTCTCGACCTTGCG AAGCAGGTGAGTCCGCTCCCGCCGGGCCGGGAGTTGGA CATGCTGCTGACTGCCGGGGAGCGGATCTCGATGGCCC TGGTTGCGATGGCTATCGGGAACTTGGGCTATGAGGCC CGGTCGTTCACCGGTTCGCAGGCCGGGGTGATCACCAC GTCGCTGCACGGCAACGCGAAGATCATCGATGTCACCC CGGGGCGGATCAGGGATGCGCTCGCCGAAGGGGCGATC TGCATCGTCGCTGGCTTCCAAGGGGTGTCGCAGGACAG CAAGGACATCACCACGTTGGGCCGCGGTGGTTCGGACA CTACGGCTGTGGCGCTTGCTGCGGCGCTCAACGCCGAC TTGTGCGAGATCTACACCGACGTCGACGGGGTGTTCAC TGCTGATCCGCGTATCGTGCCCTCCGCTCGACGCATCC CCCAGATCTCCTACGAGGAGATGCTGGAGATGGCGGCC TCCGGCGCCAAGATCCTGCATCTGCGCTGCGTGGAGTA TGCGCGGCGGTACAACATTCCGCTGCACGTGCGCTCGT CTTTCAGTCAGAAGCCCGGTACCTGGGTCGTCTCGGAA GTTGAGGAALACCGAAGGCATGGAACAACCGATCATCTC CGGCGTGGCGCATGACCGGAGCGAAGCCAAGATCACGG TTGTGGGGGTGCCCGACCGTGTCGGCGAGGCAGCAGCG ATCTTCAAGGCGCTGGCCGACGCTGAGATCAACGTGGA CATGATCGTGCAGAACGTGTCCGCGGCTTCCACGTCGC GTACGGACATTTCTTTCACTCTGCCTGCCGACTCGGGG CAGAALCGCGCTGGCCGCGTTGAALGAAGATCCAGGACAA GGTCGGTTTCGAGTCGCTGCTGTACAACGACCGGATCG GCAAGGTGTCGCTGATCGGCGCGGGG3ATGCGCTCCTAT CCGGGGGTGACTGCTCGGTTCTTTGACGCTGTGGCCCG CGAGGGCATCAACATCGAGATGATTTCCACTTCCGAGA TCCGCATCTCGATCGTGGTGGCGCAGGACGACGTGGAC GCCGCAGTGGCCGCCGCGCACCGTGAGTTCCAGTTGGA CGCCGACCAGGTCGAGGCCGTTGTGTATGGAGGTACCG GCCGATGA IYSC Erwinia ATGTCTGCTAACACTGATAACTCACTGATTATCGCCAA 34 chrysanthemi ATTCGGCGGCACCAGCGTCGCTGATTTCGACGCCATGA ACCGCAGCGCCGACATCGTGCTGTCCGACGCGCAGGTA CGGGTGGTGGTGCTGTCCGCCTCCGCCGGCGTGACCAA CCT&YCTGGTGGCGCTGGCGGAAGGTTTACCGCCATCTG AACGCACCCCAACTGGAAAAACTGCGCCAGATTCAA TACGCCATCATCGACCGCCTCAACCAGCCGGCCGTCAT CCGTGAAGAAATCGACCGCATGCTGGACAACGTGGCCC GCCTGTCGGAAGCGGCGGCGCTGGCGACTTCCAACGCC CTGACCGACGAACTGGTCAGCCACGGCGAGCTGATATC CACCTTGCTGTTTGTGGAAATTCTGCGCGAGCGCAACG TCGCCGCCGAATGGTTCGACGTGCGTAAAATCATGCGT ACCAACGACCGCTTCGGCCGCGCCGAGCCGGACTGCGA CGCGCTGGGCGAACTGACCCGCAGCCAGCTGACGCCGC GTCTGGCGCAGGGGCTGATCATCACCCAGGGCTTCATC GGCAGCGAAGCTAAAGGCCGCACCACCACGCTGGGCCG CGGCGGCAGCGATTACACCGCCGCTCTGCTGGGCGAAG CGCTGCACGCCAGCCGTATCGACATCTGGACCGACGTT CCCGGCATCTACACCACCGACCCGCGCGTGGTGCCGTC CGCCCACCGCATCGACCAGATTACCTTTGAA!GAGCGG CCGAAATGGCCACCTTCGGCGCCAZAGGTGCTGCACCCGI 163 WO 2004/108894 PCT/US2004/017513 GCCACACTGCTGCCTGCCGTACGCAGCGACATTCCGGT ATTCGTCGGCTCCAGCAAAGACCCGGCGGCCGGCGGCA CGCTGGTGTGCAACAACACCGAAAACCCGCCGCTGTTC CGCGCGCTGGCGCTGCGCCGCAAGCAGACGCTGCTGAC CCTGCATAGCCTTAACATGCTGCACGCGCGCGGCTTTC TGGCGGAAGTGTTCAGTATTCTGGCTCGCCACAACATC TCGGTGGATTTGATCACTACCTCCGAGGTGAACGTCGC GCTGACGCTGGACACCACCGGCTCGACCTCGACCGGCG ATAGCCTGCTGTCCAGCGCGCTGCTGACTGAACTGTCC TCGCTGTGTCGGGTGGAAGTGGAAGAGAACATGTCGCT GGTGGCGCTGATCGGCAACCAGCTGTCGCAGGCCTGCG GCGTCGGCAAAGAGGTGTTCGGGGTGCTGGAGCCATTT AATATCCGCCTCATCTGCTACGGCGCCAGCAGCCACAA CCTGTGCTTCCTGGTGCCGTCCAGCGATGCCGAGCAGG TGGTGCAGACGCTGCATCACAATCTGTTTGAATAA lysO She wane/Ia AEOI 5779.1 GTGCTCGAAAAACGAAAGCTTAGTGGTAGCAAGCTTTT 35 oneidensis TGTGA1AGAAGTTTGGTGGCACTTCGGTGGGTTCAATTG AACGTATCGAAI3TGGTTGCCGAACAGATTGCAAAGTCC GCTCACAGTGGTGAGCAGCAA GTATTAGTTCTTTCTGC TATGGCAGGGGAGACAAATAGGCTATTTGCGCTAGCAG CGCAAATCGATCCCCGCGCGAGTGCTCGGGAACTCGAT ATGTTGGTCTCAACGGGTGAGCAAATTAGTATTGCGTT GATGGCGATGGCGTTGCAGCGTCGCGGTATCAAGGCA GATCGCTCACTGGCGATCAAGTGCAAATCCATACAAAT AGTCAGTTTGGTCGTGCCAGTATTGAGAGCGTCGATAC GGCGTACTTAACGTCCTTGCTCGAACAAGGCATTGTGC CGATTGTGGCAGGGTTTCAAGGGATCGATCCTAATGGC GATG!TCACIACCTTAGGTCGTGGTGGTTCCGATACGAC GGCTGTAGCGCTCGCCGCAGCGTTAAGAGCCGATGAAT GCCAGATATTTACCGATGTTTCAGGGGTGTTTACTACA GACCCAAATATCGATAGTAGCGCAAGGCGTCTGGATGT GATTGGCTTTGACGTCATGCTTGAAATGGCAAAGTTAG GCGCTAAAGTACTTCATCCTGATTCTGTTGAATATGCA CAGCGTTTTAAAGTACCGCTTCGGGTGTTGTCGAGTTT CGAAGCTGGGCAAGGTACATTAATTCAATTTGGTGATG AATCTGAGCTTGCGATGGCCGCATCTGTACAAGGTATT GCGATCAACAAAGCCTTAGCAA-CGTTGACCATCGAAGG TTTGTTCACCAGCAGTGAGCGTTACCAAGCACTATTGG CTTGTTTGGCCCGACTGGAGGTAGATGTTGAATTTATC ACTCCTTTGAAATTGAATGA1AATTTCTCCTGTTGAGTC AGTCAGTTTCATGTTAGCCGAAGCTAAAGTGGATATTT TATTGCACGAGCTTGAGGTTTTAAGCGAAAGTCTTGAT CTAGGGCAATTGATTGTTGAGCGCCAACGTGCAAAAGT GTCTTTAGTTGGCAA-AGGTTTACAGGCAAALAGTTGGAT TATTGACTAAGATGTTAGATGTATTGGGTAACGAAACA ATTCATGCTAGTTACTTTCGACATCGGAGAGTAAATT GTCAACTGTGATCGATGAAAGGGACTTGCACAAGGCGG TTCGGGCGTTGCATCATGCTTTCGAGCTAAATAAGGTG IysC Coryne- AX720328 GTGGCCCTGGTCGTACAGAAATATGGCGGTTCCTCGCT 238 bacterium TGAGAGTGCGGAACGCATTAGAAACGTCGCTGAACGGA glutamicum TCGTTGCCACC1AAGAAGGCTGGAAATGATGTCGTGGTT GTCTGCTCCGCAATGGGAGACACCACGGATGAACTTCT AGAACTTGCAGCGGCAGTGAATCCCGTTCCGCCAGCTCI 164 WO 2004/108894 PCT/US2004/017513 GTGAA.ATGGATATGCTCCTGACTGCTGGTGAGCGTATT TCTAACGCTCTCGTCGCCATGGCTATTGA GTCCCTTGG CGCAGAAGCCCAATCTTTCACGGGCTCTCAGGCTGGTG TGCTCACCACCGAGCGCCACGGAAACGCACGCATTGTT GATGTCACTCCAGGTCGTGTGCGTGAAGCACTCGATGA GGGCAAGATCTGCATTGTTGCTGGTTTCCAGGGTGTTA ATAAAGAAACCCGCGATGTCACCACGTTGGGTCGTGGT GGTTCTGACACCACTGCAGTTGCGTTGGCAGCTCCTTT GAACGCTGATGTGTGTGAGATTTACTCGGACGTTGACG GTGTGTATACCGCTGACCCGCGCATCGTTCCTAATGCA CAGAAGCTGGAA1AAGCTCAGCTTCGAAGAAATGCTGGA ACTTGCTGCTGTTGGCTCCAZAGATTTTGGTGCTGCGCA GTGTTGAATACGCTCGTGCATTCAATGTGCCACTTCGC GTACGCTCGTCTTATAGTAATGATCCCGGCACTTTGAT TGCCGGCTCTATGGAGGATATTCCTGTGGAAGAAGCAG TCCTTACCGGTGTCGCAACCGACAAGTCCGAAGCCAAA GTAACCGTTCTGGGTATTTCCGATAAGCCAkGGCGAGGC TGCGAAGGTTTTCCGTGCGTTGGCTGATGCAGAAA.TCA ACATTGACATGGTTCTGCAGAACGTCTCTTCTGTAGAA GACGGCACCACCGACATCACCTTCACCTGCCCTCGTTC CGACGGCCGCCGCGCGATGGAGATCTTGAAGAAGCTTC AGGTTCAGGGCAACTGGACCAATGTGCTTTACGACGAC CAGGTCGGCAAAGTCTCCCTCGTGGGTGCTGGCATGAA GTCTCACCC2AGGTGTTACCGCAGAGTTCATGGAAGCTC TGCGCGATGTCAACGTGAACATCGAATTGATTTCCACC TCTGAGATTCGTATTTCCGTGCTGATCCGTGAAGATGA TCTGGATGCTGCTGCACGTGCATTGCATGAGCAGTTCC AGCTGGGCGGCGAAGACGAAGCCGTCGTTTATGCAGGC ACCGGACGC aspartokinas Escherichia M1 1812 ATGTCTGAAATTGTTGTCTCCAAATTTGGCGGTACCAG 239 ei II COiY CGTAGCCGATTTTGACGCCATGAACCGCAGCGCTGATA TTGTGCTTTCTGATGCCAACGTGCGTTTAGTTGTCCTC TCGGCTTCTGCTGGTATCACTAATCTGCTGGTCGCTTT AGCTGAAGGACTGGAACCTTGCQAGCGATTCGAAAAAC TCGACGCTATCCGCAACATCCAGTTTGCCATTCTGGAA CGTCTGCGTTACCCGAACGTTATCCGTGAAGAGATTGA ACGTCTGCTGCAGAACATTACTGTTCTGGCAGAAGCGG CGGCGCTGGCAACGTCTCCGGCGCTGACAGATGAGCTG GTCAGCCACGGCGAGCTGATGTCGACCCTGCTGTTTGT TGAGATCCTGCGCGAACGCGATGTTCAGGCACAGTGGT TTGATGTGCGTAAAGTGATGCGTACCAACGACCGATTT GGTCGTGCAGAGCCAGATATAGCCGCGCTGGCGGAACT GGCCGCGCTGCAGCTGCTCCCACGTCTCAATGAAGGCT TAGTGATCACCCAGGGATTTATCGGTAGCGAAAATAAA GGTCGTACAACGACGCTTGGCCGTGGAGGCAGCGATTA TACGGCAGCCTTGCTGGCGGAGGCTTTACACGCATCTC GTGTTGATATCTGGACCGACGTCCCGGGCATCTACACC ACCGATCCACGCGTAGTTTCCGCAGCAAAACGCATTGA TGAAATCGCGTTTGCCGAAGCGGCAGAGATGGCAACTT TTGGTGCAA2AGTACTGCATCCGGCAACGTTGCTACCC GCAGTACGCAGCGATATCCCGGTCTTTGTCGGCTCCAG CAAAGACCCACGCGCAGGTGGTACGCTGGTGTGCAATA AAACTGAAAATCCGCCGCTGTTCCGCGCTCTGGCGCTT CGTCGCAATCAGACTCTGCTCACTTTGCACAGCCTGAAI 165 WO 2004/108894 PCT/US2004/017513 TATGCTGCATTCTCGCGGTTTCCTCGCGGAAGTTTTCG GCATCCTCGCGCGGCATAATATTTCGGTAGACTTAATC ACCACGTCAGAAGTGAGCGTGGCATTAACCCTTGATAC CACCGGTTCAACCTCCACTGGCGATACGTTGCTGACAC AATCTCTGCTGATGGAGCTTTCCGCACTGTGTCGGGTG GAGGTGGAAGAAGGTCTGGCGCTGGTCGCGTTGATTGG CAATGACCTGTCAAAAGCGTGCGCCGTTGGCAAAGAGG TATTCGGCGTACTGGAACCGTTCAACATTCGCATGATT TGTTATGGCGCATCCAGCCATAACCTGTGCTTCCTGGT GCCCGGCGAAGATGCCGAGCAGGTGGTGCAAAAACTGC ATAGTAATTTGTTTGAGTAA asd Coryne- X57226 ATGACCACCATCGCAGTTGTTGGTGCAACCGGCCAGGT 240 bacterium CGGCCAGGTTATGCGCACCCTTTTGGAAGAGCGCAATT glutamicum TCCCAGCTGACACTGTTCGTTTCTTTGCTTCCCCACGT TCCGCAGGCCGTAAGATTGAATTCCGTGGCACGGAAAT CGAGGTAGAAGACATTACTCAGGCAACCGAGGAGTCCC TCAAGGACATCGACGTTGCGTTGTTCTCCGCTGGAGGC ACCGCTTCCAAGCAGTACGCTCCACTGTTCGCTGCTGC AGGCGCGACTGTTGTGGATAACTCTTCTGCTTGGCGCA AGGACGACGAGGTTCCACTAATCGTCTCTGAGGTGAAC CCTTCCGACAAGGATTCCCTGGTCAAGGGCATTATTGC GAACCCTAACTGCACCACCATGGCTGCGATGCCAGTGC TGAAGCCACTTCACGATGCCGCTGGTCTTGTAAAGCTT CACGTTTCCTCTTACCAGGCTGTTTCCGGTTCTGGTCT TGCAGGTGTGGAAACCTTGGCAAAGCAGGTTGCTGCAG TTGGAGACCACAACGTTGAGTTCGTCCATGATGGACAG GCTGCTGACGCAGGCGATGTCGGACCTTATGTTTCACC AATCGCTTACAACGTGCTGCCATTCGCCGGAAACCTCG TCGATGACGGCACCTTCGAAACCGATGAAGAGCAGAAG CTGCGCAACGAATCCCGCAAGATTCTCGGTCTCCCAGA CCTCAAGGTCTCAGGCACCTGCGTTCGCGTGCCGGTTT TCACCGGCCACACGCTGACCATTCACGCCGAATTCGAC AAGGCAATCACCGTGGACCAGGCGCAGGAGATCTTGGG TGCCGCTTCAGGCGTCAAGCTTGTCGACGTCCCAACCC CACTTGCAGCTGCCGGCATTGACGAATCCCTCGTTGGA CGCATCCGTCAGGACTCCACTGTCGACGATAACCGCGG TCTGGTTCTCGTCGTATCTGGCGACAACCTCCGCAAGG GTGCTGCGCTAAACACCATCCAGATCGCTGAGCTGCTG GTTAAGTAA asd Escherichia NC_000913 ATGAAAAATGTTGGTTTTATCGGCTGGCGCGGTATGGT 241 coil CGGCTCCGTTCTCATGCAACGCATGGTTGAAGAGCGCG ACTTCGACGCCATTCGCCCTGTCTTCTTTTCTACTTCT CAGCTTGGCCAGGCTGCGCCGTCTTTTGGCGGAACCAC TGGCACACTTCAGGATGCCTTTGATCTGGAGGCGCTAA AGGCCCTCGATATCATTGTGACCTGTCAGGGCGGCGAT TATACCAACGAAATCTATCCAAAGCTTCGTGAAAGCGG ATGGCAAGGTTACTGGATTGACGCAGCATCGTCTCTGC GCATGAAAGATGACGCCATCATCATTCTTGACCCCGTC AATCAGGACGTCATTACCGACGGATTAAATAATGGCAT CAGGACTTTTGTTGGCGGTAACTGTACCGTAAGCCTGA TGTTGATGTCGTTGGGTGGTTTATTCGCCAATGATCTT GTTGATTGGGTGTCCGTTGCAACCTACCAGGCCGCTTC CGGCGGTGGTGCGCGACATATGCGTGAGTTATTAACCC 166 WO 2004/108894 PCT/US2004/017513 AGATGGGCCATCTGTATGGCCATGTGGCAGATGAACTC GCGACCCCGTCCTCTGCTATTCTCGATATCGAACGCAA AGTCACAACCTTAACCCGTAGCGGTGAGCTGCCGGTGG ATAACTTTGGCGTGCCGCTGGCGGGTAGCCTGATTCCG TGGATCGACAAACAGCTCGATA2ACGGTCAGAGCCGCGA AGAGTGGAAAGGGCAGGCGGAAACCAACAAGATCCTCA ACACATCTTCCGTAATTCCGGTAGATGGTTTATGTGTG CGTGTCGGGGCATTGCGCTGCCACAGCCAGGCATTCAC TATTAAATTGAAAAAAGATGTGTCTATTCCGACCGTGG AAGAACTGCTGGCTGCGCACAATCCGTGGGCGAAAGTC GTTCCGAZACGATCGGGAAAJ2CACTATGCGTGAGCTAAC CCCAGCTGCCGTTACCGGCACGCTGACCACGCCGGTAG GCCGCCTGCGTAAGCTGAATATGGGACCAGAGTTCCTG TCAGCCTTTACCGTGGGCGACCAGCTGCTGTGGGGGGC CGCGGAGCCGCTGCGTCGGATGCTTCGTCAACTGGCG ____ pPC The rmobifida NZ_-AAAQ010 ATGACACGCGACAGCGCCCGCCAGGAGATGCCCGACCA 36 fusca 00037.1 GCTTCGCCGCGACGTCCGGTTGCTCGGCGAAATGCTCG GCACCGTACTTGCCGAGAGTGGCGGTCAAGACCTGCTT GACGATGTGGAACGACTCCGCCGCGCCGTCATCGGAGC TCGCGAGGGGACGGTCGAGGGCAAAGAGATCACCGAGC TCGTCGCCTCGTGGCCACTGGAACGCGCCAAGCAGGTG GCGCGTGCCTTCACCGTCTACTTCCACCTGGTCAACCT GGCTGAAGAGCACCACCGTATGCGCGCCCTGCGGGAAC GCGACGACGCGGCCACACCGCAGCGCGAATCGCTGGCT GCCGCAGTGCACTCCATCCGCGAAGACGCCGGGCCAGA GCGGCTGCGCGAACTCATCGCGGGCATGGAATTCCACC CGGTCCTGACCGCGCACCCCACCGAAGCGCGCCGTCGC GCCGTCTCCACCGCGATCCAGCGCATCAGTGCCCAALCT GGAACGCCTGCACGCGGCCCACCCGGGAAGCGGCGCCG AAGCCGAGGCGCGTCGCAGACTCCTCGAAGAAATCGAC CTGCTGTGGCGAACATCACAGCTCCGCTATACGAAGAT GGACCCGCTCGACGAAGTGCGGACCGCCATGGCCGCCT TCGACGAGACCATCTTCACCGTCATCCCCGAGGTCTAC CGCAGCCTCGACCGGGCGCTCGACCCCGAAGGCTGCGG ACGGCGCCCCGCGCTGGCGAAAGCCTTCGTCCGCTACG GCAGTTGGATCGGCGGTGACCGCGACGGCAACCCCTTC GTCACCCACGAAGOTGACGCGGGAAGCCATCACCATCCA GTCCGAGCACGTGCTGCGCGCCCTGGAAAACGCCTGCG AACGCATCGGCCGCACCCACACCGAGTACACCGGCCTC ACCCCGCCCAGCGCGGAACTGCGCGCCGCGCTGAGCAG CGCCCGGGCTGCCTACCCGCGCCTGATGCAGGAGATCA TCAAGCGCTCGCCCAACGAACCCCACCGCCAGCTCCTG CTGCTCGCCGCGGAACGGCTCCGCGCCACCCGGCTGCG CAACGCCGACCTCGGCTACCCCAACCCGGAAGCGTTCC TCGCCGACCTGCGGACCGTCCIAAGAGTCGCTTGCTGCC GCGGGCGCTGTGCGCCAAGCCTACGGCGAACTCCAAAA CCTCATCTGGCAGGCCGAAACCTTCGGCTTCCACCTCG CGGAACTGGAAATCCGCCAGCACAGCGCAGTCCACGCC GCCGCACTCAAGGAGATACGCGCTGGCGGGGAACTGTC CGAACGTACCGAGGAAGTCCTCGCCACCCTGCGGGTCG TCGCCTGGATTCAGGAGCGGTTCGGCGTGGAAGCATGC CGCCGCTACATCGTCAGCTTCACCCAGTCCGCTGACGA CATCGCCGCCGTCTACGAGCTCGCCGAGCACGCCATGC CCCCGGGCAA.GGCGCCCATCCTCGACGTCATCCCGCTC 167 WO 2004/108894 PCT/US2004/017513 TTCGAAACCGGTGCCGACCTGGACGCGGCCCCCCAGGT CCTCGACGGCATGCTCCGCCTGCCCGCCGTCCAGCGCC GCCTCGAGCAGACCGGCCGCCGCATGGAAGTCATGCTC GGCTACAGCGACTCCGCCAAGGACGTCGGCCCGGTCAG CGCCACCCTGCGGCTCTACGACGCCCAGGCGCGGCTGG CCGAATGGGCGCGCGAGCACGACATCAAACTCACCCTG TTCCACGGCCGCGGCGGTGCCCTGGGCCGCGGCGGCGG GCCCGCCAACCGGGCCGTCCTCGCCCAGGCCCCCGGAT CGGTGGACGGCCGCTTCAAGGTCACCGAGCAGGGCGAA GTCATCTTCGCCCGCTACGGTCAGCGGGCGATCGCCCA CCGCCACATCqAACAGGTGGGCCACGCCGTGCTCATGG CCTCCACCGAAAGCGTGCAGCGGAGAGCCGCCGAGGCA GCCGCCCGGTTCCGCGGTATGGCTGACCGCATCGCCGA AGCCGCCCACGCCGCCTACCGCGCCCTCGTCGACACTG AAGGGTTCGCGGAGTGGTTCTCCCGGGTCAGCCCGTTG GAGGAGCTGAGTGAGCTGCGGCTGGGGTCGCGTCCGGC GCGCCGCTCGGCTGCCCGCGGCCTCGACGACCTCCGCG CTATCCCGTGGGTGTTCGCCTGGACCCAGACCCGGGTC AATCTGCCTGGCTGGTACGGGCTCGGCAGCGGCCTGGC CGCGGTCGACGACCTGGAAGCGCTGCACACCGCCTACA AGGAGTGGCCGCTGTTCGCCTCGCTGCTGGACAACGCC GAGATGAGCCTGGCCAAGACCGACCGGGTGATCGCCGA GCGCTACCTCGCGCTGGGCGGGCGTCCAGAGCTCACCG AACAGGTCCTCGCCGAATACGACCGCACCCGGGAACTG GTCCTCAAAGTCACGCGGCACACCCGCCTCCTCGAGAA CCGCCGGGTGCTGTCCCGCGCGGTCGACCTGCGCAACC CCTACGTGGACGCCCTTTCGCACCTGCAGCTGCGTGCT CTGGAAGCCCTGCGCACCGGGGAAGCCGACCGGCTGTC CGAGGAGGACCGCAACCACCTGGAACGGCTCCTGCTGC TCTCGGTCAACGGTGTGGCCGCAGGGCTCCAGAACACT GGG ppc Mycobacterium AL583919.1 ATGGTTGAGTTTTCCGATGCTATACTGGAACCGATCGG 37 leprae (can be TGCTGTCCAGCGGACTCGAGTCGGTCGCGAGGCGACTG used to clone - AACCTATCGGGCCGACATCAGGCTATTGGGTACCATT M. smegmatis CTTGGTGATACTCTGCGTGAGCAGAACGGTGATGAGGT gene) ATTCGATCTCGTCGAACGAGTCCGGGTCGAGTCGTTCC GGGTGCGGCGTTCTGAGATTGATCGGGCCGATATGGCG CGTATGTTCTCTGGTCTCGACATTCACCTGGCCATCCC GATCATCCGGGCGTTTAGCCATTTCGCATTGTTGGCCA ACGTTGCCGAGGACATCCACCGGGAGCGTCGGCGCCAT ATTCACCTCGACGCCGGCGAGCCACTGCGGGATAGCAG TTTAGCGGCCACTTACGCGAAACTTGATCTGGCAAAAC TAGATTCGGCCACCGTGGCAGATGCCCTTACTGGTGCA GTGGTCTCGCCGGTGATTACTGCGCATCCCACCGAGAC CCGTCGGCGTACCGTATTTGTTACCCAACGCCGGATTA CCGAGTTGATGCGGCTGCACGCGGAGGGACACACCGAA ACCGCCGATGGCCGCAGCATTGAGCGTGAATTGCGCCG TCAAATTCTCACGCTGTGGCAGACGGCATTGATTCGGT TGGCGCGATTGCAGATCTCCGACGAGATCGACGTAGGG CTGCGATATTACTCTGCCGCGCTTTTCCATGTGATTCC GCAGGTGAATTCCGAGGTGCGCAACGCGTTGCGTGCCC GGTGGCCCGACGCCGAGCTGCTGTCCGGCCCTATACTG CAACCCGGATCGTGGATCGGTGGTGACCGGGACGGAAA CCCGAACGTGACTGCCGACGTGGTGCGGCGAGCGACCG 168 WO 2004/108894 PCT/US2004/017513 GCAGCGCTGCCTACACCGTGGTGGCGCACTATTTGGCT GAACTCACCCZACCTCGAGCAGGAGCTGTCGATGTCGGC GCGACTGATAACCGTCACCCCTGAGCTGGCCACGCTGG CCGCTAGCTGTCAGGACGCGGCCTGTGCCGACGAGCCG TACCGGCGGGCATTGCGGGTGATCCGCGGTCGATTGTC CTCGACTGCCGCCCACATCCTGGATCAGCAGCCACCCA ACCAGCTTGGTCTGGGTTTGCCACCGTATTCGACGCCA GCCGAACTATGTGCCGATCTGGACACCATCGAAGCCTC CCTGTGCACGCACGGCGCCGCGTTGTTAGCCGACGATC GGTTGGCGCTGTTGCGAGAAGGTGTTGGAGTCTTTGGG TTTCACTTGTGCGGTCTGGATATGCGGCAAAATTCCGA CGTGCACGAAG2AGGTGGTCGCTGAGCTGTTGGCGTGGG CCGGGATGCACCAGGACTACAGTTCGTTGCCCGAAGAT CAAAGAGTCAAGCTGCTGGTGGCCGAACTCGGTAACCG CCGCCCGTTGGTCGGGGATCGTGCGCAATTATCCGATT TGGCGCGCGGCGAGCTGGCCGTTCTTGCGGCCGCTGCC CACGCCGTTGAGCTCTACGGATCGGCCGCGGTGCCCAA CTACATCATCTCGATGTGTCAGTCTGTGTCGGATGTCC TGGAGGTCGCGATCCTCTTGAAGGAGACTGGCCTGTTA GACGCCTCCGGGTCGCAGCCGTACTGTCCGGTGGGCAT CTCGCCGCTGTTCGAGACGATCGACGATCTGCACAACG GGCCGGCCATTCTGCACGCGATGCTGGAACTTCCGCTA TATCGAACGCTGGTGGCTGCTCGCGGTAACTGGCAGGA AGTG2ATGCTCGGCTACTCCGATTCCAACAAAGATGGCG GCTATCTGGCCGCCAACTGGGCGGTTTACCGCGCCGAG CTCGCTCTGGTAGACGTGGCCCGCAAAACCGGAATCCG TTTGCGACTTTTCCATGGTCGTGGCGGCACTGTCGGAC GTGGCGGCGGTCCTAGCTATCAAGCTATTCTGGCGCAA, CCCCCGGGGGCGGTAAACGGCTCGTTGCGTCTCACCGA GC1AAGGCGAGGTCATAGCCGCCAAATACGCCGAACCGC AAATAGCACGACGAAACCTAGAGAGTTTGGTGGCCGCG ACCCTAGAATCAACTCTCTTGGATGTTGAAGGCTTAGG CGATGCGGCTGAATCTGCTTACGCCATACTCGATGAAG TAGCCGGCCTCGCGCGGCGATCCTACGCTGAATTAGTC AACACACCGGGTTTCGTTGACTATTTCCAAGCTTCCAC GCCGGTCAGCGAGATCGGATCGTTGAACATTGGCAACC GACCGACATCACGTAAGCCTACCACGTCGATCGCGGAT CTTC'GTGCTATTCCGTGGGTACTGGCATGGAGCCAATC GCGAGTCATGCTCCCAGGTTGGTATGGCACCGGATCGG CGTTTCAGCAGTGGGTTGCGGCTGGACCCGAAAGTG~A TCACAGCGGGTAGAAATGCTGCATGACCTCTATCAGCG TTGGCCGTTCTTTCGAAGTGTGCTGTCGAACATGGCGC AGGTACTGGCCAAAAGTGATCTGGGCCTGGCGGCCCGC TATGCTGAGCTGGTGGTCGACGAAGCCTTGCGGCGCAG AGTGTTTGACAAGATCGCCGACGAGCATCGGCGAACCA TTGCCATCCACAAGCTCATTACGGGTCATGACGATCTG CTTGCTGACAACCCGGCTCTGGCGCGTTCGGTGTTCAA CCGCTTCCCGTATCTGGAGCCGTTAAACCACCTTCAGG TGGAGCTATTGCGCCGCTACCGCTCGGGTCACGACGAC GAAATGGTGCAACGCGGCATCCTTTTGACAATGAP&CGG ATTGGCCAGCGCGCTACGTAPCAGCGGC ppc- Streptomyces AFI 77946.1 GTGAGCAGTGCCGACGACCAGACCACCACGACGACCAG 38 coelicolor CAGTGAACTGCGCGCCGACATCCGCCGGCTGGGTGATC TCCTCGGGGAGACCCTGGTCCGGCAGGAGGGCCCCGAA 169 WO 2004/108894 PCT/US2004/017513 CTGCTGGAACTCGTCGAGAAGGTACGCCGACTCACCCG AGAGGACGGCGAGGCCGCCGCCGAACTGCTGCGCGGCA CCGAACTGGAGACCGCCGCCAAGCTCGTCCGCGCCTTC TCCACCTACTTCCACCTGGCCAACGTCACCGAGCAGGT CCACCGCGGCCGCGAGCTGGGCGCCAAGCGCGCCGCCG AGGGCGGACTGCTCGCCCGTACGGCCGACCGGCTGAAG GACGCCGACCCCGAGCACCTGCGCGAGACGGTCCGCAA CCTCAACGTGCGCCCCGTGTTCACCGCGCACCCCACCG AGGCCGCCCGCCGCTCCGTCCTCAAC'.AGCTGCGCCGC ATCGCCGCCCTCCTGGACACCCCGGTCAACGAGTCGGA CCGGCGCCGCCTGGACACCCGCCTCGCCGAGAACATCG ACCTCGTCTGGCAGACCGACGAGCTGCGCGTCGTGCGC CCCGAGCCCGCCGACGAGGCCCGCAACGCCATCTACTA CCTCGACGAGCTGCACCTGGGCGCCGTCGGCGACGTCC TCGAAGACCTCACCGCCGAGCTGGAGCGGGCCGGCGTC AAGCTCCCCGACGACACCCGCCCCCTCACCTTCGGCAC CTGGATCGGCGGCGACCGCGACGGCAACCCCAACGTCA CCCCCCAGGTGACCTGGGACGTCCTCATCCTCCAGCAC GAGCACGGCATCAACGACGCCCTGGAGATGATCGACGA GCTGCGCGGCTTCCTCTCCAACTCCATCCGGTACGCCG GTGCGACCGAGGAACTGCTCGCCTCGCTCCAGGCCGAC CTGGAACGCCTCCCCGAGATCAGCCCCCGCTACAALGCG CCTCAACGCCGAGGAGCCCTACCGGCTCAAGGCCACCT GCATCCGCCAGJ.AGCTGGAGAACACCAAGCAGCGCCTC GCCAAGGGCACCCCCCACGAGGACGGCCGCGACTACCT CGGCACCGCCCAGCTCATCGACGACCTGCGCATCGTCC AGACCTCGCTGCGCGAACACCGCGGCGGCCTGTTCGCC GACGGGCGCCTCGCCCGCACCATCCGCACCCTGGCCGC CTTCGGCCTCCAGCTCGCCACCATGGACGTCCGCGACC ACGCCGACGCCCACCACCACGCCCTCGGCCAGCTCTTC GACCGGCTCGGCGAGGAGTCCTGGCGCTACGCCGACAT GCCGCGCGAGTACCGCACCAAGCTCCTCGCCAAGGAAC TGCGCTCCCGCAGGCCGCTGGCCCCCAGCCCCGCCCCC GTCGACGCGCCCGGCGAGAAGACCCTCGGCGTCTTCCA GACCGTCCGCCGCGCCCTGGAGGTCTTCGGCCCCGAGG TCATCGAGTCCTACATCATCTCCATGTGCCAGGGCGCC GACGACGTCTTCGCCGCGGCGGTACTGGCCCGCGAGGC CGGGCTGATCGACCTGCACGCCGGCTGGGCGAAGATCG GCATCGTGCCGCTGCTGGAGACCACCGACGAGCTGAAG GCCGCCGACACCATCCTGGAGGACCTGCTCGCCGACCC CTCCTACCGGCGCCTGGTCGCGCTGCGCGGCGACGTCC AGGAGGTCATGCTCGGCTACTCCGACTCCTCCAAGTTC GGCGGTATCACCACCAGCCAGTGGGAGATCCACCGCGC CCAGCGCCGGCTGCGCGACGTCGCCCACCGCTACGGCG TACGGCTGCGCCTCTTCCACGGCCGCGGCGGCACCGTC GGCCGCGGCGGCGGCCCCACCCACGACGCCATCCTCGC CCAGCCCTGGGGCACCCTGGAGGGCGAGATCAAGGTCA CCGAGCAGGGCGAGGTCATCTCCGACAAGTACCTCATC CCCGCCCTCGCCCGGGAG1ACCTGGAGCTGACCGTCGC GGCCACCCTCCAGGCCTCCGCCCTGCACACCGCGCCCC GCCAGTCCGACGAGGCCCTGGCCCGCTGGGACGCCGCG ATGGACGTCGTCTCCGACGCCGCCCACACCGCCTACCG GCACCTGGTCGAGGACCCCGACCTGCCGACCTACTTCC TGGCCTCCACCCCGGTCGACCAGCTCGCCGACCTGCACI 170 WO 2004/108894 PCT/US2004/017513 CTGGGCTCGCGGCCCTCCCGCCGCCCCGGCTCGGGCGT CTCGCTCGACGGACTGCGCGCCATCCCGTGGGTGTTCG GCTGGACCCAGTCCCGGCAGATCGTCCCCGGCTGGTAC GGCGTCGGCTCCGGCCTCAAGGCCCTGCGCGAGGCGGG CCTGGACACCGTGCTCGACGAGATGCACCAGCAGTGGC ACTTCTTCCGCAACTTCATCTCCAACGTCGAGATGACC CTCGCCAZAGACCGACCTGCGCATCGCCCAGCACTACGT CGACACCCTCGTCCCGGACGAGCTCAAGCACGTCTTCG ACACCATCAAGGCCGAGCACGAGCTCACCGTCGCCGAG GTCCTGCGCGTCACCGGCGAGAGTGAACTGCTGGACGC CGACCCGGTCCTCAAGCAGZACCTTCACCATCCGCGACG CCTACCTCGACCCCATCTCCTACCTCCAGGTCGCCCTC CTCGGCCGTCAGCGCGAGGCCGCCGCCGCGAACGAGGA CCCGGACCCCCTCCTCGCCCGAGCCCTCCTCCTCACCG TCAACGGCGTGGCAGCGGGCCTGCGCAACACCGGCTGA____ PPC Erwinia ATGAATGAACAATATTCCGCCATGCGGAGCAATGTCAG 39 chrysanthemi CATGCTGGGTAAACTACTCGGCGACACCATCAAGGATG CGCTGGGCGCCAATATCCTTGAGCGTGTTGAAACAATC CGCAAGCTGTCCAAAGCCTCGCGGGCCGGCAGCGAAAC ACACCGTCAGGAACTGCTGACCACACTGCAGAACCTGT CCAACGATGAACTGCTGCCGGTCGCCCGCGCATTCAGC CAGTTCCTT1AACCTGACCAACACCGCCGAGCAATACCA CAGTATCTCTCCGCACGGCGAAGCGGCCAGTAACCCGG AAGCGCTGGCGACGGTGTTTCGCAGTCTGAAAAGCCGC GACAACCTGAGCGACAAGGATATCCGCGACGCGGTGGA GTCGCTCTCCATCGAGCTGGTGTTGACCGCGCACCCGA CCGAAATCACCCGCCGTACGCTGATCCACAAACTGGTT GAAGTGAATACCTGCCTCAAGCAGCTCGATCACGACGA TCTGGCCGATTATGAACGCCACCAGATCATGCGCCGTC TGCGCCAGCTGATCGCCCAATACTGGCATACCGATGAA ATCCGCAAAATCCGCCCGACGCCGGTGGACGAAGCCAA GTGGGGTTTCGCGGTGGTGGAAAATAGCCTGTGGGAAG GGGTGCCGGCGTTTCTGCGCGALACTCGACGAGCAGATG GGTAAAGAGTTGGGCTACCGTCTGCCGGTGGATTCGGT GCCGGTGCGCTTCACCTCCTGGATGGGCGGCGACCGCG ACGGCAACCCGAACGTGACCTCTGAAGTCACCCGCCGC GTGCTGCTGCTAAGCCGCTGGA-AJGCCGCGGACCTGTT CCTGCGCGACGTACAGGTGCTGGTTTCCGAACTGTCGA TGACCACCTGTACGCCGGAACTGCAACAACTGGCAGGC GGCGACGAGGTGCAGGAACCCTACCGCGAACTGATGAA AGCGCTGCGCGCACAGTTGACTGCTACCCTGGATTATC TGGACGCGCGTCTGAAAGATGAACAACGGATGCCGCCC AAAGATCTGCTGGTCACCAACGAGCAGTTATGGGAACC GCTGTACGCCTGTTACCAGTCGCTGCATGCCTGCGGCA TGGGCATCATCGCCGATGGTCAATTGCTCGATACCCTG CGCCGGGTGCGCTGCTTTGGCGTGCCGCTGGTGCGTAT CGACGTACGTCAGGAGAGCACCCGTCACACCGACGCGC TGGCGGAAATCACCCGCTATCTGGGGCTGGGAGACTAC GAAAGCTGGTCGGAATCCGACAAGCAGGCGTTCCTGAT CCGCGAACTT2AACTCCAAGCGTCCGCTGCTGCCGCGCC AGTGGGAACCGAGCGCCGACACCCAGGAAGTGCTGGAA ACCTGCCGGGTGATCGCCGAAACCCCGCGCGACTCCAT CGCCGCCTATGTAATTTCGATGGCGCGCACCCCGTCCG ACGTGCTGGCGGTGCATTTGCTGCTGAAAGAAGCCGGC 171 WO 2004/108894 PCT/US2004/017513 TGTCCGTACGCGCTGCCGGTGGCGCCGCTGTTCGAAAC GCTGGACGACCTGAATAACGCCGACAGCGTAATGATCC AGTTGCTCAACATCGACTGGTATCGCGGCTTCATTCAG GGCAAGCAGATGGTGATGATCGGCTATTCCGACTCCGC CAAAGACGCCGGGGTGATGGCGGCCTCCTGGGCGCAGT ACCGCGCGCAAGACGCACTGATCAAGACCTGCGAGAAA TACGGCATCGCCCTGACGCTGTTTCACGGTCGCGGCGG TTCGATTGGCCGCGGCGGCGCGCCGGCTCACGCCGCGC TGCTCTCCCAACCGCCGGGCAGCCTGAAAGGCGGCCTG CGCGTCACCGAACAGGGCGAGATGATCCGCTTTAA-GTT CGGCCTGCCGGAAGTCACCATTAGCAGCCTGTCGCTCT ACACGTCCGCCATTCTGGAAGCCAACCTGTTGCCGCCG CCGGAGCCGAAGCAGGAGTGGCATCACATCATGAACGA GCTGTCGCGCATTTCCTGCGACATGTACCGCGGCTACG TACGGGAAAACCCGGATTTCGTGCCCTACTTCCGTGCC GCCACGCCGGAGCTGGAACTGGGCAAACTGCCGCTGGG GTCACGTCCGGCCAAGCGTCGGCCGAACGGCGGCGTGG AAAGCCTGCGCGCCATCCCGTGGATTTTCGCCTGGACC CAGAACCGCCTGATGCTGCCCGCCTGGTTGGGCGCCGG CGCCGCGCTGCAAAAAGTGATCGACGACGGTCACCAGA ACCAGCTGGAAGCCATGTGCCGCGACTGGCCGTTCTTC TCCACCCGTATCGGTATGCTGGAAATGGTATTCGCCAA GGCCGACCTATGGCTGGCGGAATACTACGATCAGCGGC TGGTGGACGAGAAACTGTGGTCGCTCGGCAAACAGCTG CGCGAACAGCTGGAAAGAGACATCAAAGCGGTGTTGAC CATCTCCAACGACGACCATCTGATGGCCGACCTGCCGT GGATCGCCGAATCCATCGCGCTACGCAACGTCTACACC GACCCGCTCAACGTGCTGCAGGCGGAGCTGCTGCACCG TTCACGCCAGCAGGAAACACTGGACCCGCAGGTGOAAC AGGCGCTGATGGTCACCATCGCCGGCGTCGCCGCCGGG ATGCGCAATACCGGCTAA PPC Coryne- NC_003450 ATGACTGATTTTTTACGCGATGACATCAGGTTCCTCGG 242 bacterium TCAAATCCTCGGTGAGGTAATTGCGGAACAAGAAGGCC glutamicum AGGAGGTTTATGAACTGGTCGAACAAGCGCGCCTGACT TCTTTTGATATCGCCAAGGGCAI\CGCCGAAATGGATAG CCTGGTTCAGGTTTTCGACGGCATTACTCCAGCCAAGG CAACACCGATTGCTCGCGCATTTTCCCACTTCGCTCTG CTGGCTAZACCTGGCGGI-PGACCTCTACGATGAAGAGCT TCGTG1AACAGGCTCTCGATGCAGGCGACACCCCTCCGG ACZAGCACTCTTGATGCCACCTGGCTGAAACTCAATGAG GGCAATGTTGGCGCAGAAGCTGTGGCCGATGTGCTGCG CAATGCTGAGGTGGCGCCGGTTCTGACTGCGCACCCAA CTGAGACTCGCCGCCGCACTGTTTTTGATGCGCAAAAG TGGATCACCACCCACATGCGTGAACGCCACGCTTTGCA GTCTGCGGAGCCTACCGCTCGTACGCAAAGCAAGTTGG ATGAGATCGAGAAGAACATCCGCCGTCGCATCACCATT TTGTGGCAGACCGCGTTGATTCGTGTGGCCCGCCCACG TATCGAGGACGAGATCGAAGTAGGGCTGCGCTACTACA AGCTGAGCCTTTTGGAAGAGATTCCACGTATCAACCGT GATGTGGCTGTTGAGCTTCGTGAGCGTTTCGGCGAGGG TGTTCCTTTGAAGCCCGTGGTCAAGCCAGGTTCCTGGA TTGGTGGAGACCACGACGGTAACCCTTATGTCACCGCG GAAACAGTTGAGTATTCCACTCACCGCGCTGCGGAAAC CGTGCTCAAGTACTATGCACGCCAGCTGCATTCCCTCG 172 WO 2004/108894 PCT/US2004/017513 AGCATGAGCTCAGCCTGTCGGACCGCATGAATAAGGTC ACCCCGCAGCTGCTTGCGCTGGCAGATGCAGGGCACAA CGACGTGCCAAGCCGCGTGGATGAGCCTTATCGACGCG CCGTCCATGGCGTTCGCGGACGTATCCTCGCGACGACG GCCGAGCTGATCGGCGAGGACGCCGTTGAGGGCGTGTG GTTCAAGGTCTTTACTCCATACGCATCTCCGGAAGAAT TCTTAAACGATGCGTTGACCATTGATCATTCTCTGCGT GAATCCAAGGACGTTCTCATTGCCGATGATCGTTTGTC TGTGCTGATTTCTGCCATCGAGAGCTTTGGATTCAACC TTTACGCACTGGATCTGCGCCAAAACTCCGAAAGCTAC GAGGACGTCCTCACCGAGCTTTTCGACGCGCCCA'GT CACCGCA7AACTACCGCGAGCTGTCTGAAGCAGAGAAGC TTGAGGTGCTGCTGAAGGAACTGCGCAGCCCTCGTCCG CTGATCCCGCACGGTTCAGATGAATACAGCGAGGTCAC CGACCGCGAGCTCGGCATCTTCCGCACCGCGTCGGAGG CTGTTAAGAAATTCGGGCCACGGATGGTGCCTCACTGC ATCATCTCCATGGCATCATCGGTCACCGATGTGCTCGA GCCGATGGTGTTGCTCAAGGAATTCGGACTCATCGCAG CCAACGGCGACAACCCACGCGGCACCGTCGATGTCATC CCACTGTTCGAAACCATCGAAGATCTCCAGGCCGGCGC CGGAATCCTCGACGAACTGTGGAAAATTGATCTCTACC GCAACTACCTCCTGCAGCGCGACAACGTCCAGGAAGTC ATGCTCGGTTACTCCGATTCCAACAAGGATGGCGGATA TTTCTCCGCA2AACTGGGCGCTTTACGACGCGGAACTGC AGCTCGTCGAACTATGCCGATCAGCCGGGGTCAAGCTT CGCCTGTTCCACGGCCGTGGTGGCACCGTCGGCCGCGG TGGCGGACCTTCCTACGACGCGATTCTTGCCCAGCCCA GGGGGGCTGTCCAAGGTTCCGTGCGCATCACCGAGCAG GGCGAGATCATCTCCGCTAAGTACGGCAACCCCGAAAC CGCGCGCCGAAACCTCGAAGCCCTGGTCTCAGCCACGC TTGAGGCATCGCTTCTCGACGTCTCCGAACTCACCGAT CACCAACGCGCGTACGACATCATGAGTGAGATCTCTGA GCTCAGCTTGAAGAAGTACGCCTCCTTGGTGCACGAGG ATCAAGGCTTCATCGATTACTTCACCCAGTCCACGCCG CTGCAGGAGATTGGATCCCTCAACATCGGATCCAGGCC TTCCTCACGCAAGCAGACCTCCTCGGTGGAAGATTTGC GAGCCATCCCATGGGTGCTCAGCTGGTCACAGTCTCGT GTCA:TGCTGCCAGGCTGGTTTGGTGTCGGAACCGCATT AGAGCAGTGGATTGGCGAAGGGGAGCAGGCCACCCAAC GCATTGCCGAGCTGCAAACACTCATATGAGTCCTGGCCA TTTTTCACCTCAGTGTTGGATAACATGGCTCAGGTGAT GTCCAAGGCAGAGCTGCGTTTGGCAAAGCTCTACGCAG ACCTGATCCCAGATACGGAAGTAGCCGAGCGAGTCTAT TCCGTCATCCGCGAGGAGTACTTCCTGACCA.AGAAGAT GTTCTGCGTAATCACCGGCTCTGATGATCTGCTTGATG ACAACCCACTTCTCGCACGCTCTGTCCAGCGCCGATAC CCCTACCTGCTTCCACTCAACGTGATCCAGGTAGAGAT GATGCGACGCTACCGAAAAGGCGACCAAAGCGAGCAAG TGTCCCGCAACATTCAGCTGACCATGZAACGGTCTTTCC ACTGCGCTGCGCAACTCCGGC ppc- Escherichia X05903 ATG3AACGAACAATATTCCGCATTGCGT.AGTAATGTCAG 243 coi TATGCTCGGCAA2AGTGCTGGGAGAAACCATCAAGGATG CGTTGGGAGAACACATTCTTGAACGCGTAGAAACTATC CGTAAGTTGTCGAAiATCTTCACGCGCTGGCAATGATGCI 173 WO 2004/108894 PCT/US2004/017513 TAACCGCCAGGAGTTGCTCACCACCTTACAAAATTTGT CGAACGACGAGCTGCTGCCCGTTGCGCGTGCGTTTAGT CAGTTCCTGAACCTGGCCAACACCGCCGAGCAATACCA CAGCATTTCGCCGAAAGGCGAAGCTGCCAGCAACCCGG AAGTGATCGCCCGCACCCTGCGTAAACTGAAAAACCAG CCGG2AACTGAGCGAAGACACCATCAZAAAAGCAGTGGA ATCGCTGTCGCTGGAACTGGTCCTCACGGCTCACCCAA CCGAAATTACCCGTCGTACACTGATCCACAAAATGGTG GAAGTGAACGCCTGTTTAAAACAGCTCGATA\CAAAGA TATCGCTGACTACGAACACI'ACCAGCTGATGCGTCGCC TGCGCCAGTTGATCGCCCAGTCATGGCATACCGATGAA ATCCGTAAGCTGCGTCCAA2GCCCGGTAGATGAAGCCAA ATGGGGCTTTGCCGTAGTGGAAAACAGCCTGTGGCAAG GCGTACCA1AATTACCTGCGCGAACTGAACGAACAACTG GAAGAGAACCTCGGCTACAAACTGCCCGTCGAATTTGT TCCGGTCCGTTTTACTTCGTGGATGGGCGGCGACCGCG ACGGCAACCCGAACGTCACTGCCGATATCACCCGCCAC GTCCTGCTACTCAGCCGCTGGAAAGCCACCGATTTGTT CCTGAAAGATATTCAGGTGCTGGTTTCTGAACTGTCGA TGGTTGAAGCGACCCCTGAACTGCTGGCGCTGGTTGGC GAAGAAGGTGCCGCAGAACCGTATCGCTATCTGATGAA AAACCTGCGTTCTCGCCTGATGGCGACACAGGCATGGC TGGAAGCGCGCCTGAAAGGCGAAGM\CTGCCAAAACCA GAAGGCCTGCTGACACAAAACGAAGAACTGTGGGAACC GCTCTACGCTTGCTACCAGTCACTTCAGGCGTGTGGCA TGGGTATTATCGCCAACGGCGATCTGCTCGACACCCTG CGCCGCGTGAAATGTTTCGGCGTACCGCTGGTCCGTAT TGATATCCGTCAGGAGAGCACGCGTCATACCGAAGCGC TGGGCGAGCTGACCCGCTACCTCGGTATCGGCGACTAC GAAAGCTGGTCAGAGGCCGACAAACAGGCGTTCCTGAT CCGCGAACTGAACTCCAAACGTCCGCTTCTGCCGCGCA ACTGGCAACC7AAGCGCCGAAACGCGCGAAGTGCTCGAT ACCTGCCAGGTGATTGCCGAAGCACCGCAAGGCTCCAT TGCCGCCTACGTGATCTCGATGGCGAAAACGCCGTCCG ACGTACTGGCTGTCCACCTGCTGCTGAAAGAAGCGGGT ATCGGGTTTGCGATGCCGGTTGCTCCGCTGTTTGAAAC CCTCGATGATCTGAACAACGCCAACGATGTCATGACCC AGCTGCTCIATATTGACTGGTATCGTGGCCTGATTCAG GGCAAACAGATGGTGATGATTGGCTATTCCGACTCAGC AAAAGATGCGGGAGTGATGGCAGCTTCCTGGGCGCAAT ATCAGGCACAGGATGCATTAATCAAAACCTGCGAAAA GCGGGTATTGAGCTGACGTTGTTCCACGGTCGCGGCGG TTCCATTGGTCGCGGCGGCGCACCTGCTCATGCGGCGC TGCTGTCACAACCGCCAGGAAGCCTGAAAGGCGGCCTG CGCGTAACCGAACAGGGCGAGATGATCCGCTTTAAATA TGGTCTGCCAGAAATCACCGTCAGCAGCCTGTCGCTTT ATACCGGGGCGATTCTGGAAGCCAACCTGCTGCCACCG CCGGAGCCGAAAGAGAGCTGGCGTCGCATTATGGATGA ACTGTCAGTCATCTCCTGCGATGTCTACCGCGGCTACG TACGTGA7AAACAAAGATTTTGTGCCTTACTTCCGCTCC GCTACGCCGGAACAAGAACTGGGCAAACTGCCGTTGGG TTCACGTCCGGCGAAXACGTCGCCCAACCGGCGGCGTCG AGTCACTACGCGCCATTCCGTGGATCTTCGCCTGGACG ICAAAA.CCGTCTGATGCTCCCCGCCTGGCTGGGTGCAGG 174 WO 2004/108894 PCT/US2004/017513 TACGGCGCTGCAAAAAGTGGTCGJ'AGACGGCAAACAGA GCGAGCTGGAGGCTATGTGCCGCGATTGGCCATTCTTC TCGACGCGTCTCGGCATGCTGGAGATGGTCTTCGCCAA AGCAGACCTGTGGCTGGCGGAATACTATGACCAACGCC TGGTAGACAAAGCACTGTGGCCGTTAGGTAAAGAGTTA CGCAACCTGCAAGAAGAAGACATCAAAGTGGTGCTGGC GATTGCCAACGATTCCCATCTGATGGCCGATCTGCCGT GGATTGCAGAGTCTATTCAGCTACGGAATATTTACACC GACCCGCTGAACGTATTGCAGGCCGAGTTGCTGCACCG CTCCCGCCAGGCAGAAAAAGAAGGCCAGGAACCGGATC CTCGCGTCG2AACAAGCGTTAATGGTCACTATTGCCGGG ATTGCGGCAGGTATGCGTAATACCGGCTAA____ pyc- Streptomyces AL939 105.1 ATGGTCTCGTCACCCGGCAGGCTG1UAGGGATCAAGAAT 40 coelicolor GTTCCGCAAGGTGCTGGTCGCCAACCGCGGTGAGATCG CGATCCGTGCGTTTCGGGCGGGCTACGAGCTCGGCGCG CGCACCGTCGCCGTCTTCCCGCACGAGGACCGCAATTC GCTGCACCGGCTCAAGGCCGACGAGGCCTACGAGATCG GGGAGCAGGGGCATCCCGTCCGCGCGTACCTCTCCGTG GAGG,7GATCGTGCGCGCCGCCCGCCGTGCGGGGGCCGA CGCCGTCTACCCGGGCTACGGCTTCCTGTCCGAGAACC CCGAACTCGCCCGCGCCTGCGAGGAGGCCGGGATCACC TTCGTCGGTCCCAGCGCCCGGATCCTGGAACTGACCGG CAACAAGGCACGGGCCGTGGCCGCCGCCCGCGAGGCCG GAGTACCCGTGCTCGGCTCCTCGGCGCCCTCCACCGAC GTGGACGAACTCGTACGCGCCGCCGACGACGTCGGCTT CCCCGTGTTCGTC2AGGCGGTCGCGGGCGOCGGCGGGC GCGGCATGCGCCGCGTCGAGGAACCCGCCCAGCTGCGC GAGGCCATCGAGGCCGCCTCCCGCGAGGCCGCGTCCGC CTTCGGCGACTCCACCGTCTTCCTGGAGAAGGCGGTCG TCGAACCCCGCCACATCGAGGTGCAGATCCTCGCCGAC GGCGAGGGCGACGTCATCCACCTCTTCGAGCGGGACTG CTCGGTGCAGCGCCGCCACCAGAAGGTGATCGAGCTGG CGCCCGCGCCCAACCTCGACCCGGCCCTGCGGGAGCGG ATCTGCGCCGACGCCGTGAACTTCGCCCGGCAGATCGG CTACCGCAACGCGGGCACCGTCGAGTTCCTCGTCGACC GGGACGGCAACCACGTCTTCATCGAGATGAACCCGCGC ATCCAGGTCGAGCACACGGTCACCGAGGAGGTCACCGA CGTCGACCTGGTCCAGTCCCAGCTGCGCATCGCCGCCG GCCAGACGCTGGCCGACCTCGGACTCGCCCAGGAGA'AC ATCACCCTGCGCGGTGCCGCACTCCAGTGCCGCATCAC CACCGAGGACCCGGCCAACGGCTTCCGCCCGGACACCG GGCAGATCAGCGCCTACCGTTCGCCGGGCGGCTCCGGC ATCCGGCTCGACGGCGGTACCACCCACGCCGGTACGGA GATCAGCGCGCACTTCGACTCGATGCTGGTCAAGCTCT CCTGCCGGGGACGGGACTTCACCACCGCGGTGAACCGC GCCCGGCGTGCGGTCGCCGAGTTCCGCATCCGCGGCGT CGCCACCAACATCCCCTTCCTCCAGGCGGTCCTGGACG ACCCCGACTTCCAGGCCGGCCGGGTCACCACCTCGTTC ATCGAACAGCGCCCGCACCTGCTGACCGCCCGGCACTC CGCCGACCGCGGCACCAAGCTGCTGACCTACCTCGCCG ACGTCACGGTGAACAAGCCGCACGGCGAGCGCCCCGAG CTGGTCGACCCGCTGACCAAGCTGCCGACGGCGTCCGC CGGTGAICCGCCCGCCGGGTCCCGCCAGTTGCTGGCCG AGCTGGGGCCGGAGGGGTTCGCCCGCCGACTGCGCGAGI 175 WO 2004/108894 PCT/US2004/017513 TCGTCCACCATCGGCGTCACCGACACCACCTTCCGCGA CGCCCACCAGTCGCTGCTCGCCACCCGGGTGCGCACCA AGGACATGCTCGCCGTGGCGCCCGTCGTCGCCCGCACC CTGCCCCAGCTGCTGTCCCTGGAGTGCTGGGGCGGCGC CACCTACGACGTCGCCCTGCGCTTCCTCGCCGAGGACC CCTGGGAGCGGCTAGCCGCGCTGCGCGAGGCGGTGCCC AACCTCTGCCTCCAGATGCTGCTGCGCGGCCGCAACAC CGTGGGCTACACCCCGTACCCGACCGAGGTGACCGACG CCTTCGTGCAGGAGGCCGCCGCCACCGGCATCGACATC TTCCGCATCTTCGACGCCCTCAACGACGTCGAGCAGAT GCGGCCCGCCATCGAGGCCGTACGGCAGACCGGCAGCG CCGTCGCCGAGGTCGCGCTCTGCTACACCGCCGACCTG TCCGACCCCTCCGAGCGGCTCTACACCCTCGACTACTA CCTGCGGCTCGCCGAGCAGATCGTGAACGCCGGAGCGC ACGTGCTGGCCGTCAAGGACATGGCCGGGCTGCTGCGC GCACCGGCCGCCGCGACCCTGGTGTCCGCGCTGCGCCG GGAGTTCGACCTGCCGGTGCACCTGCACACCCACGACA CCACCGGCGGCCAGCTCGCCACCTACCTGGCCGCGATC CAGGCGGGCGCGGACGCCGTCGACGGTGCGGTGGCGTC CATGGCGGGCACCACTTCGCAGCCGTCGCTGTCGGCGA TCGTGGCCGCCACCGACCACACCGAGCGGCCCACCGGC CTCGACCTCCAGGCCGTCGGCGACCTGGAGCCGTACTG GGAGAGCGTCCGCAAGGTCTACGCCCCGTTCGAGGCCG GCCTGGCCTCCCCGACCGGCCGGGTCTACCACCACGAG ATTCCCGGCGGCCAGCTCTCCAACCTGCGCACCCAGGC CGTCGCGCTCGGCCTCGGCGACCGCTTCGAGGACATCG AGGCCATGTACGCCGCCGCCGACCGGATGCTGGGCCGC CTGGTGAAGGTCACCCCGTCCTCCAAGGTGGTCGGCGA CCTGGCCCTGCATCTGGTGGGCGCCGGTGTCTCCCCGG CGGACTTCGAGCAGGACCCCGACCGGTTCGACATCCCG GACTCCGTGGTCGGCTTCCTGCGCGGCGAGCTGGGCAC CCCGCCCGGCGGCTGGCCCGAGCCGTTCCGCAGCAAGG CGCTGCGCGGCCGCGCCGAGGCCAGGCCGCTCGCCGAG CTGTCCGAGGACGACCGCGACGGCCTCGGCAAGGACCG CCGGGCGACGCTCAACCGGCTGCTGTTCCCGGGACCGG CCCGCGAGTTCGACACCCACCGCGCCTCGTACGGCGAC ACCAGCATCCTCGACAGCAAGGACTTCTTCTACGGGCT GCGCCCGGGCAAGGAGTACACGGTCGACCTCGACCCCG GCGTCCGGCTGCTCATCGAACTCCAGGCGGTCGGCGAC GCCGACGAGCGCGGCATGCGCACCGTGATGTCCTCCCT GAACGGACAGCTCCGCCCCATCCAGGTCCGCGACCGGT CGGCCGCCACCGACGTCCCGGTGACGGAGAAGGCCGAC CGGGCGAACCCCGGCCACGTCGCGGCGCCGTTCGCCGG TGTGGTGACCCTCGCCGTCGCCGAGGGCGACGAGGTGG AGGCCGGGGCCACCGTGGCCACCATCGAGGCGATGAAG ATGGAGGCGTCGATCACGGCCCCGAAGTCCGGCACGGT GACCAGGCTCGCCATCAACCGCATCCAGCAGGTCGAGG GCGGCGATCTTCTCGTCCAACTCGCC pyc Mycobacterium AF262949 GTGATCTCCAAGGTGCTCGTCGCCAACCGCGGCGAAAT 41 smegmatis CGCGATCCGCGCATTCCGTGCTGCGTACGAGATGGGCA TCGCCACGGTGGCGGTGTATCCGTACGAGGACCGGAAT TCGCTCCATCGGCTCAAGGCCGACGAGTCATATCAGAT CGGCGAGGTGGGTCATCCCGTCCGCGCGTATCTGTCGG TCGACGAGATCATCCGCGTCGCCAAGCATTCGGGCGCC 176 WO 2004/108894 PCT/US2004/017513 GACGCGGTGT7ACCCGGGCTACGGCTTCCTGTC GGAGAA CCCCGATCTGGCGGCCAAGTGCGCCGAGGCGGGTATCA CGTTCGTGGGACCGTCCGCCGAGGTGCTGCAGCTCACG GGTAACAA4GGCACGCGCGATCGCCGCGGCGCGCGCCGC GGGCCTTCCCGTGCTGAGTTCGTCGGAGCCGTCGTCGT CGGTGGACGAGTTGATGGCCGCTGCCGCCGACATGGAG TTCCCGCTGTTCGTCAAGGCGGTCTCGGGTGGCGGCGG GCGCGGCATGCGCCGCGTCACCGACCGCGAGTCCCTGG CCGAGGCGATCGAGGCGGCCTCGCGGGAGGCCGAGTCG GCGTTCGGCGACGCGTCGGTGTACCTGGAGCAGGCCGT GCTCAACCCGCGTCACATCGAGGTGCAGATCCTCGCCG ACGGCGCGGGCAIXCGTCATGCACCTGTTCGAGCGTGAC TGCAGCGTGCAGCGCAGGCATCAGAAGGTCGTCGAGCT GGCGCCCGCGCCCAACCTGAGTGACGAACTGCGCCAAC AGATCTGCGCCGACGCCGTGGCCTTCGCGCGCCAGATC GGGTACTCGTGCGCGGGCACCGTCGAGTTCCTGCTCGA CGAGCGCGGCCATCACGTGTTCATCGAGTGCAATCCGC GAATCCAGGTGGAGCACACGGTGACCGAGGAGATCACC GACGTGGACCTGGTGTCCTCGCAGTTGCGCATCGCCGC GGGCGAGACGCTCGCCGATCTCGGTCTGTCCCAGGACC GGCTCGTGGTGCGTGGCGCGGCCATGCAGTGCCGCATC ACCACCGAGGTCCCGGCCAACGGCTTCCGACCCGACAC CGGCCGCATCACCGCGTACCGCTCGCCGGGCGGCGCGG GCATCCGCCTCGACGGCGGCACCAACCTGGGTGCGGAG ATCTCGGCGCACTTCGACTCCATGCTGGTCAAGCTGAC GTGCCGGGGACGCGACTTCTCGGCCGCGGCCTCGCGCG CGCGCCGCGCCCTGGCGGAGTTCCGCATCCGCGGTGTG TCGACCAACATCCCGTTCCTGCAGGCGGTCATCGACGA TCCGGACTTCCGCGCCGGACGOQTGACGACGTCGTTCA TCGACGACCGGCCGCATCTATTGACCTCGCGGTCTCCT GCCGACCGCGGCACCAGGATCCTCAACTACCTGGCCGA CATCACGGTCAACAAGCCGCACGGCGAACGGCCTTCGA CGGTTTACCCGCAGGACAAGCTGCCGCCGCTGGATCTG CAGGCGCCGCCGCCCGCGGGATCCAAACAGCGCCTCGT GGA2ACTGGGGCCCGAGGGTTTCGCGGGCTGGCTGCGCG AATCCAAGGCCGTCGGCGTCACCGACACGACGTTCCGC GACGCGCACCAGTCGCTGCTGGCCACGCGTGTGCGCAC CACCGGTCTGCTGATGGTGGCGCCGTACGTCGCACGCT CCATGCCGCAGTTGCTGTCGATCGAGTGCTGGGGCGGC GCGACCTACGATGTGGCCCTTCGCTTCCTGAAGGAAGA CCCGTGGGAGCGGCTGGCGGCGCTGCGCGAGAGCGTGC CCAACATCTGCCTGCAGATGCTGCTGCGGGGACGCAAC ACCGTGGGCTACACGCCGTACCCGG7AACTGGTCACCTC GGCGTTCGTCGAGGAGGCCGCGGCGACCGGTATCGACA TCTTCCGGATCTTCGACGCGCTCl\ACAACGTCGAGTCG ATGCGGCCCGCGATCGACGCGGTGCGGGAAACCGGTTC GACCATCGCCGAAGTCGCGATGTGCTACACGGGCGACC TCAGCGATCCCGCGGAGAACCTCTACACGCTCGACTAC TACCTGAAGCTGGCCGAGCAGATCGTCGAGGCCGGCGC CCACGTGCTGGCGATCAAGGACATGGCCGGTCTGCTGC GCGCCCCGGCCGCCCACACGCTCGTGAGCGCGTTGCGC AGCCGGTTCGATCTGCCCGTGCACGTGCACACCCACGA CACCCCGGGCGGTCAGCTCGCGACGTACCTCGCGGCGT IGGTCGGCCGGCGCGGACGCGGTGGACGGCGCCTCGGCGI 177 WO 2004/108894 PCT/US2004/017513 CCGATGGCCGGGACCACGAGCCAGCCCGCGCTGAGCTC GATCGTCGCGGCGGCCGCGCACACCCAGTACGACACGG GCCTGGACCTGCGTGCGGTGTGCGACCTTGAGCCCTAC TGGGAGGCGGTGAG7AAAGGTCTACGCGCCGTTCGAGTC CGGGCTGCCCGGGCCAACCGGCCGCGTCTACACCCACG AGATTCCCGGTGGGCAGTTGAGCAACCTGCGTCAGCAG GCCATCGCGTTGGGCCTCGGCGACCGGTTCGAGGAGAT CGAGGCCAATTACGCTGCGGCCGACCGGGTTCTGGGAC GGCTCGTGAAGGTGACCCCGTCGTCGA\GGTGGTCGGG GACCTGGCGCTGGCGCTCGTGGGTGCGGGCATCACCGC CGAGGAGTTCGCCGAGGATCCCGCGAAGTACGACATCC CCGACAGCGTGATCGGCTTCCTGCGCGGTGAACTCGGG GATCCGCCGGGCGGATGGCCGGAACCGTTGCGCACCAA GGCGCTCCAGGGCCGCGGACCGGCCCGGCCGGTCGAGA AGCTGACCGCCGACGACGAGGCGTTGCTCGCCCAGCCC GGGCCCAAGCGGCAGGCCGCGTTGAACCGCCTGCTTTT CCCCGGGCCCACCGCCGAGTTCGAGGCGCACCGCGAAA CCTACGGCGACACCTCATCCCTCAGCGCGA-ACCAGTTC TTCTACGGGCTGCGCTACGGCGAGGAGCACCGCGTGCA ACTCGAACGTGGCGTGGAACTGCTGATCGGGCTTGAGG CGATCTCGGAGGCCGACGAGCGCGGCATGCGCACCGTG ATGTGCATCATCAACGGTCAGCTGCGCCCGGTTCTCGT GCGCGACCGCAGCATCGCCAGCGAGGTGCCCGCCGCCG AAAAGGCCGACCGCAACAATGCCGACCACATCGCCGCG CCCTTCGCCGGTGTGGTGACCGTCGGTGTCGCAGAAGG TGACTCGGTGGACGCGGGACAAACCATCGCGACGATCG AGGCGATGAAGATGGAGGCCGCCATCACCGCGCCCAAG GCAGGCACCGTCGCGCGCGTCGCGGTCGCGGCGACCGC CCAGGTCGAGGGCGGCGATCTGCTGGTGGTGGTCAGCT GA pyc Coryne- Y09548 GTGTCGACTCACACATCTTCAACGCTTCCAGCATTCAA 244 bacterium AAAGATCTTGGTAGCAAACCGCGGCGAAATCGCGGTCC glutamicum GTGCTTTCCGTGCAGCACTCGAAACCGGTGCAGCCACG GTAGCTATTTACCCCCGTGAAGATCGGGGATCATTCCA CCGCTCTTTTGCTTCTGAAGCTGTCCGCATTGGTACCG AAGGCTCACCAGTCAAGGCGTACCTGGACATCGATGAA ATTATCGGTGCAGCTAAAAAAGTTAALAGCAGATGCCAT TTACCCGGGATACGGCTTCCTGTCTGAAAATGCCCAGC TTGCCCGCGAGTGTGCGGAAAACGGCATTACTTTTATT GGCCCAACCCCAGAGGTTCTTGATCTCACCGGTGATA-A GTCTCGCGCGGTAACCCCCGCGAAGAAGGCTGGTCTGC CAGTTTTGGCGGAATCCACCCCGAGCAAAAACATCGAT GAGATCGTTAAAAGCGCTGAAGGCCAGACTTACCCCAT CTTTGTGAAGGCAGTTGCCGGTGGTGGCGGACGCGGTA TGCGTTTTGTTGCTTCACCTGATGAGCTTCGCAAATTA GCAACAGAAGCATCTCGTGAAGCTGAAGCGGCTTTCGG CGATGGCGCGGTATATGTCGAACGTGCTGTGATTAACC CTCAGCATATTGAAGTGCAGATCCTTGGCGATCACACT GGAGAAGTTGTACACCTTTATGAACGTGACTGCTCACT GCAGCGTCGTCACCAAAAAGTTGTCGAAATTGCGCCAG CACAGCATTTGGATCCAGAALCTGCGTGATCGCATTTGT GCGGATGCAGTAAAGTTCTGCCGCTCCATTGGTTACCA GGGCGCGGGAACCGTGGAATTCTTGGTCGATGAAAAGG GCAACCACGTCTTCATCGAAATGAACCCALCGTATCCAGI 178 WO 2004/108894 PCT/US2004/017513 GTTGAGCACACCGTGACTGAAGAAGTCACCGAGGTGGA CCTGGTGAAGGCGCAGATGCGCTTGGCTGCTGGTGCAA CCTTGAAGGAATTGGGTCTGACCCAAGATAAGATCAAG ACCCACGGTGCAGCACTGCAGTGCCGCATCACCACGGA AGATCCAAACAACGGCTTCCGCCCAGATACCGGAACTA TCACCGCGTACCGCTCACCAGGCGGAGCTGGCGTTCGT CTTGACGGTGCAGCTCAGCTCGGTGGCGAAATCACCGC ACACTTTGACTCCATGCTGGTGAAAATGACCTGCCGTG GTTCCGACTTTGAAACTGCTGTTGCTCGTGCACAGCGC GCGTTGGCTGAGTTCACCGTGTCTGGTGTTGCAACCAA CATTGGTTTCTTGCGTGCGTTGCTGCGGGAAGAGGACT TCACTTCCAAGCGCATCGCCACCGGATTCATTGCCGAT CACCCGCACCTCCTTCAGGCTCCACCTGCTGATGATGA GCAGGGACGCATCCTGGATTACTTGGCAGATGTCACCG TGAACA AGCCTCATGGTGTGCGTCCAAAGGATGTTGCA GCTCCTATCGATAAGCTGCCTAACATCAAGGATCTGCC ACTGCCACGCGGTTCCCGTGACCGCCTGAAGCAGCTTG GCCCAGCCGCGTTTGCTCGTGATCTCCGTGAGCAGGAC GCACTGGCAGTTACTGATACCACCTTCCGCGATGCACA CCAGTCTTTGCTTGCGACCCGAGTCCGCTCATTCGCAC TGAAGCCTGCGGCAGAGGCCGTCGCAAAGCTGACTCCT GAGCTTTTGTCCGTGGAGGCCTGGGGCGGCGCGACCTA CGATGTGGCGATGCGTTTCCTCTTTGAGGATCCGTGGG ACAGGCTCGACGAGCTGCGCGAGGCGATGCCGAATGTA AACATTCAGATGCTGCTTCGCGGCCGCAACACCGTGGG ATACACCCCGTACCCAGACTCCGTCTGCCGCGCGTTTG TTAAGGAAGCTGCCAGCTCCGGCGTGGACATCTTCCGC ATCTTCGACGCGCTTA2ACGACGTCTCCCAGATGCGTCC AGCAATCGACGCAGTCCTGGAGACCAACACCGCGGTAG CCGAcGGTGGCTATGGCTTATTCTGGTGATCTCTCTGAT CCAAATGAAAAGCTCTACACCCTGGATTACTACCTAA.A GATGGCAGAGGAGATCGTCAAGTCTGGCGCTCACATCT TGGCCATTAAGGATATGGCTGGTCTGCTTCGCCCAGCT GCGGTAACCAAGCTGGTCACCGCACTGCGCCGTGAATT CGATCTGCCAGTGCACGTGCACACCCACGACACTGCGG GTGGCCAGCTGGCAACCTACTTTGCTGCAGCTCAAGCT GGTGCAGATGCTGTTGACGGTGCTTCCGCACCACTGTC TGGCACCACCTCCCAGCCATCCCTGTCTGCCATTGTTG CTGCATTCGCGCACACCCGTCGCGATACCGGTTTGAGC CTCGAGGCTGTTTCTGACCTCGAGCCGTACTGGGAGC AGTGCGCGGACTGTACCTGCCATTTGAGTCTGGAACCC CAGGCCCAACCGGTCGCGTCTACCGCCACGAAATCCCA GGCGGACAGTTGTCCAACCTGCGTGCACAGGCCACCGC ACTGGGCCTTGCGGATCGTTTCGAACTCATCGAAGACA ACTACGCAGCCGTTAATGAGATGCTGGGACGCCCAACC AAGGTCACCCCATCCTCCAAGGTTGTTGGCGACCTCGC ACTCCACCTCGTTGGTGCGGGTGTGATCCAGCAGACT TTGCTGCCGATCCACAAAAGTACGACATCCCAGACTCT GTCATCGCGTTCCTGCGCGGCGAGCTTGGTAACCCTCC AGGTGGCTGGCCAGAGCCACTGCGCACCCGCGCACTGG AAGGCCGCTCCGAAGGCAAGGCZACCTCTGACGGAAGTT CCTGAGGAAGAGCAGGCGCACCTCGACGCTGATGATTC CAAGGAACGTCGCAATAGCCTCAACCGCCTGCTGTTCC CGAAGCCAACCGAAGAGTTCCTCGAGCACCGTCGCCGC 179 WO 2004/108894 PCT/US2004/017513 TTCGGCAACACCTCTGCGCTGGATGATCGTGAATTCTT CTACGGCCTGGTCGAAGGCCGCGAGACTTTGATCCGCC TGCCAGATGTGCGCACCCCACTGCTTGTTCGCCTGGAT GCGATCTCTGAGCCAGACGATAAGGGTATGCGCAATGT TGTGGCCAACGTCAACGGCCAGATCCGCCCAATGCGTG TGCGTGACCGCTCCGTTGAGTCTGTCACCGCAACCGCA GAAAAGGCAGATTCCTCCAACAAGGGCCATGTTGCTGC ACCATTCGCTGGTGTTGTCACCGTGACTGTTGCTGAAG GTGATGAGGTCAAGGCTGGAGATGCAGTCGCAATCATC GAGGCTATGAAGATGGAAGCAACAATCACTGCTTCTGT TGACGGCAAAATCGATCGCGTTGTGGTTCCTGCTGCAA CGAAGGTGGAAGGTGGCGACTTGATCGTCGTCGTTTCC TAA dapA Thermobifida NZ AAAQOIO ATGGTAGGCAGTACGACGCCGAACGCGCCCTTCGGCCA 42 fusca 00040.1 GATGTTGACCGCGATGATCACCCCCATGCTCGACAATG GGGAGGTGGACTACGACGGGGTGGCCCGCCTCGCGACC TACCTCGTCGATGAGCAGCGCAACGACGGCCTCATCGT CAACGGAACCACCGGAGAGTCCGCCACCACCAGCGATG AGGAGAAGGAGCGCATCCTCCGCACCGTGATCGACGCG GTCGGCGACCGCGCCACCATCGTTGCCGGAGCGGGCAG CAACGACACCAGGCACAGTATTGAACTCGCGCGGACCG CGGAACGCGCCGGAGCAGACGGCCTGCTGCTCGTCACC CCCTACTACAACCGGCCGCCCCAAGAAGGCCTGCTGCG GCACTTCACGGCCATTGCCGACGCCACAGGGCTGCCGA TCATGCTCTACGACATTCCTGGCCGCACAGGCACGCCG ATCGACTCCGAAACCCTGGTCCGGCTCGCCGAGCACCC CCGCATCGTCGCCAACAAGGACGCCAAAGACGACCTCG GCGCCAGCTCGTGGGTGATGTCCCGCACCGACCTCGCC TACTACAGCGGCAGCGACATGCTCAACCTGCCGCTGCT GTCCATCGGCGCCGCGGGCTTCGTCAGCGTGGTCGGCC ATGTCGTCGGCTCCGAACTGCACGACATGATCGACGCC TACCGGGCCGGGGACGTGGCCCGGGCTTTGGACATCCA CCGCCGCCTGATCCCCGTCTACCGGGGCATGTTCCGCA CCCAGGGAGTCATCACCACTAAGGCGGTGCTCGCCATG TTCGGGCTGCCCGCCGGAGTGGTCCGCGCCCCCCTGCT CGACGCGTCCCCCGAACTCAAAGAGCTGCTCCGCGAAG ACCTCGCCATGGCCGGGGTGAAGGGCCCCACTGGCCTT GCCTCCGCTCACGAGGACGCGGCCAGCGGGAGGGAAGC GGAACGACTCACGGAGGGGACCGCA dapA Mycobacterium AL583922.1 GTGACCACTGTCGGATTCGACGTCCCCGCACGTTTGGG 43 leprae (can be GACCCTGCTTACTGCGATGGTGACACCGTTTGACGCTG used to clone ATGGTTCTGTTGACACTGCGGCTGCGACGCGGCTGGCG M. smegmatis AACCGCCTGGTCGACGCGGGTTGTGATGGTCTGGTGCT gene) CTCGGGCACCACCGGCGAGTCGCCGACCACTACTGACG ACGAGAACTCCAACTGTTGCGTGTCGTACTTGAGGCG GTAGGTGACCGAGCTAGAGTCATCGCCGGCGCAGGTAG TTATGACACAGCTCATAGTGTCCGACTCGTCAAGGCCT GTGCGGGTGAGGGCGCGCACGGACTTCTCGTGGTTACC CCTTACTACTCGAAGCCGCCGCAGACCGGGCTGTTTGC GCACTTCACCGCTGTGGCCGACGCGACTGAGCTACCAG TGTTGCTCTACGACATTCCCGGGCGGTCGGTCGTGCCG ATCGAGCCTGACACGATTCGCGCGCTGGCGTCGCATCC CAACATCGTCGGAGTCAAAGAGGCCAAGGCTGATTTAT_ 180 WO 2004/108894 PCT/US2004/017513 ACAGCGGTGCCCGGATCATGGCTGACACCGGCCTGGCC TACTATTCCGGCGACGACGCACTGAACCTGCCCTGGCT GGCGGTGGGTGCCATCGGCTTCATCAGTGTGATTTCTC ATCTAGCCGCAGGACAGCTTCGAGAGCTGTTATCCGCT TTTGGTTCTGGGGATATTACCACTGCCCGAAAGATCAA CGTCGCGATCGGCCCGCTGTGCAGCGCGATGGACCGCT TGGGTGGGGTGACGATGTCCAAGGCAGGTCTGCGGCTT CAGGGTATCGACGTCGGTGATCCGCGGTTGCCGCAGAT GCCGGCAACAGCGGAGCAGATCGATGAGTTGGCTGTCG ATATGCGTGCAGCCTCGGTGCTTAGG dapA Mycobacterium AL008967.1 GTGACCACCGTCGGATTCGACGTCGCAGCGCGCCTAGG 44 tuberculosis AACCCTGCTGACCGCGATGGTGACACCGTTTAGCGGCG (can be used to ATGGCTCCCTGGACACCGCCACCGCGGCGCGGCTGGCC clone M. AACCACCTGGTCGATCAGGGGTGCGACGGTCTGGTGGT smegmatis CTCGGGCACCACCGGCGAGTCGCCGACCACCACCGACG gene) GGGAGAAAATCGAGCTGCTGCGGGCCGTCTTGGAAGCG GTGGGGGACCGGGCCCGTGTTATCGCCGGTGCCGGCAC CTATGACACCGCGCACAGCATCCGGCTGGCCAAGGCTT GTGCGGCCGAGGGTGCGCACGGGCTGCTGGTGGTCACG CCCTACTATTCCAAGCCGCCGCAGCGGGGGCTGCAAGC CCATTTCACCGCCGTCGCCGACGCGACCGAGCTGCCGA TGCTGCTCTATGACATCCCGGGGCGGTCGGCGGTGCCG ATCGAGCCCGACACGATCCGCGCGTTGGCGTCGCATCC GAACATCGTCGGAGTCAAGGACGCCAAAGCCGACCTGC ACAGCGGCGCCCAAATCATGGCCGACACCGGACTGGCC TACTATTCCGGCGACGACGCGCTCAACCTGCCCTGGCT GGCCATGGGCGCCACGGGCTTCATCAGCGTGATTGCCC ACCTGGCAGCCGGGCAGCTTCGAGAGTTGTTGTCCGCC TTCGGTTCTGGGGATATCGCCACCGCCCGCAAGATCAA CATTGCGGTCGCCCCGCTGTGCAACGCGATGAGCCGCC TGGGTGGGGTGACGTTGTCCAAGGCGGGCTTGCGGCTG CAGGGCATCGACGTCGGTGATCCCCGGCTGCCCCAGGT GGCCGCGACACCGGAGCAGATCGACGCGTTGGCCGCCG ACATGCGCGCGGCCTCGGTGCTTCGG dapA Streptomyces AL9391 24.1 ATGGCTCCGACCTCCACTCCGCAGACCCCCTTCGGGCG 45 coelicolor GGTCCTCACCGCCATGGTCACGCCCTTCACGGCGGACG GCGCACTCGACCTCGACGGCGCCCAGCGGCTCGCCGCC CACCTGGTGGACGCAGGCAACGACGGCCTGATCATCAA CGGCACCACCGGCGAGTCCCCGACCACCAGCGACGCGG AGAAAGCGGACCTCGTACGGGCCGTCGTGGAGGCGGTC GGCGACCGGGCGCACGTGGTGGCCGGAGTCGGCACCAA CAACACCCAGCACAGCATCGAGCTGGCCCGCGCCGCCG AGCGCGTCGGCGCCCACGGCCTGCTGCTCGTCACGCCG TACTACAACAAGCCCCCGCAGGAGGGCCTGTACCTGCA CTTCACGGCCATCGCCGACGCCGCCGGGCTGCCGGTCA TGCTCTACGACATCCCCGGCCGCAGCGGCGTCCCGATC AACACCGAGACCCTGGTCCGCCTCGCGGAGCACCCGCG GATCGTCGCCAACAAGGACGCCAAGGGCGACCTCGGCC GGGCCAGCTGGGCCATCGCGCGCTCCGGCCTCGCCTGG TACTCCGGCGACGACATGCTCAACCTGCCGCTGCTCGC CGTGGGCGCGGTCGGCTTCGTCTCCGTCGTGGGCCACG TCGTCACCCCGGAGCTGCGCGCCATGGTGGACGCGCAC GTCGCCGGTGACGTACAGAAGGCCCTGGAGATCCACCA 181 WO 2004/108894 PCT/US2004/017513 GAAGCTGCTCCCCGTCTTCACCGGCATGTTCCGCACCC AGGGCGTCATGACCACCAAGGGCGCGCTCGCCCTCCAG GGACTGCCCGCGGGACCGCTGCGCGCCCCCATGGTCGG CCTCACGCCCGAGGAAACCGAGCAGCTCAAGATCGATC TTGCCGCCGGCGGGGTACAGCTC dapA Erwinia ATGTTTACGGGTAGTATTGTTGCTCTGGTTACGCCGAT 46 chrysanthemi GGACGACAAAGGTGCCGTTGATCGCGCGAGCTTGAAAA AACTGATTGATTATCATGTCGCTAGCGGAACTTCCGCG ATTGTGTCGGTGGGTACCACCGGCGAATCCGCCACCTT GAGTCACGATGAGCATGGCGACGTGGTGATGCTGACGC TGGAATTGAGCGATGGCCGCATCCCGGTCATCGCCGGC ACCGGCGCCAATTCGACCGCTGAGGCGATTTCCCTCAC CCAGCGTTTCAACGACACGGGCGTGGCCGGGTGCCTGA CCGTGACGCCGTATTACAATAAGCCGACCCAAAACGGC TTGTTCCTGCACTTCAAGGCGATTGCCGAGCACACCGA CCTGCCGCAAATCCTCTACAACGTGCCGTCCCGTACCG GTTGCGACATGTTGCCGGAAACCGTCGCCCGTCTGTCG GAAATCAAAAATATTGTCGCAATCAAGGAAGCGACCGG GAACTTAAGCCGGGTCAGTCAGATCCAAGAGCTGGTTC ATGAAGATTTCATTTTGCTGAGCGGCGACGACGCCAGC TCGCTGGACTTCATGCAACTGGGTGGCGACGGCGTGAT TTCCGTGACAGCCAACATCGCGGCCCGCGAAATGGCGG CGCTGTGCGAGCTGGCGGCGCAAGGGAATTTCGTTGAA GCCCGCCGTCTGAATCAGCGTCTGATGCCGCTGCATCA GAAACTGTTTGTTGAACCCAATCCGATTCCGGTGAAAT GGGCCTGTAAGGCATTGGGATTGATGGCGACCGACACG CTTCGTCTGCCGATGACGCCGCTGACCGATGCCGGTCG CGACGTGATGGAGCAGGCCATGAAGCAGGCGGGTCTGC TGTAA dapA Coryne- X53993 ATGAGCACAGGTTTAACAGCTAAGACCGGAGTAGAGCA 128 bacterium CTTCGGCACCGTTGGAGTAGCAATGGTTACTCCATTCA glutamicum CGGAATCCGGAGACATCGATATCGCTGCTGGCCGCGAA GTCGCGGCTTATTTGGTTGATAAGGGCTTGGATTCTTT GGTTCTCGCGGGCACCACTGGTGAATCCCCAACGACAA CCGCCGCTGAAAAACTAGAACTGCTCAAGGCCGTTCGT GAGGAAGTTGGGGATCGGGCGAAGCTCATCGCCGGTGT CGGAACCAACAACACGCGGACATCTGTGGAACTTGCGG AAGCTGCTGCTTCTGCTGGCGCAGACGGCCTTTTAGTT GTAACTCCTTATTACTCCAAGCCGAGCCAAGAGGGATT GCTGGCGCACTTCGGTGCAATTGCTGCAGCAACAGAGG TTCCAATTTGTCTCTATGACATTCCTGGTCGGTCAGGT ATTCCAATTGAGTCTGATACCATGAGACGCCTGAGTGA ATTACCTACGATTTTGGCGGTCAAGGACGCCAAGGGTG ACCTCGTTGCAGCCACGTCATTGATCAAAGAAACGGGA CTTGCCTGGTATTCAGGCGATGACCCACTAAACCTTGT TTGGCTTGCTTTGGGCGGATCAGGTTTCATTTCCGTAA TTGGACATGCAGCCCCCACAGCATTACGTGAGTTGTAC ACAAGCTTCGAGGAAGGCGACCTCGTCCGTGCGCGGGA AATCAACGCCAAACTATCACCGCTGGTAGCTGCCCAAG GTCGCTTGGGTGGAGTCAGCTTGGCAAAAGCTGCTTCG CGTCTGCAGGGCATCAACGTAGGAGATCCTCGACTTCC AATTATGGCTCCAAATGAGCAGGAACTTGAGGCTCTCC GAGAAGACATGAAAAAAGCTGGAGTTCTATAA 182 WO 2004/108894 PCT/US2004/017513 dapA Escherichia ATGTTCACGGGAAGTATTGTCGCGATTGTTACTCCGAT 129 col GGATGAAAAAGGTAATGTCTGTCGGGCTAGCTTGAAAA AACTGATTGATTATCATGTCGCCAGCGGTACTTCGGCG ATCGTTTCTGTTGGCACCACTGGCGAGTCCGCTACCTT AAATCATGACGAACATGCTGATGTGGTGATGATGACGC TGGATCTGGCTGATGGGCGCATTCCGGTAATTGCCGGG ACCGGCGCTAACGCTACTGCGGAAGCCATTAGCCTGAC GCAGCGCTTCAATGACAGTGGTATCGTCGGCTGCCTGA CGGTAACCCCTTACTACAATCGTCCGTCGCAAGAAGGT TTGTATCAGCATTTCAAAGCCATCGCTGAGCATACTGA CCTGCCGCAAATTCTGTATAATGTGCCGTCCCGTACTG GCTGCGATCTGCTCCCGGAAACGGTGGGCCGTCTGGCG AAAGTAAAAAATATTATCGGAATCAAAGAGGCAACAGG GAACTTAACGCGTGTAAACCAGATCAAAGAGCTGGTTT CAGATGATTTTGTTCTGCTGAGCGGCGATGATGCGAGC GCGCTGGACTTCATGCAATTGGGCGGTCATGGGGTTAT TTCCGTTACGACTAACGTCGCAGCGCGTGATATGGCCC AGATGTGCAAACTGGCAGCAGAAGAACATTTTGCCGAG GCACPCGTTATTAATCAGCGTCTGATGCCATTACACAA CAAACTATTTGTCGAACCCAATCCAATCCCGGTGAAAT GGGCATGTAAGGAACTGGGTCTTGTGGCGACCGATACG CTGCGCCTGCCAATGACACCAATCACCGACAGTGGTCG TGAGACGGTCAGAGCGGCGCTTAAGCATGCCGGTTTGC TGTAA dapA Coryne- X53993 ATGAGCACAGGTTTAACAGCTAAGACCGGAGTAGAGCA 245 bacterium CTTCGGCACCGTTGGAGTAGCAATGGTTACTCCATTCA glutamicum CGGAATCCGGAGACATCGATATCGCTGCTGGCCGCGAA GTCGCGGCTTATTTGGTTGATAAGGGCTTGGATTCTTT GGTTCTCGCGGGCACCACTGGTGAATCCCCAACGACAA CCGCCGCTGAAAAACTAGAACTGCTCAAGGCCGTTCGT GAGGAAGTTGGGGATCGGGCGAAGCTCATCGCCGGTGT CGGAACCAACAACACGCGGACATCTGTGGAACTTGCGG AAGCTGCTGCTTCTGCTGGCGCAGACGGCCTTTTAGTT GTAACTCCTTATTACTCCAAGCCGAGCCAAGAGGGATT GCTGGCGCACTTCGGTGCAATTGCTGCAGCAACAGAGG TTCCAATTTGTCTCTATGACATTCCTGGTCGGTCAGGT ATTCCAATTGAGTCTGATACCATGAGACGCCTGAGTGA ATTACCTACGATTTTGGCGGTCAAGGACGCCAAGGGTG ACCTCGTTGCAGCCACGTCATTGATCAAAGAAACGGGA CTTGCCTGGTATTCAGGCGATGACCCACTAAACCTTGT TTGGCTTGCTTTGGGCGGATCAGGTTTCATTTCCGTAA TTGGACATGCAGCCCCCACAGCATTACGTGAGTTGTAC ACAAGCTTCGAGGAAGGCGACCTCGTCCGTGCGCGGGA AATCAACGCCAAACTATCACCGCTGGTAGCTGCCCAAG GTCGCTTGGGTGGAGTCAGCTTGGCAAAAGCTGCTTCG CGTCTGCAGGGCATCAACGTAGGAGATCCTCGACTTCC AATTATGGCTCCAAATGAGCAGGAACTTGAGGCTCTCC GAGAAGACATGAAAAAAGCTGGAGTTCTATAA dapA Escherichia M12844 ATGTTCACGGGAAGTATTGTCGCGATTGTTACTCCGAT 246 coil GGATGAAAAAGGTAATGTCTGTCGGGCTAGCTTGAAAA AACTGATTGATTATCATGTCGCCAGCGGTACTTCGGCG ATCGTTTCTGTTGGCACCACTGGCGAGTCCGCTACCTT AAATCATGACGAACATGCTGATGTGGTGATGATGACGC 183 WO 2004/108894 PCT/US2004/017513 TGGATCTGGCTGATGGGCGCATTCCGGTAATTGCCGGG ACCGGCGCTAACGCTACTGCGGAAGCCATTAGCCTGAC GCAGCGCTTCAATGACAGTGGTATI2GTCGGCTGCCTGA CGGTAACCCCTTACTACAATCGTCCGTCGCAAGAAGGT TTGTATCAGCATTTCAAAGCCATCGCTGAGCATACTGA CCTGCCGCAAATTCTGTATAATGTGCCGTCCCGTACTG GCTGCGATCTGCTCCCGGAAACGGTGGGCCGTCTGGCG AAAGTAAAAAATATTATCGG1AATCAAAGAGGCAACAGG GAACTTAACGCGTGTAAACCAGATCAAAGAGCTGGTTT CAGATGATTTTGTTCTGCTGAGCGGCGATGATGCGAGC GCGCTGGACTTCATGCAATTGGGCGGTCATGGGGTTAT TTCCGTTACGACTAACGTCGCAGCGCGTGATATGGCCC AGATGTGCAAACTGGCAGCAGAAGAACATTTTGCCGAG GCACGCGTTATTAATCAGCGTCTGATGCCATTACACAA CAAACTATTTGTCGAACCCAATCCAATCCCGGTGAAAT GGGCATGTAAGGAACTGGGTCTTGTGGCGACCGATACG CTGCGCCTGCCAATGACACCAATCACCGACAGTGGTCG TGAGACGGTCAGAGCGGCGCTTAAGCATGCCGGTTTGC TGTAA horn Streptomyces AL9391 23.1 ATGATGCGTACGCGTCCGCTGAAGGTGGCGCTGCTGGG 47 coellcolor CTGTGGAGTGGTCGGCTCAAAGGTGGCGCGCATCATGA CGACGCACGCCGCCGACCTCGCCGCCCGGATCGGGGCC CCGGTGGAGCTCGCGGGCGTCGCCGTACGGCGGCCCGA CAAGGTGCGGGAGGGGATCGACCCGGCCCTCGTCACCA CCGACGCCACCGCGCTCGTCAAGCGCGGGGACATCGAC GTCGTCGTCGAGGTCATCGGGGGGATCGAGCCCGCGCG GACGCTCATCACCACCGCCTTCGCGCACGGCGCCTCCG TGGTCTCCGCC1AACAAGGCGCTCATCGCCCAGGACGGC GCCGCCCTGCACGCCGCCGCCGACGAGCACGGCAAGGA CCTGTACTACGAGGCCGCCGTCGCCGGTGCCATCCCGC TGATCCGGCCGCTGCGCGAGTCCCTCGCCGGCGACAAG GTCAACCGGGTGCTCGGCATCGTCAACGGGACCACCAA CTTCATCCTCGACGCCATGGACTCGACCGGGGCCGGCT ATCAGGAAGCGCTCGACGAGGCCACGGCCCTCGGGTAC GCCGAGGCCGACCCGACCGCCGACGTCGAGGGCTTCGA CGCCGCAGCCAAGGCCGCCATCCTCGCCGGGATCGCCT TCCACACGCGCGTACGCCTCGACGACGTCTACCGCGAG GGCATGACCGAGGTCACCCCGCCGACTTCGCCTCCGC CAAGGAGATGGGCTGCACCATCAAGCTGCTCGCCATCT GCGAGCGGGCGGCGGACGGAGGGTCGGTCACCGCACGC GTGCATCCCGCGATGATCCCGCTCAGCCATCCGCTGGC CAACGTGCGCGAGGCGTACAACGCCGTGTTCGTGGAGT CCGACGCCGCCGGTCAGCTCATGTTCTACGGGCCCGGC GCCGGCGGTTCGCCGACCGCGTCCGCCGTGCTCGGCGA CCTGGTGGCCGTGTGCCGCAACCGGCTGGGCGGAGCGA CCGGACCCGGTGAGTCCGCGTACGCCGCCCTGCCCGTC TCCCCGATGGGCGACGTCGTCACGCGCTACCACATCAG CCTCGACGTGGCCGACAAACCGGGCGTGCTCGCCCAGG TCGCGACCGTGTTCGCGGAGCACGGTGTCTCCATCGAC ACCGTGCGGCAGTCCGGCAAGGACGGCGAGGCATCCCT CGTCGTCGTCACCCATCGCGCGTCCGACGCCGCCCTCG GCGGTACGGTCGAGGCGCTGCGCAAGCTCGACACCGTG CGGGGTGTCGCCAGCATCATGCGGGTTGAAGGAGAG 184 WO 2004/108894 PCT/US2004/017513 hom Mycobacterium AF126720 ATGAGTAAGAAGCCCATCGGGGTAGCGGTACTGGGCCT 48 smegmatis GGGGAACGTCGGCAGCGAGGTCGTGCGCATCATCGCCG ACAGCGCGGACGATCTCGCGGCGCGCATCGGTGCGCCG CTGGAACTGCGCGGCGTCGGCGTGCGCCGTGTGGCCGA CGACCGCGGCGTGCCCACGGAACTGCTCACCGACGACA TCGACGCGCTGGTGTCGCGTGACGACGTCGACATCGTC GTCGAGGTCATGGGCCCCGTCGAACCGGCACGCAAGGC CATCCTGTCGGCGCTGGAGCAGGGCAAGTCGGTGGTCA CCGCCAACAAGGCGCTGATGGCCATGTCCACCGGCGAG CTCGCCCAGGCCGCCGAGAAGGCCCACGTGGACCTGTA TTTCGAGGCCGCAGTGGCCGGCGCCATCCCGGTGATCC GCCCGCTGACCCAGTCGCTGGCCGGTGACACGGTGCGC CGCGTGGCCGGCATCGTCAACGGCACCACCAACTACAT CCTGTCCGAGATGGACAGCACCGGCGCCGATTACACCA GCGCGCTGGCCGATGCGAGCGCCCTCGGTTACGCCGAG GCCGATCCCACCGCCGACGTCGAGGGCTACGACGCCGC GGCCAAGGCCGCGATCCTCGCTTCGATCGCGTTCCACA CCCGTGTGACCGCCGACGACGTGTACCGCGAGGGCATC ACCACGGTCAGCGCCGAGGACTTCGCGTCGGCACGCGC GCTGGGCTGCACCATCAAACTGCTCGCGATCTGCGAGC GGCTCACCTCCGACGAGGGCAAGGACCGGGTCTCGGCC CGCGTCTACCCGGCGCTCGTCCCGCTGACCCACCCGCT GGCCGCGGTCAACGGTGCGTTCAACGCGGTGGTGGTGG AAGCCGAGGCGGCCGGGCGGCTCATGTTCTACGGTCAA GGCGCCGGCGGTGCCCCCACCGCCTTTGCGGTGATGGG AGACGTGGTCATGGCGGCTCGCAACCGTGTCCAGGGCG GCCGTGGCCCGCGCGAATCGAAGTACGCCAAGCTGCCG ATCGCGCCCATCGGGTTCATCCCGACGCGCTACTACGT CAACATGAACGTGGCCGACCGGCCCGGCGTGTTGTCCG CTGTGGCAGCCGAATTC hom Thermobifida NZ AAAQ010 ATGCGCCGCCCAGAACCTGCCGGTGCCGCGGATCGCGG 49 fusca 00037.1 TCGAACCCGGCCGCGCCATCGCCGGACCGGCGGGCATC ACCCTCTACGAGGTCGGCACGGTCAAGGACGTGGAGGG GATCCGCACCTATGTCAGTGTCGACGGCGGTATGAGCG ACAACATCCGCACCGCGCTGTACGGTGCGGAGTACACC TGTGTGCTGGCCTCGCGGCACAGCGACGCCGAGCCGAT GCTGTCCCGCCTGGTCGGCAAGCACTGCGAGAGCGGCG ACATCGTCGTGCGCGACCTCTACCTCCCTGCCGACCTG CGTCCCGGCGACCTGGTAGCAGTGGCCGCCACCGGCGC CTACTGCTACTCCATGGCCAGCAACTACAACCACGTGC CCCGGCCTGCCGTGGTCGCGGTCCGCGAGAAGAACGCC CGCGTCCTGGTGCGACGGGAAACCGAAGAAGACCTGTT GCGGCTGGACGTAGGCTGAGCAGTGGCCGACGACGCTC TGGCCACCACGACGAGGTTCTGGATACGGACAATGAAC GACGAAACGGGAGTCACCCCCTCATGGCACTGAAGGTG GCGCTGCTGGGTTGCGGCGTTGTGGGTTCTCAGGTGGT CCGGCTGCTCAACGAGCAGTCGCGTGAACTTGCGGAGC GCATCGGAACGCCCCTGGAGATCGGAGGCATCGCGGTG CGCCGCCTGGACCGCGCCCGGGGGACGGGCGTGGACCC CGACCTCCTCACCACCGACGCCATGGGTCTTGTGACCA GAGACGACATCGACCTCGTGGTGGAGGTCATCGGCGGC ATCGAGCCCGCCCGGTCGCTCATCCTGGCCGCGATCCA GAAGGGCAAGTCTGTGGTGACCGCCAACAAGGCGCTGC TCGCCGAGGACGGCGCGACCATCCACGCCGCTGCCCGG 185 WO 2004/108894 PCT/US2004/017513 GAAGCGGGAGTTGACGTGTACTACGAGGCCAGCGTCGC CGGGGCCATCCCGCTGCTGCGGCCGCTGCGTGACTCCC TGGCCGGGGACCGCGTCAACCGGGTCTTGGGCATCGTC AACGGCACCACCAACTACATCCTGGACCGGATGGACAG CCTGGGCGCCGGCTTCACCGAGTCACTGGAGGAAGCCC AGGCCCTGGGATACGCCGAAGCCGACCCGACCGCCGAC GTGGAGGGCTTCGACGCCGCCGCTAAAGCCGCGATCCT GGCCCGGCTCGCCTTCCACACACCGGTGACCGCTGCCG ATGTGCACCGCGAAGGCATCACCGAGGTCTCCGCGGCC GACATCGCCAGCGCCAAGGCCATGGGCTGCGTGGTGAA ACTCCTCGCGATCTGCCAGCGCTCCGACGACGGCTCCA GCATCGGCGTGCGCGTCCACCCGGTGATGCTGCCCCGC GAACACCCGCTCGCCAGCGTCAAAGGCGCCTACAACGC GGTGTTCGTGGAAGCCGAGTCCGCCGGGCAGCTCATGT TCTACGGCGCGGGCGCGGGAGGCGTCCCCACCGCCAGC GCAGTCCTCGGCGACCTGGTCGCGGTGGCACGGAACCG CCTGGCCCGCACTTTCGTGGCCGACGGCCGGGCCGACG CGAAACTGCCCGTCCACCCCATGGGGGAGACCATCACC AGCTACCACGTGGCGCTGGACGTTGCCGACCGGCCCGG CGTGCTCGCCGGGGTCGCCAAAGTCTTCGCGGCCAA CG GCGTGTCGATCAAGCACGTCCGCCAGGAAGGCCGCGGG GACGACGCCCAGCTCGTCCTGGTCAGCCACACCGCGCC GGATGCCGCCCTGGCCCGGACCGTGGAGCAACTGCGCA ACCACGAGGACGTCCGCGCGGTCGCCAGCGTGATGCGG GTCGAAACCTTCGACAACGAACGA horn Coryne- Y00546 ATGACCTCAGCATCTGCCCCAAGCTTTAACCCCGGCAA 247 bacterium GGGTCCCGGCTCAGCAGTCGG2AATTGCCCTTTTAGGAT glutamicum TCGGAACAGTCGGCACTGAGGTGATGCGTCTGATGACC GAGTACGGTGATGAACTTGCGCACCGCATTGGTGGCCC ACTGGAGGTTCGTGGCATTGCTGTTTCTGATATCTCAA AGCCACGTGAAGGCGTTGCACCTGAGCTGCTCACTGAG GACGCTTTTGCACTCATCGAGCGCGAGGATGTTGACAT CGTCGTTGAGGTTATCGGCGGCATTGAGTACCCACGTG AGGTAGTTCTCGCAGCTCTGAAGGCCOGCAAGTCTGTT GTTACCGCCAATAAGGCTCTTGTTGCAGCTCACTCTGC TGAGCTTGCTGATGCAGCGGAAGCCGCAAACGTTGACC TGTACTTCGAGGCTGCTGTTGCAGGCGCAATTCCAGTG GTTGGCCCACTGCGTCGCTCCCTGGCTGGCGATCAGAT CCAGTCTGTGATGGGCATCGTTAACGGCACCACCAACT TCATCTTGGACGCCATGGATTCCACCGGCGCTGACTAT GCAGATTCTTTGGCTGAGGCAACTCGTTTGGGTTACGC CGAAGCTGATCCAACTGCAGACGTCGAAGGCCATGACG CCGCATCC1AAGGCTGCAATTTTGGCATCCATCGCTTTC CACACCCGTGTTACCGCGGATGATGTGTACTGCGAAGG TATCAGCAACATCAGCGCTGCCGACATTGAGGCAGCAC AGCAGGCAGGCCACACCATCAAGTTGTTGGCCATCTGT GAGAAGTTCACCAACAAGGAAGGAAAGTCGGCTATTTC TGCTdGCGTGCACCCGACTCTATTACCTGTGTCCCACC CACTGGCGTCGGTAAACAAGTCCTTTAATGCAATCTTT GTTGAAGCAOAAGCAGCTGGTCGCCTGATGTTCTACGG AAACGGTGCAGGTGGCGCGCCAACCGCGTCT'GCTGTGC TTGGCGACGTCGTTGGTGCCGCACGAAACAAGGTGCAC GGTGGCCGTGCTCCAGGTGAGTCCACCTACGCTAACCT GCCGATCGCTGATTTCGGTGAGACCACCACTCGTTACC 186 WO 2004/108894 PCT/US2004/017513 ACCTCGACATGGATGTGGAAGATCGCGTGGGGGTTTTG GCTGAATTGGCTAGCCTGTTCTCTGAGCAAGGAATCTC CCTGCGTACAATCCGACAGGAAGAGCGCGATGATGATG CACGTCTGATCGTGGTCACCCACTCTGCGCTGGAATCT GATCTTTCCCGCACCGTTGAACTGCTGAAGGCTAAGCC TGTTGTT1AAGGCAATCAACAGTGTGATCCGCCTCGAAA GGGACT-A metL Es-cherichia V00305 AGTGTGATTGCGCAGGCAGGGGCGAAAGGTCGTCAGCT 248 coi GCATAAATTTGGTGGCAGTAGTCTGGCTGATGTGAAGT GTTATTTGCGTGTCGCGGGCATTATGGCGGAGTACTCT CAGCCTGACGATATGATGGTGGTTTCCGCCGCCGGTAG CACCACTAACCGGTTGATTAGCTGGTTGAAACTXAGCC AGACCGATCGTCTCTCTGCGCATCAGGTTCA'ACAAACG CTGCGTCGCTATCAGTGCGATCTGATTAGCGGTCTGCT ACCCGCTGAAGA1AGCCGATAGCCTCATTAGCGCTTTTG TCAGCGACCTTGAGCGCCTGGCGGCGCTGCTCGACAGC GGTATTAACGACGCAGTGTATGCGG1AAGTGGTGGGCCA CGGGGAAGTATGGTCGGCACGTCTGATGTCTGCGGTAC TTAATCAACAAkGGGCTGCCAGCGGCCTGGCTTGATGCC CGCGAGTTTTTACGCGCTGAACGCGCCGCACAACCGCA GGTTGATGAAGGGCTTTCTTACCCGTTGCTGCAACAGC TGCTGGTGCAACATCCGGGCAAACGTCTGGTGGTGACC GGATTTATCAGCCGCAACAACGCCGGTGAAACGGTGCT GCTGGGGCGTAACGGTTCCGACTATTCCGCGACACAAA TCGGTGCGCTGGCGGGTGTTTCTCGCGTAACCATCTGG AGCGACGTCGCCGGGGTATACAGTGCCGACCCGCGTAA AGTGAAAGATGCCTGCCTGCTGCCGTTGCTGCGTCTGG ATGAGGCCAGCGAACTGGCGCGCCTGGCGGCTCCCGTT CTTCACGCCCGTACTTTACAGCCGGTTTCTGGCAGCGA AATCGACCTGCAACTGCGCTGTAGCTACACGCCGGATC AAGGTTCCACGCGCATTGAACGCGTGCTGGCCTCCGGT, ACTGGTGCGCGTATTGTCACCAGCCACGATGATGTCTG TTTGATTGAGTTTCAGGTGCCCGCCAGTCAGGATTTCA AACTGGGGCATAAAGAGATCGACCAAATCCTGAAACGC GCGCAGGTACGCCCGCTGGCGGTTGGCGTACATAACGA TCGCCAGTTGCTGCAATTTTGCTACACCTCAGAAGTGG CCGACAGTGCGCTGAAAATCCTCGACGAAGCGGGATTA CCTGGCGAACTGCGCCTGCGTCAGGGGCTGGCGCTGGT CGCGATGGTCGGTGCAGGCGTCACCCGTAACCCGCTGC ATTGCCACCGCTTCTGGCAGCAACTGAAAGGCCAGCCG GTCGAATTTACCTGGCAGTCCGATGACGGCATCAGCCT GGTGGCAGTACTGCGCACCGGCCCGACCGAAAGCCTGA TTCAGGGGCTGCATCAGTCCGTCTTCCGCGCAGAAA CGCATCGGCCTGGTATTGTTCGGTAAGGGCAATATCGG TTCCCGTTGGCTGGAACTGTTCGCCCGTGAGCAGAGCA CGCTTTCGGCACGTACCGGCTTTGAGTTTGTGCTGGCA GGTGTGGTGG1ACAGCCGCCGCAGCCTGTTGAGCTATGA CGGGCTGGACGCCAGCCGCGCGTTAGCCTTCTTCAACG ATGAAGCGGTTGAGCAGGATGAAGAGTCGTTGTTCCTG TGGATGCGCGCCCATCCGTATGATGATTTAGTGGTGCT GGACGTTACCGCCAGCCAGCAGCTTGCTGATCAGTATC TTGATTTCGCCAGCCACGGTTTCCACGTTATCAGCGCC AACAAACTGGCGGGAGCCAGCGACAGCAATAAATATCG CCAGATCCACGACGCCTTCGAAAAAACCGGGCGTCACT ____ 187 WO 2004/108894 PCT/US2004/017513 GGCTGTACAATGCCACCGTCGGTGCGGGCTTGC2CGATC AACCACACCGTGCGCGATCTGATCGACAGCGGCGATAC TATTTTGTCGATCAGCGGGATCTTCTCCGGCACGCTCT CCTGGCTGTTCCTGCAATTCGACGGTAGCGTGCCGTTT ACCGAGCTGGTGGATCAGGCGTGGCAGCAGGGCTTAAC CGAACCTGACCCGCGTGACGATCTCTCTGGCAAAGACG TGAGTCGCAAGCTGGTGATTCTGGCGCGTGAAGCAGGT TACAACATCGAACCGGATCAGGTACGTGTGGAATCGCT GGTGCCTGCTCATTGCGAAGGCGGCAGCATCGACCATT TCTTTGAAAATGGCGATG-AACTGAACGAGCAGATGGTG CAACGGCTGGAAGCGGCCCGCGAAkATGGGGCTGGTGCT GCGCTACGTGGCGCGTTTCGATGCCAACGGTA-AAGCGC GTGTAGGCGTGG2AAGCGGTGCGTGAAGATCATCCGTTG CGATCACTGCTGCCGTGCGATAACGTCTTTGCCATCGA AA GCCGCTGGTATCGCGATACCCTCTGGTGATCCGCG GACCTGGCGCTGGGCGCGACGTCACCGCCGGGGCGATT CAGTCGGATATCAACCGGCTGGCACAGTTGTTGTAA thrA Escherichia U 14003 ATGCGAGTGTTGAAGTTCGGCGGTACATCAGTGGCAAA 249 coi TGCAGAACGTTTTCTGCGTGTTGCCGATATTCTGGAAA GCAATGCCAGGCAGGGGCAGGTGGCCACCGTCCTCTCT GCCCCCGCCAAAATCACCAACCACCTGGTGGCGATGAT TGAAAAAACCATTAGCGGCCAGGATGCTTTACCCAATA TCAGCGATGCCGAACGTATTTTTGCCGAACTTTTGACG GGACTCGCCGCCGCCCAGCCGGGGTTCCCGCTGGCGCA ATTGAAAACTTTCGTCGATCAGGAATTTGCCCAAATAA AACATGTCCTGCATGGCATTAGTTTGTTGGGGCAGTGC CCGGATAGCATCAACGCTGCGCTGATTTGCCGTGGCGA GAAIATGTCGATCGCCATTATGGCCGGCGTATTAGAAG CGCGCGGTCACAACGTTACTGTTATCGATCCGGTCGAA AAACTGCTGGCAGTGGGGCATTACCTCGAATCTACCGT CGATATTGCTGAGTCCACCCGCCGTATTGCGGCAAGCC GCATTCCGGCTGATCACATGGTGCTGATGGCAGGTTTC ACCGCCGGTAATGAAAAAGGCGAACTGGTGGTGCTTGG ACGCAACGGTTCCGACTACTCTGCTGCGGTGCTGGCTG CCTGTTTACGCGCCGATTGTTGCGAGATTTGGACGGAC GTTGACGGTCTATACCTGCGACCCGCGTCAGGTGCC CGATGCGAGGTTGTTGAAGTCGATGTCCTACCAGGAAG CGATGGAGCTTTCCTACTTCGGCGCTAAAGTTCTTCAC CCCCGCACCATTACCCCCATCGCCCAGTTCCAGATCCC TTGCCTGATTAAAAATACCGGAAATCCTCAAGCACCAG GTACGCTCATTGGTGCCAGCCGTGATGAAGACGAATTA CCGGTCAGGGCTTTCCAATCTGAATAACATGGCAAT GTTCAGCGTTTCTGGTCCGGGGATGAAAGGGATGGTCG GCATGGCGGCGCGCGTCTTTGCAGCGATGTCACGCGCC CGTATTTCCGTGGTGCTGATTACGCAATCATCTTCCGA ATACAGCATCAGTTTCTGCGTTCCACAAAGCGACTGTG TGCGAGCTGAACGGGCAATGCAGGAAGAGTTCTACCTG GAACTGAAAGAAGGCTTACTGGAGCCGCTGGCAGTGAC GGAACGGCTGGCCATTATCTCGGTGGTAGGTGATGGTA TGCGCACCTTGCGTGGGATCTCGGCGAAATTCTTTGCC GCACTGGCCCGCGCCAATATCAACATTGTCGCCATTGC TCAGGGATCTTCTGAACGCTCAA-TCTCTGTCGTGGTAA ATAACGATGATGCGACCACTGGCGTGCGCGTTACTCAT CAGATGCTGTTCA2ATACCGATCAGGTTATCGAGTG3TT 188 WO 2004/108894 PCT/US2004/017513 TGTGATTGGCGTCGGTGGCGTTGGCGGTGCGCTGCTGG AGCAACTGAAGCGTCAGCAAAGCTGGCTGAAGAATAAA CATATCGACTTACGTGTCTGCGGTGTTGCCAACTCGAA GGCTCTGCTCACCAATGTACATGGCCTTAATCTGGAAA ACTGGCAGGAAGAACTGGCGCAAGCCAAAGAGCCGTTT AATCTCGGGCGCTTAATTCGCCTCGTGAAAGAATATCA TCTGCTGAACCCGGTCATTGTTGACTGCACTTCCAGCC AGGCAGTGGCGGATCAATATGCCGACTTCCTGCGCGAA GGTTTCCACGTTGTCACGCCGAACAAAAAGGCCAACAC CTCGTCGATGGATTACTACCATCAGTTGCGTTATGCGG CGGAAAAATCGCGGCGTAAATTCCTCTATGACACCAAC GTTGGGGCTGGATTACCGGTTATTGAGAACCTGCAAAA TCTGCTCAATGCAGGTGATGAATTGATGAAGTTCTCCG GCATTCTTTCTGGTTCGCTTTCTTATATCTTCGGCAAG TTAGACGAAGGCATGAGTTTCTCCGAGGCGACCACGCT GGCGCGGGAAATGGGTTATACCGAACCGGACCCGCGAG ATGATCTTTCTGGTATGGATGTGGCGCGTAAACTATTG ATTCTCGCTCGTGAAACGGGACGTGAACTGGAGCTGGC GGATATTGAAATTGAACCTGTGCTGCCCGCAGAGTTTA ACGCCGAGGGTGATGTTGCCGCTTTTATGGCGAATCTG TCACAACTCGACGATCTCTTTGCCGCGCGCGTGGCGAA GGCCCGTGATGAAGGAAAAGTTTTGCGCTATGTTGGCA ATATTGATGAAGATGGCGTCTGCCGCGTGAAGATTGCC GAAGTGGATGGTAATGATCCGCTGTTCAAAGTGAAAAA TGGCGAAAACGCCCTGGCCTTCTATAGCCACTATTATC AGCCGCTGCCGTTGGTACTGCGCGGATATGGTGCGGGC AATGACGTTACAGCTGCCGGTGTCTTTGCTGATCTGCT ACGTACCCTCTCATGGAAGTTAGGAGTCTGA metA Mycobacterium AL021841.1 ATGACGATCTCCGATGTACCCACCCAGACGCTGCCCGC 50 tuberculosis CGAAGGCGAAATCGGCCTGATAGACGTCGGCTCGCTGC (can be used to AACTGGAAAGCGGGGCGGTGATCGACGATGTCTGTATC clone M. GCCGTGCAACGCTGGGGCAAATTGTCGCCCGCACGGGA smegmatis CAACGTGGTGGTGGTCTTGCACGCGCTCACCGGCGACT gene) CGCACATCACTGGACCCGCCGGACCCGGCCACCCCACC CCCGGCTGGTGGGACGGGGTGGCCGGGCCGGGTGCGCC GATTGACACCACCCGCTGGTGCGCGGTAGCTACCAATG TGCTCGGCGGCTGCCGCGGCTCCACCGGGCCCAGCTCG CTTGCCCGCGACGGAAAGCCTTGGGGCTCAAGATTTCC GCTGATCTCGATACGTGACCAGGTGCAGGCGGACGTCG CGGCGCTGCCGCGCTGGGCATCACCGAGGTCGCCGCC GTCGTCGGCGGCTCCATGGGCGGCGCCCGGGCCCTGGA ATGGGTGGTCGGCTACCCGGATCGGGTCCGAGCCGGAT TGCTGCTGGCGGTCGGTGCGCGTGCCACCGCAGACCAG ATCGGCTCGCAGCAACGCAAATCGCGGCCATCAAAGC CGACCCGGACTGGCAGAGCGGCGACTACCACGAGACGG GGAGGGCACCAGACGCCGGGCTGCGACTCGCCCGCCGC TTCGCGCACCTCACCTACCGCGGCGAGATCGAGCTCGA CACCCGGTTCGCCAACCACAACCAGGGCAACGAGGATC CGACGGCCGGCGGGCGCTACGCGGTGCAAAGTTATCTG GAACACCAAGGAGACAAACTGTTATCCCGGTTCGACGC CGGCAGCTACGTGATTCTCACCGAGGCGCTCAACAGCC ACGACGTCGGCCGCGGCCGCGGCGGGGTCTCCGCGGCT CTGCGCGCCTGCCCGGTGCCGGTGGTGGTGGGCGGCAT CACCTCCGACCGGCTCTACCCGCTGCGCCTGCAGCAGG 189 WO 2004/108894 PCT/US2004/017513 AGCTGGCCGACCTGCTGCCGGGCTGCGCCGGGCTGCGA GTCGTCGAGTCGGTCTACGGACACGACGGCTTCCTGGT GGAAACCGAGGCCGTGGGCGAATTGATCCGCCAGACAC TGGGATTGGCTGATCGTGAAGGCGCGTGTCGGCGG metA Mycobacterium Z98271.1 ATGACAATCTCCAAGGTCCCTACCCAGAAGCTGCCGGC 51 leprae (can be CGAAGGCGAGGTCGGCTTGGTCGACATCGGCTCACTTA used to clone CCACCGAAAGCGGTGCCGTCATCGACGATGTCTGCATC M. smegmatis GCCGTTCAGCGCTGGGGGGAATTGTCGCCCACGCGAGA gene) CAACGTAGTGATGGTACTGCATGCACTCACCGGTGACT CGCACATCACCGGGCCCGCCGGACCGGGACATCCCACA CCCGGCTGGTGGGACTGGATAGCTGGACCGGGTGCACC AATCGACACCAACCGCTGGTGCGCGATAGCCACCAACG TGCTGGGCGGTTGCCGTGGCTCCACCGGCCCTAGTTCG CTTGCCCGCGACGGAAAGCCTTGGGGTTCAAGATTTCC GCTGATATCTATACGCGACCAGGTAGAGGCAGATATCG CTGCACTGGCCGCCATGGGAATTACAAAGGTTGCCGCC GTCGTTGGAGGATCTATGGGCGGGGCGCGTGCACTGGA ATGGATCATCGGCCACCCGGACCAAGTCCGGGCCGGGC TGTTGCTGGCGGTCGGTGTGCGCGCCACCGCCGACCAG ATCGGCACCCAAACCACCCAAATCGCAGCCATCAAGAC AGACCCGAACTGGCAAGGCGGTGACTACTACGAGACAG GGAGGGCACCAGAGAACGGCTTGACAATTGCCCGCCGC TTCGCCCACCTGACCTACCGCAGCGAGGTCGAGCTCGA CACCCGGTTTGCCAACAACAACCAAGGCAATGAGGACC CGGCGACGGGCGGGCGTTACGCAGTGCAGAGTTACCTA GAGCACCAGGGTGACAAGCTATTGGCCCGCTTTGACGC AGGCAGCTACGTGGTCTTGACCGAAACGCTGAACAGCC ACGACGTTGGCCGGGGCCGCGGAGGGATCGGTACAGCG CTGCGCGGGTGCCCGGTACCGGTGGTGGTGGGTGGCAT TACCTCGGATCGGCTCTACCCACTGCGCTTGCAGCAGG AGCTGGCCGAGATGCTGCCGGGCTGCACCGGGCTGCAG GTTGTAGACTCCACCTACGGGCACGACGGCTTCCTGGT GGAATCCGAGGCCGTCGGCAAATTGATCCGTCAAACCC TCGAATTGGCCGACGTGGGTTCCAAGGAAGACGCGTGT TCGCAATGA metA Thermobifida NZ AAAQ010 GTGAGTCACGACACCACCCCTCCCCTTCCCGCGACCGG 52 fusca 00035.1 CGCGTGGCGGGAAGGGGACCCTCCGGGCGACCGGCGCT GGGTCGAACTGTCCGAACCTCTGCCGCTGGAGACCGGG GGTGAACTTCCCGGGGTCCGCCTGGCCTACGAGACGTG GGGCAGTCTCAACGAGGACCGCTCCAACGCGGTCCTCG TGCTGCACGCCCTCACCGGCGACAGCCACGTCGTAGGC CCGGAAGGCCCCGGGCACCCCAGCCCAGGCTGGTGGGA AGGCATCATCGGCCCCGGGCTGGCACTCGACACCGACC GGTACTTCGTGGTCGCCCCCAACGTGCTGGGCGGCTGC CAAGGCAGCACCGGGCCGTCGTCGACCGCGCCCGACGG CAGGCCGTGGGGGTCCCGGTTCCCGAGGATCACCATCC GCGACACGGTGCGCGCCGAGTTCGCCCTGCTGCGCGAA TTCGGCATCCACTCGTGGGCCGCGGTCCTCGGCGGGTC CATGGGCGGGATGCGTGCCCTCGAATGGGCGGCCACCT ACCCGGAGCGGGTGCGTCGCCTCCTGCTGCTGGCCAGC CCTGCGGCCAGCTCCGCACAGCAGATCGCCTGGGCCGC CCCCCAGTTGCACGCCATCCGGTCTGATCCGTACTGGC ACGGTGGCGACTACTACGACCGTCCCGGTCCGGGACCG 190 WO 2004/108894 PCT/US2004/017513 GTCACCGGCATGGGGATCGCCCGCCGTATCGCGCACAT CACCTACCGGGGTGCCACCGAGTTCGACGAACGGTTCG GCCGCAACCCCCAAGACGGGGAAGACCCGATGGCCGGG GGCCGGTTCGCTGTCGAGTCGTACCTGGACCACCACGC GGTCAAACTCGCCCGCCGGTTCGACGCGGGCAGCTACG TCGTGCTCACCCAAGCCATGAACACCCACGACGTGGGT CGGGGCCGCGGCGGGGTGGCGCAGGCGCTGCGCCGGGT CACCGCCCGCACCATGGTGGCCGGGGTGAGCAGCGACT TCCTGTACCCCCTCGCCCAGCAGCAGGAGCTCGCCGAC GGTATTCCCGGGGCCGACGAAGTCCGCGTCATCGAATC AGCCTCGGGCCACGACGGGTTCCTCACCGAGATCAACC AAGTGTCGGTCCTCATCAAAGAACTGCTGGCGCAG metA Coryne- AF052652 ATGCCCACCCTCGCGCCTTCAGGTCAACTTGAAATCCA 250 bacterium AGCGATCGGTGATGTCTCCACCGAAGCCGGAGCAATCA glutemicum, TTACAAACGCTGAAATCGCCTATCACCGCTGGGGTGAA TACCGCGTAGATAAAGAAGGACGCAGCAATGTCGTTCT CATCGAACACGCCCTCACTGGAGATTCCAACGCAGCCG ATTGGTGGGCTGACTTGCTCGGTCCCGGCAAAGCCATC AACACTGATATTTACTGCGTGATCTGTACCAACGTCAT CGGTGGTTGCAACGGTTCCACCGGACCTGGCTCCATGC ATCCAGATGGAAATTTCTGGGGTAATCGCTTCCCCGCC ACGTCCATTCGTGATCAGGTAAACGCCGAAAAACAATT CCTCGACGCACTCGGCATCACCACGGTCGCCGCAGTAG TACTACTTGGTGGTTCCATGGGTGGTGCCCGCACCCTA GAGTGGGCCGCAATGTACCCAGAAACTGTTGGCGCAGC TGCTGTTCTTGCAGTTTCTGCACGCGCCAGCGCCTGGC AAATCGGCATTCAATCCGCCCAAATTAAGGCGATTGAA AACGACCACCACTGGCACGAAGGCAACTACTACGAATC CGGCTGCAACCCAGCCACCGGACTCGGCGCCGCCCGAC GCATCGCCCACCTCACCTACCGTGGCGAACTAGAAATC GACGAACGCTTCGGCACCAAAGCCCAAAAGAACGAAAA CCCACTCGGTCCCTACCGCAAGCCCGACCAGCGCTTCG CCGTGGAATCCTACTTGGACTACCAAGCAGACAAGCTA GTACAGCGTTTCGACGCCGGCTCCTACGTCTTGCTCAC CGACGCCCTCAACCGCCACGACATTGGTCGCGACCGCG GAGGCCTCAACAAGGCACTCGAATCCATCAAAGTTCCA GTCCTTGTCGCAGGCGTAGATACCGATATTTTGTACCC CTACCACCAGCAAGAACACCTCTCCAGAAACCTGGGAA ATCTACTGGCAATGGCAAAAATCGTATCCCCTGTCGGC CACGATGCTTTCCTCACCGAAAGCCGCCAAATGGATCG CATCGTGAGGAACTTCTTCAGCCTCATCTCCCCAGACG AAGACAACCCTTCGACCTACATCGAGTTCTACATCTAA metA Escherichia NC_000913 ATGCCGATTCGTGTGCCGGACGAGCTACCCGCCGTCAA 251 coli TTTCTTGCGTGAAGAAAACGTCTTTGTGATGACAACTT CTCGTGCGTCTGGTCAGGAAATTCGTCCACTTAAGGTT CTGATCCTTAACCTGATGCCGAAGAAGATTGAAACTGA AAATCAGTTTCTGCGCCTGCTTTCAAACTCACCTTTGC AGGTCGATATTCAGCTGTTGCGCATCGATTCCCGTGAA TCGCGCAACACGCCCGCAGAGCATCTGAACAACTTCTA CTGTAACTTTGAAGATATTCAGGATCAGAACTTTGACG GTTTGATTGTAACTGGTGCGCCGCTGGGCCTGGTGGAG TTTAATGATGTCGCTTACTGGCCGCAGATCAAACAGGT GCTGGAGTGGTCGAAAGATCACGTCACCTCGACGCTGT_ 191 WO 2004/108894 PCT/US2004/017513 TTGTCTGCTGGGCGGTACAGGCCGCGCTCAATATCCTC TACGGCATTCCTAAGCAAACTCGCACCGAAAAACTCTC TGGCGTTTACGAGCATCATATTCTCCATCCTCATGCGC TTCTGACGCGTGGCTTTGATGATTCATTCCTGGCACCG CATTCGCGCTATGCTGACTTTCCGGCAGCGTTGATTCG TGATTACACCGATCTGGAAATTCTGGCAGAGACGGAAG AAGGGGATGCATATCTGTTTGCCAGTAAAGATAAGCGC ATTGCCTTTGTGACGGGCCATCCCGAATATGATGCGCA AACGCTGGCGCAGGAATTTTTCCGCGATGTGGAAGCCG GACTAGACCCGGATGTACCGTATAACTATTTCCCGCAC AATGATCCGCAAAATACACCGCGAGCGAGCTGGCGTAG TCACGGTAATTTACTGTTTACCAACTGGCTCAACTATT ACGTCTACCAGATCACGCCATACGATCTACGGCACATG AATCCAACGCTGGAT metA K233A C. glutamicun n/a atgcccaccctcgcgccttcaggtcaacttgaaatccaagcg atcggtgatgtctccaccgaagccggagcaatcattacaaac gctgaaatcgcctatcaccgctggggtgaataccgcgtagat aaagaaggacgcagcaatgtcgttctcatcgaacacgccctc actggagattccaacgcagccgattggtgggctgacttgctc ggtcccggcaaagccatcaacactgatatttactgcgtgatc tgtaccaacgtcatcggtggttgcaacggttccaccggacct ggctccatgcatccagatggaaatttctggggtaatcgcttc cccgccacgtccattcgtgatcaggtaaacgccgaaaaacaa ttcctcgacgcactcggcatcaccacggtcgccgcagtactt ggtggttccatgggtggtgcccgcaccctagagtgggccgca atgtacccagaaactgttggcgcagctgctgttcttgcagtt tctgcacgcgccagcgcctggcaaatcggcattcaatccgcc caaattaaggcgattgaaaacgaccaccactggcacgaaggc aactactacgaatccggctgcaacccagccaccggactcggc gccgcccgacgcatcgcccacctcacctaccgtggcgaacta gaaatcgacgaacgcttcggcaccgcagcccaaaagaacgaa aacccactcggtccctaccgcaagcccgaccagcgcttcgcc gtggaatcctacttggactaccaagcagacaagctagtacag cgtttcgacgccggctcctacgtcttgctcaccgacgccctc aaccgccacgacattggtcgcgaccgcggaggcctcaacaag gcactcgaatccatcaaagttccagtccttgtcgcaggcgta gataccgatattttgtacccctaccaccagcaagaacacctc tccagaaacctgggaaatctactggcaatggcaaaaatcgta tcccctgtcggccacgatgctttcctcaccgaaagccgccaa atggatcgcatcgtgaggaacttcttcagcctcatctcccca gacgaagacaacccttcgacctacatcgagttctacatctaa metY Thermobifida NZ AAAQ010 GTGGCACTGCGTCCTGACAGGAGCATCATGACCGCTGA 53 fusca 00035.1 AGACACCACGCCTGAATCCACCGCGGCCGACAAGTGGT CGTTCGAAACCAAGCAGATCCACGCCGGAGCGGCCCCC GATCCGGCCACCAACGCACGGGCCACCCCCATCTACCA GACCACGTCGTACGTCTTCCGGGACACGCAGCACGGGG CCGACCTGTTCTCGCTCGCAGAGCCGGGCAACATCTAC ACGCGGATCATGAACCCCACCCAGGACGTGCTGGAAAA GCGGGTCGCGGCTCTGGAAGGCGGGGTCGCCGCGGTCG CGTTCGCGTCCGGGTCAGCTGCCATCACCGCTGCCGTC CTCAACCTGGCGGGTGCGGGTGACCACATCGTGTCCAG CCCGTCCCTGTACGGCGGCACCTACAACCTGTTCCGCT ACACCCTGCCCAAGCTCGGCATCGAGGTCACCTTCATC AAAGACCAGGACGACCTCGACGAGTGGCGTGCCGCGGC CCGCGACAACACCAAGCTGTTCTTCGCGGAAACCCTGC CCAACCCGGCGAACAACGTGCTCGACGTGCGCGCGGTG GCGGACGTCGCCCACGAGGTCGGTGTGCCGCTCATGGT CGACAACACCGTGCCCACCCCCTACCTGCAGCGGCCCA 192 WO 2004/108894 PCT/US2004/017513 TCGACCACGGCGCGGACATCGTGGTGCACTCGGCCACC AAGTTCCTCGGCGGCCACGGCACCACGATCGCGGGCAT CGTGGTGGACGCCGGCACCTTCGACTTCGGCGCCCACG GCGACCGGTTCCCCGGCTTCGTCGAACCCGACCCCAGC TACCATGGCCTGAAGTACTGGGAGGCGCTGGGACCGGG TGCCTACGCTGCCAAGCTGCGGGTGCAACTGCTCCGCG ACACGGGCGCGGCCATCTCGCCGTTCAACAGCTTCCTG ATCCTCCAGGGGATCGAAACGCTGTCGCTGCGCATGGA ACGGCACGTCGCCAACGCCCAGGCGCTCGCCGAGTGGC TGGAATCCCGCGACGAGGTGGCGAAGGTCTACTACCCG GGCCTGCCTTCCAGCCCCTACTACGAGGCTGCAAAGAA GTACCTGCCCAAGGGGGCGGGTGCGATCGTCTCCTTTG AGCTGCACGGCGGTATCGAGGCCGGACGCGCCTTCGTG GACGGCACCGAACTGTTCAGCCAGCTCGTCAACATCGG TGACGTGCGCAGCCTCATCGTCCACCCGGCCAGCACCA CGCACAGCCAGCTCACCCCCGAAGAGCAGCTCGCCAGC GGGGTCACTCCCGGCCTCGTGCGGCTGTCCGTGGGCTT GGAACACGTTGACGACCTTCGCGCAGACTTGGAGGCCG GGCTGCGCGCAGCCAAGGCATACCAGTGA metY Mycobacterium ALO21841.1 ATGAGCGCCGACAGCAATAGCACCGACGCCGATCCGAC 54 tuberculosis CGCGCATTGGTCGTTCGAAACCAAACAGATACACGCTG (can be used to GTCAGCACCCTGATCCGACCACCAACGCCCGGGCTCTG clone M. CCGATCTATGCGACCACGTCGTACACCTTCGACGACAC smegmatis CGCGCACGCCGCCGCCCTGTTCGGACTGGAAITTCCGG gene) GCAATATCTACACCCGGATCGGCAACCCCACCACCGAC GTCGTCGAGCAGCGCATCGCCGCGCTCGAGGGCGGTGT GGCCGCGCTGTTCCTGTCGTCGGGGCAGGCCGCGGAGA CGTTCGCCATCTTGAACCTGGCCGGCGCGGGCGATCAC ATCGTGTCCAGCCCGCGCCTGTACGGCGGCACCTACGG CCTGTTCCACTATTCGCTGGCCAAGCTCGGCATCGAGG TCAGCTTCGTCGACGATCCGGACGATCTGGACACCTGG CAGGCGGCGGTACGGCCCAACACCAAGGCGTTCTTCGC CGAGACCATCTCCAACCCGCAGATCGACCTGCTGGACA CCCCGGCGGTTTCCGAGGTCGCCCATCGCAACGGGGTG CCGTTGATCGTCGACAACACCATCGCCACGCCATACCT GATCCAACCGTTGGCCCAGGGCGCCGACATCGTCGTGC ATTCGGCCACCAAGTACCTGGGCGGGCACGTGCCGCC ATCGCGGGTGTGATCGTCGACGGCGGCAACTTCGATTG GACCCAGGGCCGCTTCCCCGGCTTCACCACCCCCGACC CCAGCTACCACGGCGTGGTGTTCGCCGAGCTGGGTCCA CCGGCGTTTGCGCTCAAAGCTCGAGTGCAGCTGCTCCG TGACTACGGCTCGGCGGCTTCGCCGTTCAACGCGTTCT TGGTGGCGCAGGGTCTGGAAACGCTGAGCCTGCGGATC GAGCGGCACGTCGCCAACGCGCAGCGCGTCGCCGAGTT CCTGGCCGCCCGCGACGACGTGCTTTCGGTCAACTATG CGGGGCTGCCCTCCTCGCCCTGGCATGAGCGGGCCAAG AGGCTGGCGCCCAAGGGAACCGGGGCCGTGCTGTCCTT CGAGTTGGCCGGCGGCATCGAGGCCGGCAAGGCATTCG TGAACGCGTTGAAGCTGCACAGCCACGTCGCCAACATC GGTGACGTGCGCTCGCTGGTGATCCACCCGGCATCGAC CACTCATGCCCAGCTGAGCCCGGCCGAGCAGCTGGCGA CCGGGGTCAGCCCGGGCCTGGTGCGTTTGGCTGTGGGC ATCGAAGGTATCGACGATATCCTGGCCGACCTGGAGCT TGGCTTTGCCGCGGCCCGCAGATTCAGCGCCGACCCGC 193 WO 2004/108894 PCT/US2004/017513 AGTCCGTGGCGGCGTTCTGA metY C~or ne- AF220150 ATGCCAAAGTACGACAATTCCAATGCTGACCAGTGGGG 252 bacterium CTTTGAAACCCGCTCCATTCACGCAGGCCAGTCAGTAG glutamCUm ACGCACAGACCAGCGCACGAAACCTTCCGATCTACCAA TCCACCGCTTTCGTGTTCGACTCCGCTGAGCACGCCAA GCAGCGTTTCGCACTTGAGGATCTAGGCCCTGTTTACT CCCGCCTCACCAACCCAACCGTTGAGGCTTTGGAAAAC CGCATCGCTTCCCTCGAAGGTGGCGTCCACGCTGTAGC GTTCTCCTCCGGACAGGCCGCAACCACCAACGCCATTT TGAACCTGGCAGGAGCGGGCGACCACATCGTCACCTCC CCACGCCTCTACGGTGGCACCGAGACTCTATTCCTTAT CACTCTTAACCGCCTGGGTATCGATGTTTCCTTCGTGG AAAACCCCGACGACCCTGAGTCCTGGCAGGCAGCCGTT CAGCCAAACACCAAAGCATTCTTCGGCGAGACTTTCGC CAACCCACAGGCAGACGTCCTGGATATTCCTGCGGTGG CTGAAGTTGCGCACCGCAACAGCGTTCCACTGATCATC GACAACACCATCGCTACCGCAGCGCTCGTGCGCCCGCT CGAGCTCGGCGCAGACGTTGTCGTCGCTTCCCTCACCA AGTTCTACACCGGCAACGGCTCCGGACTGGGCGGCGTG CTTATCGACGGCGGAAAGTTCGATTGGACTGTCGAAAA GGATGGAAAGCCAGTATTCCCCTACTTCGTCACTCCAG ATGCTGCTTACCACGGATTGAAGTACGCAGACCTTGGT GCACCAGCCTTCGGCCTCAAGGTTCGCGTTGGCCTTCT ACGCGACACCGGCTCCACCCTCTCCGCATTCAACGCAT GGGCTGCAGTCCAGGGCATCGACACCCTTTCCCTGCGC CTGGAGCGCCACAACGAAAACGCCATCAAGGTTGCAGA ATTCCTCAACAACCACGAGAAGGTGGAAAAGGTTAACT TCGCAGGCCTGAAGGATTCCCCTTGGTACGCAACCAAG GAAAAGCTTGGCCTGAAGTACACCGGCTCCGTTCTCAC CTTCGAGATCAAGGGCGGCAAGGATGAGGCTTGGGCAT TTATCGACGCCCTGAAGCTACACTCCAACCTTGCAAAC ATCGGCGATGTTCGCTCCCTCGTTGTTCACCCAGCAAC CACCACCCATTCACAGTCCGACGAAGCTGGCCTGGCAC GCGCGGGCGTTACCCAGTCCACCGTCCGCCTGTCCGTT GGCATCGAGACCATTGATGATATCATCGCTGACCTCGA AGGCGGCTTTGCTGCAATCTAG metY D231A C. glutainicuin N/a ATGCCAAAGTACGACAATTCCAATGCTGACCAGTGGGGCTTT GAAACCCGCTCCATTCACGCAGGCCAGTCAGTAGACGCACAG ACCAGCGCACGAAACCTTCCGATCTACCAATCCACCGCTTTC GTGTTCGACTCCGCTGAGCACGCCAAGCAGCGTTTCGCACTT GAGGATCTAGGCCCTGTTTACTCCCGCCTCACCAACCCAACC GTTGAGGCTTTGGAAAACCGCATCGCTTCCCTCGAAGGTGGC GTCCACGCTGTAGCGTTCTCCTCCGGACAGGCCGCAACCACC AACGCCATTTTGAACCTGGCAGGAGCGGGCGACCACATCGTC ACCTCCCCACGCCTCTACGGTGGCACCGAGACTCTATTCCTT ATCACTCTTAACCGCCTGGGTATCGATGTTTCCTTCGTGGAA AACCCCGACGACCCTGAGTCCTGGCAGGCAGCCGTTCAGCCA AACACCAAAGCATTCTTCGGCGAGACTTTCGCCAACCCACAG GCAGACGTCCTGGATATTCCTGCGGTGGCTGAAGTTGCGCAC CGCAACAGCGTTCCACTGATCATCGACAACACCATCGCTACC GCAGCGCTCGTGCGCCCGCTCGAGCTCGGCGCAGACGTTGTC GTCGCTTCCCTCACCAAGTTCTACACCGGCAACGGCTCCGGA CTGGGCGGCGTGCTTATCGCCGGCGGAAAGTTCGATTGGACT GTCGAAAAGGATGGAAAGCCAGTATTCCCCTACTTCGTCACT CCAGATGCTGCTTACCACGGATTGAAGTACGCAGACCTTGGT GCACCAGCCTTCGGCCTCAAGGTTCGCGTTGGCCTTCTACGC GACACCGGCTCCACCCTCTCCGCATTCAACGCATGGGCTGCA 194 WO 2004/108894 PCT/US2004/017513 GTCCAGGGCATCGACACCCTTTCCCTGCGCCTGGAGCGCCAC AACGAAAACGCCATCAAGGTTGCAGAATTCCTCAACAACCAC GAGAAGGTGGAAAAGGTTAACTTCGCAGGCCTGAAGGATTCC CCTTGGTACGCAACCAAGGAAAAGCTTGGCCTGAAGTACACC GGCTCCGTTCTCACCTTCGAGATCAAGGGCGGCAAGGATGAG GCTTGGGCATTTATCGACGCCCTGAAGCTACACTCCAACCTT GCAAACATCGGCGATGTTCGCTCCCTCGTTGTTCACCCAGCA ACCACCACCCATTCACAGTCCGACGAAGCTGGCCTGGCACGC GCGGGCGTTACCCAGTCCACCGTCCGCCTGTCCGTTGGCATC GAGACCATTGATGATATCATCGCTGACCTCGAAGGCGGCTTT GCTGCAATCTAG metY G232A C. glutamicum N/a ATGCCAAAGTACGACAATTCCAATGCTGACCAGTGGGGCTTT GAAACCCGCTCCATTCACGCAGGCCAGTCAGTAGACGCACAG ACCAGCGCACGAAACCTTCCGATCTACCAATCCACCGCTTTC GTGTTCGACTCCGCTGAGCACGCCAAGCAGCGTTTCGCACTT GAGGATCTAGGCCCTGTTTACTCCCGCCTCACCAACCCAACC GTTGAGGCTTTGGAAAACCGCATCGCTTCCCTCGAAGGTGGC GTCCACGCTGTAGCGTTCTCCTCCGGACAGGCCGCAACCACC AACGCCATTTTGAACCTGGCAGGAGCGGGCGACCACATCGTC ACCTCCCCACGCCTCTACGGTGGCACCGAGACTCTATTCCTT ATCACTCTTAACCGCCTGGGTATCGATGTTTCCTTCGTGGAA AACCCCGACGACCCTGAGTCCTGGCAGGCAGCCGTTCAGCCA AACACCAAAGCATTCTTCGGCGAGACTTTCGCCAACCCACAG GCAGACGTCCTGGATATTCCTGCGGTGGCTGAAGTTGCGCAC CGCAACAGCGTTCCACTGATCATCGACAACACCATCGCTACC GCAGCGCTCGTGCGCCCGCTCGAGCTCGGCGCAGACGTTGTC GTCGCTTCCCTCACCAAGTTCTACACCGGCAACGGCTCCGGA CTGGGCGGCGTGCTTATCGACGCCGGAAAGTTCGATTGGACT GTCGAAAAGGATGGAAACCCAGTATTCCCCTACTTCGTCACT CCAGATGCTGCTTACCACGGATTGAAGTACGCAGACCTTGGT GCACCAGCCTTCGGCCTCAAGGTTCGCGTTGGCCTTCTACGC GACACCGGCTCCACCCTCTCCGCATTCAACGCATGGGCTGCA GTCCAGGGCATCGACACCCTTTCCCTGCGCCTGGAGCGCCAC AACGAAAACGCCATCAAGGTTGCAGAATTCCTCAACAACCAC GAGAAGGTGGAAAAGGTTAACTTCGCAGGCCTGAAGGATTCC CCTTbGTACGCAACCAAGGAAAAGCTTGGCCTGAAGTACACC GGCTCCGTTCTCACCTTCGAGATCAAGGGCGGCAAGGATGAG GCTTGGGCATTTATCGACGCCCTGAAGCTACACTCCAACCTT GCAAACATCGGCGATGTTCGCTCCCTCGTTGTTCACCCAGCA ACCACCACCCATTCACAGTCCGACGAAGCTGGCCTGGCACGC GCGGGCGTTACCCAGTCCACCGTCCGCCTGTCCGTTGGCATC GAGACCATTGATGATATCATCGCTGACCTCGAAGGCGGCTTT GCTGCAATCTAG metK Mycobacterium Z80108.1 GTGAGCGAAAAGGGTCGGCTGTTTACCAGTGAGTCGGT 55 tuberculosis GACAGAGGGACATCCCGACAAGATCTGTGACGCCATCA (can be used to GCGACTCGGTTCTGGACGCGCTTCTAGCCGCGGACCCG clone M. CGCTCACGTGTCGCGGTCGAGACGCTGGTGACCACCGG smogmatis GCAGGTGCACGTGGTGGGTGAGGTGACCACCTCGGCTA gene) AGGAGGCGTTTGCCGACATCACCAACACGGTCCGCGCA CGGATCCTCGAGATCGGCTACGACTCGTCGGACAAGGG TTTCGACGGGGCGACCTGCGGGGTGAGCATCGGCATCG GCGCACAGTCACCCGACATCGCCCAGGGGGTCGACACC GCCCACGAGGCCCGGGTCGAGGGCGCGCCGATCCGCT GGACTCCCAGGGCGCCGGTGACCAGGGCCTGATGTTCG GCTACGCGATCAATGCCACCCCGGAACTGATGCCACTG CCCATCGCGCTGGCCCACCGACTGTCGCGGCGGCTGAC CGAGGTCCGCAAGACCGGGGTGCTGCCCTACCTGCGTC CGGATGGCAAGACGCAGGTCACTATCGCCTACGAGGAC AACGTTCCGGTGCGGCTGGATACCGTGGTCATCTCCAC CCAGCACGCGGCCGATATCGACCTGGAGAAGACGCTTG 195 WO 2004/108894 PCT/US2004/017513 ATCCCGACATCCGGGAAAAGGTGCTCAACACCGTGCTC GACGACCTGGCCCACGAAACCCTGGACGCGTCGACGGT GCGGGTGCTGGTGAACCCGACCGGCAAGTTCGTGCTCG GCGGGCCGATGGGCGATGCCGGGCTCACCGGCCGCAAG ATCATCGTCGACACCTACGGCGGCTGGGCCCGCCACGG CGGCGGCGCCTTCTCCGGCAAGGATCCGTCCAAGGTGG ACCGGTCGGCGGCGTACGCGATGCGCTGGGTGGCCAAG AATGTCGTCGCCGCCGGGTTGGCTGAACGGGTCGAGGT GCAGGTGGCCTACGCCATCGGTAAAGCGGCACCCGTCG GCCTGTTCGTCGAGACGTTCGGTACCGAGACGGAAGAC CCGGTCAAGATCGAGAAGGCCATCGGCGAGGTATTCGA CCTGCGCCCCGGTGCCATCATCCGCGACCTGAACCTGT TGCGCCCGATCTATGCGCCGACCGCCGCCTACGGGCAC TTCGGCCGCACCGACGTCGAATTACCGTGGGAGCAGCT CGACAAGGTCGACGACCTCAAGCGCGCCATCTAG I metK Mycobacterium AL583918.1 GTGAGTGAGAAGGGTCGGCTGTTCACTAGCGAGTCGGT 56 leprae (can be GACTGAGGGACATCCCGACAAGATCTGTGATGCGATCA used to clone GCGACTCGATCCTTGACGCACTTTTGGCGGAGGATCCT M. smegmatis TGCTCACGTGTCGCGGTCGAGACGTTGGTCACCACCGG gene) GCAGGTGCATGTGGTGGGTGAAGTGACGACGTTGGCCA AGACGGCGTTCGCTGATATCAGTAATACGGTCCGCGAA CGTATTCTCGATATCGGCTACGACTCGTCGGACAAGGG CTTCGATGGGGCGTCGTGCGGAGTTCATTGGCATCG GCGCTCAGTCGTCTGACATTGCTCAAGGCGTCAATACC GCCCATGAAGTACGCGTCGAGGCGCGGCGGATCCGCT GGACGCCCAGGGTGCTGGTGACCAAGGCCTGATGTTCG GTTACGCGATCAATGACACCCCGGAACTGATGCCGCTA CCGATTGCACTGGCCCACCGACTGGCGCGAAGGCTGAC CGAGGTACGCAGAACGGCGTGCTGCCCTACCTGCGTT CCGACGGCAAGACCCAGGTCACTATCGCCTACGAGGAC AATGTCCCAGTGCGTTTGGACACTGTGGTCATCTCCAC TCAGCACGCCGCTGGTGTCGACCTGGATGCCACGCTGG CTCCTGATATCCGGGAGAAGGTGCTCAACACCGTTATT GACGATCTGTCTCATGACACCTTGGATGTATCGTCGGT GCGGGTGCTGGTAAACCCGACCGGCAAGTTCGTGCTAG GTGGGCCGATGGGCGATGCCGGGCTCACCGGTCGCAAG ATCATCGTCGACACCTACGGTGGCTGGGCGCGTCACGG CGGCGGCGCCTTCTCTGGCAAGGATCCGTCCAAGGTGG ACCGGTCGGCAGCCTACGCGATGCGCTGGGTGGCCAAG AACATCGTCGCTGCCGGGCTGGCGGAGCGAATCGAGGT GCAGGTGGCATACGCCATCGGCAAAGCCGCCCCGGTCG GTTTGTTCGTCGAGACCTTTGGCACTGAGGCGGTCGAT CCGGCCAAAATCGAGAAAGCCATCGGCGAGGTGTTCGA TCTGCGTCCCGGCGCGATCATCCGCGACCTGCATCTGC TGCGCCCAATTTACGCGCAAACCGCTGCCTATGGGCAC TTCGGTCGCACTGACGTCGAACTGCCATGGGAGCAGCT CAACAAAGTCGACGATCTCAAGCGCGCCATC metK Thermobifida NZ AAAQOIO GTGTCCCGTCGACTTTTCACCTCCGAGTCGGTCACCGA 57 fusca 00031.1 AGGCCACCCCGACAAGATCGCTGACCAGATCAGTGACG CGATCCTCGACTCGATGCTCAGGGATGACCCCCACAGC CGGGTCGCGGTGGAGACCCTCATCACGACCGGCCTGGT CCACGTCGCCGGCGAAGTGACCACATCCACCTACGTCG ACATTCCCACCATCATCCGCGAGAAGATCCTGGAGATC 196 WO 2004/108894 PCT/US2004/017513 GGCTACGACTCCTCGGCCAAGGGGTTCGACGGCGCCTC CTGCGGAGTGTCCGTGTCGATCGGCGGGCAGTCACCCG ACATCGCCCAGGGCGTCGACAXCGCCTACGAGGCCCGG GAGGAA-GAGATCTTCGACGACCTCGACCGGCAGGGCGC AGGCGACCAAGGCCTCATGTTCGGCTACGCCAACAACG AGACCCCGGAGCTGATGCCGCTGCCGATCACGCTGGCC CACGCCCTGTCGCAGCGACTCGCTGAAGTGCGCCGCGA CGGGACCATCCCCTACCTGCGGCCCGACGGCAAGACCC AGGTCACCGTGGAGTACGACGGGAACCGGCCCGTCCGG TTGGACACCGTGGTGGTCTCCAGCCAGCACGCGCCCGA CATCGACCTGCGGGAACTGCTCACCCCGGACATCAAGG AGCACGTGGTCGACCCGGTAGTGGCCCGCTACAACCTG GAGGCCGACAACTACCGACTGCTCGTCAACCCCACCGG ACGGTTCGAGATCGGCGGCCCGATGGGTGACGCCGGGC TGACCGGCCGCAAGATCATCGTCGACACCTACGGCGGC TACGCCCGCCACGGCGGTGGCGCGTTCTCCGGCAAGGA CCCGTCCAGTGGACCGCTCCGCCGCGTACGCCACCC GCTGGGTCGCGAAGAACATCGTCGCCGCCGGGCTCGCC GACCGAGTCGAAGTCCAGGTCGCCTACGCGATCGGCAA AGCCCACCCGGTCGGCGTGTTCCTGGAGACCTTCGGCA CCGAGAAGGTCGCCCCGGAGCAGTTGGAGAAGGCGGTG CTGGAGGTCTTCGACCTGCGTCCCGCCGCGATCATCCG CGACCTGGACCTGCTGCGCCCCATCTACTCCCAGACCT CGGTCTACGGCCACTTCGGCCGGGAGCTGCCCGACTTC ACCTGGGAGCGCACCGACCGCGTCGACGCTCTCAAGGC TGCCGTGGGCGCCTGA metK Streptomyces AL9391 09.1 GTGTCCCGTCGCCTGTTCACCTCGGAGTCCGTGACCGA 58 coelicolor AGGTCACCCCGACAAGATCGCTGACCAGATCAGCGACA CGATTCTCGACGCGCTTCTGCGCGAGGACCCGACCTCC CGGGTCGCCGTCGAAACCCTGATCACCACCGGTCTGGT GCACGTGGCCGGCGAGGTCACCACCAAGGCCTACGCGG ACATCGCCAACCTGGTCCGCGGCAAGATCCTGGAGATC GGCTACGACTCCTCCAAGAAGGGCTTCGACGGCGCCTC CTGCGGCGTCTCGGTCTCCATCGGCGCGCAGTCCCCGG ACATCGCGCAGGGCGTCGACACGGCGTACGAGAA.CCGG GTGGAGGGCGACGAGGACGAGCTGGACCGCCAGGGTGC CGGCGACCAGGGCCTGATGTTCGGCTACGCGTCCGACG AGACGCCGACGCTGATGCCGCTGCCGGTCTTCCTGGCG CACCGCCTGTCC7AAGCGCCTGTCCGAGGTCCGCAAGAA CGGCACCATCCCGTACCTGCGTCCGGACGGCAAGACCC AGGTCACCATCGAGTACGACGGCGACAAGGCCGTCCGT CTGGACACGGTCGTCGTCTCCTCCCAGCACGCGAGCGA CATCGACCTGGAGTCGCTGCTGGCGCCGGACATCAAGG AGTTCGTCGTCGAGCCGGAGCTO)AAGGCGCTCCTCGAG GACGGCATCAAGATCGACACGGAGAACTACCGCCTCCT GGTCAACCCGACCGGCCGCTTCGAGATCGGCGGCCCGA TGGGCGACGCCGGTCTGACCGGCCGCAAGATCATCATC GACACCTACGGCGGCATGGCCCGGCACGGCGGCGGCGC CTTCTCCGGCAAGGACCCGTCGAAGGTCGACCGCTCCG CGGCGTACGCGATGCGCTGGGTCGCCAAGAACGTCGTG GCCGCGGGTCTCGCCGCGCGCTGCGAGGTCCAGGTCGC CTACGCCATCGGCAAGGCCGAGCCCGTGGGTCTGTTCG TGGAGACCTTCGGTACCGCCAAGGTCGACACCGAGAAG IATCGAGAAGGCGATCGACGAGGTCTTCGACCTGCGCCCI 197 WO 2004/108894 PCT/US2004/017513 GGCCGCCATCATCCGCGCTCTCGACCTGCTCCGCCCGA TCTACGCCCAGACCGCGGCGTACGGTCACTTCGGCCGT GAGCTGCCCGACTTCACGTGGGAGCGCACCGACCGCGT GGACGCGCTGCGCGAGGCCGCGGGCCTGTAA metK Co-ryne- AP005279 GTGGCTCAGCCAACCGCCGTCCGTTTGTTCACCAGTGA 253 bacterium ATCTGTAACTGAGGGACATCCAGACAAAATATGTGATG glutamicum CTATTTCCGATACCATTTTGGACGCGCTGCTCGAAAAA GATCCGCAGTCGCGCGTCGCAGTGGAAACTGTGGTCAC CACCGGAATCGTCCATGTTGTTGGCGAGGTCCGTACCA GCGCTTACGTAGAGATCCCTCAATTAGTCCGCAACAAG CTCATCGAAATCGGATTCAACTCCTCTGAGGTTGGATT CGACGGACGCACCTGTGGCGTCTCAGTATCCATCGGTG AGCAGTCCCAGGAAATCGCTGACGGCGTGGATAACTCC GACGAAGCCCGCACCAACGGCGACGTTGAAGAAGACGA CCGCGCAGGTGCTGGCGACCAGGGCCTGATGTTCGGCT ACGCCACCAACGAAACCGAAGAGTACATGCCTCTTCCT ATCGCGTTGGCGCACCGACTGTCACGTCGTCTGACCCA GGTTCGTAAAGAGGGCATCGTTCCTCACCTGCGTCCAG ACGGAAAAACCCAGGTCACCTTCGCATACGATGCGCAA GACCGCCCTAGCCACCTGGATACCGTTGTCATCTCCAC CCAGCACGACCCAGAAGTTGACCGTGCATGGTTGGAAA CCCAACTGCGCGAACACGTCATTGATTGGGTAATCAAA GACGCAGGCATTGAGGATCTGGCAACCGGTGAGATCAC CGTGTTGATCAACCCTTCAGGTTCCTTCATTCTGGGTG GCCCCATGGGTGATGCGGGTCTGACCGGCCGCAAGATC ATCGTGGATACCTACGGTGGCATGGCTCGCCATGGTGG TGGAGCATTCTCCGGTAAGGATCCAAGCAAGGTGGACC GCTCTGCTGCATACGCCATGCGTTGGGTAGCAAAGAAC ATCGTGGCAGCAGGCCTTGCTGATCGCGCTGAAGTTCA GGTTGCATACGCCATTGGACGCGCAAAGCCAGTCGGAC TTTACGTTGAAACCTTTGACACCAACAAGGAAGGCCTG AGCGACGAGCAGATTCAGGCTGCCGTGTTGGAGGTCTT TGACCTGCGTCCAGCAGCAATTATCCGTGAGCTTGATC TGCTTCGTCCGATCTACGCTGACACTGCTGCCTACGGC CACTTTGGTCGCACTGATTTGGACCTTCCTTGGGAGGC TATCGACCGCGTTGATGAACTTCGCGCAGCCCTCAAGT TGGCC metK Escherichia U28377 ATGGCAAAACACCTTTTTACGTCCGAGTCCGTCTCTGA 254 coli AGGGCATCCTGACAAAATTGCTGACCAAATTTCTGATG CCGTTTTAGACGCGATCCTCGAACAGGATCCGAAAGCA CGCGTTGCTTGCGAAACCTACGTAAAAACCGGCATGGT TTTAGTTGGCGGCGAAATCACCACCAGCGCCTGGGTAG ACATCGAAGAGATCACCCGTAACACCGTTCGCGAAATT GGCTATGTGCATTCCGACATGGGCTTTGACGCTAACTC CTGTGCGGTTCTGAGCGCTATCGGCAAACAGTCTCCTG ACATCAACCAGGGCGTTGACCGTGCCGATCCGCTGGAA CAGGGCGCGGGTGACCAGGGTCTGATGTTTGGCTACGC AACTAATGAAACCGACGTGCTGATGCCAGCACCTATCA CCTATGCACACCGTCTGGTACAGCGTCAGGCTGAAGTG CGTAAAAACGGCACTCTGCCGTGGCTGCGCCCGGACGC GAAAAGCCAGGTGACTTTTCAGTATGACGACGGCAAAA TCGTTGGTATCGATGCTGTCGTGCTTTCCACTCAGCAC TCTGAAGAGATCGACCAGAAATCGCTGCAAGAAGCGGT 198 WO 2004/108894 PCT/US2004/017513 AATGGAAGAGATCATCAAGCCAATTCTGCCCGCTGAAT GGCTGACTTCTGCCACCAAATTCTTCATCAACCCGACC GGTCGTTTCGTTATCGGTGGCCCAATGGGTGACTGCGG TCTGACTGGTCGTAAAATTATCGTTGATACCTACGGCG GCATGGCGCGTCACGGTGGCGGTGCATTCTCTGGTAAA GATCCATCAAAAGTGGACCGTTCCGCAGCCTACGCAGC ACGTTATGTCGCGAAAAACATCGTTGCTGCTGGCCTGG CCGATCGTTGTGAAATTCAGGTTTCCTACGCAATCGGC GTGGCTGAACCGACCTCCATCATGGTAGAAACTTTCGG TACTGAGAAAGTGCCTTCTGAACAACTGACCCTGCTGG TACGTGAGTTCTTCGACCTGCGCCCATACGGTCTGATT CAGATGCTGGATCTGCTGCACCCGATCTACAAAGAAAC CGCAGCATACGGTCACTTTGGTCGTGAACATTTCCCGT GGGAAAAAACCGACAAAGCGCAGCTGCTGCGCGATGCT GCCGGTCTGAAG metC Mycobacterium AL021428.1 TGCAGGACAGCATCTTCAATCTGTTGACCGAGGAACA 130 tuberculosis CTTCGGGGTCGCAACACGCTCAAGTGGAACTATTTCG (use this to GCCCGATGTAGTGCCACTGTGGCTGGCGGAGATGGAC clone M. TTTCCCACCGCACCGGCTGTGCTCGACGGGGTGCGGGC smegmatis TGCGTCGACAACGAGGAGTTCGGCTACCCGCCGTTGG ene) GCGAGGACAGCCTGCCGAGGGCGACGGCCGATTGGTGC CGACAACGCTACGGTTGGTGCCCCCGACCGGACTGGGT CCGCGTCGTGCCGGATGTCCTGAAGGGGATGGAAGTCG TCGTCGAATTCCTTACCCGGCCGGAGAGTCCGGTCGCG TTGCCGGTTCCGGCTTACATGCCGTTTTTCGACGTCCT CACGTCACCGGCCGCCAACGAGTGGAAGTCCCAATGG TGCAGCAAGACTCGGGACGCTACCTGCTGGACCTGGAC CCTCTGCAGGCCGCGTTCGTCCGCGGTGCCGGATCGGT ATTATCTGCAATCCGAATAACCCACTGGGTACGGCGT TCACCGAAGCCGAGCTACGTGCGATTGTGGATATCGCG GCCCGCCACGGCGCCCGGGTGATCGCGGATGAGATCTG TGCACCGGTGGTCTACGGATCGCGCCATGTCGCCGCCG CTTCGGTGTCGGAGGCGGCGGCTGAAGTCGTGGTCACG TGGTGTCGGCGTCCAAAGGCTGGAACTTGCCGGGTCT TATGTGCGCTCAGGTGATCCTGTCTAACCGCCGTGACG CCCACGACTGGGACCGGATCGGACATGTTGCACCGCATG GCGCATCAACGGTCGGTATCCGCGCGAACATCGCCGC CTACCATCATGGCGAATCTTGGTTGGACGAGCTGCTCC CTTATCTGCGGGCGAACCGTGATCATCTGGCACGGGCG CTGCCGGAGTTAGCTCCCGGGGTAGAGGTCAACGCTCC GACGGTACCTACCTGTCGTGGGTGGATTTCCGTGCGC TGGCTCTGCCGTCTGAACCGGCGGAATACCTGCTCTCG AGGCGAAGGTGGCGCTGTCGCCTGGCATTCCGTTCGG CGCCCGTGGGCTCGGGATTTGCGCGGCTGAACTTCG CCACCACCCGCGCAATACTGGATCGGGCGATCGAGGCT TCGCGGCCGCCCTGCGCGACATCATCGATTAA metO Bifidobacterium NZAABM02O ATGAGCATGAACAACATTCCCCAGTCAACGACTGTGAG 131 lon gum 00609.1 CAACGCAACCGCCGACGTCTCTTGCTTTCATGCCAATC CATCGACGTGACGACCATCGAGGATCTGAAGCAGGTC GGTTCGGATAAATGGACCCGCTACCCCGGCTGCATCGG CGCATTCATCGCCGAGATGGATTACGGTCTGGCACCAT CGTGGCCGAAGCCATCGAAGAGGCCACCGAACGTGGC CGCTCGGCTACATTCCCGACCCGTGGAAGAAGGAGGT 199 WO 2004/108894 PCT/US2004/017513 CGCCCGCTCGTGCGCCGCATGGCAGCGCCGCTACGGCT GGGATGTGGATCCGACGTGCATCCGCCCGGTGCCGGAC GTGCTGGAGGCGTTCGAA GTGTTCCTGCGCGAGATCGT GCGCGCCGGCAACTCCATCGTGGTACCGACTCCGGCCT ATATGCCGTTCCTGAGCGTGCCGCGTCTGTATGGCGTG zAGGTCCTTGAGATTCCGATGCTGTGCGCGGGCGCCAG CGAGAGCAGCGGGCGCAATGATGAZATGGCTGTTCGATT TCGACGCCATTGAGCAGGCGTTCGCG)AACGGCTGCCAT "CCTTCGTGCTGTGCAACCCGCACAACCCGATCGGCAA "GTATTGACGCGCGAGGA7AATGCTGCGATTGTCCGATC TGGCCGCCA1GTAC1ACGTGCGTATATTCTCCGATGAG ATTCACGCGCCGTTCGTCTACCAAGGCCACACGCATGT CC1ATTCGCCTCAIATCAACCGGCAGACGGCCATGCAGG CTTTCACCTCCACTTCAGCCTCGA7AGTCGTTCAACATT CCCGGCACCAAGTGCGCGCAGGTGATTCTCACCAATCC GGACGATCTGGAACTATGGATGAGGAACGCGGAATGGT CCGAGCACCAGACGGCCACCATCGGTGCCATAGCCACC PCTGCGGCCTATGACGGCGGCGCGGCATGGTTCGAGGG CGTGATGGCATATATCGAGCGCAATATCGCGCTGGTCA ACGAGCAGATGCGCACGAGATTCGCCAAGGTGCGCTAT TGGAGCCGCAGGGCACGTATATCGCGTGGCTGGATTT CTCGCCACTGGGCATCGGCGACCCGGCCAACTATTTCT TTAAGAAGGCCAACGTGGCGTTGACAGACGGCCGTGAA TGCGGCGAGGTCGGGCGCGGTTGCGTGCGTATGAACTT CGCCATGCCCTACCCGCTACTGGAGGAATGCTTCGA.CC GCATGGCCGCCGCACTTGAGGCGGACGGGTTGTTGTAG metC Lactobacillus AL935262 ATGCAATATGATTTTAATAAGGTTATAAATCGTAGAGG 132 lantarum GACATACAGTACTCAGTGGGATTATATTCAAGATCGCT TTGGTCGTTCTGACATTCTACCATTTTCAATTTCAGAT ACTGACTTTCCGGTTCCCGTTGGCGTCCAAGAGGCGCT TGAACAGCGTATTAAGCATCCTATTTATGGTTATACAC CTGGAAT1AATGAGGATTACAAAAATAGTATTATTAAT TGGTTTAGCTCTCAAAATCAAGTTACTATAAACCCAGA TTGGATTTTATATAGTCCCAGTGTTGTTTTTTCAATTG CCACCTTTATTCGAATGAAGTCAGCCGTTGGAGAAAGT GTAGCGGTCTTCACTCCTATGTATGACGCCTTTTATCA TGTGATTGAGGATAATCAGCGGGTGTTAGCGCCGGTCA ACTAGGCAGTGCACAACAAGACTATAGTATCGATTGG CATACTTTGAAAGCTGTTTTAAAGCAAACAGCAACAAA ATTTTACTTTTGACTAATCCACATAATCCTACCGGGA AGGTCTTTTCAGATGATGA1ATTGAAGCATATAGTTGCA CTATGTCAACAATATAATGTCTTTATAATTTCAGATGA TATTCATAAGGACATTGTGTATCAAAAGGCAGCATATA CGCCTGTACCGAATTTACAACTAAGAATGTGGTCCTA TGTTGTTCAGCTACTAAAACTTTTAATACCCCTGGGTT ATTGGCGCATATTTATTTGAGCCTGAGGCTGAACTAC GTGAGATGTTTTTATGTGAATTA2AAGCAAAAAAATGCT TTATCATCAGCTAGCATCCTTGGAATTGAATCTCAGAT GGCTGCTTATAATACTGGAAGTGACTATTTAGTACAAC TCATAALCGTATTTGCAAAATA2ACTTTGATTATCTATCT ACTTTCTTAAAALAGTCAGTTACCAGAGATTAGATTTAA GCAGCCTGAAGCGACTTATTTGGCTTGGATGGATGTCT CGCAATTGGGGCTAACGGCTGAAAAACTACAAGATAA CTTGTTAATACGGGTCGAGTTGGGATCATGTCGGGGACI 200 WO 2004/108894 PCT/US2004/017513 AACATATGGTGACAGTCATTATTTACGTATGAATATTG CTTGTCCTATTTCTAAATTGCAGGAAGGACTGAAAAGA ATGGAGTACGGGATCCGTTCGTAA met Coryne- AF276227 TGCGATTTCCTGAACTCGAAGAATTGAAGAATCGCCG 255 bacterium GACCTTGAAATGGACCCGGTTTCCAGAAGACGTGCTTC glutamicum CTTTGTGGGTTGCGGAAAGTGATTTTGGCACCTGCCCG CAGTTGAAGGAAGCTATGGCAGATGCCGTTGAGCGCGA GGTCTTCGGATACCCACCAGATGCTACTGGGTTGAATG ATGCGTTGACTGGATTCTACGAGCGTCGCTATGGGTTT 3GCCCAAATCCGGAAAGTGTTTTCGCCATTCCGGATGT 3GTTCGTGGCCTGAAGCTTGCCATTGAGCATTTCACTA AGCCTGGTTCGGCGATCATTGTGCCGTTGCCTGCATAC CCTCCTTTCATTGAGTTGCCTAAGGTGACTGGTCGTCA 3GCGATCTACATTGATGCGCATGAGTACGATTTGAAGG AAATTGAGAAGGCCTTCGCTGACGGTGCGGGATCACTG TTGTTCTGCAATCCACACAACCCACTGGGCACGGTCTT TTCTGAAGAGTACATCCGCGAGCTCACCGATATTGCGG CGAAGTACGATGCCCGCATCATCGTCGATGAGATCCAC CGCCACTGGTTTATGAAGGCACCCATGTGGTTGCTGC TGGTGTTTCTGAGAACGCTGCAAACACTTGCATCACCA TCACCGCAACTTCTAAGGCGTGGAACACTGCTGGTTTG AAGTGTGCTCAGATCTTCTTCAGTAATGAAGCCGATGT 3AAGGCCTGGAAGAATTTGTCGGATATTACCCGTGACG 3TGTGTCCATCCTTGGATTGATCGCTGCGGAGACAGTG TACAACGAGGGCGAAGAATTCCTTGATGAGTCAATTCA 3ATTCTCAAGGACAACCGTGACTTTGCGGCTGCTGAAC TGGAAAAGCTTGGCGTGAAGGTCTACGCACCGGACTCC ACTTATTTGATGTGGTTGGACTTCGCTGGCACCAAGAT CGAAGAGGCGCCTTCTAAAATTCTTCGTGAGGAGGGTA AGGTCATGCTGAATGATGGCGCAGCTTTTGGTGGTTTC ACCACCTGCGCTCGTCTTAATTTTGCGTGTTCCAGAGA 3ACCCTTGAGGAGGGGCTGCGCCGTATCGCCAGCGTGT TGTAA metC Escherichia coli AE000383 ATGGCGGACAAAAAGCTTGATACTCAACTGGTGAATGC 56 AGGACGCAGCAAAAAATACACTCTCGGCGCGGTAAATA GCGTGATTCAGCGCGCTTCTTCGCTGGTCTTTGACAGT GTAGAAGCCAAAAAACACGCGACACGTAATCGCGCCAA TGGAGAGTTGTTCTATGGACGGCGCGGAACGTTAACCC ATTTCTCCTTACAACAAGCGATGTGTGAACTGGAAGGT GGCGCAGGCTGCGTGCTATTTCCCTGCGGGGCGGCAGC GGTTGCTAATTCCATTCTTGCTTTTATCGAACAGGGCG ATCATGTGTTGATGACCAACACCGCCTATGAACCGAGT CAGGATTTCTGTAGCAAAATCCTCAGCAAACTGGGCGT AACGACATCATGGTTTGATCCGCTGATTGGTGCCGATA TCGTTAAGCATCTGCAGCCAAACACTAAAATCGTGTTT CTGGAATCGCCAGGCTCCATCACCATGGAAGTCCACGA CGTTCCGGCGATTGTTGCCGCCGTACGCAGTGTGGTGC CGGATGCCATCATTATGATCGACAACACCTGGGCAGCC GGTGTGCTGTTTAAGGCGCTGGATTTTGGCATCGATGT TTCTATTCAAGCCGCCACCAAATATCTGGTTGGGCATT CAGATGCGATGATTGGCACTGCCGTGTGCAATGCCCGT TGCTGGGAGCAGCTACGGGAAAATGCCTATCTGATGGG CCAGATGGTCGATGCCGATACCGCCTATATAACCAGCC 201 WO 2004/108894 PCT/US2004/017513 GTGGCCTGCGCACATTAGGTGTGCGTTTGCGTCAACAT CATGAAAGCAGTCTGAAAGTGGCTGAATGGCTGGCAGA ACATCCGCAAGTTGCGCGAGTTAACCACCCTGCTCTGC CTGGCAGTAAAGGTCACGAATTCTGGAAACGAGACTTT ACAGGCAGCAGCGGGCTATTTTCCTTTGTGCTTAAGAA AAAACTCAATAATGAAGAGCTGGCGAACTATCTGGATA ACTTCAGTTTATTCAGCATGGCCTACTCGTGGGGCGGG TATGAATCGTTGATCCTGGCAAATCAACCAGAACATAT CGCCGCCATTCGCCCACAAGGCGAGATCGATTTTAGCG 3GACCTTGATTCGCCTGCATATTGGTCTGGAAGATGTC GACGATCTGATTGCCGATCTGGACGCCGGTTTTGCGCG AATTGTA dh Streptomyces AL939121.1 3TGCCCGCCGTGCCAGAAAGGGCCCCTGTGACGACGCG 133 coelicolor AAGCGAGACGCAGTCCACCCTCGACCACCTCCTCACCG AGATCGAGCTGCGCAACCCGGCCCAGCCCGAGTTCCAC CAGGCGGCCCACGAGGTCCTGGAGACCCTGGCGCCGGT CGTCGCGGCCCGCCCCGAGTACGCCGAGCCGGGCCTCA TCGAGCGGCTGGTCGAGCCGGAGCGCCAGGTGATGTTC CGGGTGCCGTGGCAGGACGACCAGGGCCGCGTCCGCGT CAACCGGGGCTTCCGGGTCGAGTTCAACAGCGCGCTGG 3CCCGTACAAGGGCGGTCTGCGCTTCCATCCGTCCGTC AACCTGGGCGTCATCAAGTTCCTGGGCTTCGAGCAGAT CTTCAAGAACGCGCTGACCGGCCTCGGCATCGGCGGCG 3CAAGGGCGGCAGCGACTTCGACCCGCACGGGCGCAGC 3ACGCGGAGGTCATGCGGTTCTGCCAGTCCTTCATGAC 3GAGCTGTACCGGCACATCGGCGAGCACACGGACGTCC CGGCGGGGGACATCGGCGTCGGGGGCCGCGAGATCGGC TACCTCTTCGGCCAGTACCGGCGGATCACCAACCGCTG 3GAGTCCGGCGTCCTGACCGGCAAGGGCCAGGGCTGGG 3CGGCTCGCTGATCCGCCCGGAGGCGACCGGCTACGGC AACGTGCTGTTCGCGGCGGCGATGCTGCGGGAGCGCGG CGAGGACCTGGAGGGCCAGACCGCGGTCGTCTCCGGCT CCGGCAACGTGGCGATCTACACCATCGAGAAGCTGACC CCCTCGGCGCCAACGCCGTCACCTGCTCGGACTCCTC CGGCTACGTCGTCGACGAGAAGGGCATCGACCTCGACC TGCTCAAGCAGATCAAGGAGGTCGAGCGCGGCCGCGTC GACGCGTACGCCGAGCGCCGGGGCGCCTCGGCCCGCTT CGTGCCCGGCGGCAGCGTCTGGGACGTTCCGGCCGACC TTGCCCTCCCCTCCGCCACGCAGAACGAGCTGGACGAG AACGCCGCCGCCACGCTCGTCCGCAACGGCGTCAAGGC GGTCTCCGAGGGCGCGAACATGCCGACCACCCCCGAGG CCGTCCACCTGCTCCAGAAGGCGGGCGTCGCCTTCGGC CCCGGCAAGGCGGCCAACGCGGGCGGCGTCGCGGTCAG CGCCCTGGAGATGGCGCAGAACCACGCCCGTACCTCGT GGACGGCGGCGCGGGTCGAGGAGGAGCTGGCCGACATC ATGACCAGCATCCACACCACCTGCCACGAGACCGCCGA GCGCTACGACGCCCCCGGCGACTACGTCACCGGCGCGA ACATCGCCGGCTTCGAGCGGGTGGCCGACGCGATGCTG GCGCAGGGCGTCATCTGA gdh Thermobifida NZAAAQOIO GTGCGCCCCGAACCGGAGGCGACCATGTCGGCGAATCT 134 fusca 00033.1 CGATGAGAAACTGTCCCCGATCTACGAGGAAATCCTGC rGCGTAACCCGGGGGAGGTCGAGTTCCACCAGGCTGTT CGCGAAGTCCTGGAGTGCCTCGGCCCCGTGGTGGCCAA 202 WO 2004/108894 PCT/US2004/017513 GAACCCTGACATCAGCCACGCC]AAGATCATCGAGCGGC TCTGTGAGCCGGAGCGCCAGCTGATCTTCCGGGTGCCC TGGATGGACGACTCCGGTGAGATCCACGTCAACCGGGG TTTCCGGGTGGAGTTCAGCAGCTCTTTGGGACCTTACA PGGGCGGGCTGCGGTTCCACCCGTCGGTGAACCTGAGC LTCATCAAGTTCCTCGGGTTCGAGCAGATCTTCAAGAA CTCGCTGACCGGATTGCCGATCGGCGGTGCGAAAGGCG GCAGCGACTTCGACCCGAAGGGCCGTTCCGACGCCGAG ATCATGCGGTTCTGCCAGTCGTTCATGACGGAGCTGTA CCGGCACCTGGGTGAGCACACGGACGTGCCTGCCGGTG CATCGGCGTGGGCCAGCGTGAGATCGGCTACCTGTTC GGCCAGTACAAGCGGATCACCAACCGCTACGAGTCGGG CGTGTTCACCGGTAAGGGCCTCAGTTGGGGCGGTTCCC AGGTGCGTCGTGAGGCCACCGGGTACGGCTGTGTGCTC TTCACTGCGGAGATGCTGCGAGCCCGCGGCGACTCGCT GGAAGGCAAGCGGGTCTCGGTGTCGGGTTCGGGCAATG TGGCGATCTACGCGATCGAGAAGGCCCAGCAGCTCGGC GCGCATGTGGTGACCTGCTCGGACTCCAACGGCTACGT GGTGGACGAGAAGGGGATCGACCTGGAGCTGCTCAAGC AGGTCAAGGAGGTCGAACGCGGCCGGGTGTCCGACTAC GCCAAGCGGCGCGGCTCCCACGTCCGCTACATCGACTC GTCGTCGTCCAGCGTGTCGGAGGTGCCCTGCGACATCG CGCTGCCGTGCGCGACGCAGAACGAGCTGACCGGCCGC GACGCTATCACCCTGGTGCGCAACGGGGTGGGCGCGGT GGCGGAGGGCGCGAACATGCCCACGACCCCGGAGGGGA TCCGGGTGTTCGCGGAGGCGGGCGTAGCGTTCGCGCCG GCAAGGCCGCG2AACGCGGGCGGGGTGGCGACGAGCGC GTTGGAGATGCAGCAGAACGCGTCCCGCGACTCGTGGT CGTTCGAGTACACCGAGAAGCGGCTCGCGGAAATCATG CGCCACATCCACGACACCTGCTATGAGACGGCGGAACG CTATGGGCGGCCCGGCGACTATGTGGCAGGTGCCAACA TCGCTGCTTTCGAGATCGTCGCTGAGGCGATGCTCGCT CAGGGCCTGATCTGA gdh Lactobacillus AL935255.1 TTGAGTCAAGCAACCGATTATGTCCAACATGTTTACCA 135 plantarum AGTCATTGAACACCGTGATCCGAACCAAACCGAATTTT TAGAGGCCATCAACGACGTCTTCAAAACGATCACGCCA GTCCTCGAAC1AACATCCAGAATATATCGAA'GCCAATAT TTTGGAACGTTTGACCGAACCAGAACGGATTATTCAAT TCCGGGTTCCTTGGCTCGACGATGCTGGTCATGCACGA GTCAACCGTGGGTTCCGAGTACAATTTAACTCAGCAAT CGGTCCTTACAAGGGCGGCTTACGGTTACACCCATCCG TIAATCTGAGTATCGTCAAATTCTTGGGCTTTGAACAG TCTTCAAAA.ATGCCCTGACCGGCCTACCAATTGGCGG TGGTAAAGGGGGCTCTGATTTCGACCCTAAGGGCAAAT CAGACAACGAAATTATGCGCTTCTGTCAGAGTTTCATG ACCGAACTGAGCAAGTACATTGGTCTCGATACTGACGT TCCTGCTGGTGATATCGGTGTTGGTGGCCGCGAAATCG CTTTTTATACGGCCAATACAAGCGACTCCCGGGGCGCT GACCGCGGCGTACTCACCGGTAAAGGATTGAACTATGG CGGTTCGTTAGCCCGGACTGAAGCTACCGGTTATGGTC TCGCCTACTATACCAACGAATGCTCAAGGCCAACCAP CTTTCCTTCCCTGGTC1AACGCGTTGCCATTTCTGGTGC TGGTAATGTCGCCATCTACGCGATTCAAA-AGGTTGAAG [CTCGGTGGCAAGGTGATTACTTGCTCCGACTCAAACI 203 WO 2004/108894 PCT/US2004/017513 GGTTACGTTATTGACGAAAACGGTZXTCGACTTCAAGAT CGTTAAGCAGATCAAGG AAGTTGAACGCGGTCGTATCA AGACTATGCCGACCGTGTAGCCAGTGCCAGCTATTAC GAAGGTTCCGTCTGGGACGCCCAAGTAGCTTATGATAT CGCGTTACCTTGCGCCACCCAAAACGAAATCAGCGGTG TCAAGCCAAGAACTTGATTGCCAATGGTGCCAAGGTC GTTGCCGAAGGGGCTAACATGCCTAGCAGTCCAGAAGC CATTGCGACATACCAAGCTGCCAGCTTGCTATATGGTC CGGCCAAAGCTGCCAATGCTGGTGGCGTTGCCGTTTCC GCCCTTGAAATGAGCCAAAATAGTATGCGTTTGAGCTG GACTTTTGAAGAAGTCGATAATCGCCTCAAGCAAATCA TGCAAGATATCTTTGCACACTCCGTTGCCGCTGCCGAC GAATACCACGTTAGCGGTGATTACCTGAGTGGTGCTAA CATTGCTGGCTTCACAAAAGTTGCTGACGCCATGTTAG CGCAAGGCTTAGTTTAA gdh Corynebacteriu X59404 ATGACAGTTGATGAGCAGGTCTCTAACTATTACGACAT 257 mglutamicuim CTTCTGAAGCGCAATGCTGGCGAGCCTGAATTTCACC AGGCAGTGGCAGAGGTTTTGGAATCTTTGAAGCTCGTC CTGGA1AAAGGACCCTCATTACGCTGATTACGGTCTCAT CCAGCGCCTGTGCGAGCCTGAGCGTCAGCTCATCTTCC GTGTGCCTTGGGTTGATGACCAGGGCCAGGTCCACGTC ACCGTGGTTTCCGCGTGCAGTTCAACTCTGCACTTGG ACCATACAAGGGCGGCCTGCGCTTCCACCCATCTGTAA ACCTGGGCATTGTGAAGTTCCTGGGCTTTGAGCAGATC TTTAAAAACTCCCTAACCGGCCTGCCAATCGGTGGTGG CAAGGGTGGATCCGACTTCGACCCTAAGGGCAAGTCCG ATCTGGAAATCATGCGTTTCTGCCAGTCCTTCATGACC GAGCTACACCGCCACATCGGTGAGTACCGCGACGTTCC TGCAGGTGACATCGGAGTTGGTGGCCGCGAGATCGGTT ACCTGTTTGGCCACTACCGTCGCATGGCTAC.CAGCAC GAGTCCGGCGTTTTGACCGGTAAGGGCCTGACCTGGGG TGGATCCCTGGTCCGCACCGAGGCAACTGGCTACGGCT GCGTTTACTTCGTGAGTGAAATGATCAAGGCTAAGGGC GAGAGCATCAGCGGCCAGAAGATCATCGTTTCCGGTTC CGGCAACGTAGCAACCTACGCGATTGAAALAGGCTCAGG ACTCGGCGCAACCGTTATTGGTTTCTCCGATTCCAGC GGTTGGGTTCATACCCCTAACGGCGTTGACGTGGCTAA GCTCCGCGAAATCAAGGAAGTTCGTCGCGCACGCGTAT CCGTGTACGCCGACGAAGTTGAAGGCGCAACCTACCAC ACCGACGGTTCCATCTGGATCTCA-AGTGCGATATCGC TCTTCCTTGTGCAACTCAGAACGAGCTCAACGGCGAGA ACGCTAAGACTCTTGCAGACAACGGCTGCCGTTTCGTT CTGAAGGCGCGAACATGCCTTCCACCCCTGAGGCTGT TGAGGTCTTCCGTGAGCGCGACATCCGCTTCGGACCAG GCAAGGCCACCCCTGAGGCTGTTGAGGTCTTCCGTGAG CGCGACATCCGCTTCGGACCAGGCAALGGCAGTCAACGT CGGTGGCGTTGCAACCTCCGCTCTGGAGATGCAGCAGA ACGCTTCGCGCGAGACCTGTGCAGAGACCGCAGCAGAG TATGGACACGAGAACGATTACGTTGTCGGCGCTAACAT TGCTGGCTTCAAGAAGGTAGCTGACGCGATGCTGGCAC AGGGCGTCAkTCTA dh Escherichia coi D9081 9 kTGGATCAGACATATTCTCTGGAGTCATTCCTCAACCA 258 TGTCCAAAAGCGCGACCCGAATCAAACCGAGTTCGCGC 204 WO 2004/108894 PCT/US2004/017513 AGCCGTTCGTGAAGTAATGACCACACTCTGGCCTTTT CTTGAACAAAATCCAAAATATCGCCAGATGTCATTACT GGAGCGTCTGGTTGAACCGGAGCGCGTGATCCAGTTTC GCGTGGTATGGGTTGATGATCGCAACCAGATACAGGTC ACCGTGCATGGCGTGTGCAGTTCAGCTCTGCCATCGG CCCGTACAAAGGCGGTATGCGCTTCCATCCGTCAGTTA ACCTTTCCATTCTCAAATTCCTCGGCTTTGAA-CAAACC TTCAAAAATGCCCTGACTACTCTGCCGATGGGCGGTGG TAAAGGCGGCAGCGATTTCGATCCGAAAGGAAAAAGCG AGGTGAAGTGATGCGTTTTTGCCAGGCGCTGATGACT GAACTGTATCGCCACCTGGGCGCGGATACCGACGTTCC GGCAGGTGATATCGGGGTTGGTGGTCGTGAAGTCGGCT TTATGGCGGGGATGATGAAA-AAGCTCTCCAACAATACC GCCTGCGTCTTCACCGGTAAGGGCCTTTCATTTGGCGG CAGTCTTATTCGCCCGGAAGCTACCGGCtACGGTCTGG TTTATTTCACAGAAGCAATGCTAAAACGCCACGGTATG GGTTTTGAAGGGATGCGCGTTTCCGTTTCTGGCTCCGG CAACGTCGCCCAGTACGCTATCGAAAAAGCGATGGAAT TTGGTGCTCGTGTGATCACTGCGTCAGACTCCAGCGGC ACTGTAGTTGATGAAAGCGGATTCACGAAAGAGAAACT GGCACGTCTTATCGAAATCAAAGCCAGCCGCGATGGTC GAGTGGCAGATTACGCCAAAGAATTTGGTCTGGTCTAT CTCGAAGGCCAACAGCCGTGGTCTCTACCGGTTGATAT CGCCCTGCCTTGCGCCACCCAGAATGAACTGGATGTTG ACGCCGCGCATCAGCTTATCGCTAATGGCGTTAAAGCC GTCGCCGAAGGGGCAAATATGCCGACCACCATCGAAGC GACTGAACTGTTCCAGCAGGCAGGCGTACTATTTGCAC CGGGTAAAGCGGCTAATGCTGGTGGCGTCGCTACATCG GGCCTGGAAATGGCACAAAACGCTGCGCGCCTGGGCTG GAAAGCCGAGAAAGTTGACGCACGTTTGCATCACATCA TGCTGGATATCCACCATGCCTGTGTTGAGCATGGTGGT GAAGGTGAGCAAACCAACTACGTGCAGGGCGCGAA.CAT TGCCGGTTTTGTGAAGGTTGCCGATGCGATGCTGGCGC AGGGTGTGATT dh Bacillus AB030649 ATGAGTGCAATTCGAGTAGGTATTGTCGGTTATGGAAA 136 sphaericus TTTAGGGCGCGGTGTTGAATTCGCTATTTCACAAAATC CAGATATGGAATTAGTAGCGGTATTCACTCGTCGCGAT CCTTCAACAGTGAGCGTTGCAAGTAACGCGAGCGTATA TTTAGTAGATGATGCTGAAAAATTTCAAGATGACATTG ATGTAATGATTTTATGTGGTGGCTCTGCAACAGATTTA CCTGAGCAAGGTCCACACTTTGCGCAATGGTTTAATAC ATTGATAGTTTTGATACTCATGCGAAAATTCCAGAGT TTTTCGATGCGGTTGACGCTGCTGCTCAAAA-ATCTGGT AGTATCTGTTATCTCTGTAGGTTGGGATCCAGGTCT ATTTTCTTTAAATCGTGTTTTAGGCGAGGCAGTATTAC CTGTAGGTACAACGTATACATTCTGGGGTGATGGCTTA AGTCAAGGTCACTCGGATGCAGTTCGTCGTATTGAAGG GTTAAAAATGCTGTACAGTATACATTACCTATCAAAG ATGCTGTTGAACGTGTTCGTAATGGTGAGAATCCAGAG CTTACTACACGTGAAAAGCATGCACGTGAATGCTGGGT AGTGCTTGAAGAAGGTGCAGATGCGCCAAAAGTAGAGC AGAAATTGTAACAATGCCGAACTATTTCGATGAGTAT ACACAACTGTAAACTTTATCTCTGAAGATGAGTTTAA TGCCAACCATACAGGCATGCCACATGGTGGCTTCGTTAI 205 WO 2004/108894 PCT/US2004/017513 TTCGTAGTGGTGAAAGCGGCGCTAATGATAAACAAATT TTAGAATTCTCGTTAAAACTTGAAAGTAATCCAAACTT CACGTCAAGTGTCCTTGTGGCTTATGCACGTGCAGCAC ACCGCTTAAGTCAAGCGGGTGAAAAAGGTGCAAAAACA GTATTCGATATTCCGTTCGGTCTGTTATCTCCAAAATC AGCTGCACAATTACGTAAGGAACTATTATAA tsR1 Thermobifida NZ AAAQ010 ATGGCGACCCAAGCCCCTGAACCGCTGCCCGCGGACCA 137 fusca 00037.1 3ATCGACATTCGCACCACCGCGGGCAAACTCGCAGACC TGCAGCGACGCCGCTACGAGGCGGTCCACGCAGGCTCC GAACGAGCCGTAGCAAAACAGCACGCCAAGGGCAAGAT 3ACCGCCCGCGAGCGCATCGACGCCCTGCTCGACCCGG CTCCTTCGTGGAGTTCGACGCCTTCGCGCGTCACCGG TCCACCAACTTCGGCTTGGAGAAGAACCGCCCCTACGG CGACGGCGTCGTCACCGGCTACGGCACCATCGACGGCC 3ACCGGTCGCCGTGTTCAGCCAGGACGTCACCGTCTTC 3GCGGTTCCCTCGGCGAGGTCTACGGCGAGAAGATCGT CAAAGTCCTCGACCATGCGCTCAAAACCGGCTGCCCGG TCATCGGCATCAACGAAGGCGGCGGCGCGCGCATCCAA 3AGGGCGTGGTGGCGCTGGGCCTCTACGCCGAGATTTT CAAACGCAACACCCACGCCTCCGGGGTCATCCCCCAGA TCTCGCTCGTCATGGGGGCAGCAGCAGGCGGCCACGTC TACTCGCCCGCCCTCACCGACTTCATCGTCATGGTCGA CCAGACCTCCCAGATGTTCATCACCGGGCCCGACGTCA TCAAGACGGTCACCGGTGAAGACGTCACCATGGAGGAG CTGGGCGGCGCACGCACCCACAACACCAAGTCGGGCGT GCCCACTACATGGCCTCCGACGAGCACGACGCCCTGG AGTACGTCAAGGCGCTGCTGTCCTACCTGCCCTCCAAC AACCTGGACGAGCCGCCCGTCGAACCCGTCCAGGTGAC CCTGGAGGTGACCGAGGAAGACCGGGAGCTGGACACCT TCATCCCCGACTCGGCCAACCAGCCCTACGACATGCGC CGCGTCATCGAACACATCGTGGACGACGGGGAGTTCCT GAAGTCCACGAACTGTTCGCGCAGAACATCATCGTGG GCTTCGGCCGGGTCGAAGGCCACCCGGTAGGTGTCGTC GCCAACCAGCCGATGAACCTCGCGGGCTGCCTGGACAT CGACGCCTCCGAGAAAGCCGCCCGGTTCGTCCGCACCT GCGACGCCTTCAACATCCCCGTGCTGACCCTGGTCGAC GTCCCCGGCTTCCTGCCCGGAACCGACCAGGAGTTCGG CGGCATCATCCGGCGCGGCGCCAAACTGCTCTACGCCT ACGCTGAGGCGACCGTCCCCCTGGTGACCATCATCACC CGCAAAGCGTTCGGCGGCGCCTACGACGTCATGGGCTC CAAGCACCTGGGTGCAGACATCAACCTGGCGTGGCCGA CCGCGCAGATCGCGGTCATGGGAGCCCAGGGTGCCGTC ACATCCTGCACCGGCGTACCCTCGCCGCCGCCGACGA CGTCGAAGCGACCCGCGCCCAGCTCATCGCCGAATACG AAGACACTCTGCTCAACCCGTACAGCGCGGCCGAACGG GGCTACGTCGACAGCGTCATCATGCCGTCGGAAACCCG CACGTCCGTCATCAAAGCCCTGCGTGCGCTGCGCGGCA AACGCAAGCAGCTCCCGCCCAAGAAGCACGGGAATATC CCACTCTGA tsRl Streptomyces Fl 13605.1 ATGTCCGAGCCGGAAGAGCAGCAGCCCGACATCCACAC 138 coeicolor GACCGCGGGCAAGCTCGCGGATCTCAGGCGCCGTATCG AGGAAGCGACGCACGCCGGTTCCGCACGCGCCGTCGAG AGCAGCACGCCAAGGGCAAGCTGACGGCTCGTGAACG 206 WO 2004/108894 PCT/US2004/017513 CATCGACCTCCTCCTCGACGAGGGTTCCTTCGTCGAGC TGGACGAGTTCGCCCGGCACCGCTCCACCAACTTCGGC CTCGACGCCAACCGCCCCTACGGCGACGGCGTCGTCAC CGGCTACGGCACCGTCGACGGCCGCCCCGTGGCCGTCT TCTCCCAGGACTTCACCGTCTTCGGCGGCGCGCTGGGC 3AGGTCTACGGCCAGAAGATCGTCAAGGTGATGGACTT CGCCCTCAAGACCGGCTGCCCGGTCGTCGGCATCAACG ACTCCGGCGGCGCCCGCATCCAGGAGGGCGTGGCCTCC CTCGGCGCCTACGGCGAGATCTTCCGCCGCAACACCCA CGCCTCCGGCGTGATCCCGCAGATCAGCCTGGTCGTCG 3CCCGTGTGCGGGCGGCGCGGTGTACTCCCCCGCGATC ACCGACTTCACGGTGATGGTGGACCAGACCAGCCACAT GTTCATCACCGGTCCCGACGTCATCAAGACGGTCACCG GCGAGGACGTCGGCTTCGAGGAGCTGGGCGGCGCCCGC ACCCACAACTCCACCTCGGGCGTGGCCCACCACATGGC CGGCGACGAGAAGGACGCGGTCGAGTACGTCAAGCAGC TCCTGTCGTACCTGCCGTCCAACAACCTCTCCGAGCCC CCCGCCTTCCCGGAGGAGGCGGACCTCGCGGTCACGGA CGAGGACGCCGAGCTGGACACGATCGTCCCGGACTCGG CGAACCAGCCCTACGACATGCACTCCGTCATCGAGCAC TCCTGGACGACGCCGAGTTCTTCGAGACGCAACCCCT CTTCGCGCCGAACATCCTCACCGGCTTCGGCCGCGTGG AGGGCCGCCCGGTCGGCATCGTCGCCAACCAGCCCATG CAGTTCGCCGGCTGCCTGGACATCACGGCCTCCGAGAA 3GCGGCCCGCTTCGTGCGCACCTGCGACGCCTTCAACG TCCCCGTCCTCACCTTCGTGGACGTCCCCGGCTTCCTG CCCGGCGTCGACCAGGAGCACGACGGCATCATCCGCCG CGGCGCCAAGCTGATCTTCGCCTACGCCGAGGCCACGG TGCCGCTCATCACGGTCATCACCCGCAAGGCCTTCGGC GGCGCCTACGACGTCATGGGCTCCAAGCACCTGGGCGC CGACCTCAACCTGGCCTGGCCCACCGCCCAGATCGCCG TCATGGGCGCCCAAGGCGCGGTCAACATCCTGCACCGC CGCACCATCGCCGACGCCGGTGACGACGCCGAGGCCAC CCGGGCCCGCCTGATCCAGGAGTACGAGGACGCCCTCC TCAACCCCTACACGGCGGCCGAACGCGGCTACGTCGAC GCCGTGATCATGCCCTCCGACACTCGCCGCCACATCGT CCGCGGCCTGCGCCAGCTGCGCACCAAGCGCGAGTCCC TGCCCCCGAAGAAGCACGGCAACATCCCCCTGTAA tsR1 Mycobacterium Z92771.1 TGACAAGCGTTACCGACCGCTCGGCTCATTCCGCAGA 139 tuberculosis CGGTCCACCGAGCACACCATCGACATCCACACCACCG (use this to CGGGCAAGCTGGCGGAGCTGCACAAACGCAGGGAAGAG clone M. TCGCTGCACCCCGTCGGTGAGGATGCCGTCGAAAAAGT smegmatis CACGCCAAGGGCAAGCTGACGGCTCGCGAGCGTATCT Aene) ACGCGTTGCTGGATGAGGATTCGTTCGTCGAGCTGGAC CGCTGGCCAAACACCGCAGCACCAACTTCAATCTCGG CGAAAAACGCCCGCTCGGCGACGGCGTGGTCACCGGCT TCGGCACCATCGACGGGCGCGACGTGTGCATCTTCAGC CAGGACGCCACGGTGTTTGGCGGCAGCCTTGGCGAGGT gTACGGCGAGAAAATCGTCAAGGTCCAGGAACTGGCGA TCAGACCGGCCGTCCGCTCATCGGCATCAACGACGGT CTGGCGCGCGCATCCAGGAAGGTGTCGTCTCGCTGGG CCTGTACAGCCGTATCTTTCGCAACAACATCCTGGCCT CCGGCGTCATCCCGCAAATCTCGTTGATCATGGGAGCC GCCGCCGGTGGGCACGTCTACTCCCCCGCCCTGACCGA 207 WO 2004/108894 PCT/US2004/017513 CTTCGTGATCATGGTCGATCAGACCAGCCAGATGTTCA TCACCGGGCCCGACGTCATCAAGACCGTCACCGGCGAG GAAGTCACCATGGAAGAACTCGGCGGCGCCCACACCCA CATGGCCAAGTCGGGTACGGCACACTACGCCGCATCGG GCGAACAGGACGCCTTCGACTACGTTCGCGAGCTGCTG AGCTACCTGCCGCCCAACAACTCCACCGACGCGCCCCG ATACCAAGCCGCAGCCCCGACAGGGCCCATCGAGGAGA ACCTCACCGACGAGGACCTCGAATTGGATACGCTGATC CCGGACTCGCCCAACCAGCCCTATGACATGCACGAGGT GATCACCCGGCTCCTCGACGACGAATTCCTGGAGATAC AGGCCGGTTACGCCCAAAACATCGTGGTGGGGTTCGGG CGCATCGACGGCCGGCCAGTCGGCATTGTCGCCAACCA GCCGACACACTTCGCCGGCTGCCTGGATATCAACGCCT CGGAGAAAGCGGCCCGGTTTGTGCGGACCTGCGACTGC TTCAATATCCCCATCGTCATGCTGGTGGACGTCCCGGG CTTCCTGCCGGGCACCGACCAGGAATACAACGGCATCA TCCGGCGCGGCGCCAAGCTGCTCTACGCCTACGGCGAG CCACCGTGCCAAAGATCACGGTCATCACCCGCAAGGC CTACGGCGGTGCGTACTGCGTTATGGGCTCCAAAGACA TGGGCTGCGACGTCAACCTGGCGTGGCCGACCGCGCAG ATCGCGGTGATGGGCGCCTCCGGCGCAGTGGGCTTCGT GTACCGCCAGCAGCTGGCCGAGGCCGCCGCCAACGGCG AGGACATCGACAAGCTGCGGCTGCGGCTCCAGCAGGAG TACGAGGACACACTGGTCAACCCGTACGTGGCCGCCGA ACGCGGATACGTCGACGCGGTGATCCCGCCGTCGCATA CTCGCGGCTACATCGGGACCGCGCTGCGGCTGCTGGAA CGCAAGATCGCGCAGCTGCCGCCCAAAAAGCATGGGAA CGTGCCCCTGTGA tsR1 Mycobacterium U00012.1 TGACAAGCGTTACCGACCACTCGGCTCATTCAATGGA 140 leprae (use this CGCGCTGCCGAGCACACGATCAATATCCACACCACGG to clone M. CAGGCAAGCTGGCCGAGCTGCATAAGCGGACCGAAGAA smegmatis CGCTGCATCCGGTCGGTGCAGCTGCCTTCGAGAAGGT ene) CACGCTAAGGGTAAGTTTACCGCCCGCGAGCGCATCT ACGCCCTATTGGACGACGACTCATTCGTCGAACTCGAC CACTGGCCAGACACCGCAGCACCAACTTCGGCCTCGG TGAAAACCGCCCGGTAGGCGATGGCTGGTCACCGGCT ACGGCACCATCGACGGCCGCGACGTATGCATCTTCAGC CAGGACGTCACGGTGTTCGGCGGCAGCCTGGGCGAAGT GTATGGCGAGAAGATCGTCAAGGTCCAGGAACTGGCGA TCAAGACCGGCCGTCCGCTTATCGGCATCAACGACGGC CCGGCGCGCGTATCCAAGAAGGCGTCGTCTCGCTCGG CCTGTACAGCCGGATTTTCCGCAACAATATCTTGGCCT CCGGCGTCATCCCGCAGATCTCGCTGATCATGGGAGCG GCCGCCGGTGGACACGTGTATTCCCCAGCACTGACCGA CTTCGTGGTTATGGTCGACCAAACCAGCCAGATGTTCA TCACCGGACCCGACGTCATCAGACCGTCACCGGCGAG GACGTCACCATGGAGGAGCTGGGTGGCGCCCATACCCA CATGGCCAAGTCGGGTACCGCACACTATGTAGCATCGG CCGAGCAAGACGCCTTCGATTGGGTGCGCGATGTGTTG GCTACCTGCCGTCAAACAACTTCACCGACGCGCCGCG GTATTCTAAGCCCGTTCCTCACGGCTCCATTGAAGACA ACCTGACCGCTAAAGACTTGGAGTTGGACACGCTTATC CCGGACTCGCCGAACCAACCGTACGACATGCACGAAGT GTGACCCGCCTCCTCGACGAGGAAGAGTTCCTTGAGG 208 WO 2004/108894 PCT/US2004/017513 TGCAAGCCGGTTACGCCACCAACATCGTCGTCGGGCTC GGACGCATAGATGACCGACCGGTGGGCATCGTTGCCAA CCAACCCATCCAGTTCGCCGGCTGTCTAGACATCAACG CCTCGGAAAAGGCAGCCCGATTTGTGCGGGTCTGCGAC TGCTTCAACATCCCGATCGTGATGTTGGTGGATGTTCC AGGCTTCCTGCCTGGCACCGAGCAAGAATATGATGGCA TCATCCGACGCGGCGCAAAGCTGCTCTTCGCCTACGGC GAGCCACCGTACCCAAGATCACCGTCATCACCCGCAA GGCCTACGGTGGCGCTTACTGCGTGATGGGCTCCAAAA ATATGGGCTGCGACGTCAACCTGGCTTGGCCGACCGCA CAGATTGCGGTGATGGGTGCCTCCGGCGCAGTAGGCTT CGTGTACCGCAAGGAACTGGCCCAAGCGGCCAAGAACG GCGCCAATGTTGATGAGCTACGCCTGCAGCTGCAGCAA GAGTACGAGGACACCCTGGTGAACCCGTACATCGCCGC CGAACGAGGTTACGTCGATGCGGTGATCCCGCCGTCAC ACACTCGCGGCTACATTGCCACGGCGCTTCACCTGTTG GAGCGCAAGATCGCACACCTTCCCCCCAAGAAGCACGG GAACATTCCGCTGTGA tsRl Corynebacteriu NC_003450 ATGACCATTTCCTCACCTTTGATTGACGTCGCCAACCT 259 mglutamicum TCCAGACATCAACACCACTGCCGGCAAGATCGCCGACC TTAAGGCTCGCCGCGCGGAAGCCCATTTCCCCATGGGT GAAAAGGCAGTAGAGAAGGTCCACGCTGCTGGACGCCT CACTGCCCGTGAGCGCTTGGATTACTTACTCGATGAGG CTCCTTCATCGAGACCGATCAGCTGGCTCGCCACCGC ACCACCGCTTTCGGCCTGGGCGCTAAGCGTCCTGCAAC CGACGGCATCGTGACCGGCTGGGGCACCATTGATGGAC GCGAAGTCTGCATCTTCTCGCAGGACGGCACCGTATTC GGTGGCGCGCTTGGTGAGGTGTACGGCGAAAAGATGAT CAAGATCATGGAGCTGGCAATCGACACCGGCCGCCCAT TGATCGGTCTTTACGAAGGCGCTGGCGCTCGTATTCAG ACGGCGCTGTCTCCCTGGACTTCATTTCCCAGACCTT CTACCAAAACATTCAGGCTTCTGGCGTTATCCCACAGA TCTCCGTCATCATGGGCGCATGTGCAGGTGGCAACGCT TACGGCCCAGCTCTGACCGACTTCGTGGTCATGGTGGA CAAGACCTCCAAGATGTTCGTTACCGGCCCAGACGTGA TCAAGACCGTCACCGGCGAGGAAATCACCCAGGAAGAG CTTGGCGGAGCAACCACCCACATGGTGACCGCTGGTAA CTCCCACTACACCGCTGCGACCGATGAGGAAGCACTCG PTTGGGTACAGGACCTGGTGTCCTTCCTCCCATCCAAC ATCGCTCCTACGCACCGATCGAAGACTTCGACGAGGA AGAAGGCGGCGTTGAAGAAAACATCACCGCTGACGATC TGAAGCTCGACGAGATCATCCCAGATTCCGCGACCGTT CCTTACGACGTCCGCGATGTCATCGAATGCCTCACCGA CGATGGCGAATACCTGGAAATCCAGGCAGACCGCGCAG AA.CGTTGTTATTGCATTCGGCCGCATCGAA GGCCAG TCCGTTGGCTTTGTTGCCAACCAGCCAACCCAGTTCGC ,TGGCTGCCTGGACATCGACTCCTCTGAGAAGGCAGCTC CTTCGTCCGCACCTGCGACGCGTTCAACATCCCAATC GTCATGCTTGTCGACGTCCCCGGCTTCCTCCCAGGCGC AGGCCAGGAGTACGGTGGCATTCTGCGTCGTGGCGCAA AGCTGCTCTACGCATACGGCGAAGCAACCGTTCCAAAG ATCACCGTCACCATGCGTAAGGCTTACGGCGGAGCGTA CTGCGTGATGGGTTCCAAGGGCTTGGGCTCTGACATCA PCCTTGCATGGCCAACCGCACAGATCGCCGTCATGGGCI 209 WO 2004/108894 PCT/US2004/017513 3CTGCTGGCGCAGTTGGATTCATCTACCGCAAGGAGCT CATGGCAGCTGATGCCAAGGGCCTCGATACCGTAGCTC TGGCTAAGTCCTTCGAGCGCGAGTATGAAGACCACATG CTCAACCCGTACCACGCTGCAGAACGTGGCCTGATCGA CGCCGTGATCCTGCCAAGCGAAACCCGCGGACAGATTT CCCGCAACCTTCGCCTGCTCAAGCACAAGAACGTCACT CGCCCTGCTCGCAAGCACGGCAACATGCCACTG metH Thermobifida NZ AAAQ010 ATGAGCGCTCGACTCTCCTTCCGTGAAGTCCTCGGTTC 141 fusca 00042.1 CCGCGTCCTCGTCGCCGACGGGGCGATGGGAACGATGC TTCAGACATACGACCTGAGCATGGACGACTTCGAGGGA CACGAGGGGTGTAACGAGGTCCTCAACATCACCCGGCC CGACGTGGTCCGGGAGATCCACGAGGCCTACCTGCAGG CCGGCGTCGACTGTGTCGAAACCAACACGTTCGGCGCG AACTTCGGAAACCTCGGCGAATACGGCATCGCGGAACG CACCTACGAACTGGCTGAAGCCGGTGCCCGCCTGGCCC CGAAGCCGCCGACGCGTACACCACTGCCGATCACGTC CGCTACGTCCTCGGCTCTGTGGGGCCCGGGACGAAGCT GCCCACCCTTGGCCACGCCCCGTACGCTGTGCTGCGCG ACCACTACGAACAGTGCGCACGCGGGCTCATTGACGGC 3GTGTCGACGCGATCGTGATCGAAACCTGCCAGGACTT 3CTGCAGGCGAAAGCCGCGATCGTGGGGGCACGGCGGG CCCGCAAGGCCGCGGGTACCGACACGCCGATCATCGTC CAGGTGACGATTGAAACCACGGGGACCATGCTGGTGGG CTCCGAGATCGGTGCGGCACTGACCTCGCTGGAACCGC TAGGGGTCGACATGATCGGCCTCAACTGCGCTACCGGT CCAGCAGAGATGAGCGAGCACCTGCGCTACCTCTCCCA CCACTCCCGCATCCCCCTCTCCTGCATGCCGAACGCGG CCTGCCTGAGCTGGGGGCGGACGGGGCCGTCTACCCG CTGCAGCCGCATGAGCTCACCGAAGCACACGACACGTT CATCCGCGAGTTTGGCCTGGCCCTGGTGGGCGGCTGCT GCGGCACCACCCCTGAGCACCTCGCCCAAGTGGTGGAG CGGGTGCAGGGACGCGGCGTGCCGGACCGCAAACCGCA CGTCGAACCCGCCGCCGCCTCTATCTACCAGAGCGTCC CGTTCCGCCAGGACACCAGCTACCTGGCGATCGGGGAA CGCACCAACGCCAACGGCTCCAAGGCGTTCCGCGAAGC CATGCTCGCGGAACGCTACGACGACTGTGTGGAGATCG CCCGCCAGCAGATCCGCGACGGCGCGCACATGCTCGAC CTGTGCGTCGACTATGTGGGACGCGACGGGGTGCGCGA TATGCGGGAGCTGGCTTCCCGGCTGGCCACCGCCTCCA CGCTGCCGCTCGTACTGGACTCCACCGAAGTAGCGGTA CTGGAAGCTGGACTGGAGATGCTGGGCGGGCGCGCCGT CTCAACTCGGTCAACTACGAGGACGGCGACGGCCCTG ACTCCCGGTTCGCCAAGGTCGCCGCGCTGGCGGTGGAG CACGGGGCGGCCCTCATGGCGCTGACCATCGACGAGCA GGGGCAGGCGCGGACCGCGGAACGGAAAGTGGAGGTCG CCGAGCGGCTCATCCGGCAGCTCACCACCGAGTACGGC ATCCGCAAGCACGACATCATCGTGGACTGCCTGACCTT CACGATCGCAACCGGACAGGAGGAGTCGCGGCGCGACG CTCTGGAAACCATCGAGGCGATCCGTGAACTGAAGCGG CGCCACCCGGACGTGCAGACCACGCTGGGCGTGTCCAA CGTCTCCTTCGGGCTCAACCCGGCTGCCCGCATTGTGC TCAACTCGGTGTTCCTCCACGAGTGCGTCCAGGCCGGC TTGGACTCCGCGATCGTGCACGCCTCCAAGATCCTGCC ATCAACCGCATCCCCGAGGAGCAGCGGCAGGTGGCGT 210 WO 2004/108894 PCT/US2004/017513 TGGACATGATCTACGACCGCCGCACCGATGACTACGAC CCGCTGC2AACGCTTCCTGCAGCTTTTCGAAGGAGTGGA CGCGCAGGCGATGCGCGCCTCGCGCGAGGAAGAGCTGG CCGCGCTGCCGCTGTGGGAGCGCCTGGAGCGCCGTATC GTCGACGGGGAAGCCGCCGGCATGGAZAGCGGACCTGGA CGAAGCGCTCACCCAGCGGTCCGCGCTGGACATCATCA ACACCACGCTGCTGGCGGGGATGAAGACCGTCGGCGAC CTGTTCGGCTCCGGGCAGATGCAGCTCCCGTTCGTGCT GAAGTCGGCCGAGGTGATGAAGGCCGCCGTGGCCTATC TGGAGCCGCACATGGAGAAGGTGGACGGCGACCTCGGC AGGGGCGGATCGTGCTGGCCACGGTCAAGGGCGACGT CCACGACATCGGCAAGAACCTTGTGGACATCATCCTGT CCAACAACGGCTACGAGGTCATCAACCTGGGGATCAAG CAGCCCATCTCCGCGATTCTGGAGGCGGCCGAGCGGCA CCGCGCCGACGTGATCGGCATGTCCGGCCTGCTGGTGA AGTCCACGGTGGTGATGCGGGAGAACCTGGAGGAGATG ACGCCCGCGGGGTCGCTGACCGCTACCCGGTCCTGCT GGCGGTGCCGCGTTGACCCGCTCCTATGTGGAACAGG ACCTCGCCGAGATTTTCAAAGGCGAGGTGCGCTATGCC CGCGACGCTTTTGAAGGCTTGAAGCTCATGGACGCCAT CATGGCGGTCAAACGCGGGGTGAAGGGGGCTAAGCTGC CGCCGCTGCGCACCCGCCGGGTGAAGCGGGGCGCACAG CTTACCGTCACCGAGCCGGAGAAGATGCCGACGCGCAG CGACGTGGCCACCGACAACCCGGTGCCGACCCCGCCGT TCTGGGGGGACCGCATCTGCAAGGGGATTCCGCTCGCC ACTACGCGGCTTTCCTGGATGAGCGCGCCACGTTCAT GGGCCAGTGGGGGCTGCGCGGCTCCCGCGGCGACGGCC CCACCTACGAGGAGCTGGTGGAGACGGAGGGGCGGCCG CGGCTGCGCATGTGGCTGGACCGGRTCCAGACCGAGGG GTGGCTGGAGCCGGCGGTCGTCTACGGCTACTACCGCT GCTACAGCGAAGGCAACGACCTGGTCGTCCTCGGTGAG GACGAAAACGAGCTGACCCGGTTCACGTTCCCGCGGCA GCGCCGCGACCGGCACCTGTGCCTGGCTGACTTCTTCC OCCCCAAGGAGTCCGGGGAACTGGACACGGTGGCGTTC CAGGTCGTCACCGTCGGTTCGACGATCAGCAAGGCGAC CGCGGAGCTGTTCGAGAAGAACGCGTACCGGGACTACT TGGAGCTCCACGGGCTGTCCGTGCAGTTGACGGAGGCA CTCGCGGAGTACTGGCACACCCGGGTCCGCGCCGAGCT GGCTTCGCCGGGGAGGATCCCGACCCGGCCGATTTGG ACGCCTACTTTAZAGCTCGGCTATCGAGGCGCCCGTTTC TCCCTGGGGTACGGGGCCTGCCCCAACTTGGAGGACCG CGCCAAGATCGTGGCCCTGCTGCGTCCGGAACGGGTTG GGGTGACGTTGTCCGAGGAGTTCCAGCTTGTTCCCGAA CAGTCCACTGACGCGATCGTTGTCCATCACCCCGAGGC GAAATACTTCAACGTATGA____ metH Streptomyces AL9391 09.1 ATGGCCTCGTCGCCATCCACCCCGCCCGCCGACACCCG 142 coelicolor CACCCGCGTGTCCGCCCTCCGAGAGGCCCTCGCCACCC GCGTGGTGGTCGCCGACGGCGCCATGGGCACCATGCTC CAGGCCCAGAACCCCACGCTGGACGACTTCCAGCAGCT CGAAGGGTGCAACGAGGTCCTGAACCTCACCCGGCCCG ACATCGTCCGCTCGGTGCACGAGGAGTACTTCGCGCC GGCGTCGACTGCGTCGAGACCAACACCTTCGGCGCCAA CCACTCCGCCCTGGGCGAGTACGACATCCCCGAGCGCG TCCACGAACTGTCCGAGGCCGGCGCCCGCGTCGCCCGC ____ 211 WO 2004/108894 PCT/US2004/017513 "AGGTCGCCGACGAGTTCGGCGCCCGCGACGGCCGGCA GCGCTGGGTGCTGGGCTCCATGGGCCCCGGCACCAAGC TCCCCACCCTCGGCCACGCCCCGTACACCGTCCTGCGC GACGCCTACCAGCGCJAACGCCGAGGGACTGGTCGCGGG CGGCGCGGACGCACTGCTGGTGGAGACCACGCAGGACC TGCTCCAGACCAAGGCCTCGGTGCTCGGCGCCCGGCGC CCCTGGACGTCCTCGGCCTCGACCTGCCGCTCATCGT GTCCGTCACCGTCGAGACCACCGGCACCATGCTGCTCG GCTCGGAGATCGGCGCCGCGCTCACCGCGCTGGAACCG CTCGGCATCGACATGATCGGCCTGAACTGCGCCACCGG CCCCGCCGAGATGAGCGAGCACCTGCGCTACCTCGCCC GGCACTCCCGCATCCCGCTGACCTGCATGCCCAACGCC GGTCTGCCCGTCCTCGGCAAGGACGGCGCCCACTACCC GCTGACCGCGCCCGAGCTGGCCGACGCACACGAGACCT TCGTGCGCGAGTACGGCCTGTCCCTGGTCGGCGGCTGC TGCGGCACCACGCCCGAGCACCTGCGCCAGGTCGTCGA GCGGGTCCGGGACACCGCCCCCACCGCACGCGACCCGC GCCCCGAGCCCGGCGCCGCCTCGCTCTACCAGACCGTG CCCTTCCGCCAGGACACCTCCTACCTGGCCATCGGCGA GCGCACCAACGCCAACGGGTCCAAGAAGTTCCGCGAGG CCATGCTGGACGGCCGCTGGGACGACTGCGTCGAGATG GCCCGCGACCAGATCCGCGAALGGCGCGCACATGCTCGA CCTCTGCGTCGACTACGTCGGCCGGGACGGCGTCGCCG ACATGGAGGAACTGGCCGGCCGGTTCGCCACCGCCTCC ACGCTGCCGATCGTCCTCGACTCCACCGAGGTCGACGT CATCCGGGCCGGCCTGGAG1AGCTCGGCGGCCGCGCGG TGATCA1ACTCGGTCA1ACTACGAGGACGGCGCCGGCCCC GAGTCCCGGTTCGCCCGCGTCACGAAGCTCGCCCGGGA GCACGGCGCCGCGCTGATCGCGCTGACCATCGACGAGG TGGGACAGGCCCGCACCGCCGAGAALGAAGGTCGAGATC GCCGAACGGCTCATCGACGACCTCACCGGCAACTGGGG CATCCACGAGTCCGACATCCTCGTCGACTGCCTGACCT TCACCATCTGCACCGGCCAGGAGGAGTCCCGCAAGGAC GCCTGGCCACCATCGAGGGCATCCGGGAACTCAA.GCG GCGCCACCCGGACGTGCAGACCACGCTCGGCCTGTCGA ACATCTCCTTCGGCCTCAACCCGGCCGCCCGCATCCTG CTCAACTCCGTCTTCCTCGACGAATGCGTCAAGGCCGG CCTGGACTCGGCCATCGTGCACGCGAGCAAGATCCTGC CGATCGCCCGCTTCGACGAGGAGCAGGTCACCACCGCC CTCGACTTGATCTACGACCGCCGCCGCGAGGGCTACGA CCCCCTGCAAAAGCTCATGCAGCTCTTCGAGGGCGCCA CCGCCAAGTCGCTGAAGGCCTCCAAGGCCGAGGAACTG CCGCCCTCCCGCTGGAGGAGCGCCTCAAGCGCCGCAT CATCGACGGCGAGAAGAACGGCCTCGAACAGGACCTCG ACGAGGCCCTCCGGGAGCGCCCGGCCCTCGAGATCGTC 'CGACACCCTGCTCGACGGTATGAAGGTCGTCGGCGA GCTGTTCGGCTCCGGCCAGATGCAGCTGCCGTTCGTGC TCCAGTCCGCCGAGGTCATGAAGACCGCGGTGGCCCAC CTGGAGCCGCACATGGAGAAGACCGACGACGACGGCAA GGGCACGATCGTGCTGGCCACCGTCCGCGGCGACGTCC ACGACATCGGC2AAGAACCTCGTCGACATCATCCTGTCC ACAACGGCTACAACGTCGTCAACCTCGGCATCAAGCA GCCCGTCTCCGCGATCCTGGJAAGCGGCCGACGAGCACC GGGCCGACGTCATCGGCATGTCCGGCCTCCTCGTCAAGI 212 WO 2004/108894 PCT/US2004/017513 TCCACGGTGATCATGAAGGAGAACCTGGAGGAGCTGAA CCAGCGCAAGCTGGCCGCCGACTACCCGGTCATCCTCG 3CGGCGCCGCCCTCACCAGGGCCTACGTCGAACAGGAC CTGCACGAGATCTACGACGGCGAGGTCCGCTACGCCCG CGACGCCTTCGAGGGCCTGCGCCTCATGGACGCCCTCA TCGGCATCAAGCGCGGCGTGCCCGGCGCCAAGCTGCCG GAGCTGAAGCAGCGCCGGGTGCGGGCCGCCACCGTCGA 3ATCGACGAGCGCCCCGAGGAAGGCCACGTCCGCTCCG ACGTCGCCACCGACAACCCGGTCCCGACCCCGCCCTTC CGCGGCACCCGCGTCGTCAAGGGCATCCAGCTCAAGGA GTACGCCTCCTGGCTCGACGAGGGCGCCCTCTTCAAGG 3CCAGTGGGGCCTCAAGCAGGCCCGCACCGGCGAGGGA CCCTCCTACGAGGAACTGGTCGAGTCCGAGGGCCGGCC GCGGCTGCGCGGCCTGCTCGACCGGCTCCAGACGGACA ACCTTTTGGAGGCGGCCGTGGTCTACGGCTACTTCCCC TGCGTCTCCAAGGACGACGACCTGATCGTCCTCGACGA CGACGGCAACGAACGCACCCGCTTCACCTTCCCCCGCC 4GCGCCGCGGCCGGCGCCTGTGCCTGGCCGACTTCTTC CGCCCGGAGGAGTCCGGCGAGACCGACGTGGTCGGCTT CCAGGTCGTCACCGTCGGCTCCCGCATCGGCGAGGAGA CGGCCCGCATGTTCGAGGCCAACGCCTACCGCGACTAT CTCGAGCTGCACGGCCTGTCCGTGCAGCTCGCCGAGGC CCTCGCCGAGTACTGGCACGCGCGCGTGCGCTCGGAAC TCGGCTTCGCCGGGGAGGACCCGGCCGAGATGGAGGAC ATGTTCGCCCTGAAGTACCGGGGTGCCCGCTTCTCCCT CGGCTACGGCGCCTGCCCCGACCTGGAGGACCGCGCCA AGATCGCCGCCCTGCTGGAGCCCGAGCGCATCGGCGTC CACCTATCCGAGGAGTTCCAGCTCCACCCCGAGCAGTC CACCGACGCCATCGTCATCCACCACCCGGAGGCCAAGT ACTTCAACGCCCGCTGA metH Mycobacterium Z97559.1 TGACTGCGGCCGACAAGCACCTCTACGACACCGATCT 143 tuberculosis CTCGACGTCTTGTCGCAGCGAGTGATGGTCGGCGACG (use this to TGCAATGGGAACCCAACTACAGGCCGCGGACCTCACG clone M. CTCGACGACTTCCGCGGCCTGGAGGGCTGCAACGAGAT megmatis CCTCAACGAAACCCGCCCTGACGTGCTGGAAACCATTC ene) CCGCAACTATTTCGAAGCGGGCGCCGACGCCGTCGAG CGAACACGTTTGGCTGCAACCTGTCCAACCTCGGCGA CTACGACATCGCCGACAGGATCCGCGATCTATCACAGA GGGCACCGCGATCGCACGCCGGGTGGCCGACGAGCTG GCCAGTCCCGACCGCAAGCGCTACGTGCTGGGGTCGAT GGGCCGGGCACCAAGCTGCCGACTCTGGCCACACCG CTACGCAGTGATCCGCGACGCCTACACCGAGGCCGCG CTGGGCATGCTGGACGGCGGAGCCGACGCCATCCTGGT GGAAACCTGCCAGGACCTACTGCAGCTGAAGGCGGCGG TGTTGGGGTCGCGGCGGGCGATGACGCGGGCCGGGCGG CACATTCCGGTGTTTGCCCACGTCACCGTCGAGACCAC CGGCACCATGCTGCTGGGCAGCGAGATCGGGGCGGCGT TGACCGCTGTCGAGCCGCTCGGTGTGGACATGATCGGC TTGAACTGCGCGACGGGTCCGGCCGAGATGAGCGAGCA CCTGCGCCACCTGTCCCGGCACGCCCGCATCCCGGTGT CGGTGATGCCCAACGCCGGGTTGCCGGTGCTGGGCGCC AAGGGCGCCGAATATCCGTTGCTGCCCGACGAATTGGC CGAGGCGCTGGCCGGCTTCATCGCCGAGTTCGGGCTCT CGCTGGTCGGTGGCTGCTGCGGCACCACCCCGGCCCAT 213 WO 2004/108894 PCT/US2004/017513 ATCCGCGAAGTGGCTGCCGCGGTTGCGAACATCAAGCG TCCCGAGCGACAGGTCAGCTACGAGCCGTCGGTGTCGT CGCTGTACACCGCAATCCCGTTCGCCCAGGACGCCTCG GTTCTGGTGATCGGGGAGCGAACGAACGCCAACGGCTC CAAGGGTTTTCGTGAGGCGATGATCGCCGAGGACTACC LGAAGTGCCTGGACATCGCCAAGGACCAGACCCGCGAC GCGCCCACCTGCTGGACCTGTGTGTGGACTACGTGGG CCGCGACGGTGTGGCCGACATGAAGGCGCTGGCCAGCC GGCTGGCCACGTCCTCGACGCTGCCGATCATGCTGGAC TCCACCGAAACCGCGGTGCTGCAGGCGGGTTTGGAGCA AGGACGGCGACGGCCCGGAATCGCGCTTTGCCAAGACC ATGGCGCTGGTCGCCGAGCACGGCGCGGCGGTGGTCGC GCTGACCATCGACGAAGAGGGCCAGGCCCGCACCGCGC AGAAGAAGGTCGAGATCGCCGAGCGGCTGATCAACGAC ATCACCGGCAACTGGGGCGTCGACGAATCATCCATCCT CATCGACACCTTGACGTTCACCATCGCCACCGGTCAGG AGGAGTCCCGCCGCGACGGCATCGAGACCATCGAGGCG ATCCGCGAACTGAAAAAGCGCCACCCGGATGTGCAGAC CACACTTGGTCTGTCCATACATCTCGTTTGGTCTCAATC CCGCAGCGCGCCAGGTGCTCAACTCGGTGTTCCTGCAC GAATGCCAAGAAGCGGGGCTGGATTCGGCGATCGTGCA CGCGTCGAAGATCCTGCCGATGAACCGGATTCCCGAGG AGCAACGCAACGTCGCCCTGGATCTGGTCTACGACCGC CGCCGCGAGGACTACGATCCGCTGCAGGAGCTGATGCG GCTGTTCGAAGGCGTGTCGCGGCCTCCTCGAAAGAGG ACCGACTGGCTGAACTAGCTGGGCTGCCGCTGTTCGAA CGGCTGGCCCA2XCGCATCGTCGACGGCGAGCGCAACGG CCTGGACGCCGATCTCGACGAGGCGATGACGCAAAAGC CGCCGCTTCAGATCATCAACGAACATCTGCTGGCCGGC ATGAAkGACGGTCGGCGAGCTCTTCGGCTCCGGCCAGAT CAGCTGCCGTTCGTGCTGCAGTCGGCGGAGGTAATGA AGCCGCCGTCGCGTATCTGGAACCGCACATGGAGCGC TCGGACGACGATTCGGGCAAGGGACGCATCGTGCTGGC CACCGTCAAGGGCGACGTGCACGACATCGGCAAGAACC TGGTCGACATCATCTTGAGCAACAACGGCTACGAAGTG GTCAACATCGGCATCAAGCAGCCAATCGCCACCATCCT CGAAGTCGCCGAGGACAAGAGCGCCGACGGTCGGCA TGTCGGGCCTGCTGGTGAAGTCGACCGTGGTGATGAAG CAAAACCTCGAGGAGATGAACACCCGGGGAGTCGCCGA AGTTCCCGGTGCTGCTCGGCGGCGCGGCGTTGACGC GCAGCTATGTCGAAAACGACCTGGCCGAGATCTACCAG GGCGAAGTGCATTACGCGCGAGACGCTTTCGAGGGCCT GAAGTTGATGGACACCATCATGAGCGCCAAGCGCGGCG AGGCGCCCGACGAAAACAGCCCGGAAGCCATTAAGGCG CGTGAGAAAGAA GCCGAACGTAAGGCCCGCCACCAGCG ATCCAAACGCATTGCCGCACAGCGCAAAGCCGCCGAAG PCCAGTCGAGGTGCCCGAACGCTCCGATGTCGCGGCC ACATCGAGGTCCCGGCGCCGCCGTTCTGGGGTTCGCG GATCGTCAAGGGCCTGGCGGTGGCCGACTACACCGGTC TGCTCGATGAGCGCGCATTGTTTTTGGGCCAGTGGGGT TTACGCGGCCAGCGCCGCGGTGAGGGTCCGTCCTACGA AGATCTCGTCGAGACCGAGGGCCGGCCGCGGCTGCGGT CTGGTTGGACCGGCTGTCCACCGACGGCATCTTGGCGI 214 WO 2004/108894 PCT/US2004/017513 CACGCCGCCGTGGTGTACGGCTATTTCCCGGCGGTGTC CGAGGGCAACGACATCGTGGTGCTCACC'GAGCCCAAGC CCGACGCCCCGGTGCGCTACCGGTTTCACTTCCCGCGC CAGCAGCGCGGTCGGTTTTTGTGCATTGCCGATTTCAT CCGCTCGCGGGAGCTGGCCGCCGAGCGTGGCGAGGTTG ACGTGCTGCCGTTCCAGCTGGTGACCATGGGTCAGCCG ATCGCGGATTTCGCCAACGAGCTGTTCGCGTCCAACGC CTACCGCGACTACCTGGAGGTGCACGGTATCGGCGTGC AGCTCACCGAGGCGCTGGCCGAGTACTGGCACCGGCGG ATCCGTGAGGAGCTCAAGTTCTCCGGGGATCGGGCGAT GCGGCCGAGGATCCGGAGGCGAAAGAAGACTATTTCA AGCTCGGCTACCGCGGTGCTCGCTTTGCCTTCGGCTAC GGCGCATGCCCGGATCTGGAGGACCGCGCCAAGATGAT 3GCGCTGCTGGAGCCCGAACGCATCGGTGTGACGTTAT CCGAGGAATTACAGCTGCATCCCGAACAGTCGACCGAC GCGTTCGTCCTGCACCATCCGGAAGCCAAGTACTTCAA CGTTTAA metH Mycobacterium AL583921.1 TGCGTGTAACTGCCGCTAACCAACATCAGTACGACAC 144 leprae (use this CGATCTCCTCGAGACTTTGGCGCAGCGTGTGATGGTGG to clone M. TGACGGCGCAATGGGTACTCAGCTCCAGGACGCGGAA megmatis CTTACGTTAGATGATTTCCGCGGCCTGGAGGGCTGCAA gene) CGAGATTCTCAACGAAACGCGTCCTGACGTGCTGGAAA CCATCCACCGACGCTACTTCGAGGCAGGTGCGGACCTC TCGAGACCAACACTTTCGGCTGCAACCTGTCCAACCT TGGTGACTACGACATCGCCGACAAGATCAGGGACTTGT CGCAGCGGGGCACCGTGATTGCGCGACGGGTCGCCGAC 3AGCTGACCACCCCCGACCACAAGCGATACGTGCTGGG GTCGATGGGACCAGGCACCAAGTTGCCCACCCTGGGCC ACACCGAGTACCGGGTCGTTCGAGACGCCTACACCGAG TCGGCGTTAGGCATGCTGGACGGTGGCGCTGACGCCGT ACTGGTTGAAACCTGTCAGGACTTGCTGCAGCTCAAGG CTGCGGTGCTGGGCTCGCGGCGCGCGATGACACAGGCC GGTCGGCACATTCCGGTCTTCGTCCACGTGACTGTCGA GACGACCGGAACGATGCTGCTGGGAAGTGAGATCGGCG CTGCACTGGCTGCCGTCGAGCCGCTCGGTGTCGACATG ATCGGTTTGAACTGCGCAACGGGCCCCGCTGAGATGAG TGAGCATCTGCGGCACTTGTCCAAGCATGCCCGCATCC CGGTGTCGGTGATGCCCAACGCCGGGCTGCCGGTGCTG GTGCCAAGGGAGCTGAATACCCGCTGCAGCCCGACGA ATTGGCCGAAGCTTTGGCTGGGTTCATCGCTGAATTTG GTCTTTCGTTGGTAGGTGGCTGCTGTGGTACCACCCCG GACCACATCCGGGAAGTGGCCGCAGCGGTAGCCAGATG CAACGACGGGACAGTGCCACGCGGTGAGCGTCATGTGA CCTATGAGCCGTCGGTATCGTCGCTGTATACAGCCATT CCATTCGCCCAAAAACCCTCGGTTCTGATGATCGGTGA GCGTACGAATGCCAACGGCTCCAAGGTTTTTCGTGAGG CAATGATCGCCGAGGACTATCAAAAGTGTCTAGATATC GCCAAGGACCAAACCCGTGGCGGCGCACACCTGCTGGA TCTGTGTGTCGATTACGTCGGCCGCAACGGTGTGGCCG ACATGAAGGCGTTGGCCGGTCGGCTTGCAACGGTGTCG ACATTGCCGATCATGCTGGACTCTACCGAAATACCGGT 3CTGCAGGCAGGTTTGGAGCACCTGGGCGGGCGCTGCG TGATCAATTCCGTCAACTACGAGGACGGTGACGGTCCC GAGTCACGGTTTGTCAAGACCATGGAGCTGGTCGCCGA 215 WO 2004/108894 PCT/US2004/017513 GCACGGAGCGGCGGTGGTTGCGCTGACCATCGACGAAC kGGGTCAGGCCCGCACCGTTGAGAAGA.AGGTCGAAGTC GCGGAGCGGCTTATCAATGACATTACGAGTAACTGGGG CGTTGATAAATCGGCGATTCTCATCGATTGCTTGACTT TTACTATTGCCACTGGCCAGGAGGAGTCACGCAAAGAC GGCATTGAGACCATCGACGCGATTCGTGAGCTGAAGAA GCGGCACCCAGCGGTGCAGACTACGCTGGGGTTGTCCA kCATCTCCTTCGGTCTCAATCCTTCTGCACGCCAAGTT CTTAACTCTGTTTTTCTACATGAATGTCAGGAAGCAGG ACTGGATTCGGCGATTGTGCACGCTTCAAAGATATTGC CCATCAACCGGATACCCGAAGAACAGCGCCAGGCTGCG CTGGATCTAGTGTATGACCGCCGTCGCGAAGGCTACGA CCCATTGCAGAAGCTGATGTGGTTATTCAAAGGTGTGT CGTCGCCATCGTCGAAGGAAACACGGGAGGCAGAACTC CTAAGCTGCCGTTGTTCGACCGGTTAGCACAGCGGAT CGTCGACGGCGAGCGCAACGGGTTAGATGTTGATCTCG ACGAGGCAATGACCCAGAAACCGCCGTTGGCGATCATC ACGAGAACCTGCTGGACGGCATGAAGACAGTCGGTGA ATTGTTCGGCTCTGGGCAGATGCAGCTGCCTTTCGTGT TGCAGTCGGCCGAGGTTATGAA5CAGCGGTGGCTTAT CTAGAACCGCACATGGAGAAATCCGACTGTGACTTCGG TAAGGGGTTAGCCAALAGGACGGATTGTGCTGGCTACCG TCAAAGGAGATGTGCACGATATTGGCAAAAACCTCGTC GATATCATTCTGAGCAACAACGGCTACGAAGTGGTAAA CCTCGGCATCAAGCAGCCGATTACCAACATTCTCGAGG TGGCCGAGGACAAAAGCGCCGACGTAGTCGGGATGTCG GGCTTGCTGGTGAAATCGACTGTGATCATGAAGGAAAA CCTCGAGGAGATGAACACTCGCGGAGTCGCTGAGAAAT TCCCAGTGCTGCTCGGCGGCGCGGCGTTGACCCGCAGC TATGTGGAAAACGACCTGGCCGAAGTCTATGAGGGCGA AGTGCATTACGCACGAGACGCTTTCGAGGGTTTGAAGT TGATGGACACCATTATGAGCGCCAAGCGCGGCGAGGCG CTTGCGCCGGGGAGCCCGGAGTCCTTAGCTGCAGAAGC AGACCGCAATAAGGAAACTGAGCGCAAGGCACGTCATG AGCGGTCCAAACGCATTGCAGTGCAGCGTAAGGCTGCC GAAGAGCCAGTTGAGGTTCCCGAACGCTCCGATGTTCC GAGTGATGTCGAGGTTCCGGCGCCGCCGTTCTGGGGTT CGCGGATCATCAAGGGTCTGGCGGTGGCCGACTATACC GGGTTCCTCGACGAGCGCGCGTTGTTCTTGGGTCAGTG GGGATTACGTGGTGTGCGCGGCGGTGCGGGGCCCTCGT ACGAGGATTTCGTGCAGACCGAGGGCCGGCCGCGGTTG CGCTACTGGCTAGACCGATTGTCCACCTACGGCGTCTT GCGTACGCCGCCGTGGTGTACGGTTACTTCCCGGCGG TGTCCGAAGACAZACGATATTGTCGTGCTCGCTGAGCCG AGACCGGACGCCGAGCAGCGGTACCGGTTCACCTTCCC GCGTCAGCAACGCGGTCGGTTCCTGTGCATTGCCGATT TTATTCGATCCCGGGATCTGGCGACCGAGCGGAGTGAG GTGGATGTTTTGCCGTTCCAGCTGGTGACCATGGGTCA ACCCATTGCTGACTTCGTTGGCGAGTTGTTCGTGTCCA ATTCCTATCGTGATTATCTTGAAGTGCATGGCATCGGT GTGCAGCTAACCGAGGCGCTGGCCGAATACTGGCACCG GCGCATTCGTGAAGAGCTGAAATTCTCCGGAAACCGGA CGATGTCGGCTGACGATCCCGAGGCCGTCGAGGACTAT TTCAAGCTCGGCTACCGAGGTGCCCGCTTCGCGTTCGG 216 WO 2004/108894 PCT/US2004/017513 GTATGGAGCATGCCCGGACCTGGAGGACCGGATCAAGA TGATGGAGCTGCTTCAACCCGAACGCATCGGTGTAA.CG ATATCTGAAGAGTTGCAGTTACATCCCGAGCAATCGAC TGATGCGTTCGTGCTGCACCATCCGGCGGCTAAGTACT TCAACGTCTGA metH Lactobacillus AL935256 ATGAAGTTTAAACAAGCACTCCAGCAACGGGTCCTCGT 145 Ilantarum TGCCGATGGCGCAATGGGCACCCTTTTATATGGTAACT ATGGCATCAATTCGGCTTTTGAAAACCTGAATTTGACG CATCCCGACACGATCTTACGCGTTCAC~CGATCGTACAT TCGGGCTGGTGCCGATATTATTCAAACCAACACCTACG CTGCGAACCGCCTAAAGTTGACCCGGTATGATTTACAA ACCAAGTCACCACCATCAATCAGGCCGCTGTGAAA.AT TGCAGCGACCGCACGGGAACACGCGGATCACCCCGTTT ACATTCTGGGAACGATCGGTGGACTAGCCGGCGATACC GATGCAACTGTTCAACGGGCGACACCAGCAACGATTGC TGCCAGCGTGACTGAACAACTTACCGCCCTTCTAGCCA CCAACCAGTTAGATGGCATCTTGCTCGAAACATATTAT GATTTGCCAGAACTACTCGCCGCGTTAAAAATCGTGA-A GGCCCATACTGACTTGCCCGTCATCACGAATGTTTCAA TGTTAGCCCCCGGCGTCTTACGAAACGGTACGAGCTTC ACTGATGCCATCGTCCAACTCAACGCTGCCGGCGCCGA CGTAATCGGCACGAACTGTCGCCTGGGACCTTACTATT TAGCTCAGTCATTTGAAAACTTGGCGATTCCAGCTAAC TTAAACTAGCCGTTTACCCAAACGCTGGCTTGCCTGG CACTGATCAGGACGGTGCGGTGGTCTACGATGGTGAAC CAAGCTATTTCGAAGAATATGCCGAACGCTTTCGTCAG CTCGGTCTGAACATTATTGGTGGTTGTTGTGGGACCAC ACCTTTGCATACCAGCGCAACCGTCCGCGGTCTAAGTA ATCGCAGCATCGTTGCTCATGACCAGCCGGCTACAAA CCACAGCCACCAACGCTCGTCACGACAAAGAGTCAGCA CCGGTTTCTGCAAAAAGTTGCGACCCAAAAAACGGCGT TAGTCGAACTCGATCCACCCCGCGATTTTGATACGACT ATTTTTCCGGGGTGCTGAACGATTAAAAGCCGCTGG TGTCGATGGCATTACACTGTCTGACAATTCGTTAGCAA CGGTCCGGATTGCTAATACGACGATTGCGGCGCAGCTC AGTTGAACTACGGCATCACGCCGATCGTTCACTTGAC ACCCGCGACCACAATCTAATCGGCTTACAATCAGAGA TCATGGGTCTACACAGCCTGGGTATTGAGGACATCTTA GCTATCACTGGCGATCCGGCCAAACTCGGTGATTTTCC GGGAGCCACTTCGGTCAGCGATGTGCGCTCCGTTGAAC TGATGAA.GTTGATCAAGCAATTCAATAGCGGCATCGGA CCAACGGGTAAGTCGCTTAAAGAAGCCAGTGACTTTCG GTCGCAGGCGCCTTTAATCCTAACGCTTATCGCACTT CCATATCGACC1AAGTCAATCAGTCGGAAGTTAAGTTAT GGTTGTGACTACATTATCACCCAACCCGTGTATGATCT TGCAAACGTTGACGCTTTGGCGGATGCTCTAGCGGCTA ATCACGTGAATGTGCCAGTGTTCGTTGGTGTTATGCCA CTCGTCTCACGGCGTAATGCTGAATTTCTACACCATGA PGTCCATGGCATTCGGATTCCAGAGCCTATCTTGACAC GCATGGCAGAAGCCGAACAGACCGGAAACGAACGGGCA GTGGGCATTGCTATTGCAA2AGGAATTGATTGATGGTAT CTGTGCGCGCTTCAACGGCGTTCACATCGTCACACCGT TTAACCGCTTTAAAACGGTCATTGAATTAGTCGATTAC TCCAACAGAAAAACTTAATTAAAGTACAATAA ____ 217 WO 2004/108894 PCT/US2004/017513 metH Cotyne- A371329 ATGTCTACTTCAGTTACTTCACCAGCCCACAACAACGC 260 bacterium ACATTCCTCCGAATTTTTGGATGCGTTGGCAAACCATG Jlutamicum TGTTGATCGGCGACGGCGCCATGGGCACCCAGCTCCAA GGCTTTGACCTGGACGTGGI4AAAGGATTTCCTTGATCT GGAGGGGTGTAATGAGATTCTCAACGACACCCGCCCTG ATGTGTTGAGGCAGATTCACCGCGCCTACTTTGAGGCG GAGCTGACTTGGTTGAGACCAATACTTTTGGTTGCAA CCTGCCGAACTTGGCGGATTATGACATCGCTGATCGTT GCCGTGAGCTTGCCTACAAGGGCACTGCAGTGGCTAGG GAAGTGGCTGATGAGATGGGGCCGGGCCGAAACGGCAT GCGGCGTTTCGTGGTTGGTTCCCTGGGACCTGGAACGA AGCTTCCATCGCTGGGCCATGCACCGTATGCAGATTTG CGTGGGCACTACAAGGAA GCAGCGCTTGGCATCATCGA CGGTGGTGGCGATGCCTTTTTGATTG1AGACTGCTCAGG ACTTGCTTCAGGTCA2AGGCTGCGGTTCACGGCGTTCAA GATGCCATGGCTGAACTTGATACATTCTTGCCCATTAT TTGCCACGTCACCGTAGAGACCACCGGCACCATGCTCA TGGGTTCTGAGATCGGTGCCGCGTTGACAGCGCTGCAG CCACTGGGTATCGACATGATTGGTCTGAACTGCGCCAC CGGCCCAGATGAGATGAGCGAGCACCTGCGTTACCTGT ICCAAGCACGCCGATATTCCTGTGTCGGTGATGCCTAAC GCAGGTCTTCCTGTCCTGGGTAAA2AACGGTGCAGAATA CCCACTTGAGGCTGAGGATTTGGCGCAGGCGCTGGCTG GATTCGTCTCCGAATATGGCCTGTCCATGGTGGGTGGT TGTTGTGGCACCACACCTGAGCACATCCGTGCGGTCCG CGATGCGGTGGTTGGTGTTCCAGAGCAGGAAACCTCCA CACTGACCAAGATCCCTGCAGGCCCTGTTGAGCAGGCC TCCCGCGAGGTGGAGAAAGAGGACTCCGTCGCGTCGCT TACACCTCGGTGCCATTGTCCCAGGAAACCGGCATTT CCATGATCGGTGAGCGCACCAACTCCAACGGTTCCAAG GCATTCCGTGAGGCAATGCTGTCTGGCGATTGGGAAA.A GTGTGTGGATATTGCCAAGCAGCAAACCCGCGATGGTG CACACATGCTGGATCTTTGTGTGGATTACGTGGGACGA GACGGCACCGCCGATATGGCGACCTTGGCAGCACTTCT TGCTACCAGCTCCACTTTGCCAATCATGATTGACTCCA CCGAGCCAGAGGTTATTCGCACAGGCCTTGAGCACTTG GGTGGACGAAGCATCGTTAACTCCGTCAACTTTGAAGA CGGCGATGGCCCTGAGTCCCGCTACCAGCGCATCATGA ACTGGTAAAGCAGCACGGTGCGGCCGTGGTTGCGCTG ACCATTGATGAGGAAGGCCAGGCACGTACCGCTGAGCA CAAGG.TGCGCATTGCTAAACGACTGATTGACGATATCA CCGGCAGCTACGGCCTGGATATCAAAGACATCGTTGTG 3ACTGCCTGACCTTCCCGATCTCTACTGGCCAGGAAGA ACCAGGCGAGATGGCATTGAAACCATCGAAGCCATCC CGAGCTGAAGAAGCTCTACCCAGAAATCCACACCACC CTGGGTCTGTCCAATATTTCCTTCGGCCTGAACCCTGC TGCACGCCAGGTTCTTAACTCTGTGTTCCTCAATGAGT GCATTGAGGCTGGTCTGGACTCTGCGATTGCGCACAGC TCCAAGATTTTGCCGATGAACCGCATTGATGATCGCCA GCGCGAAGTGGCGTTGGATATGGTCTATGATCGCCGCA CCGAGGATTACGATCCGCTGCAGG1AATTCATGCAGCTG TTTGAGGGCGTTTCTGCTGCCGATGCCAAGGATGCTCG CGCTGAACAGCTGGCCGCTATGCCTTTGTTTGAGCGTT TGGCACAGCGCATCATCGACGGCGATAAGAATGGCCTT 218 WO 2004/108894 PCT/US2004/017513 GAGGATGATCTGGAAGCAGGCATGAAGGAGAAGTCTCC T1ATTGCGATCATCAACGAGGACCTTCTCAACGGCATGA AGACCGTGGGTGAGCTGTTTGGTTCCGGACAGATGCAG CTGCCATTCGTGCTGCAATCGGCAGAAACCATGAAAAC ITGCGGTGGCCTATTTGGAACCGTTCATGGAAGAGGAAG CAGAAGCTACCGGATCTGCGCAGGCAGAGGGCAAGGGC PATCGTCGTGGCCACCGTCAAGGGTGACGTGCACGA TATCGGCAAGAACTTGGTGGACATCATTTTGTCCAACA ACGGTTACGACGTGGTGAACTTGGGCATCAAGCAGCCA CTGTCCGCCATGTTGGAAGCAGCGGZAAGAACACAAAGC AGACGTCATCGGCATGTCGGGACTTCTTGTGAAGTCCA CCGTGGTGATGAAGGAACCTTGAGGAGATGAACAAC 'CCGGCGCATCCAATTACCCAGTCATTTTGGGTGGCGC TGCGCTGACGCGTACCTACGTGGAAAACGATCTCAACG ZkGGTGTACACCGGTGAGGTGTACTACGCCCGTGATGCT TTCGAGGGCCTGCGCCTGATGGATGAGGTGATGGCAGA AGCGTGGTGAAGGACTTGATCCCAACTCACCAGAAG CTATTGAGCAGGCGAAGAAGAAGGCGGAACGTAAGGCT CGTAATGAGCGTTCCCGCAAGATTGCCGCGGAGCGTAA, AGCTAATGCGGCTCCCGTGATTGTTCCGGAGCGTTCTG ATGTCTCCACCGATACTCCAACCGCGGCACCACCGTTC TGGGGAACCCGCATTGTCAAGGGTCTGCCCTTGGCGGA GTTCTTGGGCAACCTTGATGAGCGCGCCTTGTTCATGG GGCAGTGGGGTCTGAAATCCACCCGCGGCIAACGAGGGT CCIAGCTATGAGGATTTGGTGGAAACTGAAGGCCGACC ACGCCTGCGCTACTGGCTGGATCGCCTGAAGTCTGAGG GCATTTTGGACCACGTGGCCTTGGTGTATGGCTACTTC CCAGCGGTCGCGGAAGGCGATGACGTGGTGATCTTGGA ATCCCCGGATCCACACGCAGCCGAACGCATGCGCTTTA CTTCCCACGCCAGCAGCGCGGCAGGTTCTTGTGCATC GCGGATTTCATTCGCCCACGCGAGCAAGCTGTCAAGGA CGGCCAAGTGGACGTCATGCCATTCCAGCTGGTCACCA TGGGTAATCCTATTGCTGATTTCGCCAACGAGTTGTTC GCAGCCAATGAATACCGCGAGTACTTGGAAGTTCACGG CATCGGCGTGCAGCTCACCGAAGCATTGGCCGAGTACT GCACTCCCGAGTGCGCAGCGAACTCAAGCTGAACGAC GGTGGATCTGTCGCTGATTTTGATCCAGAAGACAAGAC CAAGTTCTTCGACCTGGATTACCGCGGCGCCCGCTTCT CCTTTGGTTACGGTTCTTGCCCTGATCTGGAAGACCGC GCAAAGCTGGTGGAATTGCTCGAGCCAGGCCGTATCGG CGTGGAGTTGTCCGAGGAACTCCAGCTGCACCCAGAGC AGTCCACAGACGCGTTTGTGCTCTACCACCCAGAGGCA PGTACTTTAACGTCTAA metH Escherichia coi AE000475 GTGAGCAGCAAAGTGGAACAACTGCGTGCGCAGTTAAA 261 TGAACGTATTCTGGTGCTGGACGGCGGTATGGGCACCA TGATCCAGAGTTATCGACTGAACGAAGCCGATTTTCGT GGTGAACGCTTTGCCGACTGGCCATGCGACCTCAAAGG CAACAACGACCTGCTGGTACTCAGTAAACCGGAAGTGA TCGCCGCTATCCACAACGCCTACTTTGAAGCGGGCGCG CATATCATCGAAACCAACACCTTCAACTCCACGACCAT TGCGATGGCGGATTACCAGATGGAATCCCTGTCGGCGG ATCAACTTTGCGGCGGCGAAACTGGCGCGAGCTTGT GCTGACGAGTGGACCGCGCGCACGCCAGAGAAACCGCG CTACGTTGCCGGTGTTCTCGGCCCGACCAACCGCACGG1 219 WO 2004/108894 PCT/US2004/017513 CGTCTATTTCTCCGGACGTCAACGATCCGGCATTTCGT ATATCACTTTTGACGGGCTGGTGGCGGCTTATCGAGA GTCCACCAAAGCGCTGGTGGAAGGTGGCGCGGATCTGA TCCTGATTGAAACCGTTTTCGACACCCTTAACGCCAAA dCGGCGGTATTTGCGGTGAAAACGGAGTTTGAAGCGCT GGGCGTTGAGCTGCCGATTATGATCTCCGGCACCATCA CCGACGCCTCCGGGCGCACGCTCTCCGGGCAGACCACC GAAGCATTTTACAACTCATTGCGCCACGCCGAAGCTCT GACCTTTGGCCTGAACTGTGCGCTGGGGCCCGATGAAC TGCGCCAGTACGTGCAGGAGCTGTACGGATTGCGGAA TGCTACGTCACCGCGCACCCGAACGCCGGGCTACCCA CGCCTTTGGTGAGTACGATCTCGACGCCGACACGATGG CAAAACAGATACGTGAATGGGCGCAA GCGGGTTTTCTC PTATCGTCGGCGGCTGCTGTGGCACCACGCCACAACA TATTGCAGCGATGAGTCGTGCAGTAGAAGGATTAGCGC CGCGCAAACTGCCGGAAATTCCCGTAGCCTGCCGTTTG TCCGGCCTGGAGCCGCTGAACATTGGCGAAGATAGCCT GTTTGTGAACGTGGGTGAACGCACCAACGTCACCGGTT CCGCTAAGTTCAAGCGCCTGATCAAAGAAGAGAAATAC AGCGAGGCGCTGGATGTCGCGCGTCAACAGGTGGAAAA CGGCGCGCAGATTATCGATATCAACATGGATGAAGGGA TGCTCGATGCCGAAGCGGCGATGGTGCGTTTTCTCAAT CTGATTGCCGGTGAACCGGATATCGCTCGCGTGCCGAT TATGATCGACTCCTCAA1AATGGGACGTCATTGAA-AAAG TCTGAAGTGTATCCAGGGCAAAGGCATTGTTAACTCT ATCTCGATGAAAGAGGGCGTCGATGCCTTTATCCATCA CGCGAAATTGTTGCGTCGCTACGGTGCGGCAGTGGTGG TAATGGCCTTTGACGAACAGGGACAGGCCGATACTCGC CACGGAAACGAGATTTGCCGTCGGGCGTACAAAAT CCTCACCGAAGAGGTTGGCTTCCCGCCAGAAGATATCA TCTTCGACCCAAACATCTTCGCGGTCGCAACTGGCATT GAALGAGCACAACAACTACGCGCAGGACTTTATCGGCGC GTGTGAALGACATCAAA CGCGAACTGCCGCACGCGCTGA TTTCCGGCGGCGTATCTAACGTTTCTTTCTCGTTCCGT GGCAACGAtCCGGTGCGCGAAGCCATTCACGCAGTGTT CCTCTACTACGCTATTCGCAATGGCATGGATATGGGGA TCGTCJAACGCCGGGCAACTGGCGATTTACGACGACCTA CCCGCTGAACTGCGCGACGCGGTGGAALGATGTGATTCT TAATCGTCGCGACGATGGCACCGAGCGTTTACTGGAGC TTGCCGAGAAATATCGCGGCAGCAAAACCGACGACACC CCAACGCCCAGCAGGCGGAGTGGCGCTCGTGGGAAGT GAATAAACGTCTGGAATACTCGCTGGTCAAAGGCATTA CCGAGTTTATCGAGCAGGATACCGAAGAAGCCCGCCAG CAGGCTACGCGCCCGATTGAAGTGATTGAAGGCCCGTT GATGGACGGCATGAATGTGGTCCGCGACCTGTTTGGCG AGGGAAAATGTTCCTGCCACAGGTGGTCAAATCGGCG CGCGTCATGAAACAGGCGGTGGCCTACCTCGAACCGTT TATTGAAGCCAGCAAAGAGCAGGGCAAAACC1ACGGCA PGATGGTGATCGCCACCGTGAAGGGCGACGTCCACGAC TCGGTAAAAATATCGTTGGTGTGGTGCTGCAATGTAA CAACTACGAA-ATTGTCGATCTCGGCGTTATGGTGCCTG CGGAA1AAATTCTCCGTACCGCTAAAGAAGTGAATGCT rACTGATTGGCCTTTCGGGGCTTATCACGCCGTCGCT GACGAGATGGTTAACGTGGCGAAAGAGATGGAGCGTCI 220 WO 2004/108894 PCT/US2004/017513 AGGGCTTCACTATTCCGTTACTGATTGGCGGCGCGACG ACCTCAAAAGCGCACACGGCGGTGAAAATCGAGCAGAA CTACAGCGGCCCGACGGTGTATGTGCAGAATGCCTCGC 3TACCGTTGGTGTGGTGGCGGCGCTGCTTTCCGATACC CAGCGTGATGATTTTGTCGCTCGTACCCGCAAGGAGTA CGAAACCGTACGTATTCAGCACGGGCGCAAGAAACCGC CACACCACCGGTCACGCTGGAAGCGGCGCGCGATAAC 3ATTTCGCTTTTGACTGGCAGGCTTACACGCCGCCGGT 3GCGCACCGTCTCGGCGTGCAGGAAGTCGAAGCCAGCA TCGAAACGCTGCGTAATTACATCGACTGGACACCGTTC TTTATGACCTGGTCGCTGGCCGGGAAGTATCCGCGCAT TCTGGAAGATGAAGTGGTGGGCGTTGAGGCGCAGCGGC TGTTTAAAGACGCCAACGACATGCTGGATAAATTAAGC OCCGAGAAAACGCTGAATCCGCGTGGCGTGGTGGGCCT GTTCCCGGCAAACCGTGTGGGCGATGACATTGAAATCT ACCGTGACGAAACGCGTACCCATGTGATCAACGTCAGC CACCATCTGCGTCAACAGACCGAAAAAACAGGCTTCGC TAACTACTGTCTCGCTGACTTCGTTGCGCCGAAGCTTT CTGGTAAAGCAGATTACATCGGCGCATTTGCCGTGACT GCGGGCTGGAAGAGGACGCACTGGCTGATGCCTTTGA AGCGCAGCACGATGATTACAACAAAATCATGGTGAAAG CGCTTGCCGACCGTTTAGCCGAAGCCTTTGCGGAGTAT CTCCATGAGCGTGTGCGTAAAGTCTACTGGGGCTATGC GCCGAACGAGAACCTCAGCAACGAAGAGCTGATCCGCG AAAACTACCAGGGCATCCGTCCGGCACCGGGCTATCCG 3CCTGCCCGGAACATACGGAAAAAGCCACCATCTGGGA GCTGCTGGAAGTGGAAAAACACACTGGCATGAAACTCA CAGAATCTTTCGCCATGTGGCCCGGTGCATCGGTTTCG 3GTTGGTACTTCAGCCACCCGGACAGCAAGTACTACGC TGTAGCACAAATTCAGCGCGATCAGGTTGAAGATTATG CCCGCCGTAAAGGTATGAGCGTTACCGAAGTTGAGCGC TGGCTGGCACCGAATCTGGGGTATGACGCGGACTGA metE Mycobacterium Z95585.1 TGACCCAGCCTGTACGTCGTCAACCCTTTACCGCAAC 146 tuberculosis CATCACCGGCTCCCCGCGCATCGGCCCGCGCCGCGAAC (use this to CAAGCGCGCCACCGAAGGCTACTGGGCCGGACGTACC clone M. GCCGATCCGAGCTGGAGGCCGTCGCCGCCACGTTACG megmatis CCGCGACACCTGGTCGGCCCTGGCCGCGGCCGGTCTGG ene) ACTCGGTGCCGGTGAACACCTTCTCCTACTACGACCAA TGCTCGATACCGCGGTGCTGCTCGGCGCGCTGCCGCC CCGAGTGAGCCCGGTTTCCGACGGGCTGGACCGCTATT TCGCCGCGGCGCGGGGCACCGACCAGATCGCGCCGCTG AGATGACGAAGTGGTTCGACACCAACTACCACTACCT gGTACCCGAGATCGGGCCGTCGACCACGTTCACGCTGC ACCCCGGCAAGGTGCTCGCCGAACTCAAAGAGGCGTTA GGCAAGGCATTCCCGCACGTCCGGTGATCATCGGGCC ATCACCTTCCTGCTGCTGAGCAAGGCCGTCGACGCCG CGGGGGCGCCGATCGAACGCCTCGAAGAGTTGGTTCCG TCTATTCGGAGCTGCTGTCGCTGCTTGCCGACGGCGG CGCCCAGTGGGTGCAGTTCGACGAGCCGGCGCTGGTGA CCGACCTCTCCCCCGACGCGCCCGCCCTGGCTGAAGCG TGTACACCGCGCTGTGCTCGGTGAGCAACCGGCCTGC ATCTATGTCGCCACCTACTTCGGGGACCCGGGCGCGG CCCTACCGGCGCTGGCTCGCACCCCGGTCGAAGCCATC 3GCGTCGACCTGGTGGCCGGTGCCGACACCTCGGTGGC 221 WO 2004/108894 PCT/US2004/017513 CGGGGTACCCGAGCTGGCCGGCAAGACGCTGGTGGCCG GGGTCGTCGACGGGCGCAACGTCTGGCGCACCGACCTG GAGGCGGCGTTGGGCACGTTGGCGACCCTGCTGGGTTC GGCGGCTACCGTGGCCGTCTCGACGTCGTGCTCGACAC TGCACGTGCCGTACTCGCTGGAACCGGAAACCGACCTG GATGACGCGTTGCGGAGCTGGCTGGCGTTCGGTGCCGA AAAGGTGCGCGAAGTCGTCGTTCTCGCGCGTGCCCTGC GCGACGGACACGACGCGGTCGCCGACGAGATCGCGTCG TCCCGCGCCGCCATCGCGTCCCGCAAGCGCGACCCGCG GTTACACAATGGGCAAATCCGGGCGCGCATCGAGGCGA TCGTCGCGTCCGGAGCCCACCGCGGCAATGCCGCCCAG CGCCGCGCCAGCCAAGACGCGCGACTGCACCTGCCGCC GCTGCCGACCACGACGATCGGCTCCTACCCGCAGACCT CGGCGATCCGCGTTGCGCGTGCGGCGCTGCGGGCCGGT GAGATCGACGAGGCCGAGTACGTGCGCCGGATGCGGCA AGAGATCACCGAGGTGATCGCGCTACAGGAGCGGCTCG GGCTCGACGTGCTGGTGCACGGCGAACCGGAGCGCAAC 3ACATGGTGCAGTACTTCGCCGAGCAATTGGCGGGTTT CTTCGCTACCCAGAACGGCTGGGTGCAGTCCTACGGCA GCCGCTGTGTGCGTCCGCCGATCCTGTACGGCGACGTG TCCCGGCCGCGGGCGATGACGGTCGAGTGGATCACCTA CGCGCAGTCGCTGACCGACAAACCGGTGAAGGGCATGT TGACCGGGCCGGTGACGATTCTGGCGTGGTCGTTCGTG CGTGACGACCAGCCGTTGGCCGATACCGCCAACCAGGT GCGCTGGCGATTCGCGACGAGACCGTGGATTTGCAGT CCGCCGGCATCGCGGTCATCCAGGTCGACGAGCCTGCG CTGCGTGAACTGCTGCCGCTGCGTCGCGCCGACCAGGC CGAGTACTTGCGTTGGGCGGTAGGGGCTTTCCGGTTGG CCACCTCCGGCGTCTCGGACGCCACCCAGATCCACACG CATCTGTGCTACTCGGAGTTCGGCGAGGTGATCGGCGC GATCGCCGATCTGGACGCGGACGTCACGTCCATCGAGG CGGCCCGGTCACACATGGAGGTGCTCGACGACCTGAAC GCGATCGGCTTCGCCAACGGTGTGGGCCCGGGCGTCTA TGACATTCACTCGCCACGGGTGCCCTCCGCTGAGGAGA TGGCCGACTCGTTGCGGGCCGCGTTGCGCGCGGTGCCG GCCGAGCGGCTGTGGGTCAACCCCGACTGCGGACTGAA GACCCGCAATGTCGACGAGGTGACCGCGTCGCTGCACA ACATGGTCGCCGC,CGCCCGGGAGGTGCGCGCGGGCTAG metE Mycobacterium 94723.1 TGGACGAACTCGTGACCACTCAATCATTCACCGCAAC 147 eprae (use this CGTAACTGGCTCTCCACGCATTGGCCCGCGCCGCGAAC to clone M. TTAAACGGGCGACCGAAGGCTATTGGGCCAAGCGTACC smegmatis GCCGATCAGAACTGGAGTCCGTCGCCTCACATTGCG ene) CCGCGACATGTGGTCGGACTTAGCCGCCGCCGGCCTGG CTCCGTACCGGTGCACACCTTCTCTTACTACGACCAG TTGCTCGACACGGCATTCATGCTCGGCGCGCTGCCTGC CCGGGTAGCACAAGTGTCCGACGACCTAGATCAGTACT TCGCCCTCGCACGCGGCAACAACGACATCAAGCCGCTG AGATCGACTAAGTGGTTCGACACCAACTACCACTACCT GTTCCTGAATCGAGCCCGCGACCACCTTCTCACTGA ACCCAGGCPAGATACTCGGTGAGCTGAAAGAAGCACTT GAGCAAAGAATTCCGTCCCGACCGGTCATTATCGGTCC GTCACCTTCCTGTTACTGAGCAAGGGCATCAATGGCG GGGCGCACCGATACAGCGGCTCGAGGAGCTGGTGGGA TCTACTGCACGCTGCTATCACTGCTCGCCGAGAATGG_ 222 WO 2004/108894 PCT/US2004/017513 CGCACGATGGGTACAGTTCGACGAGCCGGCGCTGGTGA CTGATCTATCCCCCGATGCACCGGCGTTGGCGGAAGCA GTTTACACTGCACTCGGCTCAGTTAGCAAACGACCCGC CATTTACGTGGCCACTTACTTCGGTAACCCCGGCGCTT CCTTGGCGGGGCTAGCCCGCACGCCCATCGAGGCGATC OGTGTCGACTTCGTTTGTGGTGCCGACACGTCGGTCGC GGCGGTGCCCGAGCTGGCCGGCAA-GACT'2TGGTGGCTG GCATCGTCGACGGACGCAACATCTGGCGCACTGACCTG GAATCGGCGTTGAGCAAGTTGGCTACTCTGCTGGGTTC AGCAGCCACCGTTGCTGTTTCGACGTCGTGCTCTACGC TGCATGTGCCGTATTCGTTGGAACCAGAAACCGACCTG GACGACAATTTGCGCAGCTGGCTGGCGTTCGGTGCGGA AAGGTGGCCGAAGTCGTTGTGCTGGCACGCGCA.CTTC GCGACGGGCGCGACGCGGTCGCCGATGAGATCGCGGCG TCCAATGCCGCCGTTGCCTCGCGACGCAGCGACCCGCG CTGCACAACGGGCAGGTACGCGCGCGTATTGACTCGA TTGTCGCTTCCGGTACGCACCGCGGTGACGCAGCGCAG CGCCGCACCAGCCAGGACGCGCGCCTACACTTACCGCC GCTGCCGACCACGACGATCGGCTCCTACCCGCAGACCT CAGCGATCCGCAA.AGCGCGAGCGGCACTGCAGGACGCT GAGATCGACGAGGCCGAGTACATCAGCAGGATGAAAAA LGAAGTCGCCGACGCCATCAAACTGCAGGAGCAACTCG GGCTAGATGTACTGGTCCATGGCGAGCCGGAGCGCAAC GACATGGTACAGTATTTCGCTGAGCAACTGGGCGGCTT CTTCGCCACGCAGAACGGTTGGGTGCAGTCCTACGGCA GCCGTTGTGTACGTCCGCCGATCCTCTACGGTGACGTG TCCCGGCCTCACCCGATGACAATCGAGTGGATCACCTA CGCGCAGTCCCTAACTGACAAGCCAGTTAXGGGCATGT TGACCGGACCGGTCACGATCTTACCCTGGTCGTTTGTT CGTGACGACCAGCCGCTGGCCGATACCGCGAACCAAGT GCCACTGGCGATTCGCGATGAGACCGTAGATCTACAAT CCGCCGGTATCGCAATCATCCAGGTTGACGAGCCCGCG CTACGTGAGCTGCTGCCGCTGCGTAGGGCTGATCAAGA CGAATACTTATGTTGGGCAGTAAAGGCTTTCCGCCTAG CTACCTCGGGGGTCGCCGACTCGACGCAAATCCACACT CATCTGTGCTACTCCGAGTTCGGCGAAGTGATTGGAGC TATCGCCGACCTGGACGCCGACGTCACATCCATCGAAG CGGCGCGCTCACACATGGAAGTATTGGATGACCTGAAC CAGTCGGCTTCGCTAALCAGCATAGGCCCGGGAGTCTA CGACATCCACTCGCCGCGGGTACCAAGCACTGACGAGA TTGCCAAGTCGCTACGCGCAGCATTAAAAGCCATACCG ATGCAACGGCTTTGGGTTAACCCCGACTGCGGGCTGAA GACCCGATCAGTTGACGACGTGAGCGCGTCGCTGCAGA ACATGGTCGCAGCAGCACGCCAGGTGCGGGCAGGGGCC TAA metE Streptomyces AL939 107.1 GTGACAGCGAAGTCCGCAGCCGCGGCAGCACGGGCCAC 148 coelicolor CGTGTACGGCTACCCCCGCCAGGGCCCGAACCGGGAAC TGAAGAAGGCGATCGAGGGCTACTGGAAGGGCCGCGTC AGCGCGCCCGA7ACTCCGGTCCCTCGCCGCGGACCTGCG CGCCGCG2AACTGGCGCCGACTGGCCGACGCCGGCATCG kCGAGGTGCCCGCCGGCGACTTCTCGTACTACGACCAC TCCTCGACACCACCGTCATGGTCGGTGCGATCCCCGA 7CGCCACCGCGCCGCCGTCGCGGCCGACGCCCTGGACG GCTACTTCGCCATGGCCCGCGGCACCCAGGAGGTCGCGI 223 WO 2004/108894 PCT/US2004/017513 U CGCTGGAGATGACCAAGTGGTTCGACACCAACTACCA C!TATCTGGTTCCGGAGTTGGGTCCGGACACCGTCTTCA
CGGCCGACTCCACCAAGCAGGTCACCGAGCTGGCGGAA
3CCGTCGCCCTGGGCCTGACCGCCCGCCCCGTGCTGGT CGGCCCGGTCACCTATCTCCTGCTGGCCAAGCCGGCCC CCGGCGCCCCCGCGGACTTCGAGCCGCTCACCCTGCTC ACCGGCTCCTGCCGGTGTACGCCGAGGTCCTCACCGA CCTGCGCGCGGCCGGCGCCGAGTGGGTCCAGCTGGACG AGCCCGCCTTCGTGCAGGACCGCACCCCGGCGGAACTG ACGCCCTGGAA CGCGCCTACCGGGAACTCGGCGCCCT GACCGACCGGCCCAAGCTGCTCGTCGCCTCCTACTTCG ACCGCCTCGGCGACGCGCTGCCCGTCCTGGCCAA.GGCA CCGATCGAGGGTCTTGCCCTGGACTTCACCGACGCCGC CGCGACCAACCTGGACGCCTTGGCCGCCGTCGGCGGAC TGCCCGGCAAGCGCCTCGTCGCCGGTGTCGTCAACGGC CGCAACATCTGGATCAACGACCTGCAGAAGTCGTTGTC CACGCTCGGCACGCTGCTGGGTCTCGCGGACCGGGTCG LCGTGTCCGCCTCCTGCTCCCTCCTCCATGTGCCCCTC ACACCGGGGCGGAGCGGGACATCGAGCCGCAGATCCT GCGCTGGCTGGCCTTCGCCCGGCAGAAGACCGCCGAGA TCGTCACCCTCGCCAAGGGCCTCGCCCAGGGCACCGAC GCCATCACCGGCGAACTCGCCGCCAGCCGCGCCGAC-AT GGCCTCCCGCGCCGGCTCACCGATCACCCGCAACCCGG CCGTACGAGCCCGTGCCGAGGCCGTGACGGACGACGAC CCCGTCGCTCCCAGCCGTACGCCGAACGGACCGCCGC CCAGCGGGCACACCTGGGGCTGCCGCCGCTGCCGACCA CGACCATCGGCTCGTTCCCGCAGACCGGCGAGATCCGG GCCcCCCGTGCCGACCTGCGCGACGGCCGCATCGACAT CGCCGGCTACGAGGAAC!GGATCCGGGCCGAGATCCAG AGGTGATCTCCTTCCAGGAGAAGACCGGCCTGGACGTC CTGGTGCACGGCGAGCCCGAACGCAACGACATGGTCCA GTACTTCGCCGAACAGCTGACCGGGTATCTGGCCACGC AGCACGGCTGGGTCCAGTCCTACGGCACCCGCTACGTC CGCCCGCCGATCCTGGCCGGGGACATCTCCCGCCCCGA GCCGATGACGGTGCGCTGGACGACGTACGCCCAGTCGC TCACCGAGAAGCCGGTCAAGGGCATGCTCACCGGCCCG GTGACCATGCTCGCATGGTCCTTCGTCCGCGACGACCA GCCCCTCGGTGACACCGCCCGCCAGGTCGCCCTCGCCC TGCGCGACGAGGTGAACGACCTGGAGGCGGCCGGGACC TCGGTCATCCAGGTCGACGAACCCGCCCTGCGCGAGAC ACTGCCGCTGCGGGCCGCCGACCACACCGCCTACCTGG CCTGGGCGACGGAGGCGTTCCGGCTGACCACCTCTGGC TCCGCCCGGACACCCAGATCCACACCCACATGTGCTA CGCCGAGTTCGGCGACATCGTCCAGGCCATCGACGACC TCGACGCCGACGTCATCAGCCTGGAACCCGCTCGCTCA CACATGCAGGTAGCCCACGAACTCGCTACCCACGGCTA CCCGCGCGAAGCCGGACCCGGCGTGTACGACATCCACT CCCCGCGCGTCCCGAGCGCCGAGGAAGCCGCCGCACTG CTGCGCACCGGCCTCAAGGCGATTCCTGCCGAACGGCT TGGGTCAACCCCGACTGCGGTCTGAAGACCCGCGGCT GGCCCGAGACCCGCGCCTCCCTGGAGAACCTGGTCGCC ACCGCCCGCACCCTCCGCGGAGAGCTGTCCGCTTCCTG 224 WO 2004/108894 PCT/US2004/017513 mnetE Coryne- AX371 335 ATGACTTCCAACTTTTCTTCCACTGTCGCTGGTCTTCC 262 bacterium TCGCATCGGAGCGAAGCGTGAACTGAAGTTCGCGCTCG glutamicum AGGCTACTGGAATGGATC2AATTGAAGGTCGCGAACTT GCGCAGACCGCCCGCCATTGGTCAACACTGCATCGGA TTCTTTGTCTGGATTGGATTCCGTTCCGTTTGCAGGAC GTTCCTACTACGACGCAATGCTCGATACCGCCGCTATT TTGGGTGTGCTGCCGGAGCGTTTTGATGACATCGCTGA TCATGAAAACGATGGTCTCCCACTGTGGATTGACCGCT PCTTTGGCGCTGCTCGCGGTACTGAGACCCTGCCTGCA CAGGCAATGACCAAGTGGTTTGATACCAACTACCACTA CCTCGTGCCGGAGTTGTCTGCGGATACACGTTTCGTTT TGGATGCGTCCGCGCTGATTGAGGATCTCCGTTGCCAG CAGCTTCGTGGCGTTAATGCCCGCCCTGTTCTGGTTGG TCCACTGACTTTCCTTTCCCTTGCTCGCACCACTGATG GTTCCAATCCTTTGGATCACCTGCCTGCACTGTTTGAG GTCTACGAGCGCCTCATCAAGTCTTTCGATACTGAGTG GGTTCAGATCGATG7AGCCTGCGTTGGTCACCGATGTTG CTCCTGAGGTTTTGGAGCAGGTCCGCGCTGGTTACACC ACTTTGGCTAAGCGCGATGGCGTGTTTGTCAATACTTA CTTCGGCTCTGGCGATCAGGCGCTGAACACTCTTGCGG GCATCGGCCTTGGCGCGATTGGCGTTGACTTGGTCACC CATGGCGTCACTGAGCTTGCTGCGTGGAAGGGTGAGGA GCTGCTGGTTGCGGGCATCGTTGATGGTCGTAACATTT GGCGCACCGACCTGTGCTGCTCTTGCTTCCCTGAAG CGCCTGGCAGCTCGCGGCCCAATCGCAGTGTCTACCTC TTGTTCACTGCTGCACGTTCCTTACACCCTCGAGGCTG AGAACATTGAGCCTGAGGTCCGCGACTGGCTTGCCTTC GCTCGGAGAAGATCACCGAGGTCAAGCTGCTTGCCGA CGCCCTAGCCGGCAACATCGACGCGGCTGCGTTCGATG CGGCGTCCGCAGCAATTGCTTCTCGACGCACCTCCCCA CGCACCGCACCAATCACGCAGGAACTCCCTGGCCGTAG CCGTGGATCCTTCGACACTCGTGTTACGCTGCAGGAGA AGTCACTGGAGCTTCCAGCTCTGCCAACCACCACCATT GTTCTTTCCCACAGACCCCATCCATTCGTTCTGCTCG CGCTCGTCTGCGCAAGGAATCCATCACTTTGGAGCAGT ACGAAGAGGCAATGCGCGAAGAAATCGATCTGGTCATC GCCAAGCAGGAAGAACTTGGTCTTGATGTGTTGGTTCA CGGTGAGCCAGAGCGCAACGACATGGTTCAGTACTTCT CTGAACTTCTCGACGGTTTCCTCTCAACCGCCAACGGC TGGGTCCAAAGCTACGGCTCCCGCTGTGTTCGTCCTCC AGTGTTGTTCGGAAACGTTTCCCGCCCAGCGCCAATGA CTGTCAAGTGGTTCCAGTACGCACAGAGCCTGACCCAG AGCATGTCAAGGGAATGCTCACCGGTCCAGTCACCAT CCTTGCATGGTCCTTCGTTCGCGATGATCAGCCGCTGG CTACCACTGCTGACCAGGTTGCACTGGCACTGCGCGAT GAAATTAACGATCTCATCGAGGCTGGCGCGAAGATCAT CCAGGTGGATGAGCCTGCGATTCGTGAALCTGTTGCCGC TACGAGACGTCGATAAGCCTGCCTACCTGCAGTCOTCC GTGGACTCCTTCCGCCTGGCGACTGCCGGCGCACCCGA CGACGTCCAZAATCCACACCCACATGTGCTACTCCGAGT TCAACGAAGTGATCTCCTCGGTCATCGCGTTGGATGCC "ATGTCACCACCATCGAAGCAGCACGTTCCGACATGCA iGTCCTCGCTGCTCTGAAATCTTCCGGCTTCGAGCTCG GCGTCGGACCTGGTGTGTGGGATATCCACTCCCCGCGCI 225 WO 2004/108894 PCT/US2004/017513 GTTCCTTCCGCGcAGGA7AGTGGACGGTCTCCTCGAGGC TGCACTGCAGTCCGTGGATCCTCGCCAGCTGTGGGTCA ACCCAGACTGTGGTCTGAAGACCCGTGGATGGCCAGAA GTGGAAGCTTCCCTAAAGGTTCTCGTTGAGTCCGCTAA GCAGGCTCGTGAGAAAATCGGAGCAACTATCTAA metE Escherichia coli AE016769 ATGACAATTCTTAATCACACCCTCGGTTTCCCTCGCGT 263 TGGCCTGCGTCGCGAGCTGAAAAAAGCGCAAGAGAGTT ATTGGGCGGGGAACTCCACGCGTGAAGAACTGCTGGCG AGCAAGCGGGTATCGACCTGCTGCCGGTGGGCGATT TTGCCTGGTACGATCATGTACTGACCACCAGTCTGCTG CTGGGTAATGTTCCGCCACGTCATCAGACAZAGATGG TTCGGTAGATATCGACACCCTGTTCCGTATTGGTCGTG GACGTGCACCGACTGGCGAACCTGCGGCGGCAGCGGAA ATGACCAAATGGTTTAACACCAACTATCACTACATGGT GCCGGAGTTCGTTAAAGGCCAACAGTTCAAACTGACCT GGACGCAGCTGCTGGAGGAAGTGGACGAGGCGCTGGCG CTGGGCCACAAGGTGAAACCTGTGCTGCTGGGGCCGAT TACCTACCTGTGGCTGGGTAAAGTGAAAGGTGAACAGT TTGATCGCCTGAGCCTGCTGAACGACATTCTGCCGGTT TATCAGCAAGTGCTGGCAGAACTGGCGAAACGCGGCAT CGAGTGGGTACAGATTGATGAACCCGCGTTGGTACTGG ACTGCCGCAGGCGTGGCTGGACGCATACAAACCCGCT TACGACGCGCTCCAGGGACAGGTGA2AACTGCTGCTGAC CACCTATTTTGAAGGCGTAACGCCAAACCTCGACACGA TTACTGCGCTGCCTGTTCAGGGTCTGCATGTCGATCTC TACATGGTAAAGATGACGTTGCTGAACTGCACAAGCG TCTGCCTTCTGACTGGCTGCTGTCTGCGGGTCTTATCA ATGGTCGTAACGTCTGGCGCGCCGATCTTACCGAGAAA TATGCGCAAATTAAGGACATTGTCGGCAAACGCGATTT GTGGGTGGCATCTTCCTGCTCGTTGCTGCACAGCCCCA TCGACTTGAGCGTGGAAACGCGTCTTGATGCAGAAGTG AAGCTGGTTTGCCTTCGCCCTGCAAAAATGTCATGA ACTGGCATTGCTGCGCGATGCGTTGAACAGTGGTGATA CGGCAGCTCTGGCAGAGTGGAGCGCTCCGATTCAGGCG CGTCGTCACTCTACTCGTGTACATAATCCGGCAGTAGA AAGCGTCTGGCGGCGATCACCGCCCAGGACAGTCAGC TGCGAATGTCTATGAAGTGCGTGCTGAAGCTCAGCGT GCGCGTTTTAAACTGCCCGCGTGGCCGACCACCACGAT TGGTTCCTTCCCGCAAACCACGGAGATTCGTACCCTGC GTCTGGATTTTAAAAAGGGTAATCTCGACGCCAATAAC TACCGCACGGGCATTGCGGAACATATCAAGCAGGCCAT TGTTGAGCAGGAACGTTTGGGACTGGATGTGCTGGTAC ATGGCGAGGCCGAGCGTAATGACATGGTGGAATACTTT GGCGAGCATCTGGATGGCTTTGTCTTTACGCAAAACOG TTGGGTACAGAGCTACGGTTCCCGCTGCGTGAAGCCAC CGATTGTTATTGGTGACGTTAGCCGCCCGGCACCGATT ACCGTGGAGTGGGCAA7AATATGCGCAATCCCTGACTGA TAAACCCGTGAAAGGGATGTTGACCGGCCCGGTGACTA TTCTCTGCTGGTCGTTCCCGCGTGAAGATGTCAGCCGT "AAACCATCGCCAA.ACAAATTGCGCTGGCGCTGCGTGA TGAAGTCGCGGACCTGGAAGCCGCTGGAATTGGCATCA TTCAGATTGACGAACCGGCATTGCGCGAAGGTTTACCA CTGCGTCGCAGCGACTGGGATGCCTATCTCCAGTGGGG 226 WO 2004/108894 PCT/US2004/017513 CGTGGAGGCTTTCCGTATCAACGCCGCCGTGGCGAAAG ATGACACACAAATCCACACTCACATGTGTTACTGCGAG TTCAACGACATCATGGATTCGATTGCGGCGCTGGACGC AGACGTCATCACCATCGAAACCTCGCGTTCCGACATGG GTTGCTGGAGTCGTTTGAAGAGTTTGATTATCCAAAT 3AAATCGGTCCTGGCGTCTATGACATTCACTCGCCAAA CGTACCGAGCGTGGAATGGATTGAAGCCTTGCTGAAGA AAGCGGCAAAACGCATTCCGGCAGAGCGTCTGTGGGTC AACCCGGACTGTGGCCTGAAAACGCGCGGCTGGCCAGA AACCCGCGCGGCACTGGCGAACATGGTGCAGGCGGCGC AGAATTTGCGTCGGGGA IyA Streptomyces AL939123 ATGTCGCTTCTGAACACACCCCTGCACGAGCTGGACCC 149 coelicolor GACGTCGCCGCCGCCGTCGACGCCGAGCTGGACCGCC AGCAGTCCACCCTCGAGATGATCGCGTCGGAGAACTTC 3CCCCGGTCGCGGTCATGGAGGCCCAGGGCTCGGTCCT CACCAACAAGTACGCCGAGGGCTACCCCGGCCGCCGCT ACTACGGCGGCTGCGAGCACGTCGACGTGGTCGAGCAG ATCGCCATCGACCGGGTCAAGGCGCTCTTCGGCGCCGA CACGCCAACGTGCAGCCGCACTCGGGCGCCCAGGCCA ACGCGGCCGCGATGTTCGCGCTGCTCAAGCCCGGCGAC ACGATCATGGGTCTGAACCTCGCGCACGGCGGGCACCT 3ACCCACGGCATGAAGATCAACTTCTCCGGCAAGCTCT ACAACGTGGTCCCCTACCACGTCGGCGACGACGGCCAG 3TCGACATGGCCGAGGTGGAGCGCCTGGCCAAGGAGAC CAAGCCGAAGCTGATCGTGGCGGGCTGGTCGGCCTACC CGCGTCAGCTGGACTTCGCCGCGTTCCGCAAGGTCGCG GACGAGGTCGGCGCGTACCTGATGGTCGACATGGCGCA CTTCGCCGGTCTGGTCGCGGCGGGCCTGCACCCGAACC CGGTCCCGCACGCCCACGTCGTCACCACGACCACCCAC AAGACGCTGGGCGGTCCGCGCGGCGGTGTGATCCTCTC CACGGCCGAGCTGGCCAAGAAGATCAACTCCGCCGTCT TCCCCGGTCAGCAGGGTGGCCCGCTGGAGCACGTGGTG GCCGCCAAGGCCGTCGCCTTCAAGGTCGCCGCGAGCGA GGACTTCAAGGAGCGCCAGGGCCGTACGCTGGAGGGTG CCCGCATCCTGGCCGAGCGCCTGGTGCGGGACGACGCG AAGGCCGCGGGCGTCTCCGTCCTGACCGGCGGCACGGA CGTCCACCTGGTCCTGGTGGACCTGCGCGACTCCOAGC TGGACGGACAGCAGGCCGAGGACCGCCTCCACGAGGTC GGCATCACGGTCAACCGCAACGCCGTCCCGAACGACCC GCGCCCGCCGATGGTGACCTCCGGTCTGCGCATCGGTA CGCCGGCCCTGGCGACCCGCGGCTTCACCGCCGAGGAC TTCGCCGAGGTCGCGGACGTGATCGCCGAGGCGCTGAA GCCGTCCTACGACGCGGAGGCCCTCAAGGCCCGGGTGA AGACCCTGGCCGACAAGCACCCGCTGTACCCGGGTCTG AACAAGTAG IyA Thermobifida NZAAAQ010 GTGAAGGTTAGGAAACTCATGACCGCCCAGAGCACTTC 150 fusca 0038 GCTCACCCAGTCGCTGGCTCAGCTCGACCCTGAGGTCG CGGCAGCCGTGGACGCCGAGCTCGCCCGCCAGCGCGAC ACCTTGGAGATGATCGCCTCCGAAAACTTTGCGCCCCG GCGGTGCTGGAGGCGCAAGGCACGGTGCTGACCAACA GTACGCGGAAGGCTACCCGGGCCGCCGCTACTACGGC GGTGTGAGCACGTGGACGTCATCGAACAGCTGGCCAT CGACCGTGCCAAGGCCCTGTTCGGTGCCGAGCACGCCA 227 WO 2004/108894 PCT/US2004/017513 ACGTGCAGCCGCACTCGGGCGCTCAGGCGAACACCGCC GTGTACTTTGCGCTGCTGCAGCCGGGCGACACCATCCT GGGCCTGGACCTCGCACACGGCGGGCACCTCACCCACG GCATGCGGATCAACTACTCCGGCAAGATCCTCAACGCC GTGGCCTACCACGTACGCGAGTCCGACGGCCTGATCGA CTACGACGAGGTCGAAGCGCTAGCCAAGGAGCACCAGC CGAAACTGATCATCGCGGGCTGGTCGGCGTACCCGCGC CAGTTGGACTTTGCCCGGTTCCGGGAGATCGCCGACCA ACAGGCGCCCTCCTCATGGTGGATATGGCGCATTTCG CGGGTCTGGTCGCGGCTGGACTGCACCCCAACCCGGTC CCCTACGCCGACGTAGTGACCACCACCACCCACAAGAC CTTGGGCGGGCCGCGAGGCGGGCTCATCCTGGCCAAGG AGGAGCTGGGCAAGAAGATCAACTCGGCGGTGTTCCCG GGGATGCAGGGCGGTCCGCTCCAGCACGTCATCGCTGC CAAGGCCGTAGCGTTGAAGGTCGCGGCCAGCGAAGAGT TCGCTGAGCGGCAGCGGCGCACCCTTTCCGGCGCGAAG ATCCTCGCCGAGCGGCTCACCCAGCCTGACGCGGCCGA GGCCGGTATTCGGGTGCTGACCGGCGGCACCGACGTCC ACCTGGTCCTGGTCGACCTGGTCAACTCGGAACTCAAC GGCAAAGAGGCGGAGGACCGGCTGCACGAGATCGGTAT CACGGTCAACCGCAACGCGGTCCCCAACGACCCGCGGC CGCCCATGGTCACGTCGGGACTGCGGATCGGCACCCCG GCTCTCGCCACCCGCGGTTTCGGCGACGCCGACTTCGC TGAGGTCGCCGACATCATCGCTGAGGCGCTCAAGCCGG GCTTCGACGCGGCGACCCTGCGCTCCCGCGTCCAGGCG CTGGCCGCCAAGCACCCGCTCTACCCTGGACTGTGA IyA Mycobacterium AE006993 TGTCTGCCCCGCTCGCTGAGGTTGACCCCGATATCGC 151 tuberculosis CGAGTTGCTGGCCAAGGAGCTTGGTCGGCAACGAGACA (use this to CCCTGGAGATGATCGCCTCGGAGAACTTCGCACCGCGC clone M. CTGTGCTGCAGGCCCAGGGCAGTGTGCTGACCAAC smegmatis TACGCCGAGGGACTGCCCGGGCGGCGCTACTACGGCG ene) TTGTGAGCACGTCGACGTGGTGGAAAACCTCGCCCGC ACCGAGCCAAGGCGTTGTTCGGTGCCGAATTCGCCAA TGTGCAACCGCATTCGGGCGCTCAGGCCAACGCCGCGG TGCTGCATGCGCTGATGTCACCCGGCGAGCGGCTGTTG GTCTGGACCTGGCCAACGGTGGTCACCTGACCCATGG CATGCGGCTGAACTTCTCCGGCAAGCTCTACGAGCATG GCTTCTACGGCGTCGACCCGGCGACACATCTGATCGAC TGGATGCGGTGCGGGCCACCGCACTCGAATTCCGCCC AAGGTGATCATCGCTGTGGTCGGCCTACCCGCGGG GCTCGACTTCGCGGCGTTCCGGTCGATCGCCGACGAG TCGGGGCCAAGTTGCTCGTGGACATGGCGCATTTCGC GGTCTGGTCGCCGCGGGGTTGCACCCGTCGCCGGTGC CGCACGCGGATGTGGTGTCCACCACCGTGCACAAGACG CTCGGCGGCGGCCGCTCCGGCCTGATCGTCGGTAAGCA CAGTACGCCAAGGCGATCAACTCGGCGGTGTTTCCCG TGCAGCAGGGCGGTCCGCTCATGCACGTCATTGCCGGC GGCGGTCGCGTTGAAGATCGCCGCCACACCCGAATT GCCGACCGGCAGCGGCGCACGCTGTCCGGGGCCCGGA TCATTGCCGATCGACTGATGGCTCCCGATGTCGCCAAG CCGGTGTGTCGGTGGTCAGCGGCGGCACCGACGTCCA CCTGGTGCTCGTCGATCTGCGTGATTCCCCACTGGATG CCAGGCCGCCGAGGACCTGCTGCACGAGGTCGGCATC CGGTCACCGCAACGCCGTCCCCAATGATCCCCGACC 228 WO 2004/108894 PCT/US2004/017513 GCCGATGGTGACCTCGGGCCTGCGGATAGGCACGCCCG CGCTGGCGACCCGCGGCTTCGGCGACACCGAGTTCACC GAGGTCGCCGACATTATTGCGACCGCGCTGGCGACCGG CAGTTCCGTTGATGTGTCGGCGCTTAAGGATCGGGCGA CCCGGCTGGCCAGGGCGTTTCCGCTCTACGACGGGCTC ,AGGAGTGGAGTCTGGTCGGCCGCTGA IyA Mycobacterium L049491 TGGTCGCGCCGCTGGCTGAAGTCGACCCGGATATCGC 152 eprae (use this CGAGCTACTGGGCAAAGAGCTAGGCCGGCAACGGGACA to clone M. CCTTGGAGATGATCGCTTCAGAGAACTTTGTGCCGCGC smegmatis CGGTTCTACAGGCCCAAGGCAGCGTGCTGACCAACAA Cene) TACGCTGAGGGGTTGCCCGGCCGACGCTATTACGACG GCTGCGAGCACGTCGACGTCGTGGAGAACATCGCCCGC GACCGGGCCAAGGCGCTGTTCGGTGCCGACTTCGCCAA CGTGCAGCCGCACTCGGGGGCCCAGGCCAACGCCGCGG TACTGCACGCGCTGATGTCTCCGGGGGAGCGGCTGCTG GGTCTGGATCTCGCCAATGGCGGTCATCTGACGCATGG CATGCGGCTGAACTTCTCCGGCAAGCTGTATGAAACCG GCTTTTATGGCGTCGACGCGACAACGCATCTCATCGAT ATGGACGCGGTGCGGGCCAAGGCGCTCGAATTCCGCCC GAAGGTGCTGATCGCTGGCTGGTCGGCCTATCCGCGGA TTCTGGACTTCGCTGCTTTTCGGTCGATCGCAGACGAA TCGGCGCCAAGCTGTGGGTCGACATGGCGCATTTCGC GGGCCTGGTTGCGGTGGGGTTGCACCCGTCTCCAGTGC CGCATGCAGATGTGGTGTCCACGACCGTTCACAAGACT CTTGGCGGGGGCCGTTCCGGTTTGATCCTGGGCAAGCA GGAGTTCGCCACGGCCATCAACTCAGCGGTGTTTCCTG GCCAGCAGGGTGGACCGCTTATGCATGTCATCGCGGGC AAGGCGGTCGCGCTGAAGATTGCTACCACGCCTGAGTT CACCGACCGGCAGCAGCGCACGCTGGCCGGCGCCCGGA TTCTCGCCGATCGGCTTACCGCCGCTGATGTCACCAAG GCCGGGGTGTCGGTGGTCAGTGGTGGCACTGACGTCCA CCTAGTGCTGGTCGACCTGCGCAACTCCCCGTTCGACG GCCAGGCAGCAGAAGATCTGCTGCACGAGGTCGGCATC ACTGTCAACCGCAACGTGGTTCCCAATGACCCCCGGCC GCCGATGGTGACCTCAGGCCTGCGGATAGGAACCCCCG CGCTGGCAACCCGAGGGTTCGGTGAAGCGGAGTTCACC GAGGTCGCGGACATCATCGCGACGGTGCTGACCACTGG TGGCAGTGTCGATGTGGCCGCGCTGCGGCAGCAGGTTA CCCGACTTGCCAGGGACTTCCCGCTCTACGGGGGACTT GAGGACTGGAGCTTGGCCGGTCGCTAG IyA Lactobacillus AL935258 ATGAATTACCAGGAACAAGATCCAGAAGTATGGGCTGC 153 plantarum GATTAGTAAGGAACAGGCACGGCAACAACATAATATTG AGTTGATTGCTTCTGAGAACATCGTTTCAAAGGGCGTC CGGGCAGCGCAGGGGAGTGTGCTGACCAATAAATACTC TGAAGGCTATCCGGGTCACCGCTTTTACGGTGGTAACG AATACATTGACCAAGTGGAAACCTTAGCAATTGAACGG GCTAAGAAATTATTTGGTGCGGAATATGCTAATGTGCA ACCACACTCTGGTTCCCAAGCCAATGCGGCTGCATATA TGGCACTGATTCAACCTGGTGACCGGGTGATGGGGATG TCACTAGATGCTGGGGGACACTTAACACATGGATCTAG TGTGAACTTCTCTGGTAAACTTTACGATTTCAAGGTT, ATGGGCTCGATCCTGAAACCGCAGAATTAAACTATGAT GCAATTCTTGCACAAGCACAAGATTTTCAACCAAAGTT 229 WO 2004/108894 PCT/US2004/017513 ATCGTTGCGGGGGCTTCTGCTTATAGTCGATTGATTG ATTTCAAGAAGTTTCGCGAGATTGCAGATCAAGTTGGG GCCTTATTGATGGTTGATATGGCTCATATTGCCGGCTT AGTTGCGGCCGGGCTACATCCTAATCCAGTGCCATATG CTGATGTGGTTACGACAACGACGCACAAAACGTTACGG OGGCCCCGTGGCGGTATGATTTTAGCGAAAGAAAAGTA TGGCAAGAAGATCAACTCAGCCGTTTTCCCTGGCAATC AGGGTGGGCCGTTGGATCACGTAATTGCGGGTAAAGCG ATTGCTTTGGGCGAAGACTTACAGCCTGAGTTTAAGGT TTATGCCCAACATATCATTGATAATGCCAAGGCAATGG CGAAGGTCTTCAATGACTCTGACTTGGTTCGGGTTATT TCTGGTGGCACGGACAATCATTTAATGACGATTGATGT CACTAAGTCTGGTTTGAACGGTCGCCAAGTACAAGATC TGTTAGATACGGTTTATATTACGGTCAACAAAGAAGCG PTTCCGAATGAGACGTTAGGGGCTTTCAAGACCTCTGG TATTCGGTTGGGAACACCTGCGATTACGACCCGTGGTT TTGACGAAGCTGATGCAACTAAGGTCGCTGAATTGATT TTGCAAGCGTTACAAGCACCGACAGATCAAGCAAATCT AGATGACGTTAAACAGCAAGCAATGGCTTTAACAGCGA POCACCCGATCGATGTTGATTAA____ glyA Corynebacteriu AF327063 ATGACCGATGCCCACCAAGCGGACGATGTCCGTTACCA 264 rglutamicum GCCACTGAACGAGCTTGATCCTGAGGTGGCTGCTGCCA TCGCTGGGGAACTTGCCCGTCAACGCGATACATTAGAG ATGATCGCGTCTGAGAACTTCGTTCCCCGTTCTGTTTT GCAGGCGCAGGGTTCTGTTCTTACCAATAA~GTATGCCG GGGTTACCCTGGCCGCCGTTACTACGGTGGTTGCGAA CAAGTTGACATCATTGAGGATCTTGCACGTGATCGTGC 1GUAGGCTCTCTTCGGTGCAGAGTTCGCCAATGTTCAGC CTCACTCTGGCGCACAGGCTAATGCTGCTGTGCTGATG ACTTTcGCTGAGCCAGGCGACAAGATCATGGGTCTGTC TTTGGCTCATGGTGGTCACTTGACCCACGGAATGAAGT TGAACTTCTCCGGAAAGCTGTACGAGGTTGTTGCGTAC GGTGTTGATCCTGAGACCATGCGTGTTGATATGGATCA GGTTCGTGAGATTGCTCTGAAGGAGCACCAAAGGTAA TTATCGCTGGCTGGTCTGCATACCCTCGCCACCTTGAT TTCGAGGCTTTCCAGTCTATTGCTGCGGAAGTTGGCGC GAAGCTGTGGGTCGATATGGCTCACTTCGCTGGTCTTG TTGCTGCTGGTTTGCACCCAAGCCCAGTTCCTTACTCT GATGTTGTTTCTTCCACTGTCCACAAGACTTTGGGTGG ACCTCGTTCCGGCATCATTCTGGCTAAGCAGGAGTACG CGJAAGAAGCTGAACTCTTCCGTATTCCCAGGTCAGCAG GTGGTCCTTTGATGCACGCAGTTGCTGCGAAGGCTAC TTCTTTGAAGATTGCTGGCACTGAGCAGTTCCGTGACC GTCAGGCTCGCACGTTGGAGGGTGCTCGCATTCTTGCT GAGCGTCTGACTGCTTCTGATGCGAAGGCCGCTGGCGT GGATGTCTTGACCGGTGGCACTGATGTGCACTTGGTTT TGGCTGATCTGCGTAACTCCCAGATGGATGGCCAGCAG CGGAAGATCTGCTGCACGAGGTTGGTATCACTGTGAA CCGTAACGCGGTTCCTTTCGATCCTCGTCCACCAATGG TTACTTCTGGTCTGCGTATTGGTACTCCTGCGCTGGCT ACCCGTGGTTTCGATATTCCTGCATTCACTGA3GTTGC AGACATCATTGGTACTGCTTTGGCTAATGGTAAGTCCG CAGACATTGAGTCTCTGCGTGGCCGTGTAGCAAAGCTT PCTGCAGATTACCCACTGTATGAGGGCTTGGAAGACTG 230 WO 2004/108894 PCT/US20041017513 GACCATCGTCTAA IlyA Escherichia coi V00283 ATGTTAAAGCGTGAAATGAACATTGCCGATTATGATGC 265 CGAACTGTGGCAGGCTATGGAGCAGGAAAGTACGTC AGGA1AGAGCACATCGAACTGATCGCCTCCGAAAACTAC ACCAGCCCGCGCGTAATGCAGGCGCAGGGTTCTCAGCT GACCAACAAATATGCTGAAGGTTATCCGGGCAAACGCT ACTACGGCGGTTGCGAGTATGTTGATATCGTTGAACAA CTGGCGATCGATCGTGCGAALAGAACTGTTCGGCGCTGA CTACGCTAACGTCCAGCCGCACTCCGGCTCCCAGGCTA ACTTTGCGGTCTACACCGCGCTGCTGGAACCAGGTGAT ACCGTTCTGGGTATGAACCTGGCGCATGGCGGTCACCT GACTCACGGTTCTCCGGTTAACTTCTCCGGTAAACTGT ACAACATCGTTCCTTACGGTATCGATGCTACCGGTCAT ATCGACTACGCCGATCTGGAAAAACAAGCCAAAGAACA CAAGCCGAAAATGATTATCGGTGGTTTCTCTGCATATT CCGGCGTGGTGGACTGGGCGAAAATGCGTGAAATCGCT GACAGCATCGGTGCTTACCTGTTCGTTGATATGGCGCA CGTTGCGGGCCTGGTTGCTGCTGGCGTCTACCCGAACC CGGTTCCTCATGCTCACGTTGTTACTACCACCACTCAC AACCCTGGCGGGTCCGCGCGGCGGCCTGATCCTGGC GAAAGGTGGTAGCGAAGAGCTGTACAA~AAACTGAACT 'CTGCCGTTTTCCCTGGTGGTCAGGGCGGTCCGTTGATG CACGTAATCGCCGGTAAAGCGGTTGCTCTGAAAGAAGC GATGGAGCCTGAGTTCAAA2ACTTACCAGCAGCAGGTCG CTAAAAACGCTAAAGCGATGGTAGAAGTGTTCCTCGAG CGCGGCTACAAAGTGGTTTCCGGCGGCACTGATAACCA CCTGTTCCTGGTTGATCTGGTTGATAAA4ACCTGACCG GTAAAGAAGCAGACGCCGCTCTGGGCCGTGCTAACATC ACCGTCAACAAA1AACAGCGTACCGAAXCGATCCGAAGAG CCCGTTTGTGACCTCCGGTATTCGTGTAGGTACTCCGG CGATTACCCGTCGCGGCTTTAAALGAAGCCGAAGCGAAA GAACTGGCTGGCTGGATGTGTGACGTGCTGGACAGCAT CAATGATGAAGCCGTTATCGAGCGCATCAAAGGTAAAG TTCTCGACATCTGCGCACGTTACCCGGTTTACGCATAA metE Thermobifida NZAAAQ010 ATGGCTTCGAGGGCGGCCAGCACCGGTTCCCACTCCGC 154 fusca 0010 GCCGATCTCCAGCAGCAGCGGGCGTCGGCTCGCGACGA AGGCCGCCAGTTCGGCATCGACAAGGGGGCGCACGAAG GCGACGGGAGACAALGTGCGAGGAGCTCATAA.GGGCAGG CTACCGATTGTTCCGCCGCCCGTCTTCACCACGACACA CCCAAACCCCACCGATATGGTCGATTACAGTGGGAGAC ATGCTCGGATCACCCACGCCGCGCCCGGCGCCTCGTCC GCGCCGTATCAGCGAACTGTTGGCGCGTAAAGAGCCCA CGTTCTCCTTCGAGTTCTTCCCCCCGAAA-ACGCCCGAG GGGAGCGCATGCTTTGGCGGGCGATCCGGGAGATCGA GGCCCTACGCCCTTCCTTCGTCTCGGTGACCTACGGTG CGGGCGGCAGCACCCGGGACCGGACCGTGAACGTCACC GAGAAGATCGCCACCAACACCACTCTGCTGCCCGTGGC GCACATCACCGCGGTCAACCACTCGGTGCGGGAGCTCC GCCACCTCATCGGCCGGTTCGCGGCGGCGGGGGTGTGC ACATGCTCGCGCTGCGCGGCGACCCGCCCGGCGACCC GCTGGGCGAATGGGTCAALGCACCCGGAGCGCCTCACCC ACGCCGAAGAACTGGTGCGGCTGATCAAGGAGAGCGGT CACTTCTGCGTCGGGGTGGCCGCATTCCCCTACAAGCAI 231 WO 2004/108894 PCT/US2004/017513 CCCCCGCTCCCCCGACGTGGAGACCGACACGGACTTCT TCGTCCGCAAATGCCGGGCAGGAGCGGACTACGCGATC ACCCAGATGTTCTTCGAAGCCGAGGACTACCTGCGGCT GCGGGACCGGGTCGCGGCCCGGGGCTGCGACGTGCCCA TCATCCCTGAGATCATGCCGGTCACGAAGTTCAGCACG ATCGCCCGCTCCGAGCAGTTGTCGGGAGCGCCGTTCCC CCGCAGGCTGGCGGAAGAGTTCGAACGGGTCGCCGACG ACCCCGAGGCGGTGCGCGCGCTCGGTATCGAGCACGCC ACTCGGCTGTGCGAACGGCTCCTCGCCGAAGGGGCGCC GGGCATCCACTTCATCACGTTCAACCGTTCGACGGCGA CCCGCGAGGTCTACCACCGGCTCGTGGGCGCCACCCAG CCGGCAGCGGTAGCTGCGCTGCCATGA metF Streptomyces AL939111 ATGGCCCTCGGAACCGCAAGCACGAGGACGGATCGCGC 155 coelicolor CCGCACGGTGCGTGACATCCTCGCCACCGGCAAGACGA CGTACTCGTTCGAGTTCTCGGCGCCGAAGACGCCCAAG GGCGAGAGGAACCTCTGGAGCGCGCTGCGGCGGGTCGA GGCCGTGGCCCCGGACTTCGTCTCCGTGACCTACGGCG CCGGCGGCTCCACGCGCGCCGGCACGGTCCGCGAGACC CAGCAGATCGTCGCCGACACCACGCTGACCCCGGTGGC CCACCTCACCGCCGTCGACCACTCCGTCGCCGAGCTGC GCAACATCATCGGCCAGTACGCCGACGCCGGGATCCGC AACATGCTGGCCGTGCGCGGCGACCCGCCCGGCGACCC GAACGCCGACTGGATCGCGCACCCCGAGGGCCTGACCT ACGCGGCCGAACTGGTCAGGCTCATCAAGGAGTCGGGC GACTTCTGCGTCGGCGTCGCGGCCTTCCCCGAGATGCA CCCGCGCTCCGCCGACTGGGACACGGACGTCACGAACT TCGTCGACAAGTGCCGGGCCGGCGCCGACTACGCCATC ACCCAGATGTTCTTCCAGCCCGACTCCTATCTCCGGCT CGCGACCGGGTCGCCGCGGCCGGCTGCGCGACCCCGG TCATCCCCGAGGTCATGCCGGTGACCAGTGTGAAGATG CTGGAGAGGTTGCCGAAGCTCAGCAACGCCTCGTTCCC GGCGGAGTTGAAAGAGCGGATCCTCACAGCCAAGGACG ATCCGGCGGCTGTACGCTCGATCGGCATCGAGTTCGCC ACGGAGTTCTGCGCGCGGCTGCTGGCCGAGGGAGTGCC AGGACTGCACTTCATCACGCTCAACAACTCCACGGCGA CGCTGGAAATCTACGAGAACCTGGGCCTGCACCACCCA CCGCGGGCCTAG metA Coryne- 374883 TTGGTGGAGGTGAATAAATGCCAGAGGCAGTCCCAACA 266 bacterium AACACTCTCATCACACTAAGATACCCAGGCATGTCCC glutamicum TAACGAACATCCCAGCCTCATCTCAATGGGCAATTAGC GACGTTTTGAAGCGTCCTTCACCCGGCCGAGTACCTTT TTCTGTCGAGTTTATGCCACCCCGCGACGATGCAGCTG AAGAGCGTCTTTACCGCGCAGCAGAGGTCTTCCATGAC CTCGGTGCATCGTTTGTCTCCGTGACTTATGGTGCTGG CGGATCAACCCGTGAGAGAACCTCACGTATTGCTCGAC GATTAGCGAAACAACCGTTGACCACTCTGGTGCACCTG ACCCTGGTTAACCACACTCGCGAAGAGATGAAGGCAAT TCTTCGGGAATACCTAGAGCTGGGATTAACAAACCTGT TGGCGCTTCGAGGAGATCCGCCTGGAGACCCATTAGGC GATTGGGTGAGCACCGATGGAGGACTGAACTATGCCTC TGAGCTCATCGATCTTATTAAGTCCACTCCTGAGTTCC GGAATTCGACCTCGGTATCGCCTCCTTCCCCGAAGGG CATTTCCGGGCGAAAACTCTAGAAGAAGACACCAAATA 232 WO 2004/108894 PCT/US2004/017513 CACTCTGGCGAAGCTGCGTGGAGGGGCAGAGTACTCCA TCACGCAGATGTTCTTTGATGTGGAAGACTACCTGCGA CTTCGTGATCGCCTTGTCOCTGCAGACCCCATTCATGG TGCGAAGCCAATCATTCCTGGCATCATGCCCATTACCG AGCTGCGGTCTGTGCGTCGACAGGTCGAACTCTCTGGT GCTCAATTGCCGAGCCAACTAGAAGAATCACTTGTTCG AGCTGCAAACGGCAATGAAGAAGCGAACAAAGACGAGA TCCGCAAGGTGGGCATTGAATATTCCACCAATATGGCA GAGCGACTCATTGCCGAAGGTGCGGAAGATCTGCACTT CATGACGCTTAACTTCACCCGTGCAACCCAAGAAGTGT TGTACAACCTTGGCATGGCGCCTGCTTGGGGAGCAGAG CACGGCCAAGACGCGGTGCGTTAA metF Escherichia coli NC_000913 ATGAGCTTTTTTCACGCCAGCCAGCGGGATGCCCTGAA 267 TCAGAGCCTGGCAGAAGTCCAGGGGCAGATTAACGTTT CGTTCGAGTTTTTCCCGCCGCGTACCAGTGAAATGGAG CAGACCCTGTGGAACTCCATCGATCGCCTTAGCAGCCT GAAACCGAAGTTTGTATCGGTGACCTATGGCGCGAACT CCGGCGAGCGCGACCGTACGCACAGCATTATTAAAGGC ATTAAAGATCGCACTGGTCTGGAAGCGGCACCGCATCT TACT'IGCATTGATGCGACGCCCGACGAGCTGCGCACCA TTGCACGCGACTACTGGAATAACGGTATTCGTCATATC GTGGCGCTGCGTGGCGATCTGCCGCCGGGAAGTGGTAA GCCAGAAATGTATGCTTCTGACCTGGTGACGCTGTTAA AAGAAGTGGCAGATTTCGATATCTCCGTGGCGGCGTAT CCGGAAGTTCACCCGGAAGCAAAAAGCGCTCAGGCGGA TTTGCTTAATCTGAAACGCAAAGTGGATGCCGGAGCCA ACCGCGCGATTACTCAGTTCTTCTTCGATGTCGAAAGC TACCTGCGTTTTCGTGACCGCTGTGTATCGGCGGGCAT TGATGTGGAAATTATTCCGGGAATTTTGCCGGTATCTA ACTTTAAACAGGCGAAGAAATTTGCCGATATGACCAAC TGCGTATTCCGGCGTGGATGGCGCAAATGTTCGACGG TCTGGATGATGATGCCGAAACCCGCAAACTGGTTGGCG CGAATATTGCCATGGATATGGTGAAGATTTTAAGCCGT GAAGGAGTGAAAGATTTCCACTTCTATACGCTTAACCG TGCTGAAATGAGTTACGCGATTTGCCATACGCTGGGGG TTCGACCTGGTTTA ysE Mycobacterium AE007080 TGCTGACGGCCATGCGGGGCGACATCCGAGCAGCCCG 156 tuberculosis GAGCGGGATCCGGCGGCCCCTACCGCGCTGGAAOTCA (use this to TCTTCTGCTACCCGGGCGTGCACGCCGTGTGGGGCCAC clone M. CGCCTCGCCCACTGGCTGTGGCAGCGTGGCGCCAGGCT megmatis CTCGCGCGGGCAGCTGCCGAATTCACTCGCATCCTGA ene) CCGGTGTAGATATCCACCCCGGTGCCGTCATCGGTGCT CGCGTGTTCATCGACCACGCGACCGGCGTGGTGATCGG GAAACCGCGGACGTCGGCGACGACGTCACGATCTATC CGGCGTCACTCTCGGCGGCAGTGGCATGGTTGGCGGG ACTCGCCATCCCACCGTCGGTGACCGCGTGATCATCGG CGCCGGGGCCAAGGTCCTCGGTCCGATCAAGATCGGCG GGACAGCCGGATCGGCGCCAATGCCGTCGTGGTCAAG CCCGTCCCGCCGAGCGCGGTGGTGGTCGGGGTGCCCGG GCAGGTCATCGGCCAAAGCCAGCCCAGTCCCGGCGGCC CGTTTGATTGGAGGCTGCCCGATCTCGTGGGAGCCAGC CTCGATTCGCTGCTCACCAGGGTGGCCAGGCTGGACGC CCTCGGCGGCGGCCCGCAAGCAGCAGGAGTCATCCGGC 233 WO 2004/108894 PCT/US2004/017513 CACCCGAAGCCGGGATATGGCACGGCGAGGACTTCTCG ATCTGA cysE Mycobacterium Z98741 ATGTTTGCGGCAATCCGGCGTGATATCCAGGCAGCAAG 157 leprae (use this ACAGCGAGATCCGGCACAGCCCACGGTGCTGGAGGTCA to clone M. TCTGCTGCTACCCAGGCGTGCACGCCGTCTGGGGTCAT smegmatis CGAATCAGTCACTGGTTGTGGAATCGTCGCGCCAGACT ene) GGCCGCGCGGGCGTTCGCCGAACTCACCCGCATCCTGA CTGGGGTCGACATCCACCCCGGTGCCGTGCTCGGAGCC GCCTGTTCATCGATCACGCGACCGGCGTGGTGATCGG GGAAACCGCGGAAGTGGGCGATGACGTCACCATCTTCC ATGGAGTCACTCTCGGCGGCACCGGCCGGGAAACGGGT AAACGTCACCCAACCATCGGGGATCGAGTAACCATCGG CGCCGGCGCCAAGGTCCTCGGTGCCATCAAGATCGGCG AGGACAGCCGGATTGGCGCCAACGCAGTCGTGGTCAAG GAGGTCCCAGCCAGCGCTGTGGCCGTCGGGGTTCCCGG ACAAATCATCAGCAGCGACAGCCCGGCCAACGGGGACG ATTCTGTGCTGCCCGACTTCGTGGGCGTCAGCCTGCAA TCCCTGCTCACCAGGGTGGCCAAGCTGGAAGCCGAAGA CGGCGGTTCGCAAACCTACCGCGTCATCCGGCTACCCG AAGCCGGGGTTTGGCACGGCGAGGACTTCTCAATCTGA ysE Lactobacillus L935252 GTGTTTCAGACGGCTCGTGCCATTCTCAATCGTGACCC 158 plantarum CGCCGCGATCAATTTGCGGACAGTTATGTTGACCTATC CTGGTATTCACGCGCTCGCCTGGTACCGGGTTGCCCAT TATTTTGAAACACACCGTTTACCATTATTGGCCGCCTT GCTGAGCCAACATGCGGCCCGGCATACCGGGATTCTGA TTCACCCGGCCGCGCAAATTGGTCACCGGGTCTTCTTT GACCATGGTATTGGTACTGTCATTGGTGCAACGGCGGT CATTGAAGACGACGTTACAATTTTACACGGCGTCACTT TAGGCGCACGTAAAACCGAACAAGCTGGGCGCCGGCAT CCCTATGTTTGTCGCGGTGCTTTCATTGGTGCCCACGC CCAACTCTTGGGCCCTATTACGATTGGCGCCAACAGTA AAATTGGTGCTGGTGCGATTGTTTTAGACAGCGTTCCC GCCCACGTTACTGCGGTCGGTAACCCGGCCCATCTAGT TGCCACTCAATTGCATGCTTATCATGAAGCAACCAGCA ATCAAGCTTGA cysE Corynebacteriu AX405283 ATGCTCTCGACAATAAAAATGATCCGTGAAGATCTCGC 268 m glutamicum AAACGCTCGTGAACACGATCCAGCAGCCCGAGGCGATT TAGAAAACGCAGTGGTTTACTCCGGACTCCACGCCATC TGGGCACATCGAGTTGCCAACAGCTGGTGGAAATCCGG TTTCCGCGGCCCCGCCCGCGTATTAGCCCAATTCACCC GATTCCTCACCGGCATTGAAATTCACCCCGGTGCCACC ATTGGTCGTCGCTTTTTTATTGACCACGGAATGGGAAT CGTCATCGGCGAAACCGCTGAAATCGGCGAAGGCGTCA TGCTCTACCACGGCGTCACCCTCGGCGGACAGGTTCTC ACCCAAACCAAGCGCCACCCCACGCTCTGCGACAACGT GACAGTCGGCGCGGGCGCAAAAATCTTAGGTCCCATCA CCATCGGCGAAGGCTCCGCAATTGGCGCCAATGCAGTT GTCACCAAAGACGTGCCGGCAGAACACATCGCAGTCGG AATTCCTGCGGTAGCACGCCCACGTGGCAAGACAGAGA AGATCAAGCTCGTCGATCCGGACTATTACATTTAA cysE Escherichia coli NC_000913 ATGTCGTGTGAAGAACTGGAAATTGTCTGGAACAATAT 269 TAAAGCCGAAGCCAGAACGCTGGCGGACTGTGAGCCAA TGCTGGCCAGTTTTTACCACGCGACGCTACTCAAGCAC 234 WO 2004/108894 PCT/US2004/017513 GAAAACCTTGGCAGTGCACTGAGCTACATGCTGGCGAA CAAGCTGTCATCGCCAATTATGCCTGCTATTGCTATCC GTGAAGTGGTGGAAGAAGCCTACGCCGCTGACCCGGAA ATGATCGCCTCTGCGGCCTGTGATATTCAGGCGGTGCG TACCCGCGACCCGGCAGTCGATAAATACTCAACCCCGT TGTTATACCTGAAGGGTTTTCATGCCTTGCAGGCCTAT CGCATCGGTCACTGGTTGTGGAATCAGGGGCGTCGCGC ACTGGCAATCTTTCTGCAAAACCAGGTTTCTGTGACGT TCCAGGTCGATATTCACCCGGCAGCAAAAATTGGTCGC GGTATCATGCTTGACCACGCGACAGGCATCGTCGTTGG TGAAACGGCGGTGATTGAAAACGACGTATCGATTCTGC AATCTGTGACGCTTGGCGGTACGGGTAAATCTGGTGGT GACCGTCACCCGAAAATTCGTGAAGGTGTGATGATTGG CGCGGGCGCGAAAATCCTCGGCAATATTGAAGTTGGGC GCGGCGCGAAGATTGGCGCAGGTTCCGTGGTGCTGCAA CCGGTGCCGCCGCATACCACCGCCGCTGGCGTTCCGGC TCGTATTGTCGGTAAACCAGACAGCGATAAGCCATCAA TGGATATGGACCAGCATTTCAACGGTATTAACCATACA TTTGAGTATGGGGATGGGATC serA Mycobacterium AL021287 TGAGCCTGCCTGTTGTGTTGATCGCCGACAAACTTGC 159 tuberculosis CCCATCAACGGTTGCCGCCTTGGGAGATCAGGTCGAGG (use this to TGCGCTGGGTTGACGGTCCGGACCGAGACAGCTGCTG clone M. CCGCGGTGCCCGAAGCGGACGCGCTGCTGGTGCGATC smegmatis GCCACCACGGTTGACGCCGAGGTGCTGGCCGCCGCCC gene) CCAAGCTCAAGATCGTCGCGCGCGCCGGCGTCGGGCTG CACAACGTCGACGTGGACGCCGCGACGGCCCGCGGCGT CTGGTGGTCAACGCCCCGACGTCGAACATCCACAGCG CCGCGGGCATGCGCTGGCGCTGCTGCTGGCCGCCTCA CGCCAGATTCCGGCGGCCGACGCGTCGCTGCGCGAGCA CACCTGGAAGCGTTCGTCGTTTTCCGGTACCGAGATCT TCGGCAAAACCGTCGGCGTGGTGGGTCTGGGCCGCATC GGCAGTTGGTCGCCCAGCGGATCGCTGCGTTCGGCGC TTACGTCGTCGCCTATGACCCGTACGTTTCGCCGGCCC TGCGGCGCAGCTGGGCATCGAACTGCTGTCCCTGGAC CACCTGCTGGCCCGCGCCGATTTCATCTCGGTGCACCT CCGAAAACACCGGAGACGGCGGGACTGATCGACAAGG GGGCGCTCGCGAAGACCAAGCCGGGCGTCATCATCGTC ACGCCGCGCGCGGCGGCCTGGTGGACGAGGCGGCACT GCCGACGCGATCACCGGCGGCCACGTGCGGCGGCCG GTCTGGACGTGTTCGCCACCGAACCGTGCACCGACAGC CCGCTGTTCGAGCTGGCACAGGTGGTGGTCACACCGCA TCTGGGTGCGTCCACCGCGGAGGCGCAGGACCGGGCGG ACACCGACGTCGCCGAGAGCGTGCGGCTGGCCCTGGCA GGGAATTCGTGCCCGACGCGGTCAACGTCGGCGGCGG GTGGTCAACGAGGAGGTGGCGCCCTGGCTGGATCTGG TGCGTAAGCTCGGCGTGCTGGCGGGTGTGTTGTCCGAC AACTGCCGGTGTCGTTGTCGGTGCAGGTGCGCGGTGA CTGGCCGCCGAAGAGGTTGAGGTGCTGCGCCTTTCGG CGCTGCGCGGCCTGTTCTCGGCGGTGATCGAGGATGCG TGACATTTGTCAACGCACCGGCATTGGCCGCCGAACG TGGCGTCACCGCCGAGATCTGTAAGGCCTCGGAAAGCC CCAACCACCGCAGCGTCGTCGACGTTCGCGCGGTCGGC GCGGACGGTTCGGTGGTGACCGTCTCGGGCACGCTGTA TGGCCCACAGCTGTCGCAGAAGATCGTGCAGATCAACG 235 WO 2004/108894 PCT/US2004/017513 GCCGCCACTTTGATCTGCGCGCCCAGGGGATCAACCTG ATCATCCACTACGTCGACCGGCCGGGAGCGCTGGGCAA GATCGGCACGTTGCTGGGGACGGCCGGGGTGAATATCC AGGCCGCGCAGCTCTCCGAAGACGCCGAAGGCCCGGGC 3CGACGATTCTGCTGCGGCTGGACCAAGACGTGCCCGA CGACGTGCGGACGGCGATCGCGGCGGCGGTGGACGCCT ACAAGCTCGAGGTTGTCGATCTGTCGTGA serA Mycobacterium 99263 TGGACCTGCCTGTTGTGTTAATTGCCGACAAACTCGC 160 leprae (use this CCAATCAACCGTGGCTGCCCTGGGAGACCAAGTCGAGG to clone M. TGCGGTGGGTGGACGGTCCAGACCGGACGAAGCTGTTA megmatis CTGCAGTACCCGAGGCCGACGCGTTGTTGGTGCGGTC ene) GCCACTACTGTCGACGCCGAGGTGCTGGCAGCCGCTC CTAAGCTCAAGATCGTCGCCCGTGCCGGGGTAGGGCTA GACAACGTTGATGTCGATGCCGCCACCGCGCGCGGTGT CCTGGTAGTCAACGCCCCAACGTCGAACATTCACAGCG CCGCTGAGCACGCGTTGGCGCTGCTATTGGCAGCTTCT CGGCAGATCGCGGAGGCCGACGCCTCACTGCGTGCACA CATCTGGAACGGTCGTCGTTCTCCGGCACCGAAATTT TCGGCAAGACCGTCGGCGTGGTGGGGCTGGGTCGGATT GGCAGTTGGTTGCCGCACGGATAGCAGCGTTCGGGGC TCACGTTATCGCTTACGACCCGTATGTGGCGCCGGCAC GGGCCGCGCAGCTTGGTATCGAGCTGATGTCTTTTGAC GATCTCCTAGCCCGGGCCGATTTTATCTCAGTGCATTT GCCGAAGACGCCCGAGACGGCGGGCCTGATCGACAAGG AGGCGCTGGCCAAAACCAAGCCCGGTGTCATCATTGTC AATGCCGCACGCGGCGGCTTAGTGGACGAGGTGGCGCT AGCCGATGCGGTGCGCAGCGGACATGTTCGGGCGGCCG GTCTAGATGTGTTTGCCACCGAACCGTGCACCGATAGC CCGCTGTTTGAACTATCGCAGGTGGTGGTGACACCGCA TCTGGGGGCGTCTACCGCCGAAGCCCAGGATCGAGCAG GTACTGATGTGGCCGAAAGCGTGCGGCTGGCGCTGGCG 3GGGAGTTTGTGCCTGACGCGGTCAACGTGGACGGGGG CGTGGTCAACGAAGAGGTGGCTCCCTGGCTGGACTTGG TGTGCAAGCTTGGGGTGCTGGTAGCCGCGTTATCCGAT 3AACTGCCGGCGTCGTTGTCGGTGCACGTGCGTGGCGA GTTGGCTTCTGAAGACGTTGAAATATTGCGGCTTTCGG CCCTACGTGGGCTTTTCTCGACGGTCATAGAGGATGCT GTGACGTTCGTCAACGCACCGGCACTGGCCGCCGAACG AGGTGTGTCCGCTGAAATCACTACGGGCTCGGAGAGCC CCAACCATCGCAGTGTGGTCGACGTGCGGGCGGTCGCC TCCGACGGCTCGGTGGTCAACATAGCCGGTACGTTGTC TGGGCCGCAACTGGTGCAGAAGATCGTGCAGGTCAATG TCGTAACTTTGATTTGCGTGCGCAGGGCATGAACTTG GTGATCAGGTATGTCGACCAACCTGGCGCTCTGGGCAA GATTGGCACTTTGCTGGGCGCGGCCGGGGTGAATATCC AAGCTGCTCAGCTGTCTGAGGACACCGAGGGGCCAGGT 3CGACGATTCTGTTGAGGCTGGATCAAGACGTGCCGGG TGATGTGCGGTCGGCGATCGTGGCAGCGGTGAGTGCCA ACAAGCTTGAGGTAGTCAATCTGTCATGA serA Thermobifida NZAAAQ010 GTGGCTGCGACCGCAGTCGAACCCACACGCACTCCCTC 161 fusca 00025 TAAGGAATTCGTTGTGCCCAAGCCAGTCGTCCTGGTCG CGGAAGAACTTTCGCCCGCAGGAATCGCGCTGTTGGAA GAGGACTTTGAAGTCCGCCACGTCAACGGCGCCGACCG 236 WO 2004/108894 PCT/US2004/017513 TTCCCAGCTCCTTCCCGCGCTCGCCGGAGTCGACGCGC TGATCGTGCGCAGCGCCACCAAAGTGGACGCTGAGGTG CTGGCCGCGGCGCCCTCCCTCAZXGGTTGTGGCGCGTGC GGGCGTCGGACTGGACAACGTGGATGTCGAGGCCGCCA CCAAGGCGGGCGTGCTCGTCGTCAACGCGCCCACCTCC PCATCATCAGTGCAGCGGAACAGGCCATCAACCTGCT CTTGGCCACGGCCCGCAACACTGCTGCTGCCCACGCGG CCCTCGTGCGCGGCGAGTGGAAGCGTTCCAAGTACACC GGCGTCGAACTGTACGACAAAACCGTCGGCATCGTGGG CCTGGGACGGATCGGCGTGCTCGTCGCCCAGCGGCTCC AGGCGTTCGGCACCAAGCTGATCGCCTACGACCCCTTC TGCAGCCTGCCCGGGCCGCGCAGCTGGGGGTGGAGCT CGTCGAGCTCGACGAGCTGCTGGAGCGCAGCGACTTCA TCACGATCCACCTGCCCAAGACGAAGGACACGATCGGC CTGATCGGCGAGGAAGAGCTGCGCAAGGTCAAGCCGAC GGTCCGGATCATCAACGCTGCGCGCGGCGGGATCGTGG ACGAGACGGCCCTCTACCACGCGCTCA.AGGAAGGTCGT GTGGCCGGCGCTGGGCTGGACGTGTTCGCCAAGGAGCC TTGCACGGACAGCCCGCTGTTCGAGCTGGAGAACGTGG TGGTGGCTCCGCACCTGGGGGCCAGCACGCACGAGGCG CAGGAGAAGGCCGGGACCCAGGTGGCCCGGTCCGTCAA GCTTGCGCTCGCCGGCGAGTTCGTGCCGGACGCGGTCA ACATCCAGGGCAAGGGCGTGGCCGAGGACATCAAGCCG GGCTGCCGCTGACGGAGAAGCTCGGCCGTATCCTCGC CGCGCTCGCCGACGGTGCGATCACCCGGGTCGAGGTGG AGGTCCGGGGCGAGATCGTCGCCCACGACGTCAAGGTG ATCGAGCTGGCCGCGCTCAAGGGCCTCTTCACGGACAT CGTGGAAGAGGCTGTGACCTACGTGAACGCGCCTCTGG TAGCCAAGGAGCGCGGTATCGAGGTGAGCCTGACCACC GAGGAGGAGAGCCCCGACTGGCGCAACGTCATCACGGT GCGGGCCATCCTCTCCGACGGCCAGCGCGTGTCGGTCT CGGGCACGCTGACCGGGCCGCGCCAGTTGGAGAAGCTT GTCGAGGTCAACGGCTACACCATGGAGATCGCGCCCAG CGAGCACATGGCGTTCTTCTCCTACCACGACCGTCCCG GTGTGGTCGGCGTAGTCGGCCAACTGCTCGGACAGGCG CAGGTGAACATCGCCGGCATGCAGGTCAGCCGGGACAA GGAGGGCGGTGCGGCGCTGATCGCGCTGACCGTGGACT CGGCGATCCCCGACGAGACCCTCGAGACGATCTCCAA.G GAGATCGGCGCCGAGATCAGCCGCGTGGACTTGGTTGA CTGA serA Streptomyces AL939124 GTGAGCTCGAAACCCGTCGTACTCATCGCTGAAGAGCT 162 coelicolor GTCGCCCGCGACCGTGGACGCACTCGGCCCCGACTTCG AGATCCGCCACTGCAACGGCGCGGACCGGGCCGAACTG CTCCCCGCCATCGCCGACGTGGACGCGATCCTGGTCCG CTCCGCGACCAAGGTCGACGCCGAGGCCGTGGCCGCCG CCAAGAAGCTCAAGGTCGTCGCGCGCGCCGGGGTCGGC CTGGACAACGTCGACGTCTCCGCCGCCACCAAGGCCGG CGTGATGGTGGTCAACGCCCCGACCTCCAACATCGTCA CCGCCGCCGAGCTGGCCTGCGGCCTGATCGTCGCCACC GCCCGCAACATCCCGCAGGCCAACGCCGCGCTGAAGAA. CGGCGAGTGGAAGCGCAGCAAGTACACCGGCGTGGAGC TGGCCGAGAAGACCCTCGGCGTCGTCGGCCTCGGCCGC ATCGGCGCGCTCGTCGCGCAGCGCATGTCGGCCTTCGG CATGAAGGTCGTCGCCTACGACCCCTACG3TGCAGCCCG 237 WO 2004/108894 PCT/US2004/017513 CGCGGGCCGCGCAGATGGGCGTCAAGGTGCTGTCCCTG GACGAGCTGCTGGAGGTCTCCGACTTCATCACGGTCCA CCTGCCCAAGACCCCCGAGACCCTCGGCCTGATCGGCG ACGAGGCGCTGCGCAAGGTCAAGCCGAGCGTCCGCATC GTCAACGCCGCGCGCGGCGGCATCGTCGACGAGGAGGC CTGTACTCGGCGCTCAAGGAGGGCCGCGTCGCCGGCG CCGGCCTCGACGTGTACGCCAAGGAGCCCTGCACCGAC TCGCCGCTGTTCGAGTTCGACCAGGTGGTCGCCACCCC GCACCTCGGCGCCTCCACCGACGAGGCCCAGGAGAAGG CCGGCATCGCCGTCGCCAAGTCGGTCCGCCTGGCCCTC GCCGGTGAGCTGGTCCCCGACGCGGTCAACGTCCAGGG CGGTGTCATCGCCGAGGACGTCAAGCCCGGTCTGCCGC TCGCCGAGCGCCTCGGCCGCATCTTCACCGCGCTCGCG GGTGAGGTCGCCGTCCGCCTCGACGTCGAGGTCTACGG CGAGATCACCCAGCACGACGTGAAGGTGCTGGAGCTGT CCGCCCTCAAGGGCGTCTTCGAGGACGTCGTCGACGAG ACGGTGTCGTACGTCAACGCCCCGCTGTTCGCCCAGGA CGCGGCGTCGAGGTCCGGCTGACCACCAGCTCGGAGT CCCCGGAGCACCGCAACGTCGTCATCGTGCGCGGCACC CTCTCGGACGGCGAGGAGGTGTCGGTCTCCGGCACGCT GGCCGGCCCGAAGCACCTCCAGAAGATCGTCGCCATCG GCGAGTACGACGTGGACCTCGCCCTCGCCGACCACATG GTCGTCCTGCGCTACGAGGACCGTCCCGGCGTCGTCGG CACCGTCGGCCGGATCATCGGCGAGGCGGGTCTCAACA TCGCCGGCATGCAGGTCGCCCGCGCGACGGTCGGCGGC GAGGCGCTGGCCGTCCTCACCGTCGACGACACGGTGCC CTCCGGGGTTCTGGCGGAGGTCGCGGCGGAGATCGGCG CCACGTCCGCCCGGTCCGTCAACCTCGTCTGA erA Lactobacillus L935254 ATGACAAAAGTCTTTATTGCTGGTCAGCTTCCAGCCCA 163 plantarum AGCTAATACGTTACTTTTACAAAGTCAGTTAGTCATTG ATACTTATACCGGCGATAACCTGATCAGTCACGCGGAA CTCATCCGTCGAGTCGCTGATGCCGACTTTTTGATTAT CCCACTCTCAACTCAAGTAGATCAAGATGTCTTAGACC ACGCCCCACACCTTAAACTGATTGCTAATTTTGGTGCT GCACTAATAACATCGATATCGCGGCAGCAGCTAAGCG CCAGATTCCAGTCACGAACACGCCAAACGTTTCGGCGG TCGCAACCGCTGAATCAACGGTCGGTTTGATTATCAGC CTAGCGCATCGTATCGTGGAAGGCGATCACTTAATGCG AACTAGCGGCTTTAACGGTTGGGCGCCACTATTCTTTC TCGGCCACAACTTACAAGGCAAGACACTCGGCATCTTA GCCTTGGCCAAATTGGTCAAGCCGTTGCCAAACGATT ACACGCCTTTGACATGCCCATCTTATACAGCCAACACC ACCGCCTACCGATTAGCCGTGAAACGCAACTTGGCGCA ACCTTTGTCTCCCAGGATGAACTTTTACAGCGTGCCGA CATCGTCACTTTACACCTGCCGCTTACCACACAAACAA CCCATCTAATCGATAACGCTGCTTTTAGCAAAATGAAG TCCACGGCGCTCCTCATCAACGCCGCACGGGGGCCAAT TGTCGACGAGCAAGCACTTGTGACGGCGCTGCAACAAC ATCAAATTGCTGGCGCTGCACTCGACGTCTACGAACAT GAACCGCAAGTCACACCTGGTTTGGCCACGATGAACAA CGTCATTTTGACACCTCATCTTGGCAACGCAACGGTCG AGCTCGCGATGGCATGGCTACCATTGTCGCGGAGAAT TGATTGCGATGGCCCAACATCAGCCAATCAAGTACGT GTTAACGACGTAACACCAGCATAG 238 WO 2004/108894 PCT/US2004/017513 erA Coryne- P005278 GTGCGTTCTGCTACCACTGTCGATGCTGAAGTCATCGC 270 bacterium CGCTGCCCCTAACTTGAAGATCGTCGGTCGTGCCGGCG glutamicum TGGGCTTGGACAACGTTGACATCCCTGCTGCCACTGAA GCTGGCGTCATGGTTGCTAACGCACCGACCTCTAATAT TCACTCCGCTTGTGAGCACGCAATTTCTTTGCTGCTGT CTACTGCTCGCCAGATCCCTGCTGCTGATGCGACGCTG CGTGAGGGCGAGTGGAAGCGGTCTTCTTTCAACGGTGT GAAATTTTCGGAAAAACTGTCGGTATCGTCGGTTTTG GCCACATTGGTCAGTTGTTTGCTCAGCGTCTTGCTGCG TTTGAGACCACCATTGTTGCTTACGATCCTTACGCTAA CCCTGCTCGTGCGGCTCAGCTGAACGTTGAGTTGGTTG AGTTGGATGAGCTGATGAGCCGTTCTGACTTTGTCACC ATTCACCTTCCTAAGACCAAGGAAACTGCTGGCATGTT TGATGCGCAGCTCCTTGCTAAGTCCAAGAAGGGCCAGA TCATCATCAACGCTGCTCGTGGTGGCCTTGTTGATGAG CAGGCTTTGGCTGATGCGATTGAGTCCGGTCACATTCG TGGCGCTGGTTTCGATGTGTACTCCACCGAGCCTTGCA CTGATTCTCCTTTGTTCAAGTTGCCTCAGGTTGTTGTG ACTCCTCACTTGGGTGCTTCTACTGAAGAGGCTCAGGA TCGTGCGGGTACTGACGTTGCTGATTCTGTGCTCAAGG CGCTGGCTGGCGAGTTCGTGGCGGATGCTGTGAACGTT TCCGGTGGTCGCGTGGGCGAAGAGGTTGCTGTGTGGAT GATCTGGCTCGCAAGCTTGGTCTTCTTGCTGGCAAGC TTGTCGACGCCGCCCCAGTCTCCATTGAGGTTGAGGCT CGAGGCGAGCTTTCTTCCGAGCAGGTCGATGCACTTGG TTTGTCCGCTGTTCGTGGTTTGTTCTCCGGAATTATCG AAGAGTCCGTTACTTTCGTCAACGCTCCTCGCATTGCT GAAGAGCGTGGCCTGGACATCTCCGTGAAGACCAACTC TGAGTCTGTTACTCACCGTTCCGTCCTGCAGGTCAAGG TCATTACTGGCAGCGGCGCGAGCGCAACTGTTGTTGGT GCCCTGACTGGTCTTGAGCGCGTTGAGAAGATCACCCG CATCAATGGCCGTGGCCTGGATCTGCGCGCAGAGGGTC TGAACCTCTTCCTGCAGTACACTGACGCTCCTGGTGCA CTGGGTACCGTTGGTACCAAGCTGGGTGCTGCTGGCAT CAACATCGAGGCTGCTGCGTTGACTCAGGCTGAGAAGG GTGACGGCGCTGTCCTGATCCTGCGTGTTGAGTCCGCT GTCTCTGAAGAGCTGGAAGCTGAAATCAACGCTGAGTT GGGTGCTACTTCCTTCCAGGTTGATCTTGAC serA Escherichia coli NC_000913 ATGGCAAAGGTATCGCTGGAGAAAGACAAGATTAAGTT 71 TCTGCTGGTAGAAGGCGTGCACCAAAAGGCGCTGGAAA GCCTTCGTGCAGCTGGTTACACCAACATCGAATTTCAC AAAGGCGCGCTGGATGATGAACAATTAAAAGAATCCAT CCGCGATGCCCACTTCATCGGCCTGCGATCCCGTACCC ATCTGACTGAAGACGTGATCAACGCCGCAGAAAAACTG GTCGCTATTGGCTGTTTCTGTATCGGAACAAACCAGGT TGATCTGGATGCGGCGGCAAAGCGCGGGATCCCGGTAT TTAACGCACCGTTCTCAAATACGCGCTCTGTTGCGGAG CTGGTGATTGGCGAACTGCTGCTGCTATTGCGCGGCGT GCCGGAAGCCAATGCTAAAGCGCACCGTGGCGTGTGGA ACAAACTGGCGGCGGGTTCTTTTGAAGCGCGCGGCAAA AAGCTGGGTATCATCGGCTACGGTCATATTGGTACGCA ATTGGGCATTCTGGCTGAATCGCTGGGAATGTATGTTT ACTTTTATGATATTGAAAATAAACTGCCGCTGGGCAAC GCCACTCAGGTACAGCATCTTTCTGACCTGCTGAATAT_ 239 WO 2004/108894 PCT/US2004/017513 GAGCGATGTGGTGAGTCTGCATGTACCAGAGAATCCGT CCACCAAAAATATGATGGGCGCGAAAGAAATTTCACTA ATGAAGCCCGGCTCGCTGCTGATTAATGCTTCGCGCGG TACTGTGGTGGATATTCCGGCGCTGTGTGATGCGCTGG CGAGCAA-ACATCTGGCGGGGGCGGCAATCGACGTATTC CCGACGGAACCGGCGACCAATAGCGATCCATTTACCTC TCCGCTGTGTGAATTCGACAACGTCCTTCTGACGCCAC ACATTGGCGGTTCGACTCAGGAAGCGCAGGAGAATATC GCCTGGAAGTTGCGGGTAAATTGATCAAGTATTCTGA CAATGGCTCAACGCTCTCTGCGGTGAACTTCCCGGAAG TCTCGCTGCCACTGCACGGTGGGCGTCGTCTGATGCAC ATCCACGAAAACCGTCCGGGCGTGCTAACTGCGCTGAA CAAAATCTTCGCCGAGCAGGGCGTCAACATCGCCGCGC AATATCTGCAAACTTCCGCCCAGATGGGTTATGTGGTT ATTGATATTGAAGCCGACGAAGACGTTGCCGAAAAAGC GCTGCAGGCAATGAAAGCTATTCCGGGTACCATTCGCG CCCGTCTGCTGTAC lysE Mycobacterium 74025 TGAACTCACCACTGGTCGTCGGCTTCCTGGCCTGCTT 164 tuberculosis CACGCTGATCGCCGCGATTGGCGCGCAGAACGCATTCG (use this to TGCTGCGGCAGGGAATCCAGCGTGAGCACGTGCTGCCG clone M. TGGTGGCGCTGTGCACGGTGTCCGACATCGTGCTCAT smegmatis CGCCGCCGGTATCGCGGGGTTCGGCGCATTGATCGGCG ene) CACATCCGCGTGCGCTCAATGTCCTCAAGTTTGGCGGC CCGCCTTCCTAATCGGCTACGGGCTACTTGCGGCCCG GCGGGCGTGGCGACCTGTTGCGCTGATCCCATCTGGCG CCACGCCGGTTCGCTTAGCCGAGGTCCTGGTGACCTGT CGGCATTCACGTTCCTCAACCCACACGTCTACCTCGA CACCGTCGTGTTGCTAGGCGCGCTGGCCAACGAGCACA GCGACCAGCGCTGGCTGTTCGGCCTCGCGCGGTCACA GCCAGTGCGGTATGGTTCGCCACCCTCGGGTTCGGAGC CGGCCGGTTGCGCGGGCTGTTCACCAACCCCGGCTCGT GAGAATCCTCGACGGCCTGATCGCGGTCATGATGGTT GCGCTGGGAATCTCGCTGACCGTGACCTAG lysE Mycobacterium Z77162 ATGATGACGCTCAAGGTCGCGATCGGCCCGCAAAACGC 165 tuberculosis ATTTGTCCTGCGCCAAGGAATTAGGCGAGAATACGTGC (use this to TGGTCATTGTGGCGCTGTGCGGGATCGCTGATGGGGCA clone M. CTGATTGCCGCGGGCGTTGGCGGCTTCGCTGCGCTGAT smegmatis TCACGCTCATCCCAATATGACTTTGGTTGCCCGATTTG gene) CGGCGCAGCGTTCTTGATTGGCTACGCGCTATTGGCC GCGCGGAACGCGTGGCGCCCGAGCGGGCTGGTGCCGTC GGAATCGGGGCCGGCTGCGCTGATCGGCGTGGTGCAAA TGTGCCTGGTGGTGACCTTTCTCAACCCACACGTCTAT CTGGACACTGTGGTGTTGATCGGTGCCCTCGCCAATGA GGAATCAGATCTGCGGTGGTTTTTCGGAGCCGGTGCCT GGGCCGCCAGCGTCGTATGGTTCGCCGTGTTGGGATTT AGCGCGGGCCGGCTACAGCCATTCTTCGCAACTCCAGC TGCTTGGCGCATTCTTGATGCGCTGGTTGCCGTGACGA TGATTGGGGTCGCCGTCGTTGTGCTCGTCACGTCACCA AGTGTGCCGACGGCCAATGTCGCACTGATCATTTGA lysE Streptomyces AL939131 ATGAACAACGCCCTCACGGCGGCCGCCGCCGGTTTCGG 166 coelicolor CACCGGCCTCTCGCTCATCGTCGCCATCGGCGCCCAGA ACGCCTTCGTCCTGCGGCAGGGGGTCCGCCGTGACGCG GTGCTCGCCGTGGTCGGCATCTGCGCGCTGTCCGACGC 240 WO 2004/108894 PCT/US2004/017513 CGTGCTCATCGCCCTGGGCGTCGGCGGGGTCGGCGCCG TGGTGGTGGCGTGGCCGGGCGCGCTGACCGCCGTCGGC TGGATCGGCGGCGCGTTCCTGCTCTGCTACGGAGCCCT GGCGGCCCGGCGGGTGTTCCGGCCGTCCGGGGCGCTGC GGGCGGACGGCGCCGCCGCGGGCTCGCGCCGCCGGGCC GTGCTCACCTGCCTGGCGCTGACCTGGCTCAACCCGCA CGTCTACCTCGACACCGTGTTCCTGCTGGGCTCCGTCG CCGCCGACCGGGGGCCGCTGCGCTGGACCTTCGGCCTC GGAGCCGCCGCCGCCAGCCTGGTCTGGTTCGCCGCGCT CGGCTTCGGCGCCCGCTACCTCGGCCGCTTCCTGTCCC GGCCCGTCGCCTGGCGGGTCCTCGACGGACTGGTGGCC GCCACCATGATCGTCCTCGGCGTCTCCCTCGTCGCCGG GGCCTGA lysE Lactobacillus AL935256 ATGCAAGTGTTTTTACAAGGATTATTATTTGGAATTGT 167 lantarum TTACATTGCACCAATCGGGATGCAAAACTTATTTGTGG TTTCGACAGCTATTGAACAACCATTGCAACGGGCATTG CGGGTGGCTTTAATTGTAATTGCGTTCGATACGTCGCT CTCCCTGGCTTGCTTTTATGGGGTGGGCCGATTGTTGC AGACCACTCCCTGGCTCGAATTAGGGGTGTTGTTGATT GGGAGTTTATTGGTCTTTTACATTGGCTGGAATCTGTT GCGGAAAAAGGCCACGGCAATGGGGACCCTCGACGCGG ACTTTTCATATAAAGCAGCGATTCTGACAGCTTTTTCG GTAGCATGGCTGAATCCGCAAGCACTGATTGATGGTTC CGTGTTGTTGGCGGCGTTTCGGGTGTCAATCCCGGCGG CACTGACCCATTTCTTTATGTTGGGGGTCATCCTAGCA TCCATTATTTGGTTCATCGGTCTGACCAGCTTGATCAG TAAGTTTAAACATCTCATGCAACCACGAGTCCTACTCT GGATCAATCGAATCTGTGGTGGCATCATTATTCTATAC GGCGTGCAGTTGCTAGCAACCTTCATCACGAAAATATA ysE Coryne- 96471 ATGGAAATCTTCATTACAGGTCTGCTTTTGGGGGCCAG 272 acterium TCTTTTACTGTCCATCGGACCGCAGAATGTACTGGTGA glutamicum TTAAACAAGGAATTAAGCGCGAAGGACTCATTGCGGTT CTTCTCGTGTGTTTAATTTCTGACGTCTTTTTGTTCAT CGCCGGCACCTTGGGCGTTGATCTTTTGTCCAATGCCG CGCCGATCGTGCTCGATATTATGCGCTGGGGTGGCATC CTTACCTGTTATGGTTTGCCGTCATGGCAGCGAAAGA CGCCATGACAAACAAGGTGGAAGCGCCACAGATCATTG AAGAAACAGAACCAACCGTGCCCGATGACACGCCTTTG GGCGGTTCGGCGGTGGCCACTGACACGCGCAACCGGGT GCGGGTGGAGGTGAGCGTCGATAAGCAGCGGGTTTGGG TAAAGCCCATGTTGATGGCAATCGTGCTGACCTGGTTG AACCCGAATGCGTATTTGGACGCGTTTGTGTTTATCGG CGGCGTCGGCGCGCAATACGGCGACACCGGACGGTGGA TTTTCGCCGCTGGCGCGTTCGCGGCAAGCCTGATCTGG TTCCCGCTGGTGGGTTTCGGCGCAGCAGCATTGTCACG CCCGCTGTCCAGCCCCAAGGTGTGGCGCTGGATCAACG TCGTCGTGGCAGTTGTGATGACCGCATTGGCCATCAAA CTGATGTTGATGGGTTAG metB Mycobacterium AL021897 ATGAGCGAAGACCGCACGGGACACCAGGGAATCAGCGG 168 tuberculosis ACCGGCCACCCGCGCCATCCACGCTGGCTACCGCCCGG (use this to ATCCGGCGACCGGGGCGGTGAACGTGCCGATCTACGCC clone M. AGCAGCACCTTCGCCCAAGACGGCGTCGGCGGTCTGCG smegmatis I TGGCGGTTTCGAATACGCACGCACCGGCAACCCCACCC 241 WO 2004/108894 PCT/US2004/017513 ene) TGGCGGTTTCGAATACGCACGCACCGGCAACCCCACCC GGGCCGCATTGGAGGCCTCGCTGGCGGCAGTCGAGGAG GGTGCTTTCGCGCGGGCATTCAGTTCCGGGATGGCCGC GACCGACTGCGCCCTGCGGGCGATGTTACGGCCCGGAG ACCACGTCGTCATTCCCGATGACGCCTACGGCGGCACA TTCCGGTTGATAGACAAGGTGTTCACCCGGTGGGATGT CCAGTACACGCCGGTGCGGCTTGCCGATCTGGATGCGG TGGGTGCCGCGATTACTCCGCGCACCCGGCTGATTTGG GTGGAGACGCCCACCAATCCGCTACTGTCGATCGCCGA TATCACGGCCATTGCCGAGCTGGGCACAGACAGATCGG CAAAAGTATTGGTGGACAATACCTTTGCCTCACCCGCG TTGCAGCAGCCGTTGCGGCTGGGCGCCGATGTGGTGTT GCACTCGACTACCAAGTACATCGGCGGCCATTCCGACG TGGTGGGAGGTGCGCTGGTCACCAACGACGAAGAGCTG 3ACGAGGAGTTCGCTTTCTTGCAGAACGGCGCCGGCGC GGTGCCCGGACCATTCGACGCCTACCTGACCATGCGCG GCCTGAAGACCTTGGTGCTGCGGATGCAGCGGCACAGT "AAAATGCCTGTGCGGTAGCGGAATTCCTCGCTGATCA TCCGTCGGTGAGTTCTGTGTTGTATCCGGGTTTGCCCA TCATCCCGGGCATGAGATTGCCGCGCGACAGATGCGC 3GCTTCGGCGGCATGGTTTCGGTGCGGATGCGGGCCGG TCGGCGTGCGGCGCAGGACCTGTGTGCCAAGACCCGCG TCTTCATCCTGGCCGAGTCGCTGGGTGGGGTGGAGTCG CTGATCGAACATCCCAGCGCCATGACCCATGCGTCGAC GGCCGGTTCGCAATTGGAGGTGCCCGACGATCTGGTGC 3GCTTTCGGTCGGTATCGAAGACATTGCCGACCTGCTC GGCGATCTCGAACAGGCCCTGGGTTAA metB Mycobacterium U15183 TGAGCGAAGATTACCGGGGACACCACGGCATTACCGG 169 tepra (use this CTAGCCACCAAAGCCATCCATGCTGGCTATCGTCCGG to clone M. TCCGGCAACAGGGGCAGTGAATGTCCCGATTTATGCC smegmatis GTAGTACTTTTGCCCAAGATGGCGTCGGTGAGTTGCG ene) TGGCGGATTCGAATACGCGCGTACCGGCAACCCCATGC ACGCCGCTTTAGAGGCATCCTTGGCCACGGTCAGAG GGCGTTTTTGCGCGAGCCTTCAGTTCCGGAATGGCTGC TAGCGACTGTGCCTTGCGGGTCATGCTGCGGCCGGGGG gCCACGTGATCATCCCGGATGACGTCTACGGCGGCACC TTCCGGCTGATAGACAAGGTCTTTACTCAATGGAACGT TGACTACACGCCGGTACCGCTGTCTGATTTGGACGCGG CCGCGCCGCGATCACATCACGGACCCGGCTGATATGG TTGGAAACACCGACC ATCCGCTGCTGTCCATCGCAGA TATCACCAGCATCGGCGAACTAGGCAAAAAGCACTCAG TAAAGGTGTTGGTGGACAACACCTTTGCTTCACCCGCG CTGCAACAGCCGCTGATGCTGGGGGCAGACGTCGTGTT CACTCGACCACAAAGTACATCGGCGGCCACTCTGATG TGGTGGGCGGCGCGCTAGTCACCAACGACGAAGAGCTG TACCAGGCTTTCGGCTTCTTGCAGAACGGAGCCGGTGC GTGCCGAGCCCGTTCGACGCGTACCTAACGATGCGCG ATTGAAGACTTTAGTGCTGCGGATGCAGCGGCACAAC AAAATGCCATTACTGTAGCGGAATTCCTGGCTGGGCA TCCGTCGGTGAGCGCCGTGCTGTATCCGGGCTTGCCCA CCATCCCGGGCATGAGGTCGCTGCACGGCAGATGCGC GGCTTCGGCGGCATGGTTTCGTTGCGGATGCGAGCCGG CCGACTAGCCGCCCAGGATCTGTGTGCCCGCACCAAGG TGTTTACCTTGGCTGAATCCTTGGGTGGAGTGGAGTCG 242 WO 2004/108894 PCT/US2004/017513 CTGATTGAGCAGCCCAGTGCCATGACGCACGCGTCGAC ACCGGGTCGCAATTGGAAGTACCCGACGACCTGGTGC 3GCTTTCGGTCGGTATTGAAGACGTCGGCGACCTGCTG TGCGACCTCAAGCAGGCGTTAAACTAA metB Streptomyces AL939122 TGCCCATGAGCGACAGGCACATCAGTCAGCACTTCGA 170 coelicolor GACGCTCGCGATCCACGCGGGCAACACCGCCGATCCCC 'GACGGGCGCGGTCGTCCCGCCGATCTATCAGGTGTCG ACCTACAAGCAGGACGGCGTCGGCGGATTGCGCGGCGG CTACGAGTACAGCCGCAGCGCCAACCCGACCCGTACCG CGCTGGAGGAGAACCTCGCCGCCCTGGAGGGCGGCCGC CGCGGCCTCGCGTTCGCGTCCGGACTGGCGGCCGAGGA CTGCCTGTTGCGTACGCTGCTGCGCCCCGGCGACCACG TGGTGATCCCGAACGACGCGTACGGCGGCACCTTCCGC CTCTTCGCCAAGGTCGCCACCCGGTGGGGTGTGGAGTG TCCGTGGCCGACACGAGCGACGCCGCCGCCGTGCGGG CCGCCCTCACCCCGAAGACCAAGGCGGTGTGGGTGGAG 'CGCCCTCCAACCCGCTGCTCGGCATCACCGACATCGC 3CAGGTCGCCCAGGTCGCCCGGGACGCCGGCGCCCGGC TCGTCGTCGACAACACCTTCGCCACCCCGTACCTCCAG CAGCCGCTGGCCCTCGGCGCCGACGTCGTCGTGCACTC CTGACCAAGTACATGGGCGGGCACTCGGACGTCGTGG 3CGGCGCGCTGATCGTGGGCGACCAGGAGCTGGGCGAG 3AGCTGGCGTTCCACCAGAACGCGATGGGCGCGGTCGC CGGACCCTTCGACTCCTGGCTGGTGCTGCGCGGCACCA AGACCCTCGCCGTGCGCATGGACCGGCACAGCGAGAAC 3CGACCAAGGTCGCCGACATGCTCTCCCGGCACGCGCG CGTGACGAGCGTGCTGTACCCGGGGCTGCCCGAGCACC CGGGGCACGAGGTCGCCGCCAAGCAGATGAAGGCGTTC 3GCGGCATGGTGTCGTTCCGCGTCGAGGGCGGCGAGCA 3GCCGCCGTCGAGGTGTGCAACCGCGCGAAGGTCTTCA CGCTCGGCGAGTCCCTCGGCGGCGTCGAGTCGCTGATC 3AGCACCCGGGCCGGATGACGCACGCCTCCGCGGCGGG CTCGGCCCTGGAGGTGCCCGCCGACCTGGTGCGGCTGT CGGTCGGCATCGAGAACGCCGACGACCTGCTGGCCGAC CTCCAGCAGGCGCTGGGCTAG metB Thermobifida NZAAAQOIO ATGAGTTACGAGGGGTTTGAGACACTGGCCATCCACGC 171 fusca 0041 CGGTCAGGAGGCAGACGCCGAGACCGGGGCCGTGGTGG TCCCCATCTACCAGACGAGCACCTACCGCCAAGACGGG TGGGCGGGCTGCGCGGCGGCTACGAGTACTCCCGCAC CGCCAACCCGACCCGCACGGCACTGGAAGAATGCCTGG CCGCGCTGGAAGGCGGGGTGCGGGGCCTGGCGTTCGCT TCCGGCATGGCCGCAGAGGACACCCTGCTCCGCACCAT CGCCCGACCCGGCGACCACCTCATCATCCCCAACGACG CCTACGGCGGCACGTTCCGCCTCGTCTCCAAGGTCTTC GAACGGTGGGGAGTGAGCTGGGACGCCGTCGACCTGTC CAACCCGGAGGCGGTGCGGACCGCAATCCGCCCGGAAA CCGTGGCGATCTGGGTGGAAACCCCCACCAACCCGCTG CTCAACATTGCGGACATCGCCGCGCTCGCGGACATCGC GCACGCCGCTGACGCGCTGCTGGTGGTCGACAACACCT TCGCCTCCCCGTACCTGCAGCGGCCGCTCAGCCTCGGT GCGGACGTGGTCGTGCACTCCACCACCAAATACCTGGG CGGCCACTCCGACGTGGTCGGCGGCGCCCTCGTGGTCG CCGACGCGGAACTGGGAGAGCGCCTCGCCTTCCACCAG 243 WO 2004/108894 PCT/US2004/017513 AACTCGATGGGCGCGGTCGCGGGACCGTTCGACGCCTG GCTGACCCTGCGCGGCATCAAAACCCTCGGCGTGCGCA TGGACCGGCACTGCGCCAACGCGGAACGCGTCGTGGAA GCGCTCGTCGGCCACCCGGAAGTCGCCGAAGTGCTCTA CCCGGGCCTGTCCGACCACCCCGGCCACAAGGTGGCGG TCGACCAGATGCGCGCCTTCGGTGGCATGGTGTCGTTC CGCATGCGCGGCGGGGAGGAAGCCGCGTTGCGGGTGTG CGCGAAAACGAAAGTGTTCACCCTCGCTGAATCCTTGG GCGGGGTGGAGTCGCTGATCGAACACCCGGGGAAGATG ACCCACGCCTCCACCGCGGGCTCCCTCCTGGAAGTGCC CAGCGACCTGGTCCGGCTCTCCGTGGGTATCGAAACCG TCGACGACCTCGTCAACGACCTGCTCCAAGCATTGGAG CCGTAG metB Lactobacillus AL935252 ATGAAATTTGAAACCCAATTAATTCACGGTGGTATCAG 172 plantarum TGAGGATGCCACTACTGGCGCGACTTCGGTACCCATCT ACATGGCCTCGACCTTCCGCCAAACAAAAATCGGTCAA AATCAATACGAATATTCACGGACGGGAAATCCAACCCG GCCGCCGTCGAAGCATTAATTGCCACCCTCGAACATG GCAGCGCTGGCTTCGCATTTGCTTCTGGCTCCGCTGCC ATTAATACCGTCTTCTCACTATTCTCGGCTGGTGATCA CATTATTGTGGGAAATGATGTCTACGGTGGCACCTTCC GCTTGATCGACGCCGTTTTGAAACACTTTGGCATGACT TTTACAGCCGTAGATACGCGTGACTTGGCCGCCGTTGA AGCCGCAATTACCCCCACAACTAAGGCGATTTATTTGG AAACACCGACGAACCCGTTATTACACATTACGGATATT CTGCCATTGCGAAGCTCGCGCAAGCACACGATTTACT GAGTATCATCGACAACACCTTCGCCTCCCCATACGTCC AGAAGCCCCTGGATTTAGGCGTTGACATTGTTTTACAC AGTGCTTCCAAGTATCTCGGTGGTCACAGTGATGTTAT CGGTGGCTTGGTTGTCACCAAGACGCCAGCACTTGGCG AAAAAATCGGCTACTTGCAAAATGCCATCGGTAGTATT TTGGCCCCGCAAGAAAGCTGGCTATTACAACGTGGTAT GAAGACTCTGGCATTGCGCATGCAAGCCCACCTGAATA ATGCCGCTAAAATCTTTACTTACTTAAAGTCTCACCCA GCAGTTACTAAGATTTACTATCCAGGCGATCCTGATAA TCCCGATTTTTCGATTGCCAAGCAACAGATGAATGGCT TCGGCGCAATGATCTCGTTTGAATTACAACCAGGAATG AACCCCCAGACCTTCGTTGAACATTTACAAGTCATCAC CTCGCCGAAAGTCTCGGAGCATTGGAAAGTTTAATTG AAATTCCAGCCTTAATGACTCACGGTGCCATCCCACGC ACAATTCGGCTACAGAATGGCATCAAAGACGAGCTGAT TCGCTTATCAGTCGGTGTTGAAGCCAGTGACGATTTGT TAGCAGACCTTGAGCGCGGGTTCGCTAGCATTCAGGCA GATTAA metB Coryne- AF126953 TTGTCTTTTGACCCAAACACCCAGGGTTTCTCCACTGC 273 bacterium ATCGATTCACGCTGGGTATGAGCCAGACGACTACTACG glutamicum GTTCGATTAACACCCCAATCTATGCCTCCACCACCTTC GCGCAGAACGCTCCAAACGAACTGCGCAAAGGCTACGA GTACACCCGTGTGGGCAACCCCACCATCGTGGCATTAG AGCAGACCGTCGCAGCACTCGAAGGCGCAAAGTATGGC CGCGCATTCTCCTCCGGCATGGCTGCAACCGACATCCT GTTCCGCATCATCCTCAAGCCGGGCGATCACATCGTCC TCGGCAACGATGCTTACGGCGGAACCTACCGCCTGATC 244 WO 2004/108894 PCT/US2004/017513 GACACCGTATTCACCGCATGGGGCGTCGAATACACCGT TGTTGATACCTCCGTCGTGGAAGAGGTCAAGGCAGCGA TCAAGGACAACACCAAGCTGATCTGGGTGGAAACCCCA ACCA1ACCCAGCACTTGGCATCACCGACATCGAAGCAGT AGCAT.AGCTCACCGAAGGCACCAACGCCAAGCTGGTTG TGACAACACCTTCGCATCCCCATACCTGCAGCAGCCA CTAAACTCGGCGCACACGCAGTCCTGCACTCCACCAC CAAGTACATCGGAGGACACTCCGACGTTGTTGGCGGCC TTGTGGTTACCAACGACCAGGAAATGGACGAA.GAACTG CTGTTCATGCAGGGCGGCATCGGACCGATCCCATCAGT TTTCGATGCATACCTGACCGCCCGTGGCCTCAAGACCC TTGCAGTGCGCATGGATCGCCACTGCGACAACGCAGAA AGATCGCGGAATTCCTGGACTCCCGCCCAGAGGTCTC CACCGTGCTCTACCCAGGTCTGAAGAACCACCCAGGCC ACGAAGTCGCAGCGZAAGCAGATGAAGCGCTTCGGCGGC ATGATCTCCGTCCGTTTCGCAGGCGGCGAAGAAGCAGC TAAGAAGTTCTGTACCTCCACCAAACTGATCTGTCTGG CCGAGTCCCTCGGTGGCGTGGAATCCCTCCTGGAGCAC CCAGCAACCATGACCCACCAGTCAGCTGCCGGCTCTCA GCTCGAGGTTCCCCGCGACCTCGTGCGCATCTCCATTG GTATTGAAGACATTGAAGACCTGCTCGCAGATGTCGAG CAGGCCCTCAATAACCTTTAG____ metB Escherichia coi NC_000913 ATGACGCG TAAACAGGCCACCATCGCAGTGCGTAGCGG 274 GTTAAATGACGACGAACAGTATGGTTGCGTTGTCCCAC CGATCCATCTTTCCAGCACCTATAACTTTACCGATTT ATGAACCGCGCGCGCATGATTACTCGCGTCGCGGCAA CCCAACGCGCGATGTGGTTCAGCGTGCGCTGGCAGAAC TGGAAGGTGGTGCTGGTGCAGTACTTACTAATACCGGC LTGTCCGCGATTCACCTGGTAACGACCGTCTTTTTGAA ACCTGGCGATCTGCTGGTTGCGCCGCACGACTGCTACG CGGTAGCTATCGCCTGTTCGACAGTCTGGCGAAACGC GGTTGCTATCGCGTGTTGTTTGTTGATCAAGGCGATGA ACAGGCATTACGGGCAGCGCTGGCAGAAAAACCCAAAC TGGTACTGGTAGAAAGCCCAAGTAATCCATTGTTACGC GTCGTGGATATTGCGAAAATCTGCCATCTGGCAAGGGA AGTCGGGGCGGTGAGCGTGGTGGATAACACCTTCTTAA CCCGGCATTACAAAATCCGCTGGCATTAGGTGCCGAT CTGGTGTTGCATTCATGCACGAAATATCTGAACGGTCA CTCAGACGTAGTGGCCGGCGTGGTGATTGCTAAAGACC CGGACGTTGTCACTGAACTGGCCTGGTGGGCAA-ACAAT ATTGGCGTGACGGGCGGCGCGTTTGACAGCTATCTGCT CTACGTGGGTTGCGAACGCTGGTGCCGCGTATGGAGC TGGCGCAGCGCAACGCGCAGGCGATTGTGAAATACCTG CAAACCCAGCCGTTGGTGAAAAAACTGTATCACCCGTC GTTGCCGGAAAATCAGGGGCATGAAATTGCCGCGCGCC AGCAAAAAGGCTTTGGCGCAATGTTGAGTTTTGAACTG GATGGCGATGAGCAGACGCTGCGTCGTTTCCTGGGCGG GCTGTCGTTGTTTACGCTGGCGGAATCATTAGGGGGAG TGGAAAGTTT1AATCTCTCACGCCGCAACCATGACACAT GCAGGCATGGCACCAGAAGCGCGTGCTGCCGCCGGGAT CTCCGAGACGCTGCTGCGTATCTCCACCGGTATTGAAG ATGGCGAAGATTTAATTGCCGACCTGGAA2-\TGGCTTC ICGGGCTGCAAACAAGGGG 245 WO 2004/108894 PCT/US2004/017513 putative Streptomyces AL939116 TGGCCGGCATCGGGGCCTTCTGGTCGGTGTCCTTCCT 173 threonine coelicolor CTGGTGCTGGTCCCGGGCGCGGACTGGGCCTACGCGA efflux protein CACGGCGGGACTGCGCCACCGGTCGGTGCTGCCCGCC 1TCGGCGGCATGCTGAGCGGATACGTCCTGCTGACCGC CGTGGTCGCCGCGGGCCTGGCGACCGCGGTCGCCGGTT CACCGACGGTGCTGACCGCGCTGACGGCCGCCGGTGCG CCTATCTGATCTGGCTAGGCGCCACGACCCTGGCCCG CCCCGCGGCGCCCCGGGCCGAGGAGGGCGACCAGGGAG ACGGCTCCGGCTCGTTGGTGGGCCGTGCGGCCAGAGGG 3CGGGCATCAGCGGCCTCAACCCCAAGGCGCTGCTGCT 3TTCCTCGCCCTGCTGCCGCAGTTCGCCGCCCGGGACG CGGACTGGCCCTTTGCCGCGCAGATCGTCGCCCTCGGC CTGGTGCACACGGCCAACTGCGCCGTGGTCTACACGGG CGTCGGCGCCACGGCACGCCGGATCCTGGGCGCCCGCC CGGCCGTTGCCACCGCGGTGTCCCGATTCTCGGGCGCC 3CGATGATCCTCGTCGGTGCCCTGTTGCTGGTGGAGCG GCTGCTCGCCCAGGGGCCGACACATTAG threonine Corynebacteriu NC_003450 3TGGACGCAGCATCATGGGTCGCATTCGCACTCGCATT 75 fflux protein m glutamicum ATTGGTGGCATTAGCGGTGCCCGGACCTGACCTTGTTC TTGTTCTACATTCTGCAACCCGCGGGATCCGCACGGGG 3TCATGACTGCGGCAGGAATCATGACGGGACTGATGTT ACATGCGAGTCTTGCGATAGCCGGAGCAACTGCATTAT TGCTATCAGCTCCGGGAGTATTGAGCGCTATTCAACTT CTTGGTGCGGGAGTGCTTTTGTGGATGGGCACGAACAT TTTCGTGCTTCCCAAAATACCGGGGAATCTGAAACTG CTGCTAGTCAATCGAGTGCAGGTTATTTTCGAGGATTT ATCACCAATGCCACGAACCCGAAAGCGCTGTTGTTCTT TGCAGCGATTCTTCCTCAGTTCATTGGGAATGGGGAAG ATATGAAAATGAGGACCTTGGCATTGTGTGCCACCATC GTGCTTGGCTCAGGAGCGTGGTGGTTGGGAACAATCGC ATTGGTCAGGGGTATTGGTCTGCAAAAGTTACCGTCTG CGGATCGCATTATCACCCTGGTTGGTGGCATCGCACTG TTTCTCATTGGTGCCGGATTACTGGTTAATACTGCTTA TGGGCTTATCACT hypo-thetical Streptomyces AL939116 GTGTCGGTACCAGGGAGCGTTGCGCAGGTGACGGAGGC 174 protein coelicolor GGAGGAGCCCAAACCACAGTCGGACGAGGCCCGCAGTG NCgI2533 CCTTCCGGCAGCCCAGCGGGATCGCGGCGTCGATCGAC related GGCGAGTCGTCGACGACGTCCGAGTTCGAGATCCCGCA GGGGTTCGCCGTCCCGCGGCACGCCGGCACCGAGTCCG AGACGACCTCGGAGTTCTCGCTCCCCGACGGCCTGGAG GTGCCGCAGGCCCCGCCCGCGGACACCGAGGGCTCGGC ATTCACCATGCCGAGCACGCACAGCGCGTGGACCGCCC CGACCGCCTTCACCCCGGCGAGCGGCTTCCCGGCGGTG AGCCTGACGGACGTGCCCTGGCAGGACCGGATGCGCGC CATGCTGCGCATGCCGGTGGCCGAGCGGCCCGCGCCGG AGCCCTCGCAGAAGCACGACGACGAGACCGGCCCCGCC GTGCCGCGCGTGTTGGACCTGACGCTGCGTATCGGGGA GCTGCTGCTGGCGGGCGGTGAGGGCGCCGAGGACGTGG AGGCGGCCATGTTCGCCGTCTGCCGGTCCTACGGCCTG GACCGCTGCGAGCCGAACGTCACCTTCACCCTGCTGTC GATCTCCTACCAGCCGTCCCTGGTCGAGGACCCGGTGA CGGCGTCGCGGACGGTGCGCCGCCGCGGCACCGACTAC ACGCGGCTCGCGGCCGTCTTCCACCTGGTGGACGACCT 246 WO 2004/108894 PCT/US2004/017513 CAGCGACCCCGACACGAACATCTCCCTGGAGGAGGCCT ACCGOCGTCTCGCGGAGATCCGCCGCAACCGCCACCCG TACCCCACCTGGGTGCTGACGGTGGCCAGCGGTCTGCT CGCGGGCGGGGCCTCGCTGCTCGTCGGTGGCGGGCTGA CCGTGTTCTTCGCGGCGATGTTCGGCTCGATGCTCGGC 3ACCGGCTGGCGTGGCTGTGCGCCGGGCGCGGGCTGCC OGAGTTCTACCAGTTCGCGGTGGCCGCGATGCCGCCCG CCGCGATGGGTGTCGTGCTGACGGTGACGCACGTCGAC GTGAAGGCGTCCGCGGTCATCACCGGTGGGCTGTTCGC GCTGCTGCCCGGGCGGGCGCTGGTCGCGGGGGTGCAGG ACGGTCTGACCGGCTTCTACATCACCGCCGCGGCCCGT CTGCTGGAGGTCATGTACTTCTTCGTCAGCATCGTCGC CGGGGTGCTGGTGGTGCTGTACTTCGGGGTCCAGCTGG GCGCCGAGCTCAACCCGGACGCCAAGCTCGGCACCGGT GACGAACCGTTCGTGCAGATCTTCGCCTCGATGCTGCT GTCGCTGGCCTTCGCGATCCTGCTCCAGCAGGAACGGG CCACCGTCCTCGCGGTGACCCTGAACGGCGGCATCGCC TGGTGCGTGTACGGCGCCATGAACTACGCCGGCGACAT CTCTCCGGTGGCCTCCACGGCCGCCGCGGCGGGGCTCG TGGGCCTGTTCGGGCAGCTGATGTCCAGGTACCGGTTC CGTCGGCCCTGCCGTACACGACGGCGGCGATCGGGCC GCTGCTGCCCGGTTCGGCGACGTACTTCGGTCTGCTGG GGATCGCGCAGGGCGAGGTCGACTCGGGGCTGCTGTCG CTGTCCAACGCGGTGGCGCTGGCGATGGCCATCGCGAT CGGGGTGAACCTGGGCGGGGAGATCTCCCGGCTGTTCC TGAAGGTGCCCGGCGCCGCGAGTGCGGCGGGACGCCGG 3CGGCCAAGCGGACGCGAGGGTTCTAG hypo-thetical Mycobacterium AE007180 TGGATCAAGATCGATCGGACAACACGGCATTGCGCCG 175 protein tuberculosis TGGTCTGCGAATTGCCCTGCGCGGGCGCCGCGATCCGC NCg12533 (use this to TGCCCGTGGCGGGCCGGCGGAGCCGGACCTCCGGCGGA related clone M. TCGGTGACCTGCACACCCGGAAGGTGCTTGACCTGAC smegmatis CATCCGGCTCGCCGAGGTGATGTTGTCGTCCGGCTCTG ene) CACCGCGGATGTCGTCGCCACAGCCCAGGACGTGGCT CAGGCCTACCAGCTCACCGATTGCGTTGTCGACATCAC CGTTACCACCATCATCGTGTCCGCGCTAGCGACCACAG CACTCCGCCGGTCACCATCATGCGGTCGGTCCGGACC CGGTCCACTGACTACAGCCGGCTGGCCGAACTCGATCG ACTCGTTCAGCGGATAACCTCCGGTGGCGTCGCAGTCG ACCAGGCTCACGAGGCTATGGACGAGTTGACCGAACGG CCCCACCCCTACCCGCGCTGGCTCGCGACCGCGGGGGC GCGGGCTTCGCACTCGGCGTCGCCATGTTGCTCGGCG AACCTGGCTGACCTGCGTCTTGGCTGCCGTGACGTCT GCGTGATCGACCGACTGGGCCGGCTGCTGAACCGGAT CGGGACCCCGTTGTTCTTCCAGCGCGTGTTCGGCGCGG AGATCGCGACCCTGGTCGCGGTGGCGGCTTACCTGATC CCGGCCAGGATCCGACCGCGCTGGTGGCCACCGGAAT CGTTGTGCTGCTGTCTGGGATGACCTTGGTGGGTTCGA TGCAGGACGCGGTCACCGGGTACATGCTCACCGCACTC GCCCGGCTTGGCGACGCCCTGTTCCTGACCGCAGGGAT CGTCGTCGGCATCCTCATCTCGTTGCGGGGCGTCACCA TGCCGGCATCCAGATCGAACTGCATGTCGACGCAACC TCGACGCTCGCCACCCCGGGCATGCCGCTACCGATTCT CGTCGCGGTAAGCGGTGCGGCGCTGTCCGGCGTGTGCC TGACGATCGCGAGCTATGCGCCGCTACGTTCTGTGGCC 247 WO 2004/108894 PCT/US2004/017513 ACCGCCGGACTCTCGGCCGGACTCGCCGAACTGGTGCT CATCGGACTCGGCGCGGCCGGGTTCGGCCGAGTGGTCG CCACCTGGACCGCCGCGATCGGCGTCGGCTTCTTGGCC ACCCTGATCTCAATCCGTCGGCAGGCTCCCGCCTTGGT GACGGCCACCGCCGGCATCATGCCGATGCTGCCGGGCC TTGCGGTCTTCCGTGCCGTGTTCGCGTTCGCCGTCAAT GACACACCCGACGGCGGTCTGACCCAGCTGCTGGAAGC GGCCGCGACTGCACTCGCGCTTGGCAGCGGGGTGGTGT TGGGCGAGTTCCTCGCCTCACCATTGCGGTACGGCGCC GGCCGGATCGGCGACCTCTTTCGGATCGAGGGTCCACC CGGGCTCCGGCGGGCGGTCGGCCGTGTGGTGCGCCTAC AGCCGGCCAAGAGCCAGCAGCCGACCGGCACCGGTGGC CAACGGTGGCGAAGCGTCGCGCTGGAGCCGACGACGGC CGACGACGTGGACGCCGGCTATCGCGGCGATTGGCCCG CTACCTGCACCAGCGCGACCGAGGTGCGCTAG hypo-thetical Mycobacterium AL022121 TGGATCAAGATCGATCGGACAACACGGCATTGCGCCG 176 protein tuberculosis TGGTCTGCGATTGCCCTGCGCGGGCGCCGCGATCCGC NCg12533 (use this to TGCCCGTGGCGGGCCGGCGGAGCCGGACCTCCGGCGGA related clone M. TCGATGACCTGCACACCCGGAAGGTGCTTGACCTGAC megmatis CATCCGGCTCGCCGAGGTGATGTTGTCGTCCGGCTCTG ene) CACCGCGGATGTCGTCGCCACAGCCCAGGACGTGGCT CTGGCCTACCAGCTCACCGATTGCGTTGTCGACATCAC CGTTACCACCATCATCGTGTCCGCGCTAGCGACCACAG CACTCCGCCGGTCACCATCATGCGGTCGGTCCGGACC CGGTCCACTGACTACAGCCGGCTGGCCGAACTCGATCG ACTCGTTCAGCGGATAACCTCCGGTGGCGTCGCAGTCG CCAGGCTCACGAGGCTATGGACGAGTTGACCGAACGG CCCCACCCCTACCCGCGCTGGCTCGCGACCGCGGGGGC GCGGGCTTCGCACTCGGCGTCGCCATGTTGCTCGCG AACCTGGCTGACCTGCGTCTTGGCTGCCGTGACGTCT GCGTGATCGACCGACTGGGCCGGCTGCTGAACCGGAT CGGGACCCCGTTGTTCTTCCAGCGCGTGTTCGGCGCGG GATCGCGACCCTGGTCGCGGTGGCGGCTTACCTGATC CCGGCCAGGATCCGACCGCGCTGGTGGCCACCGGAAT CGTTTGCTGCTGTCTGGGATGACCTTGGTGGGTTCGA TGCAGGACGCGGTCACCGGGTACATGCTCACCGCACTC GCCCGGCTTGGCGACGCCCTGTTCCTGACCGCAGGGAT CGTCGTCGGCATCCTCATCTCGTTGCGGGGCGTCACCA TGCCGGCATCCAGATCGAACTGCATGTCGACGCAACC CGACGCTCGCCACCCCGGGCATGCCGCTACCGATTCT CGTCGCGGTAAGCGGTGCGGCGCTGTCCGGCGTGTGCC TGACGATCGCGAGCTATGCGCCGCTACGTTCTGTGGCC CCGCCGGACTCTCGGCCGGACTCGCCGACTGGTGCT ATCGGACTCGGCGCGGCCGGGTTCGGCCGAGTGGTCG CCACCTGGACCGCCGCGATCGGCGTCGGCTTCTTGGCC CCCTGATCTCAATCCGTCGGCAGGCTCCCGCCTTGGT GACGGCCACCGCCGGCATCATGCCGATGCTGCCGGGCC TTGCGGTCTTCCGTGCCGTGTTCGCGTTCGCCGTCAAT ACACACCCGCGGCGGTCTGACCCAGCTGCTGGAAGC GCCGCGACTGCACTCGCGCTTGGCAGCGGGGTGGTGT TGGGCGAGTTCCTCGCCTCACCATTGCGGTACGGCGCC GGCCGGATCGGCGACCTCTTTCGGATCGAGGGTCCACC CGGGCTCCGGCGGGCGGTCGGCCGTGTGGTGCGCCTAC AGCCGGCCAAGAGCCAGCAGCCGACCGGCACCGGTGGC 248 WO 2004/108894 PCT/US2004/017513 CAACGGTGGCGAAGCGTCGCGCTGGAGCCGACGACGGC CGACGACGTGGACGCCGGCTATCGCGGCGATTGGCCCG CTACCTGCACCAGCGCGACCGAGGTGCGCTAG hypo-thetical The rmobifda NZAAAQ010 GTGATCTCATACGGTCCGGTGGCGGATCGGTGCAGGGT 177 protein fusca D0042 GGGGCAACTTCGGCGGCGTGGGGAACGTCTCCCCCAA NCg]2533 TGAGCTTTCCGTTTCTTCCCCTTGTATCCCACCCACTC related CCTTATGTCCCAGGTTTGGATGCGTCATTCCCGGATGG AGCATGCGTCCCGTTGGGCAGGGGTCCCTCCCGAGGAG GTGAGCGCCGGATGAACCAGGCACCGCGGCGTTCCGAC ACATCGCACTCCCCCACCCTGCTGACCCGGTTGCGGGA CTGGCGTGCCAGCCGCGGCGTGCTCGACCTGGAAGCAG AAGAGTTCGAAGACGAAGCGCCGCGTCCCGATCCGCGG CCATGGACCTCGTCCTGCGGGTAGGGGAACTGCTGCT GGCCAGCGGGGAAGCCACCGAGACGGTCAGCGACGCGA TGCTGAGTCTGGCGGTGGCGTTCGAATTGCCCCGCAGC GAAGTGTCGGTGACGTTCACCGGCATCACCCTGTCGTG CCACCCCGGCGGGGATGAGCCCCCGGTGACCGGGGAGC GCGTGGTGCGCCGCCGCTCCCTCGACTACCACAAGGTC AACGAGCTGCACGCGCTGGTGGAAGACGCTGCGTTGGG CCTGCTCGACGTGGAGCGCGCAACCGCGCGGCTCCACG CCATCAAACGCTCCCGGCCGCACTATCCCCGCTGGGTG ATCGTGGCCGGGCTGGGGCTGATCGCCAGCAGCGCCAG TGTCATGGTGGGCGGTGGGATCATCGTGGCGGCCACGG CGTTCGCCGCCACCGTGCTCGGGGACCGGGCCGCGGGC TGGCTGGCTCGACGCGGGGTGGCCGAGTTCTACCAGAT GGCGGTGGCCGCGCTGTTGGCGGCGAGCACCGGCATGG CGCTGCTGTGGGTGAGCGAGGAGCTGGAGTTGGGGCTT CGCGCGAACGCGGTGATCACCGGGAGCATTGTGGCGCT GCTACCGGGGCGTCCCCTGGTCTCCAGCCTGCAAGACG GGATCAGCGGCGCGTACGTGTCGGCGGCGGCCCGCCTC TTGGAGGTCTTCTTCATGTTGGGGGCGATCGTCGCGGG GGTTGGCGCGGTCGCCTATACCGCGGTGCGGCTAGGGC TTTATGTGGACCTCGACAATCTGCCGTCGGCGGGGACG TCACTGGAGCCGGTCGTGCTGGCAGCTGCGGCAGGTTT GCGCTCGCGTTCGCGGTGTCCCTGGTCGCGCCGGTGC GGGCCCTGCTGCCGATCGGCGCGATGGGGGTGCTGATC TGGGTGTGCTATGCGGGGCTGCGGGAACTGCTCGCCGT GCCGCCTGTGGTGGGGACCGGGGCGGGCGCGGTCGTGG TCGGGGTGATCGGCCACTGGCTGGCCCGGCGGACCCGG CGTCCTCCGCTCACCTTCATCATTCCGTCGATCGCTCC CTGCTGCCGGGAAGCATCCTGTACCGGGGACTGATCG AGATGAGCACGGGGGAGCCGCTGGCCGGGGTGGCGAGC CTCGGTGAGGCGGTCGCGGTCGGCCTGGCTCTGGGTGC GGGGGTGAACCTCGGTGGTGAGCTGGTGCGGGCCTTCT CGTGGGGCGGTCTCGTGGGTGCGGGGCGCCGGGGTCGG CAGGCGGCCCGCCGGACCCGGGGAGGCTACTAG hypo-thetical Lactobaci//us AL935252 ATGAATAAAGAGCGTAAGTCGGTGATGCCGCTATCACA 178 protein lantarum ACGACATCATATGACAATTCCATGGAAGGACTTTATCC NCg12533 GTAATGAAGATGTTCCCGCTAAGCATGCTAGCTTACAA related GAGCGAACATCAATTGTTGGTCGAGTTGGTATTTTAAT GTTGTCGTGTGGGACCGGAGCGTGGCGGGTTCGTGATG CGATGAATAAGATTGCTCGCAGCCTGAATTTAACGTGC TCGGCAGATATCGGGTTGATTTCGATTCAGTACACGTG 249 WO 2004/108894 PCT/US2004/017513 TTTTCATCATGAACGTAGTTATACGCAAGTATTATCGA TACCAAATACTGGTGTAAATACGGATAAACTAATATT CTTGACAGTTTGTCAAAGACTTTGATGCGAAATATGC ACGGTTAACGGTGGCACAAGTGCATGCAGCAATTGATG AGTTCAGACGCGTCCTAACAGTATTCGCCACTGGTT CTTGGGTTGGCAGCTGGCTTAGCCTGTAGTGGATTTAT CTTCTTACTTGGTGGAGGTATTCCCGAGATGATTTGTT CCTTTTTGGGCGCGGGCCTTGGTA2ACTATGTTCGGGCG CTGATGGGTAAACGGTCGATGACGACGGTTGCCGGGAT TGCGGTCAGCGTTGCGGTAGCGTGTTTGGCTTATATGG TAGTTTTAAGATTTTTGAATATAATTTCCAAATTCTT CCCAGCATGAGGCGGGGTATATTGGTGCCATGTTATT CGTGATTCCGGGTTTTCCGTTCATTACGAGTATGTTGG ATATCTCTAAGTTGGATATGCGCTCAGGACTGGAGCGC TTAGCTTACGCGATTATGGTTACCCTGATTGCAA-CTCT CGTCGGCTGGCTAGTCGCGACACTGGTGAGCTTCAAGC CAGCTGATTTCTTACCGCTAGGACTTTCACCGTTAGCG TACTTTTATTACGATTACCAGCTAGTTTTTGCGGTGT TTACGGGTTCTCAATAATGTTTAATAGCTCGCAAAAA.A TGGCCATTACCGCGGGATTTATTGGGGCCATTGCGAAT ACATTGCGCCTTGAACTAGTTGACTTGACAGCAATGCC ACCGGCCGCGGCCGCCTTTTGTGGGGCGCTCGTTGCCG CTTGATCGCATCGGTGGTTAATCGTTATAACGGCTAT CCCCGGATTTCATTGACGGTACCTTCALATCGTAATTAT GTTCCGGGATTATATATTTATCGTGCAATTTATAGTA TTGGCAATAATCAAATTGGTGTCGGTTCACTA.TGGCTG ACGAAGGCCGTGTTAATCATCATGTTTTTACCGCTCGG GCTATTTGTAGCGCGTGCGTTGTTGGATCACGAATGGC GACAiCTTTGATTAA NCgI2533 Coryne- NC_003450 ATGTTGAGTTTTGCGACCCTTCGTGGCCGCATTTCAAC 76 bacterium AGTTGACGCTGCAAAAGCCGCACCTCCGCCATCGCCAC glutamicum TAGCCCCGATTGATCTCACTGACCATAGTCAAGTGGCC GGTGTGATGAATTTGGCTGCGAGAATTGGCGATATTTT GCTTTCTTCAGGTACGTCAAA.TAGTGACACCAAGGTAC AGTTCGAGCAGTGACCTCTGCGTACGGTTTGTACTAC ACGCACGTGGATATCACGTTGAALTACGATCACCATCTT CACCAACATCGGTGTGGAGAGGAAGATGCCGGTCAACG TGTTTCATGTTGTAGGCAAGTTGGACACCAACTTCTCC ACTGTCTGAGGTTGACCGTTTGATCCGTTCCATTCA GCTGGTGCGACCCCGCCTGAGGTTGCCGAGAAAATCC TGGACGAGTTGGAGCAATCCCCTGCGTCTTATGGTTTC CCTGTTGCGTTGCTTGGCTGGGCAATGATGGGTGGTGC TGTTGCTGTGCTGTTGGGTGGTGGATGGCAGGTTTCCC TAATTGCTTTTATTACCGCGTTCACGATCATTGCCACG ACGTCATTTTTGGGAAAGAAGGGTTTGCCTACTTTCTT CCAAAATGTTGTTGGTGGTTTTATTGCCACGCTGCCTG CATCGATTGCTTATTCTTTGGCGTTGCAATTTGGTCTT GAGATCAAACCGAGCCAGATCATCGCATCTGGAATTGT TGTGCTGTTGGCAGGTTTGACACTCGTGCAATCTCTGC AGGACGGCATCACGGGCGCTCCGGTGACAGCAAGTGCA CGATTTTTCGAAACACTCCTGTTTACCGGCGGCATTGT TGCTGGCGTGGGTTTGGGCATTCAGCTTTCTGAAATCT TGCATGTCATGTTGCCTGCCATGGAGTCCGCTGCAGCA ICCTAATTATTCGTCTACATTCGCCCGCATTATCGCTGGI 250 WO 2004/108894 PCT/US2004/017513 TGGCGTCACCGCAGCGGCCTTCGCAGTGGGTTGTTACG CGGA'GTGGTCCTCGGTGATTATTGCGGGGCTTACTGCG CTGATGGGTTCTGCGTTTTATTACCTCTTCGTTGTTTA TTTACGCCCCGTCTCTGCCGCTGCGATTGCTGCAACAG CAGTTGGTTTCACTGGTGGTTTGCTTGCCCGTCGATTC TTGATTCCACCGTTGATTGTGGCGATTGCCGGCATCAC ACCAATGCTTCCAGGTCTAGCAATTTACCGCGGAATGT ACGCCACCCTGAATGATCAAACACTCATGGGTTTCACC ACATTGCGGTTGCTTTAGCCACTGCTTCATCACTTGC CGCTGGCGTGGTTTTGGGTGAGTGGATTGCCCGCAGGC TACGTCGTCCACCACGCTTCAACCCATACCGTGCATTT ACCAAGGCGAATGAGTTCTCCTTCCAGGAGGAAGCTGA GCAGAATCAGCGCCGGCAGAGAAAACGTCCAAAGACTA ATCAGAGATTCGGTAATAAAAGG putative Thermobifida NZAAAQ010 TGTCAGGGGGAGTCATGGCCGACATCACCAGAAACCG 179 mem-brane fusca 0018 TCCTCCGGGTTGGCATTCGCGATCGCCTCTGCACTTG protein CCTTCGGCGGCTCCGGCCCCGTGGCCCGGCCGCTCATC NCglO580 ACGCCGGACTCGACCCCCTGCACGTCACGTGGCTCCG related GTAGCCGGAGCAGCTCTACTCCTGCTTCCCGTCGCTT TCCGCCACCACCGCACCCTGCGTACCCGCCCCGCCCTT CTCCTCGCCTACGGCGTCTTCCCGATGGCGGAGTCCA AGCCTTCTACTTCGCAGCCATTTCCCGGATCCCCGTGG GGTGGCGCTCCTCATCGAATTCCTCGGCCCCGTCCTC TCCTGCTGTGGACCCGCCTCGTGCGGCGCATCCCCGT GTCCCGCGCCGCATCCCTCGGCGTGGCCCTGGCAGTCA TCGGCCTGGGCTGCCTCGTCGAAGTCTGGGCAGGCATC CGCCTGGACGCGGTCGGCCTGATCCTCGCGCTGGCTGC GCGGTCTGCCAGGCCACCTACTTCCTGCTGTCGGACA CGGCCCGCGACGACGTCGACCCTCTCGCTGTCATCTCC TACGGCGCGCTCATCGCCACCGCACTCCTGAGCCTCCT CGCCCGCCCGTGGACCCTGCCGTGGGGCATCCTGGCCC AGAATGTCGGGTTCGGCGGGCTGGACATCCCCCCTC ATCCTCCTGGTGTGGCTTGCCCTGGTCGCCACCACCAT CGCCTACCTCACCGGGGTGGCCGCGGTACGGCGGCTGT CCCCTGTCGTCGCCGGGGGAGTGGCCTACCTGGAGGTC TAACTCTATCGTCCTGGCCTGGCTGCTGCTCGGGGA AGCGTTGAGCGTCGCCCAGCTTGTCGGGGCGGCCGCCG TGGTGACCGGTGCGTTCCTCGCCCAGACCGCGGTCCCC GACACCAGTGCCGCGCAAGGCCCGGAGACGCTGCCCAC CGCCCAGGACCCGGCCCCGCAGACCGGTTCCGCCCGCT 3A putative Thermobifida NZAAAQ010 GTGAATAGCGACTCTCCTGGGCAGTCTGCACCGGGTCC 180 mem-brane fusca 0042 GTTCTCCCGGGCTGCGGCGCTCGTCCGCGCCGCGGGCA protein CTGCCATCCCGGCGACCTGGCTGGTCGGGGTGAGCATC NCg10580 CTGTCGGTCCAGTTCGGCGCAGGGGTGGCGAAGAACCT related TTCGCGGTCCTCCCCCCAAGCACCGTGGTGTGGCTGC GCCTGCTGGCTTCGGCCCTGGTGCTGCTGTGCTTCGCC CCTCCCCCACTGCGCGGGCACTCTCGCACGGACTGGCT GGTCGCGGTCGGTTTCGGCACGTCGCTGGCGGTCATGA ACTACGCCATCTACGAATCGTTTGCGCGCATCCCGCTG GGCGTGGCCGTGACCATCGAATTCCTGGGCCCGCTGGC CGTGGCCGTGGCGGGATCGCGCCGCTGGCGGGACCTGG TGTGGGTGGTGCTCGCCGGCACGGGGGTTGCGCTGCTG 251 WO 2004/108894 PCT/US2004/017513 GGATGGGACGACGGCGGGGTCACCCTGGCAGGGGTGGC GTTCGCCGCCCTCGCGGGCGCTGCGTGGGCGTGCTACA TCCTGCTCAGCGCAGCCACCGGCCGACGCTTCCCCGGG ACTTCCGGACTGACGGTGGCCAGTGTGATCGGCGCAGT GCTCGTCGCGCCGATGGGCCTCGCCCACAGCAGCCCGG CCCTGCTCGACCCGAGCGTGCTGCTGACCGGTCTTGCC GTGGGGCTGCTCTCCTCGGTCATCCCCTACTCCCTGGA AATGCAGGCGTTGCGCCGCATTCCGCCCGGGGTGTTCG GCATCCTGATGAGCCTAGAACCGGCGGCGGCCGCACTC GTGGGCCTGGTCCTGCTCGGGGAATTCCTCACCGTCGC CCAGTGGGCCGCGGTGGCCTGCGTGGTGGTCGCCAGTG TGGGTGCGACCCGCTCCGCCCGGCTGTGA putative Thermobifida NZAAAQ010 TGTGGACGCTAGATCTTCCGCTAAAGAGAAACGATTC 181 mem-brane fusca 0033 TCAACTAACGGTGCCTGGACGGAAACAGAGAATAGGA protein GACACAGTGGTGGGATGATCCTCTCTTTTGTCTCGTTG NCgIO58O GTTCGGCATGCCCACCTGAGGGTCCCAGCCCCGCTGCT related CACCGTCCTCAGCCTGGTCCTGCTGCACATGGGCAGCG CGGGAGCCGTGCACCTGTTCGCCATCGCGGGACCGCTC GAAGTCACCTGGCTGCGGCTGAGCTGGGCTGCGCTCCT CCTCTTCGCCGTCGGCGGGCGCCCCCTGCTCCGCGCGG CACGGGCCGCAACCTGGTCGGATCTCGCCGCTACCGCC CCCTCGGCGTAGTCAGCGCGGGGATGACCCTCCTGTT CTCCCTCGCCCTCGACCGCATCCCGCTCGGCACCGCAG C,CGCGATCGAGTTCCTCGGCCCCCTCACCGTCTCCGTG CTCGCCCTGCGCCGCCGCCGCGACCTGCTGTGGATCGT CCTCGCCGTAGCCGGAGTGCTCCTGCTCACCCGCCCGT CGCACGGGGAAGCCGACCTGCTCGGCATCGCCTTCGGC CTAGGCGGGGCCGTCTGCGTGGCGCTCTACATCGTCTT CTCCCAGACCGTCGGCTCCCGGCTGGGCGTCCTCCCCG GCCTCACCCTCGCAATGACCGTGTCCGCCCTGGTCACC GCCCCGCTGGGTCTGCCGGGGGCGATGGCGGCCGCCGA CCGGCACCTGGTGGCAGCCACCCTAGGGCTCGCACTGA TCTACCCCCTGCTGCCCCTCCTGCTGGAGATGGTGAGC CTGCAACGGATGAACCGCGGCACCTTCGGCATTCTCGT CTCCGTCGACCCCGCCATCGGGCTGCTCATCGGCCTGC TCCTGATCGGCCAGGTCCCCGTCCCCCTCCAAGTGGCG GGCATGGCCCTGGTGGTCGCCGCCGGGCTGGGCGCCAC CAGAGGCACCAGCGGACGCACACGCGGAGGCGCAGACC CGCACGCCACCGACGGGGAGCCGGAAGACCGCACCCCG CACCGCCCTGCTCCCGACGACGCCGGGCACCACACCAC CGACCCCGTCACAGTGTGA putative Streptomyces SCO939113 TGGCCGCCACCCGCCCCGCCGTCATCGCGCTCACCGC 82 mem-brane coe/icolor CCTCGCCCCCGTCTCCTGGGGCAGCACCTACGCCGTGA protein CCACCGAGTTCCTGCCGCCCGACCGGCCCCTGTTCACC NCglO58O GGCTGATGCGGGCTCTGCCCGCCGGCCTGCTGCTGCT related CGCCCTCGCCCGGGTGCTGCCGCGCGGCGCCTGGTGGG GGAAGGCGGCGGTGCTGGGGGTGCTGAACATCGGGGCC TTCTTCCCGCTGCTGTTCCTCGCCGCCTACCGGATGCC CGGCGGAATGGCCGCCGTCGTCGGCTCGGTCGGCCCGC TCCTCGTCGTCGGCCTCTCGGCCCTCCTGCTCGGGCAG CGGCCCACCACCCGGTCCGTTCTCACCGGTGTCGCCGC CGCGTCCGGCGTCAGCCTGGTGGTGCTGGAGGCGGCCG GGGCGCTGGACCCGCTCGGCGTGCTGGCGGCCCTCGCC_ 252 WO 2004/108894 PCT/US2004/017513 GCCACCGCCTCCATGTCCACCGGCACCGTGCTCGCGGG GCGCTGGGGCCGCCCCGAAGGCGTCGGCCCGCTCGCCC TCACCGGCTGGCAACTGACCGCGGGCGGCCTGCTCCTG GCACCGCTCGCCCTGCTGGTCGAGGGTGCCCCGCCCGC CCTGGACGGCCCGGCCGTCGGCGGCTACCTCTACCTGG CGCTGGCCAACACGGCGCTGGCGTACTGGCTCTGGTTC CGCGGCATCGGCCGGCTCTCGGCCACTCAGGTCACCTT CCTCGGACCGCTCTCGCCGCTGACCGCCGCCGTGATCG CTGGGCGGCACTCGGCGAGGCGCTCGGCCCGGTGCAA CTGGCGGGGACGGCGCTGGCCTTCGGAGCGACCCTCGT GGGCCAGACGGTACCGAGCGCGCCGCGCACGCCGCCGG TCGCCGCGGGCGCCGGTCCGTTCAGTTCTGCTTCACGA AACGGTCGAAAAGATTCGATGGACCTGACGGGTGCGGC CCTGCGACGGTAG putative Streptomyces AL939119 ATGCCGGACGGCGCGCCGGGCGGACGGTTCGGCGCCCT 183 mem-brane coelicolor CGGACCCGTCGGCCTGGTCCTCGCCGGTGGCATCTCCG protein TGCAGTTCGGCGCCGCGCTGGCGGTGAGTCTGATGCCG NCg10580 CGGGCCGGGGCGCTCGGCGTGGTGACCCTGCGGCTCGC related CGTGGCCGCCGTCGTCATGCTCCTGGTCTGCCGGCCCC GCTGCGCGGCCACTCCCGGGCCGACTGGGGCACGGTC GTCGTCTTCGGCATCGCCATGGCCGGCATGAACGGCCT CTTCTACCAGGCCGTCGACCGCATCCCGCTCGGCCCCG CGGTCACCCTGGAGGTGCTCGGCCCGCTCGCCCTGTCC GTCTTCGCCTCCCGCCGTGCGATGAACCTGGTCTGGGC CGCGCTCGCCCTGGCCGGTGTCTTCCTGCTGGGCGGCG CGGCTTCGACGGCCTCGACCCGGCCGGTGCCGCCTTC GCCCTGGCGGCGGGCGCCATGTGGGCGGCGTACATCGT CTTCAGTGCCCGCACCGGACGCCGCTTCCCGCAGGCCG ACGGGCTGGCGCTGGCGATGGCGGTCGGCGCGCTGCTG TTCCTGCCGCTCGGCATCGTCGAGTCGGGGTCGAAGCT GATCGACCCGGTGACGCTCACGCTGGGCGCCGGCGTCG CCCTGCTCTCCTCCGTCCTGCCCTACACCCTCGAACTC CTCGCGCTGCGCCGTCTGCCAGCGCCGACCTTCGCCAT CCTCATGAGCCTGGAGCCCGCCATCGCCGCGGCGGCCG GTTTCCTCATCCTCGACCAGGCACTGACCGCCACCCAG TCCGCCGCCATCGCCCTGGTCATCGCGGCGAGCATGGG AGCGGTGCGGACCCAGGTGGGGCGGCGCCGGGCGAAGG CGCTTCCCGAGTAG putative Streptomyces AL9391 10 ATGATGACCACCGCCCGCACGTCCCCTCCCGCCCCCTG 184 mem-brane coeficolor GCACCGTCGTCCCGACCTGCTCGCGGCCGGCGCGGCCA protein CCGTCACCGTCGTGCTGTGGGCATCCGCGTTCGTCTCC NCgl0580 ATCCGCAGCGCGGGCGAGGCGTACTCGCCGGGCGCGCT related GGCGCTCGGCCGGCTGCTGTCGGGCGTCCTGACGCTCG OGGCGATCTGGCTGCTGCGCCGGGAGGGGCTGCCGCCG CGCGCGGCCTGGCGGGGGATCGCGATATCGGGGCTGCT GTGGTTCGGGTTCTACATGGTCGTCCTGAACTGGGGCG AGCAGCAGGTGGACGCCGGCACGGCCGCCCTCGTGGTC AACGTCGGCCCGATCCTCATCGCGCTGCTCGGCGCGCG GCTGCTGGGCGACGCGCTGCCGCCACGGCTGTTGACGG GGATGGCGGTGTCGTTCGCCGGTGCGGTGACCGTGGGC CTGTCCATGTCCGGCGAGGGCGGTTCCTCGCTGTTCGG GGTGGTGCTGTGCCTGCTGGCCGCGGTGGCGTACGCGG GCGGGGTGGTGGCCCAGAAGCCCGCGCTGGCGCACGCG 253 WO 2004/108894 PCT/US2004/017513 AGCGCCCTTCAGGTGACGACGTTCGGGTGCCTGGTCGG GGCGGTGCTCTGCCTGCCGTTCGCCGGGCAGCTGGTGC ACGAGGCGGCCGGCGCGCCGGTCTCCGCCACGCTCAAC ATGGTCTACCTGGGCGTGTTCCCGACCGCCCTGGCGTT CACGACGTGGGCCTACGCCCTGGCCCGTACGACCGCCG GCCGCATGGGTGCGACCACGTACGCCGTGCCCGCGCTG GTCGTGCTGATGTCGTGGCTGGCACTGGGCGAGGTCCC GGGGCTGCTCACCCTGGCGGGCGGAGCGCTGTGCCTGG CGGGCGTGGCCGTGTCCCGCTCGCGCAGGCGCCCGGCC GCGGTCCCCGACCGGGCCGCGCCCACGGCGGAGCCACG GCGCGAGGACGCGGGGCGGGCCTAG putative Streptomyces AL939108 TGCCGGTGCATACGTCTGAC2GCGCCCGCGGCAGCCG 185 mem-brane coelicolor CGGCAAGGGCATCGGGCTCGGCCTGGCACTGGCCTCCG protein CGGTCGCCTTCGGAGGTTCCGGAGTCGCGGCCAAACCG NCgIO580 CTCATCGAGGCCGGGCTCGATCCGCTCCACGTGGTCTG related CTGCGCGTCGCGGGCGCGGCCCTGGTGATGCTGCCGC TCGCCGTGCGCCACCGCGCCCTGCCGCGCCGCCGTCCC CGCTGGTCGCCGGGTACGGACTGTTCGCCGTGGCCGG TGTCCAGGCGTGCTACTTCGCGGCCATCTCGCGCATCC CCGTCGGCGTCGCCCTGCTGGTCGAGTACCTGGCGCCC GCTCTGGTCCTCGGCTGGGTGCGGTTCGTGCTCGGCG GCCGGTCACACGCGCCGCCGCGCTCGGCGTGGTCCTGG CGCTCGGCGGCCTCGCCTGCGTGGTCGAGGTCTGGTCG GGCTGGGCTTCGACGCCCTCGGACTGCTGCTCGCCCT CGGCGCCGCTTGCTGCCAGGTCGGCTACTTCGTCCTGT CCGACCAGGGCAGCGACGCCGGCGAGGAGGCGCCCGAC CCGCTCGGCGTCATCGCCTACGGCCTGCTGGTCGGCGC CGCCGTGCTCACCATCGTCGCCCGGCCCTGGTCGATGG CTGGTCCGTCCTCGCCGGCTCGGCACCCATGACGGC CACCCGTCGCCGCCGCCCTGCTGCTGGCCTGGATCGT CTCATCGCCACGGTGCTCGCCTACGTCACCGGATCG TGGCCGTACGTCGGCTGTCGCCGCAGGTCGCCGGAGTC GTGGCGTGCCTGGAAGCGGTCATCGCGACGGTCCTGGC TGGGTGCTGCTGGGCGAGCACCTCTCCGCCCCGCAGG TCGTCGGCGGCATCGTGGTGCTGGCGGGCGCCTTCATC ACCCAGTCCTCGACCCCGGCGATGGGCTCCGCGGACCC 'GTGGCCAGGGGCGGTCCCGAGGGAGTTGTCGAGCC TGGGAACGTCGACCTAG putative regulatory AF265211 GTGAAATTAAAAGATTTCGCTTTTTACGCCCCCTGTGT 186 mem-brane Protein PecM CTGGGGAACCACCTACTTTGTCACCACCCAATTTCTGC protein rPectobacteriu CTGCCGACAAACCGCTGTTGGCTGCCCTGATCCGGGCG NCgIO580 mTTGCCTGCTGGTATTATTCTCATTCTCGGTA-A.kCTCT related chrysant hem!] CCGCCGTCGAGCTGGCTGTGGCGCTTGTTTGTACTGG CGCACTCAATATCGGCGTGTTCTTTGTGATGCTGTTT TTTGCTGCTTATCGCCTGCCTGGCGGCGTGGTGGCGCT GTGGGGTCGCTTCAGCCGCTGATCGTCATCCTGTTGT CTTTCCTGTTGCTGACGCAGCCGGTGCTGACCGCAG TTGGTGGCGGCCGTGGCCGGCGGCATCGGTATTGCGTT rCTGATTTCGCTGCCGAAAGCGCCGCTGACCCCGCCG 8GCTGGTGGCATCGGCATTGGCGACGGTGAGTATGGCG TCCGGTCTGGTGCTGACTAAAAAGTGGGGGCGCCCGGC CGGAATGACGATGCTGACGTTTACCGGCTGGCAGCTGT TTTGCGGCGGGCTGGTGATTCTGCCGGTGCAGATGCTG_ 254 WO 2004/108894 PCT/US2004/017513 ACAGAGCCGTTGCCGGATGTGGTGACCCTGACCAACCT TGCCGGTTATTTTTACCTGGCGATTCCCGGCTCTTTAC TGGCGTATTTCATGTGGTTCTCCGGTATTGAAGCTAAT TCGCCGGTGATGATGTCGATGCTGGGTTTTCTCAGCCC GTTGGTCGCGCTGTTTCTGGGCTTTTTATTTCTTCAAC AAGGACTTTCCGGAGCACAATTGGTCGGAGTGGTATTC ATTTTCTCGGCGATTATTATTGTTCAGGATGTTTCGTT ATTTAGCAGAAGAAAAAAAGTGAAGCAGTTGGAGCAAT CTGACTGTGCTGTCAAATAA putative Lactobacillus L935255 ATGAAGCGTTTAGTTGGAACTCTGTGCGGTATTATTAG 187 mem-brane olantarum TGCCGCTTTATTTGGGCTAGGTGGAATACTAGCACAGC protein CTTTGTTAAGTGAGCAAGTTCTGACTCCGCAACAGATT NCglO580 GTATTGTTACGGCTGTTAATCGGTGGGGCAATGTTGTT related OCTATATCGTAACTTGTTTTTCAAGCAGGCTAGAAAAA GCACGAAAAAGATTTGGACACATTGGCGAATTTTAACA CGAATTATGATATACGGCATCGCCGGCTTGTGCACGGC ACAAATTGCCTTTTTTTCTGCGATTAATTACAGTAATG CAGCAGTTGCAACTGTTTTTCAGTCCACTAGTCCGTTT ATTCTGCTTGTATTTACCGCGCTGAAAGCGAAAAGACT TCCCAGTTTATTAGCAGGAATGAGCTTAATAAGCGCAT TGATGGGAATCTGGCTTATTGTTGAATCCGGATTTAAG ACCGGATTAATAPAACCGGAAGCAATTATTTTTGGCCT GATTGCGGCTATCGGGGTTATCTTATACACCAAACTAC CTGTTCCATTGTTAAACCAAATTGCCGCAGTGGATATT TTGGGATGGGCACTAGTTATTGGCGGTGTGATAGCGTT ATTCACACACCGTTACCAAATTTAGTTAGATTTTCAA AAACGCAGCTTTTAGCGGTTCTTATCATTGTTATTCTA GCCACCGTTGTTGCGTATGATCTTTATTTAGAAAGTTT AAAGCTAATAGACGGATTTCTGGCAACTATGACTGGAC TATTTGAACCAATCAGTTCCGTACTTTTTGGCATGTTA TTCTTGCACCAAATCTTGGTTCCTCAGGCCTTGGTTGG TATTATATTGGTTGTGGGTGCAATTATGATACTGAATT TACCTCACCATATCACGGCACCTGTTCCCAGCAAAACC TGTCAATGTACGATGTCTAATCAATAG putative Lactobacillus AL935252 GTGAAGAAAATTGCGCCCCTGTTCGTTGGCTTAGGGGC 188 mem-brane olantarum CATTAGTTTTGGAATTCCGGCGTCACTATTTAAAATTG protein CGCGTCGGCAGGGGGTTGTCAATGGCCCATTGCTATTC NCgl0580 TGGTCCTTTCTGAGTGCGGTTGTGATTTTAGGTGTGAT related TCAAATTTTACGCCGTGCACGTTTGCGTAATCAGCAAA CGAATTGGAAGCAAATCGGACTGGTAATTGCGGCTGGA ACGGCTTCGGGATTTACTAACACCTTTTACATACAGGC GTTAAAGCTTATCCCAGTTGCTGTGGCCGCGGTAATGT TGATGCAGGCGGTCTGGATATCAACATTACTAGGAGCA GTGATTCATCATCGGCGTCCCTCCCGACTGCAAGTGGT TAGCATTGTTTTGGTATTGATAGGCACGATTTTAGCTG CTGGTCTGTTTCCAATTACGCAGGCGCTCTCGCCGTGG GGCTTGATGTTAAGTTTTTTAGCGGCATGCTCGTATGC TTGCACGATGCAGTTTACGGCTAGCTTAGGCAATAACT TAGACCCGTTATCGAAAACATGGTTACTGTGTTTGGGC GCTTTCATACTCATTGCTATCGTGTGGTCACCGCAATT AGTTACCGCACCCACCACGCCAGCAACAGTCGGCTGGG AGTACTGATTGCACTATTCTCAATGGTTTTCCCACTG TTATGTATTCATTGTTTATGCCGTACTTAGAGCTTGG_ 255 WO 2004/108894 PCT/US2004/017513 CATTGGCCCAATCCTTTCTTCTTTAGAATTACCAGCCT CGATTGTTGTTGCATTTGTACTGCTTGATGAAACTATT GATTGGGTGCAAATGGTTGGCGTGGCCATTATTATTAC 3GCCGTAATTCTGCCAAACGTGTTAAATATGCGACGAG TTCGGCCATAG putative Lactobacilus AL935261 ATGACAACTAACCGTTATATGAAGGGCATCATGTGGGC 189 mem-brane olantarum GATGTTGGCCTCGACCCTGTGGGGAGTCTCAGGTACAG protein TGATGCAGTTCGTATCACAAAACCAAGCCATCCCGGCT NCg10580 GATTGGTTCTTATCTGTAAGGACGTTATCTGCTGGAAT related CATT.CTGTTAGCGATTGGATTTGTGCAACAGGGTACCA AAATCTTCAAAGTCTTTAGATCTTGGGCGTCGGTTGGA CAATTAGTGGCATACGCGACAGTGGGATTGATGGCGAA TATGTATACTTTTTACATCAGTATTGAGCGCGGAACAG CCGCTGCCGCCACTATTTTACAATACTTAAGTCCTTTG TTTATTGTACTAGGAACGTTGCTGTTTAAACGGGAACT GCCTTTACGGACTGATTTAATTGCGTTTGCGGTCTCCT TGTTGGGGGTGTTTTTAGCAATCACTAAGGGTAATATT CATGAGTTGGCGATTCCGATGGATGCACTCGTCTGGGG AATCCTTTCGGGGGTAACAGCGGCCTTGTACGTAGTCT TGCCGCGAAAGATTGTAGCCGAAAATTCACCGGTCGTG ATTCTTGGTTGGGGGACATTGATTGCGGGAATCCTATT TAATTTATATCACCCAATTTGGATCGGTGCACCAAAAA TTACACCAACGCTAGTGACTTCAATTGGCGCCATCGTT TTAATCGGGACGATTTTTGCTTTCTTATCGTTGCTACA TAGTCTACAGTACGCGCCGTCTGCGGTGGTCAGTATTG TTGATGCCGTCCAACCAGTAGTGACTTTTGTACTAAGT ATTATTTTCTTAGGCTTACAAGTGACATGGGTCGAAAT CCTCGGCTCGTTATTGGTGATTGTCGCGATTTATATCT TGCAGCAGTATCGGAGTGATCCGGCTAGTGATTAG NCg10580 Coryne- NC_003450 ATGAATAAACAGTCCGCTGCAGTGTTGATGGTGATGGG 277 bacterium TTCCGCCCTATCCCTGCAATTTGGTGCTGCCATTGGAA glutamicum CGCAGCTTTTCCCCCTCAACGGCCCCTGGGCTGTCACC CTTTAAGGCTGTTCATCGCAGGCTTGATCATGTGCCT GGTGATCCGCCCGCGACTTCGTTCCTGGACTAAAAAAC AATGGATCGCCGTGCTGCTGTTGGGATTATCTCTTGGC GGAATGAACAGCCTGTTTTACGCATCCATCGAACTCAT CCCGCTGGGTACCGCCGTGACCATTGAGTTCCTCGGCC CCCTGATTTTCTCCGCGGTGTTAGCCCGCACGCTGAAA AACGGATTGTGCGTGGCTTTAGCGTTTCTCGGCATGGC ACTACTGGGTATCGATTCCCTCAGCGGCGAAACCCTTG ACCCACTCGGCGTCATTTTCGCAGCCGTCGCAGGAATC TTCTGGGTGTGCTACATCCTGGCATCAAAGAAAATCGG CCAACTCATCCCCGGAACAAGCGGCCTGGCCGTCGCAC TGATTATCGGCGCAGTGGCAGTATTTCCACTGGGTGCT ACACACATGGGCCCGATTTTCCAGACCCCAACCCTACT CATCCTGGCGCTTGGCACAGCACTTCTCGGGTCGCTTA TCCCCTATTCGCTGGAATTATCGGCACTGCGCCGACTC CCCGCCCCCATTTTCAGTATTCTGCTCAGCCTCGAACC GGCATTCGCCGCCGCCGTCGGCTGGATCCTGCTTGATC AAACCCCCACCGCGCTCAAGTGGGCCGCGATCATCCTT GTCATCGCGGCCAGCATCGGCGTCACGTGGGAGCCTAA AAAGATGCTTGTCGACGCGCCCCTCCACTCAAAATGCA ACGCGAAGAGGCGAGTACACACACCTAGT 256 WO 2004/108894 PCT/US2004/017513 drug Streptomyces AL939108 GTGTCGAATGCCGTCTCCGGCCTGCCCGTAGGGCGTGG 190 permease coelicolor CCTCCTCTATCTGATCGTCGCCGGTGTCGCCTGGGGCA NCg12065 CCGCCGGTGCCGCCGCCTCGCTGGTCTACCGGGCCAGC related GACCTGGGGCCCGTCGCCCTGTCGTTCTGGCGTTGCGC GATGGGGCTCGTGCTGCTGCTCGCCGTCCGCCCGCTGC GCCCGCGGCTGCGCCCGCGGCTGCGCCCGCGGCTGCGC CCGGCGGTCCGCGAACCGTTCGCCCGCAGGACGCTTCG GGCCGGTGTCACCGGTGTCGGGCTCGCGGTGTTCCAGA CCGCCTACTTCGCCGCCGTGCAGTCCACCGGACTCGCC GTCGCCACGGTGGTCACCCTCGGCGCGGGGCCCGTACT GATCGCCCTCGGCGCGCGCCTCGCCCTCGGTGAACAGC TGGGAGCGGGGGGTGCCGCGGCCGTGGCCGGCGCCCTC GCCGGGCTCCTGGTGCTCGTCCTCGGCGGCGGAAGCGC GACCGTCCGCCTGCCGGGTGTGCTCCTCGCGCTGCTGT CCGCCGCCGGGTACTCGGTGATGACGCTGCTCACCCGT TGGTGGGGACGGGGCGGCGGGGCGGACGCGGCCGGTAC TCCGTGGGGGCGTTCGCCGTCACGAGTCTGTGCCTGC TGCCGTTCGCCCTGGCCGAGGGCCTGGTGCCGCACACC GCGGAACCGGTCCGGCTGCTGTGGCTCCTCGCCTACGT CGCGGCCGTCCCGACCGCGCTGGCCTACGGGCTCTACT TCGCCGGCGCGGCCGTCGTCCGGTCCGCGACGGTCTCC GTGATCATGCTCCTGGAGCCGGTCAGTGCGGCCGCGCT CGCCGTCCTGCTGCTCGGCGAGCACCTCACGGCCGCGA CCCTGGCCGGCACGCTGCTGATGCTCGGCTCGGTCGCG GGTCTCGCGGTGGCGGAGACCCGGGCGGCGCGGGAGGC GAGGACGCGGCCGGCGCCCGCGTGA rug Streptomyces AL939124 GTGAACGTCCTGCTCTCGGCCGCCTTCGTTCTGTGCTG 191 permeate coelicolor GAGCTCCGGCTTCATCGGCGCCAAGCTCGGTGCTCAGA NCg12065 CCGCGGCCACACCCACCCTCCTGATGTGGCGCTTCCTG related CCTCTCGCCGTGGCCCTGGTCGCCGCGGCGGCCGTCTC CCGGGCCGCCTGGCGGGGCCTGACACCGCGGGACGCCG GCCGGCAGATCGCCATCGGCGCCCTGTCGCAGAGCGGC TATCTGCTCAGCGTCTACTACGCCATCGAACTGGGCGT CTCCAGCGGCACCACCGCCCTCATCGACGGCGTCCAGC CACTCGTCGCCGGCGCGCTCGCCGGTCCCCTGCTGCGC CAGTACGTCTCGCGCGGGCAGTGGCTCGGACTGTGGCT GGGGCTGTCGGGCGTGGCCACCGTGACGGTCGCCGACG CCGGGGCGGCGGGCGCGGAGGTGGCCTGGTGGGCGTAT CTCGTCCCGTTTCTCGGCATGCTGTCGCTGGTGGCGGC CACCTTCCTGGAGGGCCGCACAAGGGTGCCGGTCGCGC CCCGCGTCGCCCTGACGATCCACTGTGCGACCAGTGCC TCCTCTTCTCCGGACTGGCCCTGGGCCTCGGGGCGGC GGCACCGCCGGCCGGTTCCTCGTTCTGGCTGGCGACCG CCTGGCTGGTGGTCCTGCCGACCTTCGGCGGCTACGGC CTGTACTGGCTGATCCTGCGCCGGTCCGGCATCACCGA GGTCAACACCCTCATGTTCCTCATGGCCCCGGTCACGG CCGTGTGGGGCGCCCTCATGTTCGGTGAGCCGTTCGGC TCCAGACCGCCCTCGGCCTGGCGGTCGGCCTCGCGGC CGTGGTCGTCGTCCGGCGCGGGGGCGGCGCGCGCCGGG AGCGGCCCGTGCGGTCCGGCGCGGACCGTCCGGCGGCC GGAGGGCCGACGGCGGACCAGCCGACGAACAGGCCGAC CGACAGGCCGACGGCGGCCGGGTCGACCGACAGGCCGA CGGCGGACAGGCGCTGA 257 WO 2004/108894 PCT/US2004/017513 drug Thermobifida NZAAAQ010 ATGTCTGATTTCCGCAAGGGTGTGCTCTATGGCGCCAG 192 permease fusca 00034 TTCGTACTTCATGTGGGGCTTTCTGCCGCTCTACTGGC NCg12065 CGCTGCTGACCCCGCCTGCCACGGCCTTTGAGGTCCTC related TTACATAGGATGATCTGGTCATTGGTTGTCACGCTCGT GGTGCTGCTGGTGCAGCGGAACTGGCAGTGGATCCGCG GCGTGCTGCGGAGCCCGCGGCGCCTGCTGCTGCTCCTC GCCTCGGCCGCACTCATCTCCCTGAACTGGGGCGCTTT CATCACCGCCGTGACGACCGGGCACACCCTGCAATCGG CACTCGCCTACTTCATCAACCCGCTGGTGAGCGTGGCG CTAGGGCTGCTGGTGTTCAAAGAGCGGCTGCGCCCAGG CCAGTGGGCCGCACTGCTGCTCGGCGTCCTCGCCGTAG CCGTGCTGACCGTCGACTACGGCTCCCTGCCTTGGTTG CGCTGGCCATGGCGTTCTCCTTCGCCGTCTACGGCGC GCTGAAGAAGTTCGTGGGCTTGGACGGGGTGGAGAGCC TCAGCGCGGAGACCGCGGTCCTGTTCCTGCCTGCGCTG GGCGGCGCGGTCTACCTGGAAGTGACCGGTACCGGCAC CTTCACCTCGGTCTCCCCCCTCCACGCGTTGCTGCTGG TGGGCGCCGGAGTGGTGACCGCGGCGCCGCTCATGCTG TTCGGCGCGGCAGCGCACCGCATCCCGCTGACCCTGGT CGGGCTGCTGCAGTTCATGGTTCCGGTGATGCACTTCC TCATCGCCTGGCTGGTCTTCGGGGAGGACCTGTCACTT GGCCGGTGGATCGGGTTCGCCGTGGTGTGGACCGCGCT CGTGGTGTTCGTCGTCGACATGCTCCGCCACGCACGCC ACACCCCCCGCCCTGCCCCGTCAGCCCCTGTCGCTGAG 3AAGCCGAGGAAACTGCGGCTAGTTGA drug Streptomyces AL939120 .TGGCCGGGTCGTCCAGGAGTGATCAGCGAGTAGGCCT 193 permeate coelicolor GCTGAACGGCTTCGCGGCGTACGGGATGTGGGGGCTCG NCg12065 TCCCGCTGTTCTGGCCGCTGCTCAAGCCCGCCGGGGCC related GGGGAGATCCTCGCCCACCGGATGGTGTGGTCCCTCGC CTTCGTCGCCGTCGCCCTCCTCTTCGTACGGCGCTGGG CCTGGGCCGGCGAGCTGCTGCGGCAGCCGCGCAGGCTC CCCTGGTCGCGGTGGCCGCCGCGGTCATCACCGTCAA CTGGGGCGTCTACATCTGGGCCGTGAACAGCGGCCATG TCGTCGAGGCCTCGCTCGGCTACTTCATCAACCCGCTG GTCACCATCGCGATGGGCGTGCTGTTGCTCAAGGAGCG GCTGCGGCCCGCGCAGTGGGCGGCGGTCGGCACCGGCT TCGCGGCCGTGCTCGTGCTCGCCGTCGGCTACGGCCAG CCGCCGTGGATCTCGCTCTGCCTCGCCTTCTCCTTCGC CACGTACGGCCTGGTGAAGAAGAAGGTCAACCTCGGGG TGTCGAGTCGCTGGCCGCCGAGACGGCGATCCAGTTC CTTCCGGCGCTCGGCTACCTGCTGTGGCTGGGCGCGCA GGGCGAGTCGACCTTCACCACGGAGGGCGCCGGACACT CGGCCCTGCTCGCCGCGACCGGCGTCGTCACGGCGATC CCGCTGGTCTGCTTCGGCGCGGCGGCGATCCGCGTCCC CTGTCCACACTGGGGCTGCTGCAATACCTGGCGCCGG TCTTCCAGTTCCTGCTCGGCGTCCTCTACTTCGGCGAG GCCATGCCGCCCGAGCGCTGGGCCGGCTTCGGGCTGGT CTGGCTGGCGCTGACGCTGCTCACCTGGGACGCGTTGC GCACGGCCCGCCGGACCGCACGGGCGCTGAGGGAACAA CTGGACCGGTCGGGCGCGGGCGTACCACCGCTCAAGGG GGCCGCCGCCGCGCGGGAGCCGAGGGTCGTGGCCTCGG GGACTCCGGCACCGGGCGCCGGCGACGCACCGCAGCAA CAGCAACAGCAACAGCAACAGCAACAGCAACAGCAACA CGGAACCAGGGCCGGGAAGCCGTAG 258 WO 2004/108894 PCT/US2004/017513 drug Lactobacillus L935253 GTGAAGAAAGCATATCTTTACATTGCAATTTCGACCTT 194 permease plantarum TGTTTAGTTCGATGGAAATTGCGCTAAAGATGGCCG NCg12065 CAGTGCCTTTAACCCAATCCAATTGAATCTAATTCGA related TTTTTTATTGGGGCAATTGTGTTACTGCCATTTGCATT GCGGGCATTAAAGCAAACCGGACGAAAGTTAGTGAGTG CTGACTGGCGGCTATTTGCTTTAACCGGGCTAGTGTGT TCATTGTCAGTATGTCGCTTTACCAACTCGCGATTAC GGTCGATCAAGCTTCGACTGTGGCCGTATTGTTTAGTT GTAATCCGGTATTTGCGCTATTATTCTCCTATTTAATT CTGCGAG2AACGGTTGGGTCGAGCTAZACTTGATCTCCGT CGTGATTTCTGTGATTGGGTTGTTGATCATTGTTAATC CGGCCCATTTG2ACGA7ATGGGCTCGGGCTGCTATTAGCC ATCGGGTCTGCCGTGACTTTTGGGCTGTACAGTATCAT CTCGCGTTATGGGTCTGTTAALACGGGGCTTGAATGGGC TGACGATGACTTGTTTTACTTTCTTTGCTGGTGCGTTT AACTTCTAGTTTTAGCTTGGATTACTAA GATTCCGGC TGTCGCCAATGGGTTGACGGCCATCGGTTTGCGGCAAT TTGCTGCCATTCCGGTTTTGGTGAATGTTAATCTCAAC TATTTCTGGTTACTATTTTTTATCGGCGTTTGTGTTAC TGGTGGGGGCTTCGCGTTTTATTTCTTGGCAATGGAAC ACCGATGTTTCAACGGCTTCCCTAGTATTCTTCATT AGCCGGGGTTGGCGCCA1ATCTTAGCAGCGTTGATCCT CCATGAACAAATTTTGTGGACGACAGTGGTCGGAATTG TTGTGATTTTGATTGGTTCCGTCGTGACCTTTGTCGGT ATCGGTTCCGTG2AACGGGATACGATGGGTGCGATTGA GCAGCCAACAGCGGCCGCCACTGATGATGAACATGTCA TCAAGCCGCACACGCCGTTTCAATCAAGA.ATTAA NCg12065 Coryne- NC003450 TGAATGATGCTGGCTTGAAGACGCGAAACCCGGTGCT 78 bacterium TGCCCCCATTTTGATGGTGGTTAACGGCGTGTCCCTTT glutamicum TGCCGGAGCAGCGTTGGCGGTGGGGCTGTTTGAGAGT TTCCCACCCGCGTTGGTTGCGTGGATGCGAGTAGCAGC GGCTGCGGTGATTTTGCTTGTGCTGTATCGGCCTGCAG TGCGAAATTTTATTGGGCAGACCGGGTTTTATGCGGCG TGTATGGCGTTTCCACGCTTGCCATGAACATCACGTT CTATGAGGCGATCGCCCGCATTCCGATGGGTACCGCGG TGGCCATTGAGTTCTTGGGACCTATTGCAGTGGCCGCG TTGGGCAGTAAOACGCTGCGGGATTGGGCTGCGTTGGT TTTAGCTGGCATCGGAGTGAT1ATTATTAGCGGTGCGC GTGTGTCGGCCAACAGCGTGGGCGTCATGTTTGCACTG CAGCAGCATTACTGTGGGCTGCGTACATCATCGCGGG AACCGCATTGCAGGCGATGCCTCCTCAGTAGAACCG CATGGCGGTGGGATTCACGTGGGCATCAGTGTTGTCT CTGCCTTGGCGATCTGGTGGTGGCCGGGTCTGGGAGC CGGAACTTACGTTAATCGAGGTCATCGATTAGCAC CTGGTTTGGGCGTGCTGTCGGCGGTGATTCCTTATGGC CTTGACCAGATTGTGCTCCGCATGGCCGGGCGATCCTA CTTTGCGCTGCTCCTGGCTATTTTGCCGATCAGCGCCG CGCTCATGGGAGCGCTTGCGCTGGGCCAAATGTTGTCG TGGCTGAGCTTGTCGGCATTGTGCTGGTTGTCATCGC TGTTGCTTTGCGACGCCCCTCCGGGTGTTA hypo-thetical The rmobifidaINZ_:AAAQOI ATGAACGCCGACACCCTCCTGTGGTCCCTGCTGCTCGG 195 mem-brane fusca 0035 CGTCATCGTCGTCGCTGCCGCGGCGGCGATCATCATCC protein CCACCGTGCGGAACAGCAGCACGGCTCCCCCGCCCGGG NCg12829 I___ _AACGGTAGGGACCGCGCTGGGTGCGGCGCTCACCGCCGC 259 WO 2004/108894 PCT/US2004/017513 related GCGGTAGGGACCGCGCTGGGTGCGGCGCTCACCGCCGC TGCCCTCGGCATAGCGGGCAGCGGAACCGCTCCCGCCT CCGAAGTGCCCGCGGGCTCCGGCCAGGTCCGTACCGTC GACGTGGTGCTGGGCGACATGACCGTCTCCCCGTCCCA CGTCACCGTCGCGCCCGGCGACTCCCTCGTCCTCCGCG TGCGCAACGAGGACACTCAAGTCCACGACTTGGTGGTG GAGACCGGGGCCCGCACGCCCCGGCTTGCGCCAGGTGA CAGCGCCACCCTGCAGGTCGGCACGGTGACCGAGCCCA TCGACGCCTGGTGCACTGTGCTCGGGCACAGCGCCGCG GGCATGCGGATGCGGATCGACACCACTGACACTGCGGA CAGCGCTGACAGCCCCGACACGCCCGCTGGTGCGGACA GCGGTCCGCCCGCACCGCTCCCCCTGTCCGCGGAGATG AGCGACGACTGGCAGCCCCGCGACGCTGTCCTGCCGCC CGCGCCGGACCGCACCGAACACGAAGTGGAGATCCGGG TCACCGAAACCGAGCTGGAGGTCGCCCCCGGGGTGCGG CAGAGCGTGTGGACGTTCGGCGGCGACGTCCCCGGCCC TGTGCTGCGCGGCAAGGTCGGCGACGTGTTCACCGTGA CCTTCGTCAACGACGGCACGATGGGCCACGGCATCGAC TTCCACGCCAGCAGTCTCGCCCCGGACGAGCCGATGCG CACGATCAATCCGGGCGAGCGCCTCACCTACCGGTTCC CGCGGAGAAAGCCGGTGCCTGGGTGTACCACTGTTCG ACCTCGCCCATGCTGCAGCACATCGGCAACGGCATGTA CGGCGCGGTCATCATCGACCCGCCCGACCTTGAGCCGG TCGACCGTGAATACCTGCTGGTCCAAGGAGAGCTGTAC CTGGGCGAGCCGGGCAGCGCCGACCAGGTCGCCCGGAT GCGGGCGGGTGAGCCGGACGCGTGGGTGTTCAACGGGG TCGCCGCCGGCTACGCCCACGCGCCGTTGACCGCCGAG GTCGGGGAGCGCGTCCGGATCTGGGTGGTGGCGGCCGG TCCCACCAGCGGAACGTCTTTCCACATCGTCGGCGCCC AGTTCGACACCGTCTACAAGGAGGGTGCCTACCTGGTG CGCCGTGGCGACGCCGGGGGCGCGCAAGCGCTCGACCT GGCGGTCGCCCAAGGCGGTTTTGTCGAAACAGTGTTCC CCGAAGCGGGCTCCTATCCCTTTGTCGACCATGACATG CGGCATGCCGAGAACGGGGCCCGCGGCTTCTTCACGAT CACGGAGTGA NCg|2829 Coryne- NC_003450 ATGGTTCTGGTAATCGCCGGAATAATCCACCCGCTCCT 279 bacterium 3CCGGAATACCGTTGGGTTCTCATTCACCTTTTCACCC glutamicum TTGGTGCCATCACCAATTCGATTGTGGTGTGGTCGCAG CATTTCACGGAAAAGTTTCTGCATTTAAAGCTTGAGGA ATCGAAACGCCCTGCGCAGCTACTGAAAATTCGGGTGC TGAATGTGGGAATTATCGTCACGATTATTGGGCAGATG ATCGGTCAGTGGATCGTCACCAGTGTCGGCGCGACGAT TGTGGGCGGTGCTTTGGCGTGGCACGCAGGCAGTTTGG CATCACAGTTCCGGAGCGCAAAACGCGGTCAGCCTTTC CGTCGGCAGTGATCGCGTATGTTGCCAGCGCGTGCTG CCTGCCGTTTGGCGCATTTGCCGGAGCGTTGTTGTCCA AGGAGCTGTCGGGACATCTCCAGGAACGAGTCCTTCTC ACCCACACGGTGATTAATTTTCTAGGTTTCGTGGGATT TGCTGCGCTCGGTTCGCTGTCGGTGCTGTTCGCCGCGA TTTGGCGCACCAAAATTCGCCACAATTTCACCCCGTGG TCTGTGGGGATCATGGCGGTGAGCCTGCCGATCATCGT CACGGGCATCCTGCTCAACAACGGCTATGTCGCCGCCA CAGGCCTGGCCGCGTACGTGGCAGCATGGTTGCTGGCC ATGGTGGGGTGGGGGAAGGCGTCGATAAGCAATTTAAG 260 WO 2004/108894 PCT/US2004/017513 CTTTTCGACGTCCACCTCCACCACCGCACCCCTTTGGC TCGTGGGCACGCTTGTGTGGCTGGCGGTGCAGGCGGTG ATGCATGACGGCGAGCTTTACCATGTGGAAGTTCCCAC 3ATTGCGCTGGTCATCGGCTTTGGCGCGCAGCTTCTGA TCGGTGTGATGAGTTATCTACTGCCGTCGACGATGGGT 3GCGGCGCGAGCGCGGTGCGGACTGGAACGCACATTTT AAACACTGCGGGGCTGTTTAGGTGGACGCTGATCAACG 3TGGCCTGGCGATTTGGCTGCTCACCGACAATTCGTGG CTGCGCGTCGTGGTGTCTCTGCTGAGTATCGGAGCGTT 3GCAGTTTTTGTCATTCTGCTGCCCAAGGCTGTGCGGG CGCAGCGCGGAGTGATCACCAAAAAGCGCGAACCAATT ACTCCGCCGGAGGAGCCTCGACTCAATCAAATTACCGC GGAATCTCTGTGCTTGCCCTGATTTTGGCAGCATTCG 3TGGGCTCAACCCCGGTGTTGCGCCGGTGGCAAGCTCA AATGAAGACGTCTATGCTGTGACCATTACCGCAGGTGA CATGGTGTTTATCCCTGATGTGATTGAAGTGCCTGCTG 3TAAATCACTCGAAGTCACGATGCTCAACGAAGACGAC ATGGTGCACGATCTGAAATTTGCCAACGGTGTGCAAAC CGGACGTGTGGCGCCAGGTGATGAAATTACGGTGACCG TCGGCGATATTTCCGAAGACATGGACGGCTGGTGCACC ATCGCTGGGCACCGCGCGCAAGGAATGGATCTGGAAGT AAAGGTTGCGGCTCCGAAT ggA Eschericha coli U28377 GTGTTTTCTTATTACTTTCAAGGTCTTGCACTTGGGGC 280 GGCTATGATCCTACCGCTCGGTCCACAAAATGCTTTTG TGATGAATCAGGGCATACGTCGTCAGTACCACATTATG ATTGCCTTACTTTGTGCTATCAGCGATTTGGTCCTGAT TTGCGCCGGGATTTTTGGTGGCAGCGCGTTATTGATGC AGTCGCCGTGGTTGCTGGCGCTGGTCACCTGGGGCGGC TAGCCTTCTTGCTGTGGTATGGTTTTGGCGCTTTTAA AACAGCAATGAGCAGTAATATTGAGTTAGCCAGCGCCG AAGTCATGAAGCAAGGCAGATGGAAAATTATCGCCACC ATGTTGGCAGTGACCTGGCTGAATCCGCATGTTTACCT GGATACTTTTGTTGTACTGGGCAGCCTTGGCGGGCAAC TTGATGTGGAACCAAAACGCTGGTTTGCACTCGGGACA ATTAGCGCCTCTTTCCTGTGGTTCTTTGGTCTGGCTCT TCTCGCAGCCTGGCTGGCACCGCGTCTGCGCACGGCAA AAGCACAGCGCATTATCAATCTGGTTGTGGGATGTGTT ATGTGGTTTATTGCCTTGCAGCTGGCGAGAGACGGTAT TGCTCATGCACAAGCCTTGTTCAGT A number of embodiments of the invention have been described. Nevertheless, it will be 5 understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims. 261

Claims (77)

1. An Enterobacteriaceae or coryneform bacterium comprising at least one of: (a) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 5 aspartokinase polypeptide or a functional variant thereof; (b) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof; (c) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof; 10 (d) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial pyruvate carboxylase polypeptide or a functional variant thereof; (e) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial dihydrodipicolinate synthase polypeptide or a functional variant thereof; (f) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 15 homoserine dehydrogenase polypeptide or a functional variant thereof; (g) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial homoserine 0-acetyltransferase polypeptide or a functional variant thereof; (h) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial O-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof; 20 (i) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial methionine adenosyltransferase polypeptide or a functional variant thereof; (j) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial mcbR gene product polypeptide or a functional variant thereof; (k) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 25 O-succinylhomoserine/acetylhomoserine (thiol)-lyase polypeptide or a functional variant thereof; (1) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial cystathionine beta-lyase polypeptide or a functional variant thereof; (m) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 30 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide or a functional variant thereof; and 262 WO 2004/108894 PCT/US2004/017513 (n) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial
5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or a functional variant thereof. 5 2. The bacterium of claim 1, wherein the bacterium is an Escherichia coli bacterium. 3. The bacterium of claim 1, wherein the bacterium is a Corynebacteriun glutainicum bacterium. 10 4. The bacterium of claim 1, wherein the sequence encodes a polypeptide with reduced feedback inhibition. 5. The bacterium of claim 1, wherein the polypeptide is selected from an Enterobacteriaceae polypeptide, an Actinomycetes polypeptide, or a variant thereof. 15
6. The bacterium of claim 5, wherein the polypeptide is a polypeptide of one of the following Actinomycetes species: Mycobacterium smegmatis, Streptonyces coelicolor, Thernobifidafusca, Anycolatopsis mediterranei and coryneform bacteria, including Corynebacterium glutamicum. 20
7. The bacterium of claim 5, wherein the polypeptide is a polypeptide of one of the following Enterobacteriaceae species: Erwinia chysanthemi and Escherichia coli.
8. The bacterium of claim 1, wherein the heterologous bacterial aspartokinase polypeptide or 25 functional variant thereof is chosen from: (a) a Mycobacterium smegmatis aspartokinase polypeptide or a functional variant thereof; (b) an Anycolatopsis mediterranei aspartokinase polypeptide or a functional variant thereof; 30 (c) a Streptonyces coelicolor aspartokinase polypeptide or a functional variant thereof; 263 WO 2004/108894 PCT/US2004/017513 (d) a Thermobifidafusca aspartokinase polypeptide or a functional variant thereof; (e) an Erwinia chrysanthemi aspartokinase polypeptide or a functional variant thereof; and (f) a Shewanella oneidensis aspartokinase polypeptide or a functional variant thereof. 5
9. The bacterium of claim 1, wherein the heterologous bacterial aspartate semialdehyde dehydrogenase polypeptide or functional variant thereof is chosen from: (a) a Mycobacteriun smegmatis aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof; 10 (b) an Ainycolatopsis mediterranei aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof; (c) a Streptonyces coelicolor aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof; and (d) a Thermobifidafusca aspartate semialdehyde dehydrogenase polypeptide or a 15 functional variant thereof.
10. The bacterium of claim 1, wherein the heterologous bacterial phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof is chosen from: (a) a Mycobacterium smegnatis phosphoenolpyruvate carboxylase polypeptide or a 20 functional variant thereof; (b) a Streptoinyces coelicolor phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof; (c) a Thernobifidafusca phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof; and 25 (d) an Erwinia chrysantheni phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof.
11. The bacterium of claim 1, wherein the heterologous bacterial pyruvate carboxylase polypeptide or a functional variant thereof is chosen from: 30 (a) a Mycobacterium smegmatis pyruvate carboxylase polypeptide or a functional variant thereof; and 264 WO 2004/108894 PCT/US2004/017513 (b) a Streptomnyces coelicolor pyruvate carboxylase polypeptide or a functional variant thereof.
12. The bacterium of claim 1, wherein the bacterium comprises at least two of: 5 (a) a nucleic acid molecule encoding a heterologous bacterial aspartokinase polypeptide or a functional variant thereof; (b) a nucleic acid molecule encoding a heterologous bacterial aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof; (c) a nucleic acid molecule encoding a heterologous bacterial phosphoenolpyruvate 10 carboxylase polypeptide or a functional variant thereof; (d) a nucleic acid molecule encoding a heterologous bacterial pyruvate carboxylase polypeptide or a functional variant thereof; (e) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial dihydrodipicolinate synthase polypeptide or a functional variant thereof; 15 (f) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial homoserine dehydrogenase polypeptide or a functional variant thereof; (g) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial homoserine 0-acetyltransferase polypeptide or a functional variant thereof; (h) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 20 O-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof; (i) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial methionine adenosyltransferase polypeptide or a functional variant thereof; (j) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial mcbR gene product polypeptide or a functional variant thereof; 25 (k) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 0-succinylhomoserine/acetylhomoserine (thiol)-lyase polypeptide or a functional variant thereof; (1) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial cystathionine beta-lyase polypeptide or a functional variant thereof; 265 WO 2004/108894 PCT/US2004/017513 (m) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide or a functional variant thereof; and (n) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 5 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or a functional variant thereof.
13. The bacterium of claim 1, wherein the bacterium comprises at least three of: (a) a nucleic acid molecule encoding a heterologous bacterial aspartokinase 10 polypeptide or a functional variant thereof; (b) a nucleic acid molecule encoding a heterologous bacterial aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof; (c) a nucleic acid molecule encoding a heterologous bacterial phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof; and 15 (d) a nucleic acid molecule encoding a heterologous bacterial pyruvate carboxylase polypeptide or a functional variant thereof; (e) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial dihydrodipicolinate synthase polypeptide or a functional variant thereof; (f) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 20 homoserine dehydrogenase polypeptide or a functional variant thereof; (g) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial homoserine O-acetyltransferase polypeptide or a functional variant thereof; (h) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 0-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof; 25 (i) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial methionine adenosyltransferase polypeptide or a functional variant thereof; (j) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial mcbR gene product polypeptide or a functional variant thereof; (k) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 30 0-succinylhomoserine/acetylhomoserine (thiol)-lyase polypeptide or a functional variant thereof; 266 WO 2004/108894 PCT/US2004/017513 (1) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial cystathionine beta-lyase polypeptide or a functional variant thereof; (m) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide or a functional variant 5 thereof; and (n) a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or a functional variant thereof. 10 14. An Escherichia coli or corynefonn bacterium comprising a nucleic acid molecule comprising a sequence encoding a heterologous bacterial dihydrodipicolinate synthase polypeptide or a functional variant thereof.
15. The bacterium of claim 14 wherein the heterologous bacterial dihydrodipicolinate 15 synthase polypeptide or a functional variant thereof is chosen from: (a) a Mycobacterium smegmatis dihydrodipicolinate synthase polypeptide or a functional variant thereof; (b) a Streptomyces coelicolor dihydrodipicolinate synthase polypeptide or a functional variant thereof; 20 (c) a Thermobtfidafusca dihydrodipicolinate synthase polypeptide or a functional variant thereof; and (d) an Erwinia chrysantheni dihydrodipicolinate synthase polypeptide or a functional variant thereof. 25 16. An Escherichia coli or coryneform bacterium comprising a nucleic acid molecule comprising a sequence encoding a heterologous bacterial homoserine dehydrogenase polypeptide or a functional variant thereof.
17. The bacterium of claim 16, wherein the heterologous bacterial homoserine 30 dehydrogenase polypeptide is chosen from: 267 WO 2004/108894 PCT/US2004/017513 (a) a Mycobacterium smegmatis homoserine dehydrogenase polypeptide or functional variant thereof; (b) a Streptomyces coelicolor homoserine dehydrogenase polypeptide or a functional variant thereof; 5 (c) a Thermobifidafusca homoserine dehydrogenase polypeptide or a functional variant thereof; and (d) an Erwinia chrysanthemi homoserine dehydrogenase polypeptide or a functional variant thereof. 10 18. An Escherichia coli or coryneform bacterium comprising a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 0-homoserine acetyltransferase polypeptide or a functional variant thereof.
19. The bacterium of claim 18, wherein the heterologous bacterial 0-homoserine 15 acetyltransferase polypeptide is chosen from: (a) a Mycobacterium smegmatis 0-homoserine acetyltransferase polypeptide or functional variant thereof; (b) a Streptonyces coelicolor 0-homoserine acetyltransferase polypeptide or a functional variant thereof; 20 (c) a Thermobifidafusca 0-homoserine acetyltransferase polypeptide or a functional variant thereof; and (d) an Erwinia chrysanthemi 0-homoserine acetyltransferase polypeptide or a functional variant thereof. 25 20. An Escherichia coli or coryneform bacterium comprising a nucleic acid molecule that encodes a heterologous bacterial O-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof.
21. The bacterium of claim 20, wherein the heterologous bacterial O-acetylhomoserine 30 sulfhydrolase polypeptide is chosen from: 268 WO 2004/108894 PCT/US2004/017513 (a) a Mycobacterium sinegmatis O-acetylhomoserine sulffhydrylase polypeptide or functional variant thereof; (b) a Streptomyces coelicolor O-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof; and 5 (c) a Therinobifidafusca 0-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof.
22. An Escherichia coli or coryneform bacterium comprising a nucleic acid molecule comprising a sequence encoding a heterologous bacterial 5-methyltetrahydrofolate 10 homocysteine methyltransferase polypeptide or a functional variant thereof.
23. The bacterium of claim 22, wherein the heterologous bacterial 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide is chosen from: (a) a bacterial 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide 15 that is at least 80% identical to SEQ ID No:72 or 73, or a functional variant thereof, from a species of the genus Mycobacterium; (b) a Streptomyces coelicolor 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide or a functional variant thereof (c) a Thermobifidafusca 5-methyltetrahydrofolate homocysteine methyltransferase 20 polypeptide or a functional variant thereof; and (d) a Lactobacillus plantarum 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide or a functional variant thereof.
24. An Escherichia coli or coryneform bacterium comprising a nucleic acid molecule 25 comprising a sequence encoding a heterologous bacterial 5 methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or a functional variant thereof.
25. The bacterium of claim 24, wherein the heterologous bacterial 5 30 methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide is chosen from: 269 WO 2004/108894 PCT/US2004/017513 (a) a bacterial 5-methyltetrahydropteroyltriglutainate-homocysteine miethyltransferase polypeptide that is at least 80% identical to SEQ ID No:75 or 76, or a functional variant thereof, from a species of the genus Mycobacterium; (b) a Streptomyces coelicolor 5-methyltetrahydropteroyltriglutamate-homocysteine 5 methyltransferase polypeptide or a functional variant thereof; (c) a Thermobifidafusca 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or a functional variant thereof; and (d) a Lactobacillus plantarum 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or a functional variant thereof. 10
26. An Escherichia coli or coryneform bacterium comprising a nucleic acid molecule comprising a sequence encoding a heterologous bacterial methionine adenosyltransferase polypeptide or a functional variant thereof. 15 27. The bacterium of claim 26, wherein the heterologous bacterial methionine adenosyltransferase polypeptide is chosen from: (a) a Mycobacterium sinegmatis methionine adenosyltransferase polypeptide or functional variant thereof; (b) a Streptomyces coelicolor methionine adenosyltransferase polypeptide or a 20 functional variant thereof; (c) a Thermobifidafusca methionine adenosyltransferase polypeptide or a functional variant thereof; and (d) an Erwinia chrysanthemi methionine adenosyltransferase polypeptide or a functional variant thereof. 25
28. An Escherichia coli or coryneform bacterium comprising at least two of: (a) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial aspartokinase polypeptide or a functional variant thereof; (b) a genetically altered nucleic acid molecule comprising a sequence encoding a 30 bacterial aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof; 270 WO 2004/108894 PCT/US2004/017513 (c) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof; and (d) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial dihydrodipicolinate synthase polypeptide or a functional variant thereof. 5
29. The bacterium of claim 28, wherein at least one of the at least two genetically altered nucleic acid molecules encodes a heterologous polypeptide.
30. The bacterium of claim 28, wherein the bacterium comprises (a) and (b), (a) and (c), (a) 10 and (d), (b) and (c), (b) and (d), or (c) and (d).
31. The bacterium of claim 30, wherein the bacterium comprises at least three of (a)-(e).
32. The bacterium of claim 28, wherein the bacterium has reduced activity of one or more of 15 the following polypeptides, relative to a control: (a) a homoserine dehydrogenase polypeptide; (b) a homoserine kinase polypeptide; and (c) a phosphoenolpyruvate carboxykinase polypeptide. 20 33. The bacterium of claim 32, wherein the bacterium comprises a mutation in an endogenous hom gene or an endogenous thrB gene.
34. The bacterium of claim 32, wherein the bacterium comprises a mutation in an endogenous hon gene and an endogeous thrB gene. 25
35. The bacterium of claim 32, wherein the bacterium comprises a mutation in an endogenous pck gene.
36. An Escherichia coli or coryneform bacterium comprising at least two of: 30 (a) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof; 271 WO 2004/108894 PCT/US2004/017513 (b) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial aspartokinase polypeptide or a functional variant thereof; (c) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof 5 (d) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial homoserine dehydrogenase polypeptide or a functional variant thereof; (e) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial homoserine 0-acetyltransferase polypeptide or a functional variant thereof; (f) a genetically altered nucleic acid molecule comprising a sequence encoding a 10 bacterial O-acetylhomoserine sulfhydrylase polypeptide or a functional variant thereof; (g) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial 5-methyltetrahydrofolate homocysteine methyltransferase polypeptide or a functional variant thereof; (h) a genetically altered nucleic acid molecule comprising a sequence encoding a 15 bacterial 0-succinylhomoserine (thio)-lyase polypeptide or a functional variant thereof; (i) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase polypeptide or a functional variant thereof; (j) a genetically altered nucleic acid molecule comprising a sequence encoding a 20 bacterial methionine adenosyltransferase polypeptide or a functional variant thereof; (k) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial seine hydroxylmethyltransferase polypeptide or a functional variant thereof; and (1) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial cystathionine beta-lyase polypeptide or a functional variant thereof. 25
37. The bacterium of claim 36, wherein at least one of the at least two genetically altered nucleic acid molecules encodes a heterologous polypeptide.
38. The bacterium of claim 36, wherein the bacterium comprises (a) and at least one of (b), 30 (c), (d), (e), (f), (g), (h), (i), (j), (k), and (1). 272 WO 2004/108894 PCT/US2004/017513
39. The bacterium of claim 36, wherein the bacterium comprises (b) and at least one of (c), (d), (e), (f), (g), (h), (i), (j), (k), and (1).
40. The bacterium of claim 36, wherein the bacterium comprises (c) and at least one of (d), 5 (e), (f), (g), (h), (i), (j), (k), and (1).
41. The bacterium of claim 36, wherein the bacterium comprises (d) and at least one of (e), (f), (g), (h), (i), (j), (k), and (1). 1o 42. The bacterium of claim 36, wherein the bacterium comprises (e) and at least one of (f), (g), (h), (i), (j), (k), and (1).
43. The bacterium of claim 36, wherein the bacterium comprises (f) and at least one of (g), (h), (i), (j), (k), and (1). 15
44. The bacterium of claim 36, wherein the bacterium comprises (g) and at least one of (h), (i), (), (k), and (1).
45. The bacterium of claim 36, wherein the bacterium comprises (h) and at least one of (i), 20 (), (k), and (1).
46. The bacterium of claim 36, wherein the bacterium comprises (i) and at least one of(k) (k), and (1). 25 47. The bacterium of claim 36, wherein the bacterium comprises (j) and at least one of (k), and (1).
48. The bacterium of claim 36, wherein the bacterium comprises (k) and (1). 30 49. The bacterium of claim 36, wherein the bacterium comprises at least three of (a)-(l). 273 WO 2004/108894 PCT/US2004/017513
50. The bacterium of claim 36, wherein the bacterium has reduced activity of one or more of the following polypeptides, relative to a control: (a) a homoserine kinase polypeptide; (b) a phosphoenolpyruvate carboxykinase polypeptide; 5 (c) a homoserine dehydrogenase polypeptide; and (d) a mcbR gene product polypeptide.
51. The bacterium of claim 50, wherein the bacterium comprises a mutation in an endogenous hom gene, an endogenous thrB gene, an endogenous pck gene, or an endogenous 10 mcbR gene.
52. The bacterium of claim 50, wherein the bacterium comprises a mutation in an endogenous hom gene and an endogeous thrB gene. 15 53. The bacterium of claim 50, wherein the bacterium comprises a mutation in two or more of an endogenous hom gene, an endogenous thrB gene, an endogenous pck gene, or an endogenous mcbR gene.
54. An Escherichia coli or coryneforrn bacterium comprising at least two of: 20 (a) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial phosphoenolpyruvate carboxylase polypeptide or a functional variant thereof; (b) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial aspartokinase polypeptide or a functional variant thereof; (c) a genetically altered nucleic acid molecule comprising a sequence encoding a 25 bacterial aspartate semialdehyde dehydrogenase polypeptide or a functional variant thereof; (d) a genetically altered nucleic acid molecule comprising a sequence encoding a bacterial homoserine dehydrogenase polypeptide or a functional variant thereof.
55. The bacterium of claim 54, wherein at least one of the at least two polypeptides encodes 30 a heterologous polypeptide. 274 WO 2004/108894 PCT/US2004/017513
56. The bacterium of claim 54, wherein the bacterium comprises (a) and (b), (a) and (c), (a) and (d), (b) and (c), (b) and (d), or (c) and (d).
57. The bacterium of claim 54, wherein the bacterium comprises at least three of (a)-(d). 5
58. The bacterium of claim 54, wherein the bacterium has reduced activity of one or more of the following polypeptides, relative to a control: (a) a phosphoenolpyruvate carboxykinase polypeptide; and (b) a mcbR gene product polypeptide. 10
59. The bacterium of claim 58, wherein the bacterium comprises a mutation in an endogenouspck gene or an endogenous mcbR gene.
60. The bacterium of claim 58, wherein the bacterium comprises a mutation in an 15 endogenouspck gene and an endogenous mcbR gene.
61. A method of producing an amino acid or a related metabolite, the method comprising: cultivating a bacterium according to claim 1 under conditions that allow the amino acid the metabolite to be produced, and collecting a composition that comprises the amino 20 acid or related metabolite from the culture.
62. The method of claim 61, further comprising fractionating at least a portion of the culture to obtain a fraction enriched in the amino acid or the metabolite. 25 63. A method for producing L-lysine or a related metabolite, the method comprising: cultivating a bacterium according to claim 1 or 28 under conditions that allow L lysine to be produced, and collecting a composition that comprises the amino acid or related metabolite from the culture. 30 64. The method of claim 63, further comprising fractionating at least a portion of the culture to obtain a fraction enriched in L-lysine. 275 WO 2004/108894 PCT/US2004/017513
65. A method for producing methionine or S-adenosylmethionine, the method comprising: cultivating a bacterium according to claim 36 under conditions that allow methionine or S-adenosylmethionine to be produced, and collecting a composition that comprises the 5 methionine or S-adenosylmethionine from the culture.
66. The method of claim 65, further comprising fractionating at least a portion of the culture to obtain a fraction enriched in methionine or S-adenosylmethionine. 10 67. A method for producing isoleucine or threonine, the method comprising: cultivating a bacterium according to claim 54 under conditions that allow isoleucine or threonine to be produced, and collecting a composition that comprises the a isoleucine or threonine from the culture. 15 68. The method of claim 67, further comprising fractionating at least a portion of the culture to obtain a fraction enriched in isoleucine or threonine.
69. An isolated nucleic acid encoding a variant bacterial protein, wherein the bacterial protein regulates the production of an amino acid from the aspartic acid family of amino acids or related metabolites, and wherein the variant protein has enhanced activity, relative to 20 a wild type form of the protein
70. The nucleic acid of claim 69, wherein the bacterial protein regulates the production of an amino acid from the aspartic acid family of amino acids or related metabolites, and wherein the variant protein has reduced feedback inhibition by S-adenosylmethionine relative to a 25 wild type form of the protein.
71. An isolated nucleic acid encoding a variant of a bacterial protein, wherein the bacterial protein comprises the following amino acid sequence: G 1 -X 2 -K 3 -X4-X 5 -X 6 -X 7 -Xs-X 9 -X-X-X 2 -X 3 -X 3 a-X 1 3 b-X13c-X3dX13e-X13fX13g 30 X1 3 h-XlrX 13 j-X 13 k-XI 3 -F 1 4-X 1 5 -Z 1 6 -X 17 -X 1 3-X 1 9 -X 2 0-X 21 -X 21 a-X 2 1b-X21c-X21d-X21e-X21f X 2 1g-X 21 X 2 1 1X 2 1 2 1 k -X 2 1 1 X 2 1 X21n-X21o-X21p-X21q-X21r-X21s-X21t-D22(SEQ ID NO:_), 276 WO 2004/108894 PCT/US2004/017513 wherein each of X 2 , X 4 -X 1 3 , X 15 , and X 1 7 -X 20 is, independently, any amino acid, wherein each of X13a-X131 is, independently, any amino acid or absent, wherein each of X21a X 2 1 n is, independently, any amino acid or absent, and wherein Z 1 6 is selected from valine, aspartate, glycine, isoleucine, and leucine; 5 wherein the variant bacterial protein comprises an amino acid change at one or more of G 1 , K 3 , F 14 , Z 16 , or D 22 of SEQ ID NO:_).
72. The nucleic acid of claim 71, wherein feedback inhibition of the variant of the bacterial protein by S-adenosylmethionine is reduced relative to the bacterial protein. 10
73. The nucleic acid of claim 71, wherein the amino acidchange is a change to an alanine.
74. A polypeptide encoded by the nucleic acid of claim 69. 15 75. A polypeptide encoded by the nucleic acid of claim 71.
76. A bacterium comprising the nucleic acid of claim 69.
77. A bacterium comprising the nucleic acid of claim 71. 20
78. A method for producing an amino, acid or a related metabolite, the method comprising: cultivating a genetically modified bacterium comprising the nucleic acid of claim 69 under conditions in which the nucleic acid is expressed and that allow the amino acid to be produced, and collecting a composition that comprises the amino acid or related metabolite 25 from the culture.
79. A method for producing an amino acid or a related metabolite, the method comprising: cultivating a genetically modified bacterium comprising the nucleic acid of claim 71 under conditions in which the nucleic acid is expressed and that allow the amino acid to be 30 produced, and collecting a composition that comprises the amino acid or related metabolite from the culture. 277 WO 2004/108894 PCT/US2004/017513
80. An isolated nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase, wherein the variant homoserine 0-acetyltransferase is a variant of a homoserine 0 acetyltransferase comprising the following amino acid sequence: 5 G 1 -X 2 -K 3 -X 4 -X 5 -X-X 7 -X-X 9 -Xia-X1-X12-X13-X13a-X13b-X13-X13d-X13e-X13f-X13g X 13 h-X 13 i-X 13 -X 1 3 k-X 13 1 -F 1 4 X 1 5 -ZI 6 X 17 -X-X 1 9 -X 2 0-X 21 -X 2 1 a-X 2 1 b-X 21 .- X 21 a-X21e-X21f X21g-X 2 1h-X 2 11-X 2 1j-X 2 1k-X 2 11-X 2 1m-X 2 1n-X 2 1o-X 2 1p-X 2 1-X21rX 2 1s-X 2 t-D 22 SEQ ID NO:_, 10 wherein each of X 2 , X 4 -X 1 3 , X 15 , and X 1 7 -X 20 is, independently, any amino acid, wherein each of X13a-X31 is, independently, any amino acid or absent, wherein each of X 2 1a X 2 1 u is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant homoserine O-acetyltransferase comprises an amino acid change 15 at one or more of G 1 , K3, F 14 , Z 1 6 , or D 2 2 of SEQ ID NO:_.
81. An isolated nucleic acid encoding a variant bacterial 0-acetylhomoserine sulfhydrylase, wherein the variant O-acetylhomoserine sulfhydrylase is a variant of an 0-acetylhomoserine sulfhydrylase comprising the following amino acid sequence: 20 Gi-X 2 -K 3 -X 4 -X 5 -X 6 -X 7 -X 8 -X 9 -Xi-Xii-Xi-X 13 -Xi 3 a-Xla-Xi 3 c-Xl 3 d-Xl 3 e-Xl 3 f X13g-X1 3 h-Xl 3 i-Xl 3 j -X 13 k-Xi 3 1 -F14-Xi 5 -Zl.-Xi-XIe-XX 1 9 -X 2 X 2 -X 2 a- X 2 1 b-X 2 1 -X 2 1d X 2 le-X 2 l-Xg-X 2 h-X 2 i-X 2 j -X 2 ik-X 2 n-Xn-X 2 anXo-X 2 p-X21q-X21r-X21s-X2t-D22 (SEQ ID NO:_), 25 wherein X is any amino acid, wherein each Of X13a-X131 is, independently, any amino acid or absent, wherein each of X2la-X2lt is, independently, any amino acid or absent, and wherein Z1 6 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant O-acetylhomoserine sulfhydrylase comprises an amino acid 30 change at one or more of G 1 , K 3 , F 1 4 , Z 16 , or D 22 of SEQ ID NO:_. 278 WO 2004/108894 PCT/US2004/017513
82. An isolated nucleic acid encoding a variant bacterial mcbR gene product, wherein the variant mcbR gene product is a variant of an mcbR gene product comprising the following amino acid sequence: 5 Gi-X 2 -K 3 -X 4 -X5-X6-X--XB-X 9 -Xio-XI-Xi2-X 3 Xa-X 1 3 -Xa-X 13 d-Xi 3 e-X 3 f Xi 3 q-X1 3 h-X13i-XI 3 j -Xl 3 k-X131-Fl 4 -Xl 5 -Zi 6 -X 7 -Xie-Xl 9 -X 2 O-X 2 1-X 2 la-X 2 1b-X 2 1c-X 2 1d X 2 1e-X 2 If-X 2 1-X 2 1h-X 2 1iX 2 1 -X 2 k-X 2 1 1 -X 2 1 m-X 2 1 n-X 2 0 o-X 2 1 p-X 2 1 q-X 2 ir-X 2 1 s-X 2 it-D 2 2 (SEQ ID NO:__), 10 wherein each of X 2 , X 4 -X 1 3 , X 15 , and X 1 7 -X 20 is, independently, any amino acid, wherein each Of X13a-X131 is, independently, any amino acid or absent, wherein each of X21a X 21 t is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant mcbR gene product comprises an amino acid change at one or 15 more of G 1 , K 3 , F 1 4 , Z 1 6 , or D 22 of SEQ ID NO:_.
83. An isolated nucleic acid encoding a variant bacterial aspartokinase, wherein the variant aspartokinase is a variant of an aspartokinase comprising the following amino acid sequence: 20 Gi-X 2 -K 3 -X 4 -X 5 -X6-X 7 -X8-X9-XlO-Xll-X2-X3-Xl 3 a-Xl 3 b-Xl 3 a-Xl 3 d-Xl 3 e-X13f X13g-X13h-X13i-X 1 3 j -X 13 k-X 13 1 -F 14 -Xi 5 -Zi 6 -Xn-Xi-XX 1 9 -X 2 X 2 1 -Xa-X 2 1 b-X 2 1 c-X 2 1 d X 2 1e-X 2 1f-X 2 1g-X 2 th-X 2 -X 2 1j -X 2 k-X 2 n-X 2 1 m-X 2 1n-X 2 io-X2p-X 2 q-X 2 r-X2ls-X2it-D22 (SEQ ID NO:__), 25 wherein each of X 2 , X 4 -X 13 , X 1 5 , and X 1 7 -X 20 is, independently, any amino acid, wherein each of X13a-X31 is, independently, any amino acid or absent, wherein each of X21a X 21 t is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant aspartokinase comprises an amino acid change at one or more of 30 G 1 , K 3 , F 14 , Z 1 6 , or D 22 of SEQ ID NO:_. 279 WO 2004/108894 PCT/US2004/017513
84. An isolated nucleic acid encoding a variant bacterial O-succinylhomoserine (thiol) lyase, wherein the variant O-succinylhomoserine (thiol)-lyase is a variant of an 0 succinylhomoserine (thiol)-lyase comprising the following amino acid sequence: 5 GI-X2-K3-X4-X5-X6-X7-X8-X9-Xio-XI1-XI2-X13-X13a-Xisb-X13c-X13d-X13e-X13f X13g-Xl 3 h-Xl 3 i-Xl 3 j -Xi3k-Xi31-F 4 - Xi 5 -Zi 6 -Xi7-Xi8-Xi-X 2 o-X 2 l-X 2 la-X 2 1b-X 2 1c-X 2 1d X2e-X2l-X 2 lg-X 2 lh-X 2 i-X 2 j -X2Ik-X211-X2m-X 2 n-X 2 o-X 2 p-X 2 lq-X2r-X 2 1s-X 2 t-D 2 2 (SEQ ID NO:_), 10 wherein each of X 2 , X 4 -X 13 , X 15 , and X 1 7 -X 20 is, independently, any amino acid, wherein each Of X13a-X131 is, independently, any amino acid or absent, wherein each of X21a X 21 1 is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant O-succinylhomoserine (thiol)-lyase comprises an amino acid 15 change at one or more of G 1 , K 3 , F 1 4 , Z 1 6 , or D 22 of SEQ ID NO:__.
85. An isolated nucleic acid encoding a variant bacterial cystathionine beta-lyase, wherein the variant cystathionine beta-lyase is a variant of a cystathionine beta-lyase comprising the following amino acid sequence: 20 Gi-X 2 -K 3 -X 4 -X5-X6-X7-X8-X 9 -XlO-Xll-XI2-X3-Xl 3 a-Xl 3 b-X1 3 c-Xl 3 d-Xl 3 e-X 3 f Xi3g-Xl 3 h-Xl 3 i-Xl 3 j -Xl 3 k-Xi 3 -Fl4-Xi 5 -Z 6 -Xl 7 -X 8 -Xi-X 2 0 X 2 -Xa-X 2 1-X 2 ic-X 2 1d~ X21e-X2if-X 2 g-X 2 1h-X 2 ii-X 2 lj-X 2 ik-X 2 ll-X 2 n-X 2 1n-X 2 1o-X 2 p-X 2 lq-X 2 r-X 2 -X 2 1 t-D22 (SEQ ID NO:_), 25 wherein each of X 2 , X 4 -X 1 3 , X 15 , and X 17 -X 20 is, independently, any amino acid, wherein each of X 1 3a-X131 is, independently, any amino acid or absent, wherein each Of X21a X 21 t is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; 30 wherein the variant cystathionine beta-lyase comprises an amino acid change at one or more of G 1 , K 3 , F 14 , Z 16 , or D 2 2 of SEQ ID NO:_. 280 WO 2004/108894 PCT/US2004/017513
86. An isolated nucleic acid encoding a variant bacterial 5-methyltetrahydrofolate homocysteine methyltransferase, wherein the variant 5-methyltetrahydrofolate homocysteine methyltransferase is a variant of a 5-methyltetrahydrofolate homocysteine methyltransferase comprising the following amino acid sequence: 5 G,-X 2 -K 3 -X 4 -X 5 -X 6 -X 7 -Xs-X9-Xio-XI I-XI2-Xia-Xia-Xisb-X13c-Xisd-X13e-X13f X 3 g-Xl 3 h-Xl 3 i-Xl 3 X 13 k-X 1 31 -F 14 -Xi 5 -ZIE (SEQ ID NO:__, wherein each of X 2 , X 4 -X1 3 , XIS, and X 15 -X 16 is, independentlywherein X is any 10 amino acid, wherein each of X13a-XI31 is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant homocysteine methyltransferase comprises an amino acid change at one or more of G 1 , K3, F 1 4 , or Z 16 , of SEQ ID NO:_. 15 87. An isolated nucleic acid encoding a variant bacterial S-adenosylmethionine synthetase, wherein the variant S-adenosylmethionine synthetase is a variant of an S-adenosylmethionine synthetase comprising the following amino acid sequence: Gi-X 2 -K 3 -X 4 -X 5 -X 6 -X 7 -X-X9-XiX1-X12-X13-X13a-Xl 3 b-Xl 3 -Xl 3 d-Xl 3 e-X1 3 f 20 Xi 3 q-X13h-Xi 3 1-X 13 j -Xl 3 k-X 1 31 -F 14 -X 15 -ZiX 1 7 -Xi 8 -XI9-X20-X 2 1 -X 2 1 a-X 2 1 I-X 2 1 c-X 21 d X2le-X21l-X2-lgX2lh-X 2 li-X 2 lj -X2k-X211-X2im-X2n-X2o-X 2 p-X 2 lq-X 2 1r-X 2 ls-X 2 1t-D 2 2 (SEQ ID NO:__), wherein each of X 2 , X 4 -X 13 , X 15 , and X 17 -X 2 0 is, independently, any amino acid, 25 wherein each of X13a-X131 is, independently, any amino acid or absent, wherein each of X21a X 2 1 u is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant S-adenosylmethionine synthetase comprises an amino acid change at one or more of G 1 , K3, F 1 4 , Z 16 , or D 22 of SEQ ID NO:_.
88. A bacterium comprising two or more of the following: 281 WO 2004/108894 PCT/US2004/017513 a nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase with reduced feedback inhibition relative to a wild-type form of the homoserine 0 acetyltransferase; a nucleic acid encoding a variant bacterial O-acetylhomoserine sulfhydrylase with reduced feedback inhibition relative to a wild-type form of the O-acetylhomoserine sulfhydrylase; a nucleic acid encoding a variant bacterial McbR gene product with reduced feedback inhibition relative to a wild-type form of the McbR gene product; a nucleic acid encoding a variant bacterial aspartokinase with reduced feedback inhibition relative to a wild-type form of the aspartokinase; a nucleic acid encoding a variant bacterial 0-succinylhomoserine (thiol)-lyase with reduced feedback inhibition relative to a wild-type form of the 0-succinylhomoserine (thiol) lyase; a nucleic acid encoding a variant bacterial cystathionine beta-lyase with reduced feedback inhibition relative to a wild-type form of the cystathionine beta-lyase; a nucleic acid encoding a variant bacterial homocysteine methyltransferase with reduced feedback inhibition relative to a wild-type form of the 5-methyltetrahydrofolate homocysteine methyltransferase; and a nucleic acid encoding a variant bacterial S-adenosylmethionine synthetase with reduced feedback inhibition relative to a wild-type form of the S-adenosylmethionine synthetase.
89. A bacterium comprising two or more of the following: (a) a nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase, wherein the variant homoserine 0-acetyltransferase is a variant of a homoserine 0 acetyltransferase comprising the following amino acid sequence: G 1 -X 2 -K 3 -XXs-XX 7 -X-X 9 -X 10 -Xu-X2-X3-X3a-X13b-X13c-Xl3d-X13e-X13f-X3g 5 X13-Xl3i-Xj-X1 3 k-Xl 3 -F4Xl5-Zl 6 Xl7-X18-X19-X 2 0-X 2 1-X 2 1a-X 2 1-X 2 10-X 2 1d-X 2 le-X 2 1 X21g-X 2 1h-X 2 1i-X 2 1j-X 2 1k-X 2 11-X 2 1m-X 2 ln-X 2 1o-X 2 1p-X 2 1q-X 2 1r-X 2 1s-X 2 1t-D 22 (SEQ ID NO:_), wherein each of X 2 , X 4 -X 13 , X 15 , and X 1 7 -X 2 0 is, independently, any amino acid, wherein each Of X3a,-Xi31 is, independently, any amino acid or absent, wherein each of X21a 282 WO 2004/108894 PCT/US2004/017513 X 2 1 u is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; wherein the variant homoserine 0-acetyltransferase comprises an amino acid change at one or more of G 1 , K 3 , F 14 , Z 16 , or D 22 of SEQ ID NO:_; 5 (b) a nucleic acid encoding a variant bacterial O-acetylhomoserine sulfhydrylase, wherein the variant O-acetylhomoserine sulfhydrylase is a variant of an 0-acetylhomoserine sulfhydrylase comprising the following amino acid sequence: G 1 -X 2 -K 3 -X 4 -X 5 -X 6 -X 7 -Xs-X 9 -Xia-IIX12X13XIaX13b-X13-X13d-Xl 3 e-Xl 3 fXl 3 g X 13 b-X 1 3i-Xl 3 j-Xl 3 k-Xl 3 l-F1 4 -X15-Z 16 -X 1 7 -Xis-X 1 9-X20-X21-X21a-X21b-X21-X 2 1 -X 2 1e.-X 2 1f 10 X21g-X2nrX2n-X21j-X21k-X2n-X21m-X21n-X21o-X21p-X219-X21eX21eX21rD22 (SEQ ID NO:_), wherein each of X 2 , X 4 -X 1 3 , X 15 , and X 17 -X 20 is, independently, any amino acid, wherein each Of X13a-X131 is, independently, any amino acid or absent, wherein each of X21a X 2 1 n is, independently, any amino acid or absent, and wherein Z 16 is selected from valine, aspartate, glycine, isoleucine, and leucine; 15 wherein the variant O-acetylhomoserine sulfhydrylase comprises an amino acid change at one or more of G 1 , K 3 , F 14 , Z 16 , or D 22 of SEQ ID NO:_; and (c) a nucleic acid encoding a variant bacterial 0-acetyhomoserine sulfhydrylase, wherein the variant O-acetylhomoserine sulfhydrylase is a variant of a O-acetylhomoserine sulfhydrylase comprising the following amino acid sequence: L 1 -X 2 -X 3 -G 4 -G 5 -X 6 -F 7 -X 8 -X 9 - X 10 -X 1 u (SEQ ID NO:_), wherein X is any amino acid, wherein X 8 is selected from valine, leucine, isoleucine, and aspartate, and wherein X, 1 is selected from valine, leucine, isoleucine, phenylalanine, and methionine; wherein the variant of the bacterial protein comprises an amino acid change at one or more of L 1 , G 4 , X 8 , X 1 of SEQ ID NO: _
90. A bacterium comprising two or more of the following: 20 (a) a nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase, wherein the variant homoserine 0-acetyltransferase is a C. glutanicum homoserine 0 acetyltransferase comprising an amino acid change in one or more of the following residues of SEQ ID NO:_ : Glycine 231, Lysine 233, Phenylalanine 251, and Valine 253; 283 WO 2004/108894 PCT/US2004/017513 (b) a nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase, wherein the variant homoserine 0-acetyltransferase is a T. fusca homoserine 0 acetyltransferase comprising an amino acid change in one or more of the following residues of SEQ ID NO: _: Glycine 81, Aspartate 287, Phenylalanine 269; 5 (c) a nucleic acid encoding a variant bacterial homoserine O-acetyltransferase, wherein the variant homoserine 0-acetyltransferase is an E. coli homoserine 0 acetyltransferase comprising an amino acid change at Glutamate 252 of SEQ ID NO:_; (d) a nucleic acid encoding a variant bacterial homoserine O-acetyltransferase, wherein the variant homoserine 0-acetyltransferase is a mycobacterial homoserine 0 10 acetyltransferase comprising an amino acid change in a residue corresponding to one or more of the following residues of M. leprae homoserine O-acetyltransferase set forth in SEQ ID NO: : Glycine 73, Aspartate 278, and Tyrosine 260; (e) a nucleic acid encoding a variant bacterial homoserine 0-acetyltransferase, wherein the variant homoserine O-acetyltransferase is an M tuberculosis homoserine 0 15 acetyltransferase comprising an amino acid change in one or more of the following residues of SEQ ID NO: _: Glycine 73, Tyrosine 260, and Aspartate 278; (f) a nucleic acid encoding a variant bacterial O-acetylhomoserine sulfhydrylase, wherein the variant O-acetylhomoserine sulfhydrylase is a C. glutamicun 0 acetylhomoserine sulfhydrylase comprising an amino acid change in one or more of the 20 following residues of SEQ ID NO: : Glycine 227, Leucine 229, Aspartate 231, Glycine 232, Glycine 233, Phenylalanine 235, Aspartate 236, Valine 239, Phenylalanine 368, Aspartate 370, Aspartate 383, Glycine 346, and Lycine 348; and (g) a nucleic acid encoding a variant bacterial O-acetylhomoserine sulfhydrylase, wherein the variant O-acetylhomoserine sulfhydrylase is a T fusca O-acetylhomoserine sulfhydrylase comprising an amino acid change in one or more of the following residues of SEQ ID NO: : Glycine 240, Aspartate 244, Phenylalanine 379, and Aspartate 394.
91. A bacterium comprising a nucleic acid encoding an episomal homoserine 0 acetyltransferase, or a variant thereof, and an episomal 0-acetylhomoserine sulfhydrylase, or a variant thereof. 284 WO 2004/108894 PCT/US2004/017513
92. The bacterium of claim 91, wherein the episomal homoserine 0-acetyltransferase and the episomal O-acetylhomoserine sulfhydrylase are of a different species than the bacterium.
93. A method for the preparation of animal feed additives containing an aspartate-derived amino acid(s) comprising: (d) cultivating a bacterium according to any of claims 1, 28, 36, and 54 under conditions that allow the aspartate-derived amino acid(s) to be produced; (e) collecting a composition that comprises at least a portion of the aspartate-derived amino acid(s) that result from cultivating said bacterium; (f) concentrating the collected composition to enrich for the aspartate-derived amino acid(s); and (g) optionally, adding one or more substances to obtain the desired animal feed additive.
94. The method of claim 93, wherein the bacterium is Escherichia coli or a coryneform bacterium.
95. The method of claim 94, wherein the bacterium is Corynebacterium glutamicum.
96. The method of claim 93, wherein the aspartate-derived amino acid one or more of lysine, methionine, threonine or isoleucine. 285
AU2004245988A 2003-05-30 2004-06-01 Methods and compositions for amino acid production Abandoned AU2004245988A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US47500003P 2003-05-30 2003-05-30
US60/475,000 2003-05-30
US55186004P 2004-03-10 2004-03-10
US60/551,860 2004-03-10
PCT/US2004/017513 WO2004108894A2 (en) 2003-05-30 2004-06-01 Methods and compositions for amino acid production

Publications (1)

Publication Number Publication Date
AU2004245988A1 true AU2004245988A1 (en) 2004-12-16

Family

ID=33514039

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2004245988A Abandoned AU2004245988A1 (en) 2003-05-30 2004-06-01 Methods and compositions for amino acid production

Country Status (7)

Country Link
EP (1) EP1633851A4 (en)
JP (1) JP2007525951A (en)
KR (1) KR20060018868A (en)
AU (1) AU2004245988A1 (en)
BR (1) BRPI0410861A (en)
CA (1) CA2526365A1 (en)
WO (1) WO2004108894A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2275424C2 (en) 2003-12-05 2006-04-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Method for preparing l-threonine by using bacterium belonging to genus escherichia
JP2007513601A (en) * 2003-12-05 2007-05-31 味の素株式会社 L-threonine producing bacteria belonging to the genus Escherichia and method for producing L-threonine
US7723097B2 (en) * 2005-03-11 2010-05-25 Archer-Daniels-Midland Company Escherichia coli strains that over-produce L-threonine and processes for their production
CA2615315C (en) * 2005-07-18 2015-10-06 Basf Aktiengesellschaft Use of dimethyl disulfide for methionine production in microorganisms
CN101278041A (en) * 2005-08-05 2008-10-01 密执安州大学 Genes from actinobacillus succinogenes 13oz (atcc 55618) for production of chemicals from the a. succinogenes C4-pathway
JP2007068437A (en) * 2005-09-05 2007-03-22 Chisso Corp Variant aspartokinase and method for utilizing the same
BRPI0620880B1 (en) 2006-01-04 2018-10-09 Evonik Degussa Gmbh method for the production of methionine by cultivating a microorganism and microorganism
WO2008033001A1 (en) * 2006-09-15 2008-03-20 Cj Cheiljedang Corporation A corynebacteria having enhanced l-lysine productivity and a method of producing l-lysine using the same
KR20080061801A (en) * 2006-12-28 2008-07-03 씨제이제일제당 (주) Novel l-methionine exporter
US20090215133A1 (en) * 2007-02-02 2009-08-27 Evonik Degussa Gmbh Production of l-lysine and l-lysine-containing feed additives
ES2575906T3 (en) 2007-04-11 2016-07-04 Cj Cheiljedang Corporation Compositions and methods of producing methionine
US8283152B2 (en) * 2009-08-28 2012-10-09 Cj Cheiljedang Corporation Microorganism producing O-acetyl-homoserine and the method of producing O-acetyl-homoserine using the microorganism
KR101335841B1 (en) * 2010-12-21 2013-12-02 씨제이제일제당 (주) Mutain having homoserine O-acetyl transferase activity and Microorganism expressing the same
KR101250651B1 (en) * 2010-12-21 2013-04-03 씨제이제일제당 (주) New O-acetylhomoserine sulfhydrylase or mutants, and L-methionine conversion method uging the enzyme
KR101485222B1 (en) * 2012-10-05 2015-01-22 상지대학교산학협력단 Corynebacterium sp. microorganism having enhanced L-threonine productivity by regulation of dapA activity and a method of producing L-threonine using the same
KR101947959B1 (en) 2018-05-28 2019-02-13 씨제이제일제당 (주) A modified homoserine dehydrogenase and a method for producing homoserine or L- amino acid derived from homoserine using the same
KR101996769B1 (en) * 2018-12-21 2019-10-01 씨제이제일제당 (주) A homoserine dehydrogenase variant and a method for producing homoserine or L-amino acid derived from homoserine using the same
CA3143318C (en) * 2019-06-14 2024-06-18 Cj Cheiljedang Corporation Composition for preventing, treating, or improving gastrointestinal diseases comprising strain of genus corynebacterium and culture thereof
KR102472559B1 (en) * 2019-06-28 2022-12-01 씨제이제일제당 주식회사 A method of producing sulfur-containing amino acids and derivatives thereof
WO2024084049A2 (en) 2022-10-20 2024-04-25 Cysbio Aps Genetically modified host cells producing l-serine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601983A (en) * 1983-06-15 1986-07-22 Ajinomoto Co., Inc. Coryneform bacteria carrying recombinant plasmids and their use in the fermentative production of L-threonine and L-isoleucine
CN1117152C (en) * 1994-03-04 2003-08-06 味之素株式会社 Process for production L-lysine
EP2194122B1 (en) * 1998-04-13 2015-12-02 The University Of Georgia Research Foundation, Inc. Pyruvate carboxylase overexpression for enhanced production of oxaloacetate-derived biochemicals in microbial cells
US6451564B1 (en) * 1999-07-02 2002-09-17 Massachusetts Institute Of Technology Methods for producing L-isoleucine
DE10239082A1 (en) * 2002-08-26 2004-03-04 Basf Ag Fermentative production of sulfur-containing fine chemicals, useful e.g. as feed additive, by culturing bacteria containing heterologous sequence for O-acetylhomoserine sulfhydrolase

Also Published As

Publication number Publication date
WO2004108894A3 (en) 2007-11-22
JP2007525951A (en) 2007-09-13
CA2526365A1 (en) 2004-12-16
EP1633851A4 (en) 2009-04-08
KR20060018868A (en) 2006-03-02
WO2004108894A2 (en) 2004-12-16
EP1633851A2 (en) 2006-03-15
BRPI0410861A (en) 2006-05-23

Similar Documents

Publication Publication Date Title
US20070026505A1 (en) Amino acid and metabolite biosynthesis
US20050255568A1 (en) Methods and compositions for amino acid production
AU2004245988A1 (en) Methods and compositions for amino acid production
EP2218789B1 (en) Process for the production of L-methionine using coryneform bacteria
KR102260001B1 (en) Method for producing l-amino acids in corynebacteria using a glycine cleavage system
CN101578361A (en) Improved amino acid and metabolite biosynthesis
US7563602B2 (en) Alleles of the GND gene from coryneform bacteria
US9150827B2 (en) Method for the fermentative production of L-amino acids with the aid of coryneform bacteria capable of using glycerin as the only carbon source
CA2455878A1 (en) Production of l-lysine by genetically modified corynebacterium glutamicum strains
US8293514B2 (en) Alleles of the rel gene from coryneform bacteria
MXPA06006759A (en) Methods for the preparation of lysine by fermentation of corynebacterium glutamicum.
EP3456834B1 (en) Method for the fermentative production of l-amino acids
US20040253628A1 (en) Alleles of the lysC gene from corynebacteria
EP1456363B1 (en) Alleles of the siga gene from coryneform bacteria
DK2089525T3 (en) OXYR GENETIC GENES FROM CORYNEFORM BACTERIA
US7083942B2 (en) Alleles of the aceA gene from coryneform bacteria
EP1659174A2 (en) Alleles of the mtK gene from coryneform bacteria
US9359413B2 (en) Microorganism and method for the fermentative production of an organic-chemical compound
CN101208427A (en) Methods and compositions for amino acid production
US20050079588A1 (en) Method for the fermentative production of L-amino acids, using coryneform bacteria

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted